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Fig. 1: The eigenvalue graph of the gradient tensor field of a simulated flow on the boundary of a diesel engine [19] (left) and the
corresponding eigenvalue graph after the simplification of the gradient tensor field (right). In the original tensor field (left), there
are a number of regions dominated by either expansion (colored yellow) and contraction (colored blue). However, such regions
disappear after the simplification process (right), indicating that they are not as significant as regions dominated respectively by
counterclockwise rotations (red), clockwise rotations (green), and pure shears (antique white).

Abstract—Asymmetric tensor fields have found applications in many science and engineering domains, such as fluid dynamics.
Recent advances in the visualization and analysis of 2D asymmetric tensor fields focus on pointwise analysis of the tensor field and
effective visualization metaphors such as colors, glyphs, and hyperstreamlines.
In this paper, we provide a novel multi-scale topological analysis framework for asymmetric tensor fields on surfaces. Our multi-scale
framework is based on the notions of eigenvalue and eigenvector graphs. At the core of our framework are the identification of atomic
operations that modify the graphs and the scale definition that guides the order in which the graphs are simplified to enable clarity
and focus for the visualization of topological analysis on data of different sizes. We also provide efficient algorithms to realize these
operations. Furthermore, we provide physical interpretation of these graphs.
To demonstrate the utility of our system, we apply our multi-scale analysis to data in computational fluid dynamics.

Index Terms—Tensor field visualization, tensor field topology, 2D asymmetric tensor fields, 2D asymmetric tensor field topology,
eigenvalue graphs, eigenvector graphs

1 INTRODUCTION

• Fariba Khan is with Oregon State University. E-mail:
khanfari@oregonstate.edu.

• Lawrence Roy is with Oregon State University. E-mail:
royl@eecs.oregonstate.edu.

• Eugene Zhang is with Oregon State University. E-mail:
zhange@eecs.oregonstate.edu.

• Botong Qu is with Oregon State University. E-mail: qub@oregonstate.edu.
• Shih-Hsuan Hung is with Oregon State University. E-mail:

hungsh@oregonstate.edu.
• Harry Yeh is with Oregon State University. E-mail:

harry@engr.oregonstate.edu.
• Robert S. Laramee is with Swansea University. E-mail:

R.S.Laramee@swansea.ac.uk.
• Yue Zhang is with Oregon State University. E-mail:

zhangyue@oregonstate.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Asymmetric tensor fields have found a wide range of applications such
as fluid mechanics [26, 35, 36]. In these applications, a vector field
plays a critical role, such as the velocity vector field of a fluid flow
and the displacement vector field of an object undergoing deformation.
While direct vector field visualization techniques such as glyphs [17],
streamlines [19], and vector field topology [16] can provide much
insight into the vector field, the gradient tensor of the vector field (an
asymmetric tensor field) can provide important and complementary
information [26, 35].

Existing research on asymmetric tensor fields focuses on the vi-
sualization aspect [26, 35], such as finding proper glyph representa-
tions [2, 27] to show local eigenvalue and eigenvector variations in
the tensor field. There has been relatively little attention given to the
topological structures in the asymmetric tensor field.

Lin et al. [21] introduce two graph-based representations for planar
asymmetric tensor fields and apply them to slices of a diesel engine
simulation [19]. However, their work is limited to planar datasets, at a
single scale, and without physical interpretation. This makes the impact
of their work rather limited as many datasets from fluid mechanics
involve vector and tensor fields on curved surfaces, such as the diesel
engine and cooling jacket simulations [19]. In addition, due to the
complexity of and the noise in the data, the topological graphs for



simulation data can be rather complex, making it difficult for domain
scientists to differentiate between important and less important features.
A multi-scale analysis is needed to address these difficulties.

In this paper, we provide a multi-scale topological representation us-
ing these graphs for data in the plane or on curved surfaces. In addition,
we provide efficient algorithms to extract the graphs from simulation
datasets on curved surfaces. To enable a multi-scale topological repre-
sentation, we identified a set of atomic operations with which nodes in
the graphs (corresponding to feature regions and points in the data) can
be merged. We provide algorithms to realize these atomic operations.
Moreover, to enable automatic multi-scale analysis, we have defined
measures with which the next pair of nodes in a given graph is selected
for simplification.

In addition to the aforementioned analysis and algorithms, we also
work with domain experts in fluid dynamics for the physical inter-
pretation of our multi-scale analysis. The utility of our approach is
demonstrated with a number of application datasets.

2 PREVIOUS WORK

Our research addresses the multi-scale analysis and visualization of
asymmetric tensor fields. In this section, we review existing research
for asymmetric tensor field visualization as well as multi-scale analysis
in surface visualization and scalar field topology.

2.1 Asymmetric Tensor Field Visualization
Asymmetric tensor fields are a relatively new subject of study in tensor
field visualization. In contrast, the study of symmetric tensor fields is
extensive and a thorough review of symmetric tensor field visualization
is beyond the scope of this paper. We refer our readers to [15, 23, 24]
and references therein.

To the best of our knowledge, the first research on tensor field
visualization is conducted by Delmarcelle and Hesselink [7, 8]. They
extend the notion of vector field topology [16] to 2D symmetric tensor
fields and provide the definition and classification of degenerate points.
To deal with topological noise in the tensor field, a number of techniques
have been proposed [30–32].

The research on 2D asymmetric tensor fields starts with the pio-
neering work of Zheng and Pang [36], who introduce the notions of
real domain and complex domain. To visualize the tensor field in-
side the complex domain where the eigenvectors are complex-valued,
they introduce the notion of dual-eigenvectors. They also point out
the importance of circular points, which are degenerate points in 2D
asymmetric tensor fields.

For a more systematic study of 2D asymmetric tensor fields, Zhang
et al. [35] introduce the notions of eigenvalue manifold and eigenvector
manifold. These notions are applied to visualize asymmetric tensor
fields using a combination of glyphs and hyperstreamlines [26]. Recent
research on asymmetric tensor fields has focused on the design of
proper glyphs [1, 12, 28].

One of the exceptions is the work by Lin et al. [21], who propose to
use two topological graphs to represent the structure in an asymmetric
tensor field. Their research is exploratory in nature and is limited to
planar data at a single scale without clear physical interpretation. Our
research is inspired by their work, and we strive for a novel multi-scale
analysis framework for the topology of asymmetric tensor fields defined
on curved surfaces. In addition, we provide physical interpretation
of our multi-scale topological analysis in conjunction with domain
scientists.

2.2 Multi-Scale Analysis
Multi-scale visualization has been carried out in a number of areas
within visualization.

There has been much work in multi-resolution mesh representa-
tion [6]. Hoppe [13] introduces the notion of progressive meshes, a
data structure that allows a mesh to be inspected at different resolutions,
given the distance to the viewer. He also provides smooth transition
between meshes at different resolutions using the geomorphing tech-
nique. At the core of his technique is the realization that the only
atomic operation needed to build the multi-resolution data structure

is the edge collapse operation. After this work, the focus on multi-
resolution mesh generation shifts to finding the proper measure for the
resolution. Garland and Heckbert [10] propose the use of the quadric
measure which aims at maintaining the overall curvature of the under-
lying surface. This measure is later extended to account for color and
texture information [11] and self-occlusion of the surface [34].

Scalar field topology is another area in which multi-scale analysis
has been carried out [3,4,29]. The atomic operation identified for multi-
scale scalar field topology is the so-called critical point cancellation,
where two critical points with opposite Poincaré indexes are removed
simultaneously from the field. This reduction impacts the topological
structure of the scalar field, such as Morse-Smale complexes, contour
trees, and Reeb graphs. The measure for canceling a pair is based on
persistence, a measure proposed by Edelsbrunner et al. [9].

3 ASYMMETRIC TENSOR FIELD TOPOLOGY

In this section, we review the two graphs defined by Lin et al. [21] to
describe the topology of 2D asymmetric tensor fields.

Zhang et al. [35] re-parameterize the set of 2×2 asymmetric tensors

{
(

T11 T12
T21 T22

)
|T11,T12,T21,T22 ∈ R} with

γd

(
1 0
0 1

)
+ γr

(
0 −1
1 0

)
+ γs

(
cos2θ sin2θ

sin2θ −cos2θ

)
(1)

where γd = T11+T22
2 , γr =

T21−T12
2 , and γs =

√
(T11−T22)2+(T12+T21)2

2 are
the strengths of the isotropy, rotation, and anisotropy in the tensor,
respectively. In addition, θ encodes the directions of the anisotropy.

The eigenvectors of a tensor are expressed in terms of γr, γs, and
θ . In particular, whether the tensor has real-valued eigenvectors or
complex-valued eigenvectors is entirely dependent on the quantity
γ2

s −γ2
r . If this quantity is positive, then the eigenvectors are real-valued.

On the other hand, if the quantity is negative, then the eigenvectors
are complex-valued. The former corresponds to cases where the pure
shear component in the tensor is stronger than that of the rotation,
while the latter is the reverse. Such a distinction is important for fluid
dynamics [26, 35, 37]. In addition, Zhang et al. [35] point out that
regardless of whether having real- or complex-valued eigenvalues, it is
important to differentiate tensors corresponding to counterclockwise
(CCW) rotations from those corresponding to clockwise (CW) rota-
tions. This leads to a combination of four types of tensor behavior as
illustrated in Figure 2 (a): Wr,n, Wr,s, Wc,n, and Wc,s. The subscripts r
and c denote the real and complex domains, and n and s represent the
northern and southern hemispheres, respectively. A real or complex
region in the northern hemisphere has a CCW rotational flow, while a
region in the southern hemisphere has a CW rotational flow. In Figure 2,
φ = arctan( γr

γs
) transitions from pure CW rotation (φ =− π

2 ), to pure
shear (φ = 0), to pure CCW rotation (φ = π

2 ).
Given a tensor field T , it introduces a map ρ from the domain of the

tensor field to the eigenvector manifold. The inverse of this map leads
to a classification of the tensor field into the aforementioned four types
of regions. Lin et al. [21] define the eigenvector graph as follows. A
node in the graph is a maximal, connected region in the domain inside
which the points have the same tensor behavior, i.e. Wr,n, Wr,s, Wc,n, or
Wc,s. The node is therefore labeled by this classification. Two nodes are
connected by an edge if their corresponding regions share one common
boundary curve. Note that not all pairs of regions can be neighbors.
The only possible adjacent pairs are: (a) Wc,n and Wr,n, (b) Wr,n and
Wr,s, as well as (c) Wr,s, and Wc,s. Consequently, no three regions with
different types of behavior can share a common point.

In addition, Lin et al. [21] include degenerate points in this graph. A
degenerate point is where γs = 0, i.e., pure rotation. A degenerate point
is either a wedge or a trisector. Note that a degenerate point can only
occur inside complex-valued regions, i.e., Wc,n and Wc,s. Therefore,
a node corresponding to a degenerate point can have an edge only
connecting to its container region. Figure 3 illustrates this with an
example tensor field.

The eigenvalues of an asymmetric tensor are expressed in terms of
γd , γr , and γs. Note that γs ≥ 0 while γr and γd can be either positive or
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(a) Eigenvector manifold (b) Eigenvalue manifold (c) Eigenvalue manifold (top view)
Fig. 2: This figure illustrates the notions of eigenvector manifold (a) and eigenvalue manifold (b and c), replicated from [35]. In the eigenvector
manifold (a sphere), there are four types of tensor behavior: complex eigenvalues with CCW rotations (red), real eigenvalues with CCW rotations
(pink), real eigenvalues with CW rotations (cyan), and complex eigenvalues with CW rotations (green). In the eigenvalue manifold (a hemisphere),
there are five types of tensor behavior that show the underlying vector field is dominated by: expansion or positive scaling (yellow), contraction or
negative scaling (blue), CCW rotation (red), CW rotation (green), and pure shear or anisotropic stretching (antique white).

negative. This leads to five types of tensor behavior, i.e. dominated by
expansion (D+), contraction (D−), CCW rotation (R+), CW rotation
(D−), and pure shear (S). The eigenvalue manifold (a hemisphere) is
illustrated in Figure 2 with a side view (b) and a top view (c). Similar
to the eigenvector graph, in the eigenvalue graph a node is a maximal,
connected region whose dominant tensor behavior is the same for all
points in the region. This leads to five types of regions. Also similar
to eigenvector graphs, not all pairs of regions can be adjacent. In fact,
S can be adjacent to the other four types of regions R+, R−, D+, and
D−. Among the latter four regions, R+ cannot be adjacent to R− and
D+ cannot be adjacent to D−. Unlike eigenvector graphs, in eigenvalue
graphs there are often the cases where three types of regions share a
common point, which Lin et al. [21] refer to as a junction point.

Note that the analysis based on the eigenvector manifold is not
completely unrelated to that based on the eigenvalue manifold. The
former is based on the interplay between the rotation and shearing
components in the tensor, while the latter takes into account rotation,
shearing, and isotropic scaling. Consequently, certain relationships
exist between regions from the two types of manifold analysis. For
example, an R+ region indicates that γr is larger than both |γd | and
γs. Consequently, such a region must reside completely inside a Wc,n
region. Similarly, an R− region must be inside a Wc,s region. On the
other hand, a shearing region indicates that γs is larger than both |γd |
and |γr|. Consequently, an S region must be contained by the union of
Wr,n and Wr,s. In contrast, a D+ or D− region can intersect both the real
domain and the complex domain.

3.1 Modification and Correction

TrisectorsWedges

Fig. 3: This figure shows the visualization of a slice in the diesel engine
simulation (left) and its corresponding eigenvector graph (right). A
degenerate point can only have an edge connecting to its container
region where γs = 0, i.e., a green or red region.

There are two places where we modify or cor-
rect the definition of the eigenvalue graph.

First, Lin et al. [21] claim that the only pos-
sible adjacency configuration in the eigenvalue
graph is through junction points. That is, it is
impossible to have the case where one region
is enclosed by another region. We have ob-
served that this is false, i.e. it is possible for
one region to be enclosed by another. The upper-right figure shows
one such example (orange box) where a red region is contained entirely
inside the antique white region without any junction point.

Second, we now include degenerate points in the eigenvalue graphs
and note that they cannot occur in the S-type regions.

Given these new modifications and extensions, we describe our
multi-scale topological analysis of asymmetric tensor fields on surfaces
in the following sections.

4 TOPOLOGICAL GRAPH CONSTRUCTION

In this section we describe our algorithms to extract the eigenvector and
eigenvalue graphs from a given asymmetric tensor field T defined on
a triangular mesh M that is associated with an underlying mesh. Note
that often T is derived as the spatial gradient of a vector field V which
can be a flow velocity or displacement field in mechanics.

The input mesh M to our system consists of the set of vertices V , the
set of edges E, and the set of triangles F . The asymmetric tensor field
T is a 2× 2 matrix defined at each vertex in V , expressed in a local
coordinate system of the tangent plane at the vertex. There are two
possibilities. The mesh M represents either a planar domain or a curved
surface. In the first case, the tensor field is piecewise linear, i.e. inside
each triangle, the tensor value at a point p with barycentric coordinates
b1, b2, and b3 will have a tensor value of b1T1 +b2T2 +b3T3 where Ti
(i = 1,2,3) are the tensor values at vertex i of the triangle. Note that
this leads to a linear tensor field inside the triangle, i.e. each component
of the tensor field Ti j is linear in terms of the coordinates of points in
the triangle.

In the second case, i.e. when M represents a curved surface, the situ-
ation is more complicated. As pointed out in [33], linear interpolation
of the tensor values inside each individual triangle can lead to field
discontinuity along edges between adjacent triangles. This is due to the
fact for meshes representing curved surfaces, the Gaussian curvature
of a vertex can be non-zero. The Gaussian curvature of a vertex vi is
defined as 2π −∑ j∈W (i) α j where W (i) is the collection of triangles
incident to vertex vi and α j is the angle of the corner in triangle j that
is incident to vi. Figure 4(a) shows one example of a vertex with a
non-zero Gaussian curvature. For a more detailed discussion of this
problem, we refer the reader to [33].

To generate a continuous vector field from tensor values defined at
the vertices of M, Zhang et al. [33] propose a non-linear interpolation



scheme that guarantees the continuity of the resulting vector field. The
key idea behind this non-linear interpolation scheme is to treat each
vertex with a non-zero Gaussian curvature in the triangle as a line
segment, parameterized by points on the edge in the same triangle
opposite to the vertex. For each point on the virtual line segment
(Figure 4(b)), a tensor value is given so that the tensor values along the
virtual line segment are continuous. Furthermore, between adjacent
triangles incident to the same vertex, their tensor values match along the
common edge. As pointed out by Zhang et al. [33], for a triangle with
three vertices with non-zero Gaussian curvatures, it is possible to have
two singularities in a triangle, which makes it difficult to extract the
singularities. To avoid this, they divide a triangle into four by placing
a new vertex at the mid-point of each edge in the original triangle.
Note that each of the new vertices has a zero Gaussian curvature. This
leads to four new triangles, each of which has at most one vertex with
a non-zero Gaussian curvature. Therefore, inside the new triangles,
there can be at most one singularity which can be extracted efficiently.
This interpolation scheme is later extended to 2D symmetric tensor
fields [32], rotational symmetry fields [25], and 2D asymmetric tensor
fields [26, 35].

However, the aforementioned non-linear interpolation scheme is
non-polynomial, which makes it difficult to extract boundaries between
regions in the eigenvector and eigenvalue graphs. To overcome this
limitation, we develop a modified interpolation scheme that leads to a
quadratic interpolation inside the triangles. If vertex v0 of triangle f
has a non-zero Gaussian curvature, we transfer the tensor from v0 to
its two incident edges of the triangle f , thereby, creating two points,
v01 and v02 , very close to v0 with the tensor field defined at them (see
Figure 4(b) for an illustration). Then, we use a bilinear interpolation
scheme to calculate interpolated tensor at p from tensors at v01, v02,
v1 and v2. If f does not have any vertex with a non-zero Gaussian
curvature, we use linear interpolation inside f as described in [21].

Our interpolation scheme results in either a linear (degree one) or bi-
linear (degree two) polynomial asymmetric tensor field inside a triangle,
where the degree of the polynomial is either two or four. To construct
the eigenvector graph, we need to identify the nodes in the graph, i.e.
each maximal, connected region with the same tensor behavior, as well
as the edges in the graph, i.e. which pairs of regions are adjacent to
each other. Both tasks require the extraction of boundaries between
regions of different types. Once boundaries are extracted, regions are
identified along with adjacency information. Next, we create a node for
each region and connect adjacent regions’ nodes with an edge to obtain
our graph representation which is not achieved for curved surfaces in
prior work.

4.1 Eigenvector Graph Construction
There are three types of boundaries in the eigenvector manifold: (a)
between Wr,n and Wr,s, (b) between Wr,n and Wc,n, and between (c) Wr,s
and Wc,s. The first type of boundary is characterized by γr = 0, while
the latter two by γ2

r − γ2
s = 0. Note that γr =

T21−T12
2 is a linear function

of the tensor entries in the asymmetric tensor field, while γ2
r − γ2

s is a
quadratic function in terms of the tensor entries.
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Fig. 4: (a) The left figure shows an example of non-zero Gaussian cur-
vature. (b) The right figure illustrates the calculation of the interpolated
vector at p from vectors at v01, v02, v1 and v2.

In a triangle with a linear asymmetric tensor field, γr is thus a linear
function of the coordinates of the points inside the triangle. Extraction
of γr = 0 can be achieved using the Marching Triangle method.

In contrast, in the same triangle γ2
r −γ2

s is a quadratic function of the
coordinates of the points inside the triangle. There is no guarantee that
the curve γ2

r − γ2
s = 0 intersects the boundary or that it intersects each

edge only once. To address this complexity, we develop the following
procedure as illustrated in Figure 5. At the core of our method is the
observation that the function γ2

r − γ2
s is quadratic inside the triangle,

thus also a quadratic function along each line in the plane containing
the triangle. Consequently, there are either zero or two solutions on a
line. There are lines on which the two solutions coincide. Such lines
are special in that the curve γ2

r − γ2
s = 0 will be contained entirely on

one side of the line. This is essentially the same as identifying lines on
which the projected function γ2

r − γ2
s = 0 has a zero discriminant. Note

that the discriminant is also a quadratic function of the local coordinates
of the points inside the triangle. Consequently, there are at most two
such lines in the triangle. We divide the triangle into smaller triangles
using these lines and compute points on the edges of the subdivided
triangles that satisfy γ2

r − γ2
s = 0.

Such points are labelled as either a + point (γr > 0) or a − point
(γr < 0). The former is on the boundary between Wr,n and Wc,n regions
while the latter is between Wr,s and Wc,s regions. The number of +
points must be even (counting multiplicity) along the boundary of a
sub-triangle, so must the number of− points. We now pair the + points
such that points on the same edge cannot be paired. Figure 6 illustrates
this process with an example in which a loop internal to the triangle can
be extracted. Similarly, all the − points are paired. Our algorithm then
performs tracing of region boundary curves from these intersection
points to generate the boundary curves.

For a triangle with a bilinear (quadratic) asymmetric tensor field
inside, γr = 0 is now a quadratic function with respect to the coordinates
of points in the triangle. Consequently, we can use the same idea
for finding γ2

r − γ2
s = 0 in a linear tensor field (also quadratic with

respect to the coordinates of points). To compute γ2
r − γ2

s = 0 for
a bilinear asymmetric tensor field, we observe that the boundary is
now a quartic function of the coordinates of points, which is still a
polynomial. Therefore, the same scheme can be used, except now there
can be up to four special line separators per triangle instead of two in
the quadratic case. However, we can still compute special points on
each of these dividers, and pair them the same way as we handle the
quadratic function case.

Once the boundary curves have been generated, we connect boundary
segments from adjacent triangles through common points on shared
edges between the triangles. This leads to a set of loops or open
curves that intersect the boundary of the domain. Each of these loops
or open curves is considered one integral curve. We now use these
curves to divide the domain into regions, each of which is a node in
the eigenvector graph. Two regions sharing a common segment of
boundary curves are given an edge between their corresponding nodes
in the graph.

In addition, degenerate points are considered as nodes in the graph.
They are extracted using the technique of Zhang et al. [35]. The triangle
containing a degenerate point and the location of the degenerate point
inside the triangle enables us to identify the region that contains it. In
the eigenvector graph, the node corresponding to the degenerate point
is connected by an edge to the node corresponding to the container
region.

Following Lin et al. [21], we arrange the nodes in one of the six
rows. From the top to bottom, the rows correspond to: (1) degenerate
points Wc,n regions, (2) Wc,n regions, (3) Wr,n regions, (4) Wr,s regions,
(5) Wc,s regions, and (6) degenerate points inside Wc,s regions. Note
that with this arrangement, an edge can only exist between two nodes in
adjacent rows, thus reducing the number of unnecessary edge crossings.
This completes the construction of the eigenvector graph.

4.2 Eigenvalue Graph Construction
The construction for the eigenvalue graph is similar to that of the
eigenvector graph. There are now eight types of boundaries, each
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Fig. 5: Overview of region extraction: (a) given a tensor field defined on a surface of triangular mesh, (b) each edge of the triangles is visited to
identify possible intersections (white disks) with region boundaries, (c) lines with two coinciding solutions (magenta) are detected within the
triangle, (d) these lines partition the triangle such that boundary curve resides completely on one side of the line. The boundary can now be traced
from one intersection to the other without suffering from the numerical errors, (e-f) regions are constructed within the triangle, (g) and finally, a
merging process is performed to consolidate adjacent subregions with the same type into a single region on the surface.

characterized by one of the following equations:

1. γr− γd = 0: boundary between an R+-D+ pair and between an
R−-D− pair.

2. γr + γd = 0: boundary between an R+-D− pair and between an
R−-D+ pair.

3. γ2
r − γ2

s = 0: boundary between an R+-S pair and between an
R−-S pair.

4. γ2
d − γ2

s = 0: boundary between a D+-S pair and between a D−-S
pair.

The extraction of these curves separately is the same as that for
eigenvector graphs. However, in the eigenvalue graph there are the
junction points that are incident to three regions of different types. Con-
sequently, we need to identify these points (possibly inside triangles).
We first extract the region boundaries listed above inside the triangles.
To locate junction points where γs = γr = γd , we solve two systems of
polynomial equations, i.e., intersection of the boundaries defined by
γs = γr coupled with γd = γr and intersection of the boundaries defined
by γs = γr. Other types of junction points can be computed in a similar
fashion. We can have at most two junction points in a triangle with a
linear asymmetric tensor field and up to four junction points in a trian-
gle with quadratic asymmetric tensor field. If there exist some junction
points within a triangle, we need to find which of our previously ex-
tracted region boundaries inside the triangle connect to these points.
The process is trivial when a junction point is exactly on a boundary
i.e. γd =±γr boundaries, we connect that junction point to the intersec-
tion points of that boundary on the edge. However, to find the nearest
γs = γr and γs = γd boundary curves to each junction point, we need
to trace these region boundaries inside the triangle. During tracing,
each boundary curve is approximated by line segments (polyline) and
we find the closest line segments of each type γs = γr and γs = γd to

+ +- - ++ --

(a) (b) (c)
Fig. 6: An example of an internal elliptic loop. To detect this loop, we
partition the triangle using line segments that contain repeated solutions
to the region boundary equations (a). Next, We trace the boundaries
and extract the region.

(a) (c) (d)

(b)

Fig. 7: This figure illustrates the steps of connecting the separately
extracted intersecting region boundaries at a junction point. (a) We
start with a triangle with three region boundaries. (b) We divide the
γd = ±γr boundary on which junction point is located, and connect
the nearest γs = γr and γs = γd boundary to the junction point. (c) The
junction point is now on three intersected boundary curves. (d) We
merge the adjacent regions of the same type.

individual junction points. These segments are then further segmented
at respective junction points. Consequently, each junction point inside
the triangle is now on three boundary curves. Figure 7 illustrates the
steps of junction point placement on corresponding region boundaries
and merging adjacent regions of the same type.

Once the boundary curves have been identified, we use them as
described in eigenvector graph construction to divide the domain into
regions, each of which is assigned a node in the eigenvalue graph. Then,
an edge is assigned for each segment of common boundary between
two regions. Given the constraints on the adjacency between the five
types of regions, we derive five groups. The top group, in a row, is used
to host all the D+ nodes, while the bottom group, also in a row, hosts
all the D− nodes. The right group and left group, both in a column,
host R+ and R− nodes, respectively. The middle group, shaped as a
rectangle, hosts all the S nodes. Such an arrangement is designed to
reduce the number of edge crossings.

5 MULTI-SCALE TOPOLOGICAL ANALYSIS

Once the eigenvector and eigenvalue graphs have been constructed
from the input data, we convert them to a multi-scale data structure. As
in the case of multi-resolution mesh representation [13] and multi-scale
scalar field topology [4], we need to address the following fundamen-
tal questions in order to enable multi-scale asymmetric tensor field



analysis.

1. What is the set of atomic operations that use the bifurcations to
reduce of the graph complexity?

2. How to realize these atomic operations?
3. How to decide on the order in which the graph is reduced?

We will address these challenges first for the eigenvector graphs.

5.1 Eigenvector Graph Simplification
In an eigenvector graph, there are two kinds of nodes: a region of a
particular type (Wc,n, Wr,n, Wr,s, Wc,s) or a degenerate point. Further-
more, a degenerate point must be inside either Wc,n or Wc,s, and no three
different types of regions can be mutually adjacent (i.e. no junction
points). Based on these observations, we have identified the following
set of atomic operations:

1. Region annexation: in which two adjacent regions are combined
into one region whose type is inherited from the container region.
Semantically, the container region annexes the other region.

2. Region connection: two regions of the same type inside the same
container region are joined into one region.

3. Degenerate point pair cancellation: in which two degenerate
points (one wedge and one trisector) are removed from the field
simultaneously.

Degenerate points must reside in complex domains, where eigenvec-
tor fields are complex-valued. Instead, dual-eigenvectors are considered
for complex domains, which are the eigenvectors of a rotated version of
the symmetric part of the asymmetric tensor field [26]. Consequently,
degenerate point pair cancellation in an asymmetric tensor field is
equivalent to the same operation for a symmetric tensor field. We adapt
algorithms in [32].

Next, we describe our algorithms for region annexation and region
connection in detail.

5.1.1 Algorithms
Figure 8(a) shows an example of region annexation, in which the inner
region B, which must be a topological disk, is merged with the container
region A.

In essence, we wish to change the type of asymmetric tensors in
B to that of A. Recall that the type of tensors (i.e. Wc,n, Wr,n, Wr,s,
Wc,s) is based on a single quantity φ = arctan( γr

γs
). To realize this, we

first find a topological disk C ⊃ B that is contained in A. We then
perform Laplacian smoothing [33] on φ on the interior vertices of C
while holding the values of φ fixed on the boundary of C. Finally, we
modify the tensor values on the interior vertices of C based on the new
φ values.

Note that the boundary of C is in A, thus φ on ∂C leads to the
same classification as A (e.g., Wc,n as in Figure 8(a)). Furthermore,
Laplacian smoothing on C leads to a harmonic function whose minimal
and maximal values can only occur on the boundary [14]. This means
that after Laplacian smoothing, all the interior vertices of C have their
new φ values between the minimum and maximum φ values on the
boundary of C. Since the φ values on the boundary of C lead to the
same tensor classification, so will the new φ values inside C. Therefore,
after smoothing, all the vertices in C, including the whole region B, will
now have the same type as A, finishing the annexation process.

To construct C, we grow B by adding one adjacent triangle at a
time until C is a topological disk, the boundary vertices of B are in the
interior of C, and the boundary vertices of C are inside A.

Given a vertex in C with an asymmetric tensor
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)
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Fig. 8: This figure shows the two operations needed for the eigenvector
graph simplification (a) region annexation and (b) region connection.

The region connection operation, illustrated in Figure 8(b), is real-
ized in a similar fashion. Given two regions B1 and B2 of the same
type inside the same container region A, we wish to join the region by
building a tunnel region (Figure 8(b), middle) inside A that connects
B1 and B2. We employ a process similar to that of region annexation.
First, we find the tunnel region that is a topological disk, intersects
the interior of B1 and B2, and is contained in A. Next, we perform
Laplacian smoothing on φ on the tunnel region. Finally, we modify the
tensor values inside the tunnel region based on the new φ value. Note
that the last step is the same as that for region annexation.

To compute the tunnel region, we first compute a shortest path τ that
connects the boundary of B1 and B2 such that τ is inside A. This can be
achieved using Dijkstra’s algorithm [5] on the underlying mesh. The
only adaptation is to ensure that when adding an edge to the graph, we
need to ensure that the edge is inside A.

Next, we compute the one-ring neighborhood of τ , which leads to
region that contains τ in its interior. We further add triangles one at
a time until the region is a topological disk, is inside A and does not
completely enclose B1 or B2 (second step in Figure 8(b)). This is the
region C.

We now extend τ in both directions until it intersects C at p1 and p2,
which are inside B1 and B2, respectively. Next, we perform Laplacian
smoothing on φ on the interior vertices of the extended path τ ′ with
p1 and p2’s current φ values as the boundary condition. This results
in new φ values on all the vertices on τ ′ leading to the same tensor
classification as that of B1 and B2’s. Next, we perform the second
Laplacian smoothing on φ on the region C, this time fixing the φ values
at the boundary of C and on τ ′.

Once we use the new φ values to modify the tensor field inside C,
B1 and B2 are now connected (last step in Figure 8(b)).

5.1.2 Scale and Cost
With the aforementioned atomic operations we can reduce the com-
plexity in the eigenvector graph and thus the tensor field. There are
now two challenges that we need to address. First, when to stop the
automatic simplification process given a user-specified scale? Second,
when there are multiple atomic operations available, which one should
be performed next? We solve both of these challenges by considering
the benefit and cost of each atomic operation.

The benefit of an atomic operation is measured by the reduction in a
topological complexity of the regions involved, which we divide into
two components: the region complexity and the field complexity.

We measure the region complexity using ∑R∈R
(
(1−χ(R))+ b(R)

2
)

where χ(R) is the Euler characteristic and b(R) is the number of inter-
section segments of R with the physical domain boundary. We measure
the field complexity of the region by d(T )

2 where d(T ) is the number of
degenerate points in our tensor field T . This metric was chosen because
it counts the number of atomic operations needed for simplification, as
every atomic operation decreases this value by at most one.

The cost of an atomic operation is that it modifies the field, making
it less similar to the original field. Thus, we define the cost based on the



minimum modification to the field to make the topological change. The
cost is the sum of p(v) for all vertices in A, where p(v) =

∣∣γs−|γr|
∣∣

if annexing a region or connecting two regions bounded by γs = |γr|
boundary and p(v)= |γr| if annexing a region or connecting two regions
bounded by γr = 0. In this equation, A is the minimum set of vertices to
change, i.e. the region to be removed or the path to be connected. This
p(v) is then the minimum change to γr needed to shift region types for
vertex v, and the sum measures the overall change.

The next atomic operation is automatically selected with the least
cost-to-benefit ratio. The automatic simplification process stops when
the cost-to-benefit ratios of all remaining editing operations exceed a
user-specified value.

5.2 Eigenvalue Graph Simplification
Comparing to eigenvector graphs, eigenvalue graphs involve three
quantities instead of two: γd , γs, and γr. This leads to the existence of
junction points incident to three different types of regions. Therefore,
there are now six atomic operations:

1. Region annexation without junction points: in which two adjacent
regions are combined into one region whose type is inherited
from the container region.

2. Region annexation with junction points: in which two adjacent
regions are combined into one region whose type is inherited
from the container region. Unlike the previous operation, there is
a third region inside the container region that is adjacent to the
region to be annexed (Figure 9(a)).

3. Region connection of the same type: two regions of the same type
inside the same container region are joined into one region.

4. Region connection of different types: two non-adjacent regions
of different types inside the same container region are made
neighbors. In this case, two junction points are created between
the regions (Figure 9(b)).

5. Region split of different types: two adjacent regions of different
types inside the same container region are split so that they are no
longer adjacent to each other. This is the reverse of the previous
operation, in which two junction points are removed (Figure 9(c)).

6. Degenerate point pair cancellation: in which two degenerate
points (one wedge and one trisector) in the same container region
are removed from the field simultaneously.

The degenerate point pair cancellation is a relatively straightforward
adaptation from its counterpart in the eigenvector graph. Next, we
focus on the algorithms for the five region-based operations.

5.2.1 Algorithms
The region annexation operation without junction points for the eigen-
value graphs is similar to the region annexation operation for the eigen-
vector graphs (see Figure 8(a)). The only difference is that when
performing Laplacian smoothing we also need to consider γd .

Without loss of generality, we assume the dominant component
of the container region A is γr. Therefore, we aim at having region
B also dominated by γr, i.e. |γr| > max(|γd |,γs) after the operation.
We therefore define quantity δ = arctan( |γr |

max(|γd |,γs)
) when performing

Laplacian smoothing. Once the new δ is computed for the region C
enclosing B, we update the tensor values for the vertices in C by the
new δ values similar to how we update the field after computing φ in
eigenvector graph simplification.

For the operation to connect regions B1 and B2 of the same type that
are inside the same container region A, the algorithm is essentially the
same as that for eigenvector graphs (see Figure 8(b)), except we use
the aforementioned δ as the quantity to perform Laplacian smoothing.

We now discuss the three remaining operations, which are specific to
the eigenvalue graphs. As they all involve junction points, we introduce
the notion of junction point index. There are four types of junction
points, as illustrated in Figure 2(c): (1) (S,D+,R+), (2) (S,D−,R+),
(3) (S,D+,R−), and (4) (S,D−,R−). In addition, for each type of
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Fig. 9: This figure demonstrates the three additional operations needed
for the eigenvalue graph simplification (a) region annexation with junc-
tion points, (b) region connection of different types, and (c) region split
of different types.

junction points, there are two kinds. For example, when traversing
through the associated regions of a (S,D+,R+)-type junction point
in the counterclockwise orientation, one may encounter S, D+, and
R+ regions in this order (positively indexed) or in the reverse order
(negatively indexed).

For region annexation with junction points (Figure 9(a)) we note that
the junction pair must have opposite junction point indexes. To realize
this operation, we compute a topological disk D that encloses B (see
Figure 9(a)). In addition, we require D to also intersect region C, the
third region that is inside A and is adjacent to B but does not enclose
it. Note that this ensures that D necessarily contains the two junction
points among A, B, and C. We now perform the Laplacian smoothing
operation on δ with the boundary of D as the boundary condition. In
this case, δ is based on the dominant component of A. This leads to
the annexation of B by A while C remains, although not necessarily
identical to that before the operation.

To connect two regions B and C of different types as shown in
Figure 9(b), we again follow the algorithm for region connection to a
tunnel region D and a path τ inside the tunnel region so that its ends
are inside B and C, respectively. Furthermore, τ touches the boundary
of D on both ends. We then perform Laplacian smoothing on the path
τ on δ where δ = −arctan( |γr |

min(|γd |,γs)
) assuming that A, B and C are

dominated by rotation, expansion, and pure shear, respectively. This
ensures that along the path τ , the dominant γ component of A is smaller
than both the dominant γ components of B and C. Finally, we perform
the second round of Laplacian smoothing using the same δ on the
tunnel region. This results in the connection of regions B and C inside
A, with the creation of two junction points. Note that the junction points
have opposite indexes.

To split two regions B and C of different types along their common
boundary as depicted in Figure 9(c), let τ be the curved path connecting
the two junction points between B and C. The two junction points
must have opposite indexes. We then compute a topological disk D
enclosing τ and intersects B and C but encloses neither. Next, we
perform Laplacian smoothing on δ based on A’s dominant type on τ

with its end points being the boundary condition. Then, we perform a
second round of Laplacian smoothing on the same δ , now with τ and
the boundary of D as the boundary condition. This leads to the removal
of the junction point pair and the split of B and C.

5.2.2 Scale and Cost
Again, we need to measure the cost and benefit of our atomic operations
for eigenvalue graphs. The addition of junction points requires an



(a) (b) (c)
Fig. 10: A tensor field (left) is modified with a region annexation opera-
tion (right). Note that the Wc,s region in the original field (left: near the
upper side of the boundary) disappears after the operation (right, same
location). In addition to visualize the tensor field using colors indicating
the dominant tensor behavior, we also use hyperstreamlines to visualize
the eigenvector fields in the real domain and pseudo-eigenvector fields
in the complex domain. Major and minor eigenvectors are colored
in black and red, respectively. In addition, major and minor pseudo-
eigenvectors are colored in light blue and orange, respectively. In (c),
we zoom in and compare the tensor fields around the removed region.

additional term in the region complexity metric used to measure the
benefit of an operation. We add J

2 , where J is the total number of
junction points.

However, the cost of an atomic operation needs to be more sophisti-
cated in order to measure the minimum change necessary, as there are
multiple components to be considered. When removing a γX dominant
region (for some component X)

Cost = ∑
∀v∈A

min(
∣∣|γX |− |γY |

∣∣, ∣∣|γX |− |γZ |
∣∣), (2)

where Y and Z are the other two components, and A is the region to
be removed. This is the minimum change to γX to make it smaller in
magnitude to one of the other two components.

Similarly, when connecting two γX dominant regions through a γY
dominant region, the cost is ∑∀v∈A (|γY |− |γX |), where A is the set
of vertices on the path between the two regions to be merged. This
measures how much |γX | needs to be increased along the path to merge
the two regions.

To cancel a junction point pair between γY and γZ dominant regions,
the cost is ∑∀v∈A (max(|γY |, |γZ |)−|γX |), with A being the path con-
necting the two junction points, as along this path we update the tensors
such that γX is bigger than the existing dominant component.

Finally, when connecting a γY region to a γZ region through an inter-
mediate γX region to create two new junction points we use Equation 2
to remove the γX dominant part of the path between the two regions.
This also measures the change needed for this operation.

5.3 Field Modification Evaluation
Each of our editing operations modifies the tensor values at a set of
vertices. Given the many operations applied to generate the multi-scale
framework, impacting many if not all the vertices in the mesh, we wish
to understand how much the field has been changed. Figure 10 shows
the visual comparison of a slice of the diesel engine data (Figure 1)
and a modified version after the green region (dominated by clockwise
rotation) near the top has been annexed by the white region (dominated
by pure shear). Note that the two fields are the same except around
the green region. In addition, we wish to numerically measure the
difference between the two fields. To do so, we define the relative error
of the field after simplification T ′ to the field before simplification T
as ∑v∈V

||T ′(v)−T (v)||
||T (v)|| where V is the set of vertices in the mesh. In this

example, the relative error is 0.199 thank to the relatively large area of
the annexed region.

The same measure can be used to measure the difference between
the original tensor field and the one after the multi-scale analysis. In
our case, this overall error is 0.171 for the diesel engine data (Figure 1)
and 0.296 for the open channel simulation (Figure 11).

6 PERFORMANCE

We estimate the performance as the cost of the eigenvector, eigenvalue
graph, and multi-scale construction. We perform the experiments on a
computer with an i7-8750H @2.20GHz CPU, 32 GB of RAM, and an
NVIDIA GeForce GTX 1070 w/ Max-Q Design GPU. The complexity
of the proposed system is proportional to the number of triangles in the
mesh. In general, the time to compute an eigenvector graph is on the
order of seconds while for eigenvalue graphs the cost is on the order
of minutes. The major computational bottleneck lies in the topological
analysis and region extraction on the triangles. The construction of the
multi-scale framework is also on the order of minutes. However, after
the one-time construction, our system can interactively visualize the
manifold and graph of the eigenvector and eigenvalue at an arbitrary
scale.

7 APPLICATIONS

In this section, we show results of applying our multi-scale analysis
to a diesel engine simulation and an open channel flow simulation and
provide physical interpretation of our analysis by domain experts. In the
Appendix, additional results and physical interpretation are provided,
namely, a cooling jacket simulation and the Sullivan vortex.

Diesel Engine Simulation In the flow within a diesel engine
cylinder, the ideal pattern of flow motion takes on the form of swirl.
In this case, rotational motion occurs about an imaginary axis. In the
case of swirl flow, the axis is coincident with the cylinder axis. In order
to generate swirl, fluid enters the combustion chamber from the intake
ports. Later on in the engine cycle, the kinetic energy associated with
this motion is used to generate turbulence for mixing of fresh oxygen
with evaporated fuel [20].

The more turbulence generated, the better the mixture of air and
fuel, and thus the more stable the combustion itself. Ideally, enough
turbulent mixing is generated such that 100% of the fuel is burned. The
swirl motion should be maximized to maximize turbulence. From the
point of view of the mechanical engineers designing the intake ports,
the ideal flow pattern leads to beneficial conditions including: improved
mixture preparation, a higher EGR (Exhaust Gas Ratio) which means a
decrease in fuel consumption, and lower emissions. However, too much
swirl can displace the flame used to ignite the fuel, cause irregular flame
propagation, or result in less fuel combustion. As such, a balance must
be achieved between generating enough swirl flow and not displacing
the flame used to ignite the flow. A controlled flow motion is used to
get stable and reproducible conditions at each engine cycle.

One of the consequences of combining the intake port geometry with
combustion chamber is associated with mesh resolution. In order to
resolve the flow in the region of the intake ports, a very high-resolution
mesh is required compared to the combustion chamber. The conse-
quence of this is that a lot of noise is produced in terms of flow behavior
in this area (top view). This is where the multi-scale simplification of
topological features is very useful. We can see from the results, that
many of the noisy flow patterns are reduced while the major character-
istics of the flow can be preserved. By major characteristics, we mean
flow associated with the focus swirl behavior.

Furthermore, we can observe considerably more flow characteristics
with the tensor field view of the flow than that of the traditional vector
field view alone. For example, in addition to the major regions of
clockwise rotation at the surface of the combustion chamber (a positive
sign) we also notice the areas of negative and positive scaling in Figure 1
(a negative sign). These areas deviate from the ideal pattern of swirl
motion and, in fact, the engineers are most concerned with those regions
of flow that reduce the turbulent mixing of the flow. Ultimately, it is
these areas that the engineers study the most and as a consequence will
modify the mesh geometry and thus re-run the simulation.

Open Channel Flow Figure 11 visualizes a steady open-channel
flow disturbed by a submerged Gaussian-shaped sill on the channel
bed. In (c) the side view of the flow data is shown, where the antique
white intensity encodes the flow velocity magnitude. Notice the sill at
the bed (inside the highlighted box). The flow direction is from left to
right, and the submerged sill spans across the channel. One important
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Fig. 11: An open channel flow is visualized. There is a sill at the bed of the channel (c: inside the box). While the sill location is not clear from
the visualization of the flow velocity gradient tensor at the water surface (a), it becomes more clear after applying our multi-scale analysis to the
original field (result shown in (b)). Notice the persistent large patches of upwelling (yellow, flow expansion at the water surface) and downwelling
(blue, flow contraction at the water surface) around the sill.

research question regarding this flow is whether an object placed at the
bed can be identified by observation of the water surface.

Figure 11(a) visualizes the flow at the water surface using the eigen-
value manifold (Figure 2(b-c)). Notice the mixed combination of
kinematic characteristics (rotations, scalings, and expansions) together
with the numerous degenerate points, which makes the interpretation
difficult. Moreover, it is not clear where the sill is given the existence
of upwelling (yellow regions, flow expansion at the water surface)
and downwelling (blue regions, flow contraction at the water surface)
throughout the channel. Using our multi-scale analysis (result shown in
Figure 11(b)), the most important features remain after field simplifica-
tion. The location of the sill on the channel bed is clearly identified by
the distinct, large patches of up-welling and downwelling flow patterns
immediately downstream of the sill location. Our multi-scale analysis
shows promises in helping the detection of submerged objects from the
water-surface.

There are additional important flow features emerged from the multi-
scale analysis. First, it appears that once the predominant upwelling
and downwelling flow patterns are formed by the disturbance of the sill
on the bed, smaller but persistent patches of expansion and contraction
appear periodically on the surface according to Figure 11 (b). Such
a phenomenon is not obvious from the visualization of the original,
un-simplified tensor field (Figure 11(a)). Second, the degenerate points
represent the line vortices surrounded by the irrotational flows, i.e.
highly concentrated vortices that are normally penetrated the air-water
interface. The persistent presence of the vertical line vortices (degener-
ate points in Figure 11 (b)) is due to the density discontinuity on the
stress-free surface, and is well observed and documented [22].

The aforementioned observations cannot be easily made without
multi-scale analysis.

8 CONCLUSION

In this paper, we develop a novel multi-scale topology-driven analysis
framework for asymmetric tensor fields on surfaces. Our analysis is
based on the eigenvalue and eigenvector graphs introduced by Lin et
al. [21], and we provide algorithms to perform this analysis on surfaces,
in a multi-scale fashion. At the core of our analysis is the identification
of atomic operations needed to reduce the complexity of the graphs,
making important features more pronounced in the visualization. We
also develop efficient and robust algorithms to construct eigenvalue
and eigenvector graphs and perform atomic operations to reduce their
complexity. These are made possible with some novel insights on
the junction point classification. In addition, we provide physical
interpretation of our multi-scale topological analysis that was absent
from the work of Lin et al. [21].

Our approach is not without limitations. For example, our graph

construction algorithm requires the subdivision of a triangle. This leads
to three meshes: the original, one for the eigenvector graphs, and one for
the eigenvalue graphs. It is therefore our goal to pursue an approach that
either does not require triangle subdivision, or in a way that is uniform
for both the eigenvalue and eigenvector graphs. Another limitation of
our current approach is that an excessive number of degenerate points
in the field can hamper the region-based editing operations. To handle
this, we involve a pre-processing step to remove some degenerate points
first. In the future, we wish to make our region-based operations more
flexible.

In this paper, we base our multi-scale analysis on the notions of
eigenvalue manifold and eigenvector manifold [35], which are related.
Combining the two manifolds into a single analysis framework can be
a fruitful future research direction. In addition, we plan to investigate
other feature definitions such as the zero level set of the determinant
of an asymmetric tensor field. Such an investigation will be conducted
through close collaborations with experts in relevant science and engi-
neering domains.

In addition, we wish to investigate irreducible eigenvalue and eigen-
vector graphs given an asymmetric tensor field. This is needed for
the development of algorithms guaranteed to reduce any asymmetric
tensor field to an irreducible state. During this investigation, we expect
additional editing operations to be identified in order to achieve an
extreme simplification.

Finally, extending our work to 3D asymmetric tensor fields is a
natural next step, and we plan to pursue this in our future research.
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