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Scale-Space Splatting: Reforming Spacetime for Cross-Scale
Exploration of Integral Measures in Molecular Dynamics

Juraj Péalenik, Jan Byska, Stefan Bruckner, and Helwig Hauser
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Fig. 1: Novel representation of electrostatic interaction energy (in the middle) helps navigating the simulation by spatially resolving
contributions to the integral measure traditionally represented by a timeseries (blue line in the bottom). It captures different modes
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of the simulation better than the timeseries and helps localizing changes in the configuration of the simulation by providing spatial
context. The multiscale behaviour of the data is explored by seamlessly navigating the spatiotemporal scale-space. The selected
timestep shows the ligand escaping from the tunnel, before it is sucked back in by the protein.

Abstract—Understanding large amounts of spatiotemporal data from particle-based simulations, such as molecular dynamics, often
relies on the computation and analysis of aggregate measures. These, however, by virtue of aggregation, hide structural information
about the space/time localization of the studied phenomena. This leads to degenerate cases where the measures fail to capture distinct
behaviour. In order to drill into these aggregate values, we propose a multi-scale visual exploration technique. Our novel representation,
based on partial domain aggregation, enables the construction of a continuous scale-space for discrete datasets and the simultaneous
exploration of scales in both space and time. We link these two scale-spaces in a scale-space space-time cube and model linked
views as orthogonal slices through this cube, thus enabling the rapid identification of spatio-temporal patterns at multiple scales. To
demonstrate the effectiveness of our approach, we showcase an advanced exploration of a protein—-ligand simulation.

Index Terms—Scale space, time-series, scientific simulation, multi-scale analysis, space-time cube, molecular dynamics
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1 INTRODUCTION

The study of molecular dynamics (MD) simulations involves compu- In order to enhance the analysis of particle simulations, we propose

arXiv

tation of descriptive integral measures such as energy, temperature,
pressure, density, etc. These measures are, traditionally, computed over
the length of the simulation and analysed as timeseries. The purpose of
such aggregations is to simplify the large amounts of data, providing an
overview of the simulation, yet it comes at the cost of hiding possibly
relevant structure. This often results in degenerate timeseries that are
not able to discriminate different modes in the simulation.
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a novel representation that captures spatial information of the aggregate
measures. Moreover, as the object of study is usually a large-scale
dataset, the spatiotemporal dependency of the considered phenomena
should be explored and analysed at multiple temporal and spatial scales.

For example, the electrostatic energy captures information about
favourable and unfavourable states by summing contributions from
spatially distributed electric charge. However, all the information
about the molecule’s configuration in the spatial domain is lost by
performing the spatial aggregation. Furthermore, the interaction energy
time-series captures various scales such as Brownian oscillation, amino-
acid motion, and high-level changes, which all are relevant for different
types of analysis tasks.

Traditionally, this complexity in the data is poorly supported by
the current MD analysis programs. Advanced computational tools
such as NAMD support evaluation of the integral measures at
predefined spatial and temporal resolutions, in practice however, the



visual analysis [|13[|22] defaults to time series representations, where
the values are reconstructed at a single temporal scale, without regard
for the spatial dimensions. Conversely, scale-space approaches are
well-established for investigating the behaviour of continuous functions
across space and time [[11,21}/31}/32]]. They provide valuable means for
exploring global trends as well as local changes, and for treating noise
in the data.

In this paper, we present a novel approach to the simultaneous
exploration of temporal and spatial scales of integral measures in MD
data. In analogy to the projection of reconstruction kernels for splatting-
based volume rendering [53|], we propose to project the Gaussian kernel
used for scale-space construction into a reformed coordinate space that
captures the space-time evolution of an integral measure. This enables
us to provide a set of simple yet effective visual analysis mechanisms
to explore the correspondences between the measure at different scales
and its footprint in space and time.

The main contributions of this work can be summarized as follows.
We introduce a new approach to the visual analysis of trajectory data
that specifically takes into account its multi-scale nature (in both time
and space) and present scale-space splatting as a novel computational
method for reconstructing a reformed space of integral measures. Fur-
thermore, we show how this reformed space can provide insight into
complex multi-scale phenomena, such as ligand—protein interaction,
and demonstrate that it enables the visual identification of relevant
features in real-world data.

2 RELATED WORK

This paper contributes to the analysis of data that usually would be
treated as a time series of spatially aggregated values. A good overview
of visualization techniques for time-dependent data can be found in
a book by Aigner et al. [|1f]. They focus primarily on time-dependent
data in general, without specifically addressing spatial localization or
scale-space approaches. Lee et al. [28]] proposed an analysis based
on multivariate trend identification in time dependent data without
spatial dependence. Wegenkittl et al. [51]] explore the use of parallel
coordinates for the visualization of trajectories in multi-dimensional
dynamical systems.

Our approach is based on the concept of the space-time cube, coined
by Hégerstrand [20] in 1970. Since then it was repeatedly used, ei-
ther explicitly or as an underlying concept. Recently, Bach et al. 3]
presented a useful overview of related techniques. They describe the
theoretical concept of a generalized space-time cube together with a
taxonomy of all elementary space-time operations and their combina-
tions that can be performed on such a space-time cube. A more abstract
approach to time-dependent volume data analysis has been proposed by
Woodring et al. [55]), based on hyperplane slicing of a four-dimensional
space-time hypercube. Other examples of slicing higher-dimensional
data (not necessarily time dependent) include Sliceplorer [47]], Hyper-
slice [48]], Hypersliceplorer [46] and HyperMoVal [38].

2.1 Scale-Space Construction

The idea of a scale-space representation was first suggested by
Witkin [54]]. He proposed an approach to constructing a scale space by
continuous blurring of the original time series with a Gaussian kernel
of increasing size. In his work, the scale-space is segmented by find-
ing the zero-crossings of the second derivative, and an interval tree is
constructed and visualized as a tesselation of the scale-space.

In the image processing field, a well-known generalization of the
scale-space construction has been proposed by Perona and Malik [36],
who slackened the uniformity constraint and built the scale-space us-
ing anisotropic diffusion. Although their designated use-case was
edge detection in image data, the method itself has been successfully
applied to time-series scale-space construction as well [30]]. A spa-
tiotemporal extension of the scale-space approach has been presented
by Laptev [27]. He extended the space for 2D time-dependent data and
his work has been successfully applied to feature detection in videos.
For more advanced scale-space solutions, including an n-dimensional
time-dependent scalar field scale-space, we refer the reader to Tony
Lindeberg’s book “Scale-Space Theory in Computer Vision” and his

more recent works [31L[32]]. The respective works on a spatiotemporal
scale-space construction by Laptev and Lindeberg are unfortunately
not directly applicable to particle data.

Meijers and Oosterom [34] described a scale-space construction for
polygonal maps, which they named space-scale cube. They describe a
hierarchical level-of-detail method for geographical chart construction,
but are not concerned with temporal data.

More scale-space techniques can be found in an overview by Holm-
strom [21]]. Vuollo et al. [49] present the construction of a scale-space
for spherical data. In their work the data populates the surface of a
sphere which is topologically different from our reformed coordinates.

2.2 Scale-Space Applications in Visualization

Scale-space approaches have been successfully applied in the field of
visualization. For example, a scale-space surface extraction for 3D
density fields was proposed by Kindlmann et al. [24]. They utilize a
precise scale interpolation technique for the detection of creases by
an energy-function driven particle sampling. They construct the scale-
space for a continuous, static 3D field and sample the scale-space with
particles as discrete agents, but they do not construct a scale-space for
particle data.

Klein and Ertl [25]] describe the scale-space tracking of critical points
in 3D vector fields. Their technique is based on 3D continuous static
data. Miao et al. [35] address the multi-scale characteristics of large
molecular simulations (an HIV virus modelled at the atomic level).
The authors are, however, concerned with the multi-scale nature of
the spatial domain only and do not address the temporal aspect of
the simulation. Bremer et al. [[5]] proposed a method for spatial scale
selection in grid-based simulations, founded on Morse theory. In their
work, a tree decomposition of the spatial domain is constructed, and a
visual exploration of threshold values is enabled as opposed to a priori
value guessing. The method is based on a grid representation and thus
not directly applicable to particle simulations.

Pinus, by Sips et al. [42], is a multiscale visual analytics technique for
finding patterns in time series data. In this work, a tree representation
is constructed by computing hierarchical aggregates of the time series.
While this approach is applicable to time series data, their paper is not
concerned with the spatial aspect.

2.3 Space Reformations

Space reformation techniques are valuable tools for gaining insight into
the spatial structure of the data. Recent publications present methods
for a decomposition using a space-filling curve in MotionRugs [7]]
and Dynamic Volume Lines [52]]. These works transform continuous
volume data into one-dimensional representations by following a space-
filling curve through the volume. As this kind of space reformation
suffers from “delocalization”, where points close to each other can end
up far apart in the representation, Dafner et al. [[14] tried to overcome
this limitation by context-based space-filling curves. A space-filling
curve is not applicable to our case as it does not provide the desired
aggregation required for the statistical treatment of particle data.

Several works address space reformation techniques for volume data,
of which we highlight two: A general approach to volume transforma-
tion by Chen et al. [12], via the use of spatial transfer functions for
3D volume warping, and a curved planar reformation by Kanitsar et
al. [23]], that was used in medical visualization. For more examples,
Kreiser et al. [26] provide a survey of flattening based techniques in
medical visualization.

2.4 Particle Simulation Data

Substantial work has been done on the visualization of trajectory-based
simulation data, including projects such as OVITO [45]], Trillion Par-
ticles [8]], Multiscale HIV [35]]. These are primarily concerned with
the sheer volume of the data and its direct visualization, rather than the
computation of derived properties and their temporal analysis.
Focusing on the trajectories, hierarchical particle grouping for large
datasets has been done by Fraedrich et al. [[18]]. Schirski et al. [39]
extract prominent trajectories from large particle data. Kottravel et al.
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present a specialized tool for exploring Monte Carlo simulations of
photo-voltaic cells.

Lichtenberg et al. [29] present a visual analytics tool for exploring
molecular structures based on the Solvent Accessible Surface (SAS).
This is a geometric approach to the extraction of the spatial configu-
ration of a protein—ligand interaction. MoleCollar and Tunnel Heat
Map [9]] are works by Byska et al. where they reform the properties
of a protein tunnel into the tunnel’s centre line and the tunnel’s cross
section. In AnimoAminoMiner [[10]], the authors focus on amino acids
lining the tunnel and their temporal development.

A visual analytics tool for long molecular dynamics simulation
data, described by Duran et al. [15]], provides an importance-driven
time series analysis of integral measures of particle simulation data.
They rely on time series aggregation and interval clustering based
on ligand’s position. This approach is not concerned with resolving
the spatial dependency of the integral measures. VIA-MD [43]] uses
histograms to capture the temporal structure of complex spatio-temporal
data from molecular dynamics and volume rendering to show the spatial
probability distribution.

Our approach is complementary to those above and focuses on
resolving the spatial dependency of the integral measures for the cases
when the timeseries representation fails to capture the relevant changes.

3 ON SCALE-SPACE REFORMATION

We see that large-scale and long-time particle simulations are common
in a variety of fields, especially in molecular dynamics (MD). The
exploration of both the spatial configuration and aggregate measures
is of importance to domain experts. The traditional representation
of an aggregate measure as a time series, used for its simplifying
character, cannot convey any spatial configuration. Furthermore, it
exhibits multiscale behaviour that is usually not explicitly addressed.
Scale-space approaches are used in continuous field analysis for the
treatment of multiple scales in the data, however, they are expensive
to compute for large datasets and they are not easily combined with
spatial reformations that could bring out the most important spatial
dependencies. Enabling an efficient computation of scale-space in
reformed coordinates can significantly speed up the algorithms and
allow for simplified visualizations exploiting dimensionality reduction.
In this section, we address these issues and describe the construction of
a scale-spaces in reformed coordinates.

The canonical scale-space is defined as the evolution of a diffusion
equation over a continuous field [32]. The standard way to recover a
continuous field from particle data (for example in Smoothed Particle
Hydrodynamics) is by kernel density estimation [[19]. In this approach,
each particle is replaced by a kernel function, centred at the particle
position, and the contributions from all the particles are summed up
into a single scalar field. The size of the reconstruction kernel affects
the resulting function. The bigger the kernel used, the smoother the
resulting function becomes, with less detailed features.

One can obtain a scale-space of the data by evolving the recon-
structed field with the diffusion equation. The solution to the diffusion
equation can be obtained by convolving the field with a Gaussian kernel.
If the reconstruction kernel is also a Gaussian, the same scale space can
be obtained by a series of reconstructions with increasing kernel size.
This gives a straightforward and easy to grasp concept of a scale-space
for particle data. By gradually increasing the size of the reconstruction
kernel we achieve the same results as by using the convolution on the
reconstructed field.

Adapting this to time-dependent data means stepping up to four-
dimensional space-time and evolving the diffusion equation in time,
as well. As Lindeberg et al. [32] explain, the size of the kernel in
the spatial dimensions does not behave the same as the one along the
temporal dimension. In their work on video data, they managed to bind
the two scale dimensions which enabled a joint extrema analysis and an
automatic identification of space-time points of interest. Finding such
a formula is application dependent and restricts the flexibility of the
analysis. Therefore, we treat the two scales separately, ending up with
two independent scale dimensions, which we address by the means of
visual exploration.

Our scale-space construction leaves us with a six-dimensional contin-
uous scalar field with three spatial dimensions, a single time dimension
and two scale dimensions. High dimensional slicing techniques could
be utilized to explore such data, for example Sliceplorer [47]] or Hy-
perslice [48]. However, constructing this six-dimensional space means
engaging with an enormous analytical challenge, while it is not always
necessary. We find that often the explored phenomena are distance-
based and/or come with a spatial symmetry that can be exploited to
reduce the spatial complexity of the system.

The analysis with respect to reference structures leads us to three
standard transformations of coordinates, known from calculus. In the
first approximation, these reference structures are a point, a line and
a plane. For example, we might want to study a molecular dynamics
simulation with respect to the position of a ligand interacting with the
main molecular structure (e.g; a protein). Alternatively, a probe in a
plasma physics scenario is usually formed by a straight wire, immersed
in ionized matter, which can be considered as a line of interest/reference.
Further, the distance from the piston in an engine combustion simulation
can define a reference plane of interest.

In order to analyse these examples, one would simplify their spatial
dependency by projecting the particle positions onto reformed coor-
dinates. Since computing the scale-space in three dimensions in high
resolution is a challenge, especially for large datasets, our approach
aims at recognizing useful symmetries and realizing an according lower-
dimensional scale-space in the reformed coordinates. This amounts to
projecting the Gaussian kernel onto the reformed axes and using the
projected version to convolve the data in the lower dimensional space.

3.1 Scale-space basics

A scale-space is usually a higher dimensional space constructed from
an original field by promoting a reconstruction-filter parameter to a new
continuous dimension. In the original idea of a scale-space described
by Witkin [54], a one-dimensional input function f(¢) is filtered with
a Gaussian blurring kernel with increasing kernel size, creating a two-
dimensional scale-space “image” G(z,7):
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with 7 being the kernel size. Note that, throughout the paper, we use &
for the spatial kernel size and 7 for the temporal kernel size.

In order to detect and trace important features across scales, level sets

of scale-space derivatives can be used. Originally, the zero crossings of
the second derivative were proposed to identify peaks and valleys:
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In the case of a one-dimensional scale-space this leads to one dimension
for time and one dimension for the scale. The zero crossings of the
second derivative then yield one-dimensional contours, tracing the time
location of the inflexion point over the scales.
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3.2 Definitions

In this paper, we treat MD simulation as trajectory-based particle data
together with a descriptive integral measure. By an integral measure,
we understand any function that can be computed from the trajectory
data for each time-frame as a sum over all particles (atoms). Examples
are: energy, potential, temperature, pressure, density, and more.

The particles “live” in the spatial domain, denoted & C R3. By
considering each particle in its own copy of Q, we get a Cartesian pro-
duct of N copies representing a spatial configuration of N particles: QV.
We denote the integral measure as a function F : Q¥ — R, defined as:

N
F(X1(t),-.-,Xn(1) = Zc% (Xi(1)) 3)

where QV is the configuration space, .%; is a function evaluated per
particle with position X;(¢) at the time  and i is indexing the particles.



The first requirement is, therefore, that the integral measure is computed
as a sum of per particle contributions.

The traditional representation of the integral measure, by a timeseries
f (1), is obtained by summing all the contributions for each timestep.

f(1) =F(a()), @)

where o(t) € QV is a particular spatial configuration of the particle
system at time 7. For example, evaluating the energy for each timestep
yields the an energy timeseries.

A continuous representation of the integral measure capturing the
spatial information can be obtained from particle data by kernel density
estimation (KDE) [40,41,/50]. The KDE with kernel size ¢ yields a
smooth scalar valued function @4 (¢,%) : R x Q — R

o (1,%) = ) Fi(Pi(t)) 8o (¥ = Pi(t)) ®)

=

i=1

where gs is the kernel function with kernel width o and .Z;(p;) is
the contribution from the particle at the position p;. In case of the
energy, this construction yields the energy density function. The use of
Gaussian kernel provides us with two important properties described
below.

First, the convolution of a Gaussian kernel with the KDE yields a
reconstruction with a bigger kernel:

Do (t,%) = gc(X) ¥ Do (1,X) ©)

This allows us to avoid the a priori specification of a single recon-
struction scale and instead call the family of KDE reconstructions a
scale-space with a positive, continuous scale parameter o € R™.

Second, integrating the KDE ®(¢,X) over the domain Q yields the
time series f:

fle) = /Q Do (1,7) d¥ ™

Since all the .%;(p;) contributions are constant at a fixed time 7, we
just need to integrate over the normalized kernel. The kernel always
integrates to one, resulting in the sum over all particle contributions,
which is the timeseries f. This expedient behaviour with respect to
integration motivates the following section.

3.3 Space Reformation

Our main goal is to understand the relevant dependencies of the integral
measure F' on the spatial configuration of the particles. Since the
function F may describe different kinds of interaction between the
particles (long-range interactions, short-range interactions, collective
behaviour, etc.), different spatial structures will emerge.

An initial attempt at exploring the spatial dependency would be
through the kernel density estimate ®¢(7,%). This function could be
reconstructed at multiple scales and explored by direct visualization
techniques, using, for example, efficient SPH rendering [[17] or im-
plicit Gaussian surfaces [6]]. The full spatial reconstruction of this field,
however, imposes big challenges on the analysis, where this is not
necessarily required to capture the relevant spatial dependency of the
studied integral measure. Many measures can, for example, be mean-
ingfully studied as distance-based, where only the relative distance to a
reference structure is important.

If we can capture this dependency with a model of the domain using
a transformation of coordinates denoted v : I' — Q, we can reform the
coordinates, such that the relevant spatial information is contained in
the first dimension of the reformed space I'. We can then project the
KDE by a partial integration of the domain:

() = [

Do (1, y(u,v,w))|det(DY) (u,v,w)| dvdw (8)
Jy=1(Q)

vw

A coordinate transformation of an integral is performed by substituting
the new variables and including the determinant of the Jacobian matrix

|det(Dy)|. The projection is then obtained by integrating in the new co-
ordinates u, v, w over everything except the new, independent variable u.
This results in a simplified representation of the kernel density estimate,
where the relevant spatial structure is captured in a single, new spatial
dimension. For example, in case of a spherical transformation the new
representation would be called a radial density.

Looking at the definition of ® in Eq.[3] it consists of a weighted sum
of kernels. Hence, just as in Eq.|7} the projection onto the relevant axis
can be computed using the projections of the kernels. The reconstructed
KDE in the projected coordinates then boils down to

5 (t,u) = ) Fi(pi(1)) 86 (u(x),u(pi(1))) ©

=

i=1

where g% is the projected kernel and u(X) is the coordinate u of the
transformation y~! : Q — T.

We take the traditional integral transformations from calculus [44]
based on the dimensionality of the region of interest: 1) point of in-
terest — spherical transformation; 2) line of interest — cylindrical
transformation; 3) area of interest — orthogonal transformation.

The resulting projections of the Gaussian kernels can be seen in
Fig.[2|and the derivations in the supplementary material. Looking at
Fig. Ewe can observe that the projection onto both the spherical and
cylindrical radial distance mostly takes care of the boundary condition
when r — 0 and behaves like a traditional Gaussian for r — co.

Projections of normalized 3D Gaussians o = 3

—»- Pure gaussian

——- Spherical Gaussian
—— Cylindrical Gaussian
0.20 4

kernel density

0.10 4

1] 10 20 K
radial distance [A]

30 10 50

Fig. 2: Spherically (black) and cylindrically (blue) projected Gaussians
compared with pure Gaussian kernels (red crosses) centred at positions
uniformly sampling the radial axis. We can observe that the projection
takes care of the boundary condition when r — 0. Each kernel that
would extend into the negative domain (r < 0) gets “pushed out” such
that it zeros out at r = Q.

3.4 Time-Scale Representation

Treatment of the temporal evolution is illustrated in Fig.3] First the
traditional representation of the integral measure by a timeseries f(z)
is computed. The timeseries describes the temporal evolution of the
integral measure, disregarding the spatial structure. To capture the tem-
poral scales in the timeseries the scale-space representation is generated
as described in Sec. [3.1] obtaining a scale-space image and a level set
of zero crossing curves. The scale-space image is used for the temporal
scale exploration as detailed in Sec.[#.2} This corresponds to the first
row of Fig. @

Constructing the temporal scale-space for the KDE representation,
that captures the spatial structure, is done by repeating the very same
process. Considering that the function ®(¢,x) (representing the KDE)
consists of a timeseries in each point X, we apply Eq. at each of these
points. This amounts to convolving the data along the temporal axis
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Fig. 3: Overview of the temporal scale-space construction. First row: the integral measure F(-) is evaluated for each frame of the particle data,
yielding a time series f(t), which is then convolved with a set of Gaussian kernels, resulting in a traditional scale-space; Second row: A point
location of interest is identified; the spatial domain is decomposed into shells; the integral measure is evaluated for each region giving a set of
time series, the scale-space construction is repeated for each and the results are stacked into the SSST cube.

with Gaussian kernels of increasing sizes, as expected from treating
the time and space independently. This construction, however, creates
a large amount of data that would necessarily be projected and for
analytical purposes. To avoid this large amounts of intermediate data,
we construct the temporal scale-space of the projected KDE represen-
tation directly. Looking at Eq. @ we see that the projection is done
by integrating over the spatial domain only. Plugging the definition of
@*(¢,u) into Eq.[1|and using Fubini’s theorem [44]] to exchange the
order of the integrals, we prove that the scale-space construction and
the space reformation are order independent. The projected temporal
scale-space is therefore obtained by a direct convolution of ®*(z,u)
with Gaussian kernels along the temporal axis.

Even though the order of the operations is not important, the trans-
formation itself will introduce temporal dependency if it changes over
time. It is important to keep this mind when interpreting the results,
however, it is still a satisfying result as it enables us to first project the
data and construct the scale-space of much smaller representation. The
temporal dependency introduced by the projection will be the same as
the one introduced by projecting the temporal scale-space of the full
KDE. The correct choice of a space reformation will capture the spatial
dependency in the data. Whereas the scale-space representation helps
identifying features at different scales. The scale-space in the reformed
coordinates is the basis for the slice view detailed in Sec. E3]

The construction of the temporal scale-space in the reformed coordi-
nates is illustrated in the second row of Fig.[3]

3.5 Numerical Treatment

This section so far provides a rigorous approach to constructing a scale-
space for particle datasets in reformed coordinates. Following the
definitions for the numerical implementation would, however, require
the recomputation of the function ®* using Eq. |§|f0r a range of scales.
As summing over all the particles is the most demanding part of the
computation, we can compute the values of the projected KDE only
once, for a small value of ¢ and obtain the higher scales by integral
transformation (generalized convolution) with the projected kernels.

Py (t,0) = [ 8 us0) - @5 (10) (10)
Looking at the shapes of the projected kernels in Fig. |ZL we conclude
that they copy the Gaussian kernels, except for the boundary. With
care, we can take the optimization even further and approximate the
scale-space by convolving the function ©*(¢,u) with a simple Gaussian
kernel:

an

This is an approximation only in the spatial case. For the temporal scale
the Gaussian convolution is the exact result.

¢;+s(t7u) ~ gs(u) *(I)g(t7u)

4 VISUALIZATION & INTERACTION DESIGN

In this section, we present the use of scale-space splatting as a method
to bring spatial information into aggregate measures in the analysis of
molecular dynamics (MD) data. We do not provide a replacement of
well-proven tools, such as VIA-MD [43]], which are clearly useful for
many purposes. Instead, we demonstrate that considering the spatial
context of the aggregate measures provides additional information,
which can be exploited to build improved tools for visual analytics of
MD simulations.

The goal of our visual analytics solution is to enable the exploration
of multi-scale features using the aggregate measures of trajectory-based
spatio-temporal data in molecular dynamics. The aim is not to pro-
mote the exploration of scale-space over the original simulation, but
to enhance the analysis with a spatio-temporal scale-space approach.
The standard way of exploring such data is through 3D animated ren-
dering of the spatial configuration, steered in time using an interactive
time axis. An integral measure, such as interaction energy, represented
through a timeseries f(¢) using a line plot, is often used for navigating
the time axis. However, a simple line plot is not sufficient to capture
the multiscale spatio-temporal behaviour.

We propose a multiple coordinated view solution for exploring mul-
tiscale features of the MD simulation. This is done by navigating and
brushing in a scale-space representation linked to a 3D view show-
ing the selected spatiotemporal intervals. Users can select temporal
ranges to loop over in an animated 3D view where the spatial extent is
expressed in focus and context highlighting manner. Efficient compu-
tation of the spatiotemporal scale-space of the integral measure using
the scale-space splatting algorithm enables interactive exploration of
scales even for large datasets.

The views include a 2D representation of the temporal scale and
a 2D representation of the spatiotemporal slices of the scale-space
space-time cube. In order to navigate the temporal scale, we propose a
representation combining a line plot enhanced with a temporal scale-
space image, which provides the context of different scales (see Fig. ).
We provide interaction with the scale dimension and visual cues to
support the exploration, as further detailed in Sec.[d.2}

In order to explore the spatial dependency of the integral measure
at different scales, we render slices of the scale-space space-time cube
(Sec.ET). We do this by encoding the density field as a pixelmap, where
the colour of each pixel encodes the values of the integral measure at
corresponding spatial and temporal coordinates. This is described in
Sec. @ Both views share the temporal scale axis, which enables the
exploration of the temporal scale in the scale view, where it is easier to
grasp the effect of the reconstruction kernels. As it is difficult to read
off exact values from the density plots using colormaps, plotting of the
slices of the slice view is also supported.

The description of the linking and investigating the spatial configu-
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Fig. 4: The scale view provides the investigation tool for the temporal
scale of the data. The horizontal axis is time (a), the vertical axis is
temporal scale (b). The background is the scale-space image with its
second derivative level-set highlighted in red (c). The value of the
timeseries at a selected scale is in blue (d) with the min-max interval
in cyan. The change of the scale control (e) from value T = 2.1 to
T = 16.1 results in the disappearing of the min-max interval and a
thicker window around the time pointer (f). The picture is a horizontal
blending (left to right) of two screen-shots with the time indicator at
different positions.

ration of the particles in a 3D rendering is described in the Sec.[#.4]

An overview of our application can be seen in Fig. m A demon-
stration of supported interactions can be found in the video in the
supplementary materials.

4.1 The Scale-Space Space-Time Cube

Bach et al. introduced a unified framework of space-time cubes.
In their work they summarize the nomenclature for data manipulation
and visualization of spatio-temporal data. A conceptual image of a
cube is introduced to unify the spatial and temporal axes. An example
would be stacking the frames of a movie into a box. The x and y
coordinates correspond to the screen space coordinates, whilst the z
axis corresponds to time. Playing the movie then corresponds to slicing
the box (cube) perpendicular to the z axis. Applying the space time cube
to the movie data allows for exploring novel visualization techniques
such as using non-orthogonal slicing, drilling, flattening (aggregating)
and other data transformation techniques.

In order to manage our construction in a visualization, we introduce
the concept of a scale-space space-time (SSST) cube. An SSST cube
builds on the concept of the space-time cube as described by Bach et al.
but treats one of the axes as temporal scale and one as spatial scale. In
our case, the cube has 4 dimensions: time, reformed space, temporal
scale, spatial scale. The temporal scale is constructed by convolving
the data with Gaussian kernels along the temporal dimension. The
spatial scale is constructed by convolving with Gaussian kernels along
the new spatial axis. We slice the cube in time-space planes in order to
visualize spatiotemporal features. We flatten the cube along the spatial
axis, to obtain the standard time series representation of the integral
measure as computed over the whole spatial domain, enhanced with
the time-scale scale-space information. We drill along the spatial axis
for direct visualization of values at given time and scales.

4.2 Scale View

We find that there are many visualization papers utilizing scale-space
approaches, however, there is not much research done on direct visual-
ization and interaction techniques for scale-space datasets. There are
two examples, both using a colourmap to show a scale-space image.
An example from statistics [1T]], uses a scale-space image coloured
based on statistical properties of the reconstructed timeseries to find
prominent features. The second example is Pinus [42], which computes
a hierarchical aggregation of the investigated timeseries. They employ a
triangular-shape image representation of their scale-space, where pixels
are coloured by the aggregated values.

For showing the temporal scale-space of the timeseries f(¢), we
adapt the direct colourmapping of the scale-space image, similar to
both SiZer [11]] and Pinus [42]]. Since we are dealing with long time-
series data and the representation in Pinus scales quadratically with the
number of timesteps, we adopt the log-scaled scale axis from SiZer.

This way we end up with showing a long strip n x log(n) pixels, rather
than a huge n x n matrix, (the background image in Fig.F_l[).

The log-scaling is justified by linearizing the effect of the blurring of
the time-series. A small change A7 in the size of a large kernel 7 >> AT
has very little effect on the resulting time series. On the other hand, the
same change has much bigger effect for kernel size comparable to the
change itself (AT =~ 7). Using the exponential function to explore the
scale dimension keeps the relative change of the kernel size % constant.
Exponential sampling of the dimension leads to the log-scaled axis,
ensuring that a fixed change anywhere along the re-scaled axis has a
proportional effect on the appearance of the timeseries. In practice,
using a linearly scaled axis would result in the uninteresting, grey,
bottom part of the image being much wider, up to the point of not
having anything else in the picture.

Since any colourmap itself is insufficient for reading off exact values
of the timeseries, we provide slicing of the image, similar to the ap-
proach in Pinus [42]]. The only difference is that we plot the timeseries
on top of the rectangular scale-space image (Fig.[4[). The selected scale
is indicated by a horizontal dashed line (Fig.[4g) and the exact value
of scale is displayed on the left (Fig.[p). Due to the finite resolution
of the display, it is impossible to show the reconstructed function for
some combinations of zoom and scale. This effect is well known in the
field and can be addressed for example by using a band graph [1]] as in
BinX [4]] and Duran [13]].

Sliding the green dashed line up and down provides means for
exploring the temporal scale space. We found that the scale-space image
in the background of the line plot successfully highlights prominent
regions in the data, but it provides only a vague indication of interesting
scales. We therefore include the red curves (Fig. El:), which are the
contours of zero crossings of the second derivative computed according
to Eq.[2] They provide a visual cue for regions of peaks and valleys in
the data, together with corresponding scale significance. The “deeper”
the contour reaches, the more prominent the given peak or valley is.
The feature disappears from the line plot completely when the selected
scale does not cross the contour.

In order to interact with the time axis, the selected time indicator is
drawn as a vertical green line (Fig. @), which can be dragged along
the time axis and changes the currently selected time step. Since the
selected time step at the current time scale is the result of averaging
over a neighbourhood the indicator is enhanced with a semi-transparent
green box showing the size of this neighbourhood. It is drawn around
the vertical green line (Fig.ﬂ') showing the (¢ — 7,7+ 7) interval corre-
sponding to the width of the Gaussian kernel of the currently selected
scale.

4.3 Slice View

The slice view provides the spatiotemporal overview of the simulation
with respect to the chosen integral measure. It does its job by conveying
the information contained in the scale-space space-time cube. The cube
is a four dimensional density field which is traditionally visualized
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Fig. 5: The slice view: a pixelmap showing a spatio-temporal slice of
the SSST cube with horizontal time axis and vertical spatial axis. The
green cross consists of a horizontal line for navigation in the spatial
axis and a vertical line for navigation along the time axis. A divergent
colourmap is used to encode the values. The spatial scale is set to
o = 1.62 A and temporal scale is shared with the scale view T =2.1.
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with 1D [47] and 2D [48] slices. The idea is to incorporate the spatial
information into the lineplot representation of the timeseries. To pre-
serve coherence between the two representations, we keep the temporal
axis of the line plot and use the second axis for the reformed spatial
dimension. Since we can no longer use the second axis for encoding
the values, as in the line plot, we utilize a pixelmap equipped with
an appropriate colourmap. The colour of each pixel is determined by
the value in the scale-space space-time at given spatial and temporal
scales, with the x coordinate corresponding to the time axis and the y
coordinate corresponding to the reformed spatial axis. To support the
exploration of exact values in the pixelmap we enable plotting of the
spatial dependency at the given timestep and the particular scales in a
separate view (Fig.[T]d).

When the frequencies in the data are higher than what is possible
to capture on the screen, the pixelmap suffers from the same overdraw
as the line plot. Since there is not an easy solution for including the
overplotted ranges in the pixelmap, we rely on the joint properties of
the scale view and the slice view. The slice shares its values with the
timeseries representation — the values in the slice aggregated over the
spatial domain yield the timeseries — they will also roughly share the
same frequencies in the data. We exploit this correspondence by sharing
the temporal scale axis between the two views. It is thus possible to
perform the exploration of the temporal scale in the scale view and
propagate the interaction to the slice view. The scale view thus serves
as a proxy for exploration of the temporal scale of the slice view with
explicit indication of the effect of the overdraw.

A similar scale exploration tool should, in principle, be available also
for the spatial scale, where the aggregate of the slice along the temporal
axis would guide the exploration. In our case, where the temporal axis
is much larger than the spatial axis, we found it sufficient to enable the
spatial scale exploration by a slider and investigating the effect of the
scale selection in a simple line plots of values of the cube along the
spatial dimension for a selected time (see Fig[I]d). An advanced tool,
such as the scale view, is necessary for exploration of a scale axis when
interacting with various level of zoom.

The second link between the slice view and the scale view is realized
through the shared temporal scale axis, which supports panning and
zooming. The green cross in Fig.[5]indicates the temporal and spatial
selection used for the 3D view.

4.4 3D view

There is a body of work on 3D visualizations of particle data in MD,
SPH, and also other fields [2}/17]. Since 3D representations are not
central in our research, we default to the simplest, useful, particle rep-
resentation by shaded spheres at particle positions with user-adjustable
sizes. We render the configuration of the particles at the time step
selected in the shared temporal axis in slice and scale view. The way of
focusing on a given spatial scale is by hiding inner or outer regions with
respect to the decomposition. The spheres in the focused region are
coloured with the same colourmap as in the slice view, with the values
based on the contribution of each particle to the integral measure. By
this, the user is able to pinpoint a particular interaction both spatially
and temporally. An example of peeling the concentric spheres from
around the point of interest in a protein—ligand simulation can be found

in Fig.[6]
45

The implementation consists of two parts, a pre-processing module
and an interactive visual analytics tool. Both the data pre-processing
and the visual analytics tool are implemented in Python. For a given
measure and a reformation, the pre-processing consists of filling the
data into one spatiotemporal slice of the scale-space space-time cube at
the highest resolution. For this the whole simulation is processed frame
by frame, where each particle is transformed into the new coordinate
system and its contribution is projected onto the chosen axis. The
timeseries is obtained by aggregating the slice along the spatial axis.
The scale-space image of the timeseries is constructed by repeated
convolutions with Gaussian kernels and the zero crossings are traced
with sub-pixel precision.

Implementation

Fig. 6: An example of the 3D view from the molecular dynamics simu-
lation showing the peeling of spatial scales around the point of interest.
The particles in the selected region are coloured based on their contri-
bution to the integral measure. The atoms are coloured based on their
contribution to the integral measure and the colourmap is shared with
the slice view. The ligand representing the point of interest is in green.

All the other slices of the scale-space space-time cube are computed
on demand by convolution with Gaussian kernels. As demonstrated in
Sec.[3.3] the projected kernels are also Gaussians, except for when they
overlap with the boundary » — 0. Since in our data all the values near
the » = 0 are zero (see Fig.[I} top right), we do not explicitly implement
the boundary condition as described in Eq.[T0]

The user interface has been designed using bindings for the Qt
framework. It runs interactively with the only demanding parts be-
ing convolving the matrix in the slice view with 1D Gaussian filters,
recomputed on the scale change. This could be easily optimized by
convolving the matrix on the GPU.

5 DEMONSTRATION

In the following, we describe the use of the new method in our proof-of-
concept application. We worked on two datasets, each in collaboration
with a domain expert: one protein engineer and one expert in com-
putational biology with background in quantum chemistry. The data
consists of the trajectories of the atoms of a protein and of a smaller
molecule called a ligand. One of the integral measures commonly used
for the analysis of MD simulations is electrostatic interaction energy.
The electrostatic interaction energy is computed from the pairwise
interaction of the atoms of the ligand and the protein by the formula:

L i

qiqk
47r80 15— pill

Zi(Pi)

where i is indexing the atoms of the protein, k is indexing the atoms
of the ligand, p is the atom position, and ¢ is the atom partial charge.
The letter F does not stand for force, but for the integral measure, in
accordance with the definition in Eq.[3]

Since the position of the ligand is of importance in the analysis, we
identify the position of the ligand as the reference point and present
an analysis of the data using the spherical transformation. The details
of the transformation are described in Sec. 3 of the supplementary
material. Further results obtained using cylindrical and orthogonal
transformations are demonstrated in Sec. 4-5 in the supplementary
material.

5.1 Three Ligands

The first dataset we studied contains 50k timesteps of an MD simulation
of a protein with 4650 atoms and three ligands, each consisting of 12
atoms. The research question addressed with the simulation is the
analysis of the ligands’ propagation to the active site. The data come
from the research published in the paper by Marques et al. [33]].
Exploring the spatio-temporal scale-space of the integral measure
improves navigation through the simulation. Comparing the timeseries
representation of the electrostatic interaction energy with the slice view,
the slice view provides an immediate indication of the intervals when
the ligand is interacting with the protein and when not (see Fig. [T]a).
The visualization also shows, that there is no interaction past the 25 A
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Fig. 7: Comparison of the electrostatic interaction energies for the
ligands no. 1 - 5. There is no clear deviation of the energy values for
the two cases that undergo the change.

Fig. 8: The comparison of the slice views for ligands no.l and no.3
providing an overview of the simulation. The ligand no.lI exhibits stable
behaviour during the whole simulation as opposed to the ligand no.3
which undergoes several changes, framed in black. Both ligands show
similar behaviours towards the beginning and the end of the simulation.

distance, which is important information for correctly setting up the
simulation and is an object of study on its own [|16]]. Zooming on the
0 - 25 A interval is performed at the data level, but interactive spatial
navigation would be necessary for a final-product application. When
investigating ligand no. 3 at appropriate spatial and temporal scales,
there are three distinct features that draw instant attention. The first one
are the empty intervals towards the beginning of the simulation, where
the ligand is too far away from the protein (Fig.[I]a). The second one
starts with the ligand trying to escape the tunnel and as it approaches
the surface it is pushed back into the tunnel. A second ligand appears
at the entrance, locking the ligand no. 3 in the active site (Fig. |I|b).
The third interesting region occurs at times when all three ligands are
present near the same tunnel opening (see Fig. |I|c). Comparing these
features to the very weak indications in the timeseries representation,
our proposed visualization makes the identification of relevant features
in the data more apparent.

5.2 Five Ligands

We have obtained an MD simulation dataset from our collaborators con-
sisting of 5 ligands (26 atoms each) and a protein of circa 16 thousand
atoms, with the duration of 10000 timesteps. The research question
that led to the computation of this simulation was to study the ligand’s
dynamics in the binding pockets over time. We received the dataset
with a conclusion: “There is nothing [to be seen] in the electrostatic
energy. It has to be coupled with other measures.”.

The plot of the energies can be found in Figure [7] Indeed, the
overview plot does not separate the ligands into distinct categories, nor
does it segment the time axis into different modes.

Loading the pre-computed data into the tool we find that 10 000
timesteps are causing overdraw on the time series representation and
there is little to be seen in the initial scale slice. Interacting with the
temporal scale reveals that in fullscreen on our 1920px wide monitor the
T of 9 timesteps results in a smooth plotting of the energy function. Due
to the joint treatment of the temporal scale axis we also automatically
obtain a good setting for the slice view. Hence, a preliminary vertical
pattern appears also in the slice view. Interacting with the spatial scale,
after some attempts we identify that above 4 A a vertical pattern is
dominant in the data and the horizontal stripes get blurred out. The
scale size of 2 A preserves the structure and enhances the contrast.
Comparing the overview visualizations for all the ligands we find
that ligands no. 1, 2 and 4 exhibit stable behaviours throughout the

simulation, whereas ligands no. 3 and 5 experience various changes.

The cross-scale exploration enables the identification of prominent
features in the data. For example, applying a considerable amount
of blurring in the spatial domain (¢ = 5.86 A), and a relatively low
amount in the temporal domain (7 = 10.7), we see spatially significant
changes that possibly happen over short time periods. The effect of
these settings on the slice view for the ligand no. 5 can be seen in
Fig.[9](the mostly blue pixelmap). Two significant events are apparent
in the scale view. The first change in the pattern is a shear occurring at
timestep 2600 (Fig.[Oh,b). Investigating the 3D configuration shows a
big movement of the ligand inside of the binding pocket. This event is
not apparent in the energy timeseries, however, it allowed the ligand to
reach a better position as the value of the energy reaches its minimum
after this change (9)c). The biggest contribution to this energy minimum
comes from atoms located at distances between 16.6 and 22.2 A from
the ligand’s centre.

The second significant event happens towards the end of the sim-
ulation, where the original pattern is interrupted and it is paired with
a spike in the energy timeseries (Fig. |§| 1,2,3). The snapshots of the
ligand before, during and after the change show the ligand changing its
orientation.

The following can be observed from the example described above.
The descriptive power of the fully aggregated integral measure was
not sufficient to distinguish the interesting behaviour. Computing the
spatial dependency in full resolution and simply showing the data
does not suffice for finding patterns in the data. Exploring the scale-
space representation enabled rapid identification of prominent features,
which lead to spatial and temporal localization of interesting behaviour.
This example demonstrates the analytical power of accessing spatial
information of an integral measure. The domain expert confirmed that
the timeseries representation does not provide sufficient guidance in
this particular case. On the other hand, being able to spatially resolve
the respective contributions to the timeseries at correct scales, we are
able to gain more insight from exactly the same data. We have thus
demonstrated that there is more information accessible through the
integral measure when the spatial dependency is also included and
relevant scales are considered.

5.3 Domain Expert Feedback

The presented use case scenarios were worked out in cooperation with
two domain experts in order to validate our results. To evaluate the
usability of the prototype tool, we have conducted a 45 minutes demon-
stration followed by an interview with one of the domain experts. The
domain expert answered questions to ensure his understanding of the
application and was tasked to guide a short exploration of an MD
simulation, while the authors were interacting with the application.

For the “three ligands” dataset two spherical projections were avail-
able, one centred at the ligand and one centred at the protein. The
expert chose to work in the spherical projection centred at the protein
and pointed out that the slice view provides a good overview of the
simulation. He navigated to a time interval corresponding to an ex-
tremum in the energy and observed that for a detailed analysis more
context in the 3D view, such as amino-acid/atoms labels and different
3D representations would be helpful. The strong point of the slice view
was that the spatial orientation of the ligand with respect to the protein
could be deduced. He also mentioned that “It would be interesting to
compare the Van der Waals and electrostatic using this view.” While the
Van der Waals energy is not at the moment supported, it is an example
of an integral measure that can be easily incorporated in the future.
He found the treatment of the scales appropriate as there are many
different time scales in the simulation and one could easily examine the
persistence of features across scales. With respect to the usability he
mentioned, that “It would, of course, require some training, but it does
not seem more difficult than other analytical software available.”.

5.4 Performance

The pre-computation of the spatial decomposition along the ligand
trajectory is the most demanding part. For the decomposition of 5
ligand trajectories against a protein with 16 thousand atoms and 10 000
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Fig. 9: The analysis of behaviour of ligand no. 5 at large spatial scale. The two most prominent features in the slice view (middle) are the shear
towards the beginning of the simulation (a,b) and the abrupt modality change towards the end (1,2,3). The shear is caused by movement of the
ligand in the binding pocket. Protein is not shown to avoid occlusion, instead the movement is referenced by the plane that ligands lie in. The
shear follows by energy minima which is largely contributed by the protein atoms located at a distance between 16.6 - 22.2 A (c). The change of
modality (1,2,3) results after a period of unstable behaviour (d) and is resolved as ligand’s rotation (the arrows indicate the ligand’s orientation).

time-frames the pre-computation took 20 minutes per ligand in a single
core application on a system with following parameters: CPU: Intel(R)
Core(TM) i7-7700K @ 4.20GHz; RAM: 2 x 16GiB DIMM DDR4
2400 MHz; GPU: GeForce GTX 1080, 8 GB GDDR5X; Storage:
500GB SSD Samsung 860 Evo.

A full ligand—protein electrostatic interaction for a ligand consisting
of 26 atoms took 6.5 hours. We acknowledge that the implementation
is not optimized and better tools for computing these values are avail-
able [37]. The domain experts do not find the computational time to be
an issue, since our precomputation time is negligible with comparison
to the computational time of the simulation. The result of the precom-
putation is scalar 2D array of n x m values, which is easily dealt with
both on CPU and GPU.

6 DISCUSSION AND LIMITATIONS

‘We have demonstrated that the simultaneous treatment of spatial and
temporal scales in the analysis of MD simulation can lead to an im-
proved analysis. Of course, this information does not have to be ac-
cessed in every analysis, namely when the timeseries representation
sufficiently captures the studied phenomena. Being able to access the
additional information is vital when other approaches fail.

The reason that our method works better in these cases lies in en-
abling exploration of the spatial structure by efficient computation of
scale-space. Where previous approaches would be able to reconstruct
the spatial representation of the integral measure, they would do so at a
fixed resolution [37]], without an interactive visual support. We, on the
other hand, enable a multiscale exploration of both spatial and temporal
dependencies of the integral measures, which allows more flexibility in
the analysis.

The biggest obstacle for a widespread use of the method is a steep
learning curve regarding the scale-space. In particular, we had hard
time explaining the scale-space basics and the mechanics of the scale
view to the domain experts. Yet, they found our demonstration of the
analysis powerful and the results relevant. The steep learning curve
of scale-spaces needs to be balanced with an attractive, well-designed,
user-friendly interface that can bridge the gap with ease of use over
years of knowledge in calculus and differential equations. This would
ideally be combined in one of existing MD analysis tools, since the
domain experts rely on more than one approach in a successful analysis.

7 CONCLUSION AND FUTURE WORK

In this work, we presented a method for investigating the spatial depen-
dence of integral measures of particle data across temporal and spatial
scales. Based on the theoretical framework we have implemented a
sample demonstration application showcasing the potential benefits of
simultaneous spatial and temporal scale exploration of trajectory-based
particle data in molecular dynamics. We have shown that this kind
of analysis is suitable for the exploration of one-dimensional spatial
dependencies in aggregate measures. Consequently, such exploration
can be a valuable tool for real world applications, helping in under-
standing long time simulations. As the core of the method depends
only on trajectory based simulation, equipped with an integral measure,
exhibiting a simple symmetry, we expect that it could be applied to
other fields outside of molecular dynamics. This will be subjected to
further research.

There are several research directions open for future work. A (semi-)
automatic scale identification could be investigated for pre-selection
of relevant scales to enhance the user experience. Furthermore, the
unification of spatial and temporal scales might allow for automatic
feature detection in the spatiotemporal scale-space similar to the works
of Laptev and Lindeberg [31]32], however, this might be strictly
domain or even data dependent. There is also a possibility for adapting
the framework to non-uniform scale-space constructions, similar to the
edge enhancing diffusion of Perona and Malik [36].

Also more visualization techniques could be adapted for the scale-
space space-time cube, namely non-planar slicing — adaptively changing
the reconstruction precision based on an importance function. Further-
more, promoting the scale-space as the prime object of interest and
using direct volume rendering, or iso-surface extraction to trace its
structure can be of interest. This might combine greatly with the Gaus-
sian derivatives of the data.
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