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Void-and-Cluster Sampling of Large Scattered Data and
Trajectories
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Fig. 1: We select 1 % from 500,000 data points by random (a) and using our void-and-cluster (d) sampling technique. Our approach
chooses a set of samples that uniformly covers the spatial domain, whilst avoiding regularity artifacts, which leads to a blue noise
spectrum for our technique (e) in contrast to random sampling (b). Our approach leads to a more accurate reconstruction of the
dataset using the same amount of samples (c, f). Furthermore, we have sampled pathlines of the ABC flow with our technique (g, h),
which implicitly defines a continuous level-of-detail, to render a greater (g) and smaller subset (h) of the trajectories.

Abstract— We propose a data reduction technique for scattered data based on statistical sampling. Our void-and-cluster sampling
technique finds a representative subset that is optimally distributed in the spatial domain with respect to the blue noise property. In
addition, it can adapt to a given density function, which we use to sample regions of high complexity in the multivariate value domain
more densely. Moreover, our sampling technique implicitly defines an ordering on the samples that enables progressive data loading
and a continuous level-of-detail representation. We extend our technique to sample time-dependent trajectories, for example pathlines
in a time interval, using an efficient and iterative approach. Furthermore, we introduce a local and continuous error measure to quantify
how well a set of samples represents the original dataset. We apply this error measure during sampling to guide the number of samples
that are taken. Finally, we use this error measure and other quantities to evaluate the quality, performance, and scalability of our
algorithm.

Index Terms—Data reduction, sampling, blue noise, entropy-based sampling, scattered data, pathlines
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In the field of scientific visualization, interactive exploration and anal-
ysis are considered essential to gain insight into large and complex
datasets. Although data sizes are growing rapidly, for example due to
advancements in high-performance computing or increasingly accurate
measurement devices, storage bandwidth does not increase accordingly.
Data reduction is thus a necessary means to reduce storage require-
ments for both simulation, measurement devices, and for subsequent
data analysis.

We specifically consider the reduction of large, spatio-temporal scat-
tered data, i.e. unstructured points in space-time with an associated
value domain. In particular, we investigate the use of statistical sam-
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pling to reduce large data sets to a representative subset. Sampling
scales well to higher dimensional data and is well-suited for scattered
data. Although simple random sampling gives decent results, recent
work improves upon this using stratified [21, 28] and information-
guided sampling [3, 27]. These results emphasize the significance of
stratification in the spatial domain and adaptive sampling guided by the
value domain.

We propose a sampling strategy for scattered data generalizing the
void-and-cluster technique from Ulichney [25] that stratifies optimally
in the spatial domain. Specifically, we find samples that are well dis-
tributed with respect to the blue noise property, which implies large
mutual distances between samples without causing regularity artifacts.
Additionally, we discuss how to adapt the sampling strategy to the
value dimensions by better sampling regions of value distributions with
high entropy. Moreover, the sampling technique implicitly defines
an ordering on the samples that enables progressive data loading and
continuous level-of-detail during visualization and analysis. Our pro-
posed algorithm is fast, scalable, and well-suited for GPU acceleration.
Therefore, it is applicable in-situ, i.e. while a simulation is running, but
also as a traditional post-processing step.

Furthermore, we extend our sampling technique to time-dependent
scattered data. Instead of considering each time step independently,
we sample trajectories, i.e. sequences of scattered points defined over
time. We find representative trajectories that evenly cover the spatio-
temporal domain based on an efficient iterative extension of the void-
and-cluster technique. An example for such trajectory datasets are
particle-based simulations that trace particles over time. Additionally,
representing fluid flows using Lagrangian trajectories, i.e. pathlines,
instead of velocity fields has recently gained popularity [1]. Pathlines
are thereby advected during simulation time using the high-resolution
vector field data, which could not be stored otherwise. In both of these
examples, the data consists of a large amount of trajectories that we
reduce using our sampling technique.

Lastly, we introduce an error measure to quantify how well a set
of samples represents the data with respect to both the spatial and the
value domain. In particular, we derive a continuous error measure
that quantifies the difference in the value distributions for every point
in the dataset. This error measure integrates well into our sampling
technique, where we use it to determine when a sufficient number
of samples has been taken. We evaluate the quality of our proposed
sampling technique on different synthetic and real-word datasets using
this error measure and other derived quantities, such as the quality of
scattered data interpolation. Finally, we investigate the performance
and scalability of our proposed sampling technique and compare it to
related approaches.
To summarize, our contribution is a sampling technique that:

• Takes optimally distributed samples in the spatial domain with
respect to the blue noise property,

• Adapts to an arbitrary density, for example derived from a multi-
variate value domain,

• Implicitly defines an ordering of the samples that we use for
continuous level-of-detail and progressive data loading,

• We extend to sample time-dependent data, for example pathlines
in a fluid flow.

2 RELATED WORK

We first discuss the visualization of large data with a focus on data
reduction and scattered data, before we introduce the concept of blue
noise and discuss corresponding sampling strategies.

2.1 Visualizing Large Datasets
To visualize large datasets, we focus on approaches that create a com-
pact derived representation, instead of orthogonal approaches such as
data compression. Li et al. [13] survey data reduction techniques for
simulation, visualization, and data analysis.

Several distribution-based data representation approaches have been
proposed, which represent large datasets using distributions that are
sampled during subsequent visualization and analysis. In particular,
Thompson et al. [23] represent value distributions by storing a his-
togram per block of voxels. Sicat et al. [19] construct a multi-resolution
volume from sparse probability density functions defined in the 4D
domain comprised of the spatial and data range. Several promising
approaches rely on Gaussian mixture models (GMMs), which represent
arbitrary distributions as a weighted combination of Gaussians. Wang
et al. [26] employ a spatial GMM in addition to a value distribution
in each data block, whilst Dutta et al. [7] partition the data into local,
homogeneous regions and fit a GMM in each partition. For in-situ pro-
cessing, Dutta et al. [6] perform incremental GMM estimation instead
of expectation maximization to compute the mixture models. Hazarika
et al. [11] model distribution-based multivariate data using copula func-
tions, which allow modeling the marginal distributions separately from
the dependencies between dimensions.

Although distribution-based approaches achieve a significant reduc-
tion in data size, they are difficult to extend to higher-dimensional
data due to the curse of dimensionality. Moreover, these approaches
have been developed for uniformly structured data and the extension to
scattered data is non-trivial. While scattered data can be visualized by
first reconstructing a structured representation [8,16], this approach has
its own drawbacks and is not an option for all analysis techniques and
needs. For example, particle-based visualizations benefit from specific
visualization and analysis techniques [10].

2.2 Sampling

Statistical sampling of data [5] is gaining popularity in the field of
scientific visualization. Reinhardt et al. [17] use stochastic sampling
to improve performance and reduce visual clutter for the visual debug-
ging of smoothed particle hydrodynamics (SPH) simulations. Sauer et
al. [18] propose a data representation that combines particle and volume
data and supports sampling of particles by using the corresponding vol-
ume to find evenly distributed samples. Woodring et al. [28] describe a
simulation-time stratified sampling strategy for a large-scale particle
simulation. For stratification, the authors construct a kd-tree from the
data that is also used as a level-of-detail representation. Su et al. [21]
discuss server-side sampling using bitmap indices and stratify both in
the spatial and value domain. Wei et al. [27] extend their approach
with an information-guided sampling strategy and recovery technique.
During sampling, they measure the information per stratum by comput-
ing the entropy of the value distribution and draw samples accordingly.
Biswas et al. [3] similarly employ an information-guided strategy to
sample adaptively during in-situ simulation, but use a global histogram
for the entropy computation.

A desirable property of point distributions is the blue noise character-
istic [24], which leads to large mutual distances between points without
noticeable regularity artifacts. Balzer et al. [2] compute Capacity-
constrained Voronoi diagrams (CCVD) to optimize the blue noise
property of point distributions, which allows adapting the point distri-
butions to a given density function. To find representative particles,
Frey et al. [9] propose loose capacity-constrained Voronoi diagrams
(LCCVD) that relax the capacity-constraints of the CCVD method and
are computed on the GPU. All methods based on capacity-constrained
Voronoi diagrams can be used to sample scattered data, but are com-
putationally demanding. Bridson [4] presents a Poisson disk sampling
technique to generate blue noise samples in arbitrary dimensions by
enforcing a minimal and maximal distance between nearest neighbors.
The technique is designed to produce entirely new sample sets, not to
reduce an existing sample set.

Ulichney [25] introduces the void-and-cluster sampling technique
in the context of halftoning and dithering. The technique ranks all
pixels in a rastered image, thus producing a dithering mask. If we
think of all pixels that are already ranked as white and mark the others
black, applying a Gaussian filter yields an image that indicates the local
density of ranked pixels. The tightest cluster is brightest, the largest
void is darkest. The void-and-cluster technique goes through three
phases to fill large voids and reduce tight clusters greedily. The order
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Fig. 2: Overview of the void-and-cluster sampling technique of Ulichney [25] extended to scattered data. After initial random sampling (a), the
samples are optimized by finding (b) and exchanging (c) the largest void pmin with the tightest cluster smax until pmin = smax. We then iteratively
find and add (d) the largest void pmin until we have enough samples.

of greedy additions implies an order on the sample set such that each
prefix has good blue noise characteristics.

3 SAMPLING SCATTERED DATA AND TRAJECTORIES

Ulichney’s algorithm [25] is restricted to regular grids and produces
samples with a uniform density. In this section, we generalize the
approach to scattered data with a non-uniform distribution. To preserve
the spatial density, we compute a density estimate on the whole dataset.
Our generalized void-and-cluster sampling works on scattered data and
enforces the given density (Sect. 3.1). Like the original algorithm, it
orders all sample points to enable level of detail and progressive data
loading (Sect. 3.2). The algorithm is efficient because each iteration
only requires local updates with compact kernels (Sect. 3.3). Our paral-
lel implementation in Sect. 4 further exploits this locality. Supporting
arbitrary sampling densities lets us emphasize regions of high entropy
in the value domain (Sect. 3.4). Finally, we extend our technique to the
sampling of time-dependent trajectories (Sect. 3.5).

3.1 Void-and-Cluster Sampling

Assume we have a dataset with points P ⊂ Rd in a d-dimensional
spatial domain. Each sample is mapped to a value in the possibly
multivariate value domain V through v : P→V . Among these points,
we want to pick a representative subset S⊂ P. Therefore, we optimize
the placement of samples in the spatial domain by estimating the den-
sity of selected samples λS : P→ R+ for each point p ∈ P. A high
sample density indicates a large number of nearby samples, whilst a
low density indicates few. We want to place samples such that dense
regions (clusters) and empty regions (voids) are avoided. Or, in other
words, reduce the maximum of the sample density λS and increase its
minimum.

This does not work for spatially non-uniformly distributed data
points since we have to account for the original distribution in the
spatial domain. Even for uniformly distributed points the border region
of the spatial domain is less densely populated. We account for the
spatial distribution of the points by first computing a point density ρP
for each p ∈ P:

ρP(p) := ∑
pi∈P

k(‖p− pi‖), (1)

using a kernel function k. Given a subset of samples S⊂ P, the sample
density at p ∈ P is then defined as:

λS(p) :=
∑s∈S k(‖p− s‖)

ρP(p)
. (2)

We will now describe a strategy to find the optimal set of samples in
the spatial domain with respect to the sample density λS, by extending
the void-and-cluster algorithm [25]. This is an iterative and greedy al-
gorithm that at each step finds a locally optimal distribution of samples.
An overview of our modified void-and-cluster sampling technique is
depicted in Fig. 2.

Initially, we take a fixed number of random samples. Although the
point density ρP stays constant, we have to update λS when we change
the set of samples. The sample density is computed incrementally when

a sample s is added (or removed), by adding to (or subtracting from)
the density λS(p) for all points.

We then optimize these initial samples by removing the tightest
cluster

smax = argmax
s∈S

λS(s) ∈ S, (3)

i.e. the sample with largest λS. Then, we add the largest void

pmin = argmin
p∈P\S

λS(p) ∈ P\S, (4)

i.e. the point with the lowest λS that is not a sample yet. Since we
add and remove a sample, we have to update the sample densities
accordingly. The optimization stops once the tightest cluster that we
remove then becomes the largest void, that is smax = pmin.

After construction of the optimal initial sampling, we iteratively find
and add the largest void to the set of samples until we have reached
the desired amount of samples. We provide detailed pseudocode of the
entire algorithm in the supplementary document.

3.2 Ordering of Samples
A positive side-effect of the greedy approach is that the void-and-cluster
strategy implicitly defines an ordering of the samples. With respect to
this ordering, any prefix of the sample set S still has good blue noise
characteristics. Ulichney [25] denotes it as the rank r : P→ N, where
r(p) = ∞ for all p ∈ P \ S. To compute this ordering, we assign and
increment the rank when adding a sample during the initial random
sampling or the void filling steps. For a sample si that is added as the
i-th sample, we set r(si) = i. During the void-and-cluster optimization,
when we exchange the tightest cluster smax with the largest void pmin,
we have to swap the rank accordingly, i.e. we set r(pmin) = r(smax) and
r(smax) = ∞.

We re-order (or index) the samples according to this mapping. We
can use this ordering for continuous level-of-detail and for progressive
data loading during the subsequent visualization and analysis.

3.3 Compact Kernels
If the kernel k is compact, i.e. has a finite extent, only a local neighbor-
hood has to be considered when updating the densities of samples and
points. For compact kernels, the optimization is thus defined locally. In
our experiments, we found that the choice of kernel does influence the
distribution of samples and the quality of the blue noise. Nonetheless,
we always achieved good results as long as the kernel size hP was in a
reasonable order of magnitude with respect to the spatial domain. If we
take a fraction of all samples |S|< |P|, we have to increase the kernel
size h used for sampling accordingly:

h := hP
d

√
|P|
|S|

, (5)

using the spatial dimension d. Although we did experiment with a
Gaussian kernel, we use a cubic spline [15] in the remainder of this
work since it yields similar results, but is compact. Lastly, we denote
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Fig. 3: We compute the entropy of a point in its local neighborhood
from a histogram of the value distribution, weighted by the radially
symmetric kernel k.

points in the support of kernel k at point p ∈ P as its neighborhood
Np ⊂ P.

3.4 Adaptive Sampling

So far we have taken all samples with equal probability and propor-
tional to the spatial density. Now, we discuss the use of non-uniform
probabilities to better capture complicated behavior in the value dimen-
sions.

In general, we would like to take samples S ⊂ P according to the
probability mass function φ : P→ [0,1]. To sample a representative
subset, we must re-weight all samples s ∈ S proportionally to the recip-
rocal φ−1(s). With our void-and-cluster approach, we implement this
adaptation by using a modified density:

ρ̃P(p) := ρP(p)φ(p). (6)

Thus, any normalized importance measure, for example a computed
feature or derived variable, can be used to guide the placement of
samples.

Entropy Sampling Similar to recently proposed sampling tech-
niques [3, 27], we place more samples in regions with a high entropy,
i.e. value distributions of high complexity.

For each point p ∈ P we compute the entropy using its local neigh-
borhood Np, see Fig. 3. Specifically, we create a histogram of the value
distribution of all points in the neighborhood. We use the global value
range for the computation of the histogram to ensure that the entropy is
consistent everywhere. To obtain a continuous entropy in the spatial
domain, we weight the contribution of each neighbor with respect to
its distance to p using the kernel k. From the weighted and normalized
histogram hp of size Nbins, we compute the entropy:

H(p) :=−
Nbins−1

∑
i=0

hp(i) log2 hp(i). (7)

Similar to Wei et al. [27], we derive a sampling probability that is
independent of the size of the histogram as

φH(p) :=
2H(p)

Nbins
(8)

and then derive a correctly normalized probability mass function as

φ(p) =
φH(p)

∑pi∈P φH(pi)
. (9)

For multivariate data, we have to construct a single probability from
multiple value dimensions. Hence, we compute the entropy individ-
ually in each dimension and use the maximal entropy at each point.
Intuitively, we consider a data point relevant if at least one dimension
shows high entropy. Dependent on the application, we could also select
a subset of the value dimensions to guide the entropy sampling.

t0 t1 t2 t0 t1 t2(a) (b)

Fig. 4: In (a), we sample trajectories that bundle and separate over time.
We optimize the distribution of sampled trajectories in (b), by stopping
(blue) and starting (red) trajectories in t1.

3.5 Trajectory Sampling

In addition to sampling a single time step, we extend our sampling
technique to time-dependent data. Specifically, we consider trajectories
of scattered data points in discrete time steps t0, ..., tN−1 ∈ R. A trajec-
tory is then defined as a sequence of points over time τ := (pt j , . . . , ptk )
with 0 ≤ j ≤ k ≤ N−1 and points pti ∈ Pti at time ti. Note that each
trajectory can have different starting and ending points in time, i.e. it
does not have to be present in every time step. We now discuss how to
sample a subset T from the set of all trajectories.

To avoid an optimization of trajectories over all time steps, we
sample iteratively. In the first time step, we employ our void-and-cluster
sampling strategy to sample a subset St0 ⊂ Pt0 that defines an initial set
of trajectories T . In the next time step, a number of trajectories could
end, i.e. no longer exist in the following steps. We first compute the
point density ρP and the sample density λS from the trajectories T that
still exist in the current time step. For n ending trajectories, we then
add the trajectories from the n largest voids to T and thus start new
trajectories from this time step. To start a trajectory τ in time step ti
means that we create a new trajectory τs := (pti , . . . , ptk ).

Hlawatsch et al. [12] observed that longer trajectories have greater
accuracy than a series of shorter trajectories. However, longer trajecto-
ries may bundle together or move away and create regions with little
coverage, see Fig. 4. Thus, we forcefully stop up to a user-defined
amount of trajectories εT in each time step ti. To stop a trajectory τ

in time step ti, we take the prefix τe := (pt j , . . . , pti) instead of τ . The
parameter εT depends on the dataset and the specific application. In
general, it should be inversely proportional to the amount of trajectories
ending. In datasets where all trajectories exist in all time steps, εT
should be high. To select which trajectories to stop and which to start
in time step ti, we perform the void-and-cluster optimization. That is,
we exchange the tightest cluster with the largest void up to εT times or
until the sample distribution is optimal, i.e. the tightest cluster is equal
to the largest void, and start or stop the corresponding trajectories. Note
that longer trajectories may again be obtained by interpolation from
shorter ones [1].

4 PARALLEL IMPLEMENTATION

In this section, we discuss the parallel implementation of the sam-
pling technique, specifically the computation of the point and sample
densities, and the parallelization of the void filling step.

4.1 Computing the Densities

One of the most computationally demanding parts of the algorithm is
creating the density ρP and updating λS. Each point p has to scatter its
density, weighted by the distance and kernel function, to all neighboring
points Np. This is an embarrassingly parallel task and is especially
well-suited for GPU acceleration. If the kernel function is compact,
data structures, such as a kd-tree or a regular grid, should be employed
to efficiently retrieve the neighborhood of a point or sample.

In our implementation, we use a uniform grid of cell size h. To find
the neighborhood Np of p, we thus have to query 3d cells around p. To
speed-up the neighborhood search, we layout all cells in memory using
a space-filling Z-curve to optimize memory access to neighboring cells.
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4.2 Parallel Void Filling
The void filling step seems to enforce a sequential bottleneck: In each
step, we find the sample p ∈ P \ S with the smallest sample density
λS(p). Then we add p to the sample set S and increase sample densities
in the neighborhood before we search the smallest sample density again.
To overcome this sequential dependency, we store each added sample p
alongside the sample density λS(p) that it has when it is added. Since
we only ever add to the densities and pick the minimum in each step,
these densities grow monotonically. If we can guarantee that they are
computed correctly for each added sample, sorting by the densities
guarantees that we rank all selected samples correctly.

To provide this guarantee, we must never add a sample too early.
All samples in a neighborhood pn ∈ Np with a rank r(pn)< r(p) must
have contributed to the sample density λS(p) before we add p ∈ P\S
and store λS(p). We can be certain that this is the case if p has the
smallest sample density in its neighborhood, i.e.

λS(p)≤ min
pn∈Np

λS(pn). (10)

By selecting the sample p ∈ P\S that minimizes λS(p) globally, we
will never select another sample in Np before p. Hence, we know that
the rank r(p) is also minimal within the neighborhood Np.

This principle enables our parallel implementation. We first sort
all p ∈ P \ S in ascending order by their density λS(p) and take the
first n points p0, p1, . . . , pn−1 in each iteration. Then we compute an
adjacency matrix in parallel using the kernel size h:

A :=


0 0 . . . 0

‖p1− p0‖−h 0 . . . 0
...

. . .
. . .

...
‖pn−1− p0‖−h . . . ‖pn−1− pn−2‖−h 0

 .

A negative entry in the i-th row and j-th column with i > j indicates
that pi is in the neighborhood of p j . Since λS(pi)≥ λS(p j) due to the
sorting, this means that pi might not satisfy Equation (10) and it is
flagged accordingly. Once the process is complete, all points that have
not been flagged satisfy Equation (10). They are added to the sample
set and their densities are stored. Note that the matrix A is never stored.
We only need the flags.

Although we can parallelize this computation, the workload is un-
evenly distributed. The i-th row of A has i non-zero entries. There-
fore, we index the non-zero entries of A with a single linear index
k ∈ {0, . . . , n(n−1)

2 }. In the supplementary material we show that row
and column indices can be computed from this flat index through

i =

⌊
1
2
+

√
1
4
−2k

⌋
, j = k− (i−1)i

2
. (11)

For large k, the square root has to be evaluated in double-precision to
avoid rounding errors.

Thanks to the sorting by density, the procedure described above guar-
antees a correct relative rank of selected samples. However, samples
may be missing if we just terminate after a particular iteration. For a
complete result, we perform additional iterations. If the largest density
of a sample added in the last proper iteration was λmax, we continue
iterating until the smallest sample density in P\S is greater than λmax.
At this point, we can be certain that we have not missed a sample that
should have been added up until the last proper iteration. This way, we
guarantee that we take the same samples as the sequential algorithm.

5 LOCAL ERROR MEASURE

In this section, we discuss an error measure to quantify how well a
set of samples represents a dataset. We propose a measure that takes
not only the spatial domain into account, but also how well the value
domain is represented in each region of the dataset. To this end, we
first discuss how such a local error can be defined, before we discuss
how to compare value distributions. Lastly, we discuss an error guided

sampling strategy that relies on an efficient iterative error estimation to
sample just below a given error threshold, instead of drawing a fixed
amount of samples.

5.1 Locality and Continuity
We derive a local error measure that compares the value distribution
VS ⊂ V of the sampled dataset with the value distribution V of the
original dataset. Specifically, we propose to compare value distributions
in the local neighborhood Np for each corresponding p ∈ P. This
method implicitly accounts for non-uniformly distributed data points.
Additionally, we weight the contribution of each pi ∈ Np to the value
distribution by its distance k(‖p− pi‖) so that the error varies smoothly
over the spatial domain.

5.2 Wasserstein Distance
To measure the difference between the original value distribution given
by values V = {X0, ...,Xn−1} and a sampled subset VS ⊂ V , we use
the corresponding cumulative distribution functions (CDFs) FV and FS.
The CDF at a point p ∈ P is estimated as

FV (p, t) =
1

∑
n−1
i=0 k(‖p− pi‖)

n−1

∑
i=0

{
k(‖p− pi‖) if Xi ≤ t,
0 otherwise.

(12)

In practice, this implies that we need to sort the Xi before accumulating
them. Since the samples are a subset VS ⊂V , it is sufficient to sort the
values V to estimate both CDFs. Alternatively, we estimate the CDFs
based on a histogram of V and VS, which introduces a discretization,
but is more efficient to evaluate.

To measure the distance, we found the Wasserstein distance, or earth
movers distance, to be a good choice. In the one-dimensional case, it is
defined as the L1-norm between the two CDFs:

W(p,FV ,FS) :=
∫

∞

−∞

|FV (p,x)−FS(p,x)| dx. (13)

In contrast, we found the Kolmogorov-Smirnov distance, defined as the
infinity norm between the CDFs, to be unsuited since it is not robust to
small shifts in the value dimension.

Note that this definition of the Wasserstein distance is only valid
for one-dimensional value distributions. Thus, we compute a separate
error for each value dimension. We can further deduce the error across
dimensions, e.g. by taking the mean or maximum. In the following we
will use the maximum; however, this is an application and data specific
decision.

5.3 Error Guided Sampling
During void-and-cluster sampling, we efficiently keep track of the error
distribution, for example to stop sampling if the average error falls
below a given threshold. In detail, we compute the error for all samples
after the initial void-and-cluster optimization. When adding a sample
pmin, we compute the error of pmin and additionally update the error
for all neighbors Npmin since these have changed as well.

To describe the distribution of errors during sampling, we found the
average error to be a robust statistic that is efficient to compute. In
contrast, the maximal error does not decrease smoothly with respect to
the number of samples and is not robust against outliers, e.g. stemming
from small, but complex value regions.

6 RESULTS AND DISCUSSION

In this section, we evaluate our sampling technique using four real-
world datasets and the synthetic sinc signal.

6.1 Synthetic Data: Sinc
We have created the sinc dataset by randomly placing 500,000 points
in the domain [−5,5]2 and by evaluating for each point p ∈ [−5,5]2
the function

sinc(‖p‖) = sin(π‖p‖)
π‖p‖

. (14)

5
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Fig. 5: Reconstruction of the sinc dataset using scattered data interpolation after taking 5,000 samples with different strategies.
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Fig. 6: Left: Comparison of different sampling strategies using our
proposed error measure. Right: Error measured during sampling.
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Fig. 7: Fourier transform of the sinc dataset after taking 5,000 samples
using our uniform void-and-cluster method, loose capacity constrained
Voronoi diagrams (LCCVD), and Poisson disk sampling.

Fig. 6 (left) compares different sampling strategies and shows the
mean Wasserstein distance. We employ simple random sampling and
random sampling with non-uniform probabilities based on the entropy.
Moreover, we compare to stratified sampling utilizing a kd-tree based
on a median split, similar to Woodring et al. [28]. Lastly, we employ
Poisson disk sampling [4] and loose capacity constrained Voronoi
diagrams (LCCVD, [9]). For an increasing number of samples, the
error from most strategies converges to zero, which implies that these
strategies sample a representative subset. However, Bridson’s Poisson
disk sampling [4] lacks explicit control over the sample count, which
is instead steered by the enforced minimal and maximal distance. The
technique is unable to surpass a certain sample count for this dataset.
Our proposed void-and-cluster sampling strategies perform best for all
sample counts. The entropy-based strategies perform similar to their
uniform counter parts.

In Fig. 6 (right), the mean error has been computed iteratively during
sampling until the error was less than ε = 0.0065, which led to a sam-
pling percentage of 34.1 %. The error first falls rapidly then converges
asymptotically to zero. Initially, we sample 5,000 and iteratively add
the remaining samples. In each void filling step, we take only 32 sam-
ples in parallel to still keep the error up to date. In comparison, we
take up to 12,288 voids in parallel if we do not perform error guided
sampling.

We use scattered data interpolation to interpolate the sampled data
values to a grid of size 10242, see Fig. 5. Our void-and-cluster strategies
show a major improvement compared to the other sampling strategies.
The signal-to-noise (SNR) ratios shown in the logarithmic decibel
scale support this assessment. Note that the LCCVD and Poisson disk
sampling strategies also achieve good results, but are still worse than
our proposed methods. For reconstruction, the entropy-based sampling
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Fig. 8: Comparison of the mean error over all time steps in the von
Kármán vortex street dataset.
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Fig. 9: Comparison of the local error measure after sampling a single
timestep of the von Kármán vortex street (left) and the surface-mounted
cylinder (right).

strategies perform slightly better compared to the uniform approaches.
For all sampling strategies, the quality of the reconstruction agrees with
the error measure.

Lastly, Fig. 7 shows the spectrum of the sinc dataset reduced to a
subset of 1 % with our uniform void-and-cluster strategy, LCCVD, and
with Poisson disk sampling. The Fourier transform shows the blue noise
property for these methods. Low frequencies are substantially weaker
and the spectrum is isotropic. However, LCCVD has more energy
in low frequencies than our void-and-cluster strategy. Poisson disk
sampling has less energy in low frequencies, but contains a noticeable
spike near zero. Note that the random and stratified sampling strategies
do not have this property, which suggests that the blue noise property
is desirable for scattered data interpolation. Indeed, the error of kernel
estimation has been shown to depend on the disorder of particles [14].

6.2 Von Kármán Vortex Street
The von Kármán vortex street is a time-dependent SPH dataset that
contains about 5 million particles in each time step. Since the particles
enter the domain on the left side and exit on the right, the amount
of particles per step changes. A circular boundary in the mid of the
domain causes a repeating pattern of swirling vortices, the vortex street.

We compare the error measured from the different techniques for
sampling the first time step in Fig. 9 (left). Since the original dataset
already contains well distributed samples, as a result of the SPH simu-
lation, the Poisson disk sampling can correctly sample the dataset even
for large sample counts. Still, the void-and-cluster techniques consis-
tently lead to the lowest error. The decreased error of stratified kd-tree
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Fig. 10: The von Kármán vortex street after ten time steps using random (a), uniform (b), and entropy (c) void-and-cluster trajectory sampling.
The corresponding u-velocity fields are shown, which have been created using scattered data interpolation. Our error measure is shown in (d).
The entropy void-and-cluster sample distribution in the first time step is illustrated in (e).
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Fig. 11: The surface-mounted cylinder, after sampling 466,103 particles, is shown in (a). We use the continuous level-of-detail, in addition to a
transfer function, to further reduce the amount of particles. Slices of the dataset using the uniform (b) and entropy (c) sampling illustrate the
difference between the sampling strategies. The entropy strategy samples the less interesting region above the empty cylinder less densely.
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(b) Histogram from 10,000 samples
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(c) Scatter plot from 466,103 samples
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(d) Scatter plot from 10,000 samples

Fig. 12: We create a histogram (a) and a scatter plot (c) of the surface-mounted cylinder, after sampling 466,103 particles using the void-and-cluster
entropy strategy. With our level-of-detail, we select a subset of 10.000 particles and create a histogram (b) and a scatter plot (d).
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(a) Reference (b) Random (c) Void-and-cluster

Fig. 13: Slices of the finite-time Lyapunov exponent (FTLE) from the
ABC flow. The reference, computed on all trajectories, is shown in (a).
We have computed the FTLE after sampling 10 % of the trajectories
by random sampling (b) and using the uniform void-and-cluster (c)
technique.

sampling and entropy random sampling compared to naive random
sampling implies that both stratification and entropy-based sampling
are beneficial for this dataset.

We sample 10 % of the trajectories in the discrete time interval
[0,20]. Since particles frequently enter and exit the domain, we do
not explicitly stop trajectories to sample new ones. In Fig. 8 we plot
the error over time for the different sampling strategies. The void-and-
cluster strategy is not only consistently better, but also stays nearly
constant over time. In contrast, we observe an increase of the error over
time for the random sampling techniques. Lastly, the entropy-based
sampling strategies show a noticeable improvement for this dataset
because they are able to focus more samples on the difficult vortex and
boundary regions.

A comparison between random sampling, uniform, and entropy
void-and-cluster sampling after 10 time steps is shown in Fig. 10.
Although all sampling strategies deteriorate slightly over time, the sam-
ples are still well distributed for the uniform void-and-cluster sampling
approach. We reconstruct the u-velocity field using scattered data inter-
polation. The results are considerably better for the void-and-cluster
approaches. Moreover, the entropy sampling strategy leads to a better
reconstruction compared to the uniform void-and-cluster technique.
Our error measure of the entropy strategy is shown in (d). Although
the entropy strategy already places most samples near the vortex street,
the lower boundary, and the upper boundary, the error is still highest in
these regions.

We illustrate the sample distribution for the entropy sampling tech-
nique in the first time step in Fig. 10 (e). More samples are placed
behind the circular boundary, where vortex shedding occurs, and near
the bottom and top of the domain. In these regions, the velocity differs
considerably. The sampling distribution in the tenth time step has dete-
riorated considerably for the entropy strategy, but still leads to better
results. The entropy strategy thus seems to require shorter trajectories
to accurately place samples with respect to the entropy.

6.3 Surface-Mounted Cylinder
This dataset stems from a 3D SPH simulation that simulates the flow
around a surface-mounted cylinder [22]. In detail, particles move
through a wall-bounded box where an empty cylinder is placed on the
bottom. The dataset contains about 46 million particles in each time
step, each of which has a position, velocity, and pressure and either
belongs to the static domain boundary or the simulated fluid. In Fig. 9
(right), we compare the error of the different sampling techniques. Most
notably, the entropy-based techniques show a larger error for smaller
sample counts.

We sample 1 % of the dataset and visualize the particles as sphere
and arrow glyphs in Fig. 11 (a). We map u-velocity to color, i.e. velocity
in the principal flow direction. Since the sampled subset still contains
a large amount of particles, we make use of the continuous level-of-
detail in addition to a transfer function, which maps fast particles to
transparent, to further reduce the amount of visual clutter. The vortex
shedding in the wake of the cylinder thus becomes visible. Furthermore,
we illustrate the difference between uniform and entropy void-and-

(a) (c)

(b)

Fig. 14: The Dark Sky dataset reduced to 5 % using the uniform void-
and-cluster technique (a). A slice of the dataset is shown in (b), with
the corresponding slice from the original dataset in (c).

cluster sampling in Fig. 11 (b) and (c). The entropy strategy samples
the regions near the wall and close to the cylinder more densely due to
fluctuating velocities, but also due to the interface between fluid and
boundary particles that leads to a high entropy. In contrast, the regions
above and next to the cylinder contain a large amount of particles that
move unobstructed through the domain.

In Fig. 12, we create a histogram of u-velocity (a) and a scatter
plot of x and v-velocity (c) of the dataset sampled with the entropy
void-and-cluster technique. We use our level-of-detail mechanism to
create a subset of 10,000 particles and compute similar plots in (b) and
(d). The histograms in (a) and (b) are similar, even though we reduce
the amount of samples considerably. In the scatter plot (d), the amount
of clutter is significantly reduced. The periodic changes in v-velocity,
caused by the swirling vortices in the wake of the cylinder, then become
visible. Lastly, the ordering of samples allows us to optimize loading
times and latency. In particular, when opening a new file or time step,
we initially load only a small subset and asynchronously continue to
load more samples to reduce the latency. Especially for larger datasets,
we found working with a small subset of the data to be preferable due
to the fast and less cluttered visualizations.

6.4 The ABC Flow
The Arnold-Beltrami-Childress (ABC) flow is a three-dimensional,
steady velocity field:

ẋ = Asinz+C cosy
ẏ = Bsinx+Acosz

ż =C siny+Bcosx.

We set A=
√

3, B=
√

2, C = 1. We represent the flow in the Lagrangian
basis with 134,217,728 trajectories that start in the spatial domain
[0,2π]3 and are integrated using a 4th-order Runge-Kutta scheme over
the time interval [0,10]. We then sample 10 % of the trajectories,
without stopping and starting new trajectories.

In Fig. 1 (g) and (h), 50,000 and 500 trajectories are shown as
illuminated pathlines using the continuous level-of-detail that is im-
plicitly given by the rank of our sampling strategy. Since we reorder
the samples by their rank, we only have to load the first samples for
visualization and can load additional samples progressively.

After random sampling and uniform void-and-cluster sampling, we
have computed the (forward) finite-time Lyapunov exponent (FTLE).
This quantity measures how neighboring trajectories separate over time
and is used to visualize time-dependent flow behavior. A slice of the
FTLE is shown in Fig. 13. Computing the FTLE after sampling with
the uniform void-and-cluster strategy yields better results compared to
random sampling, even though the same number of samples have been
taken.
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Fig. 15: The sampling performance on the von Kármán vortex street, the surface-mounted cylinder, the ABC flow, and the Dark Sky dataset.
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Fig. 16: We evaluate the scalability of our algorithm using differently
sized sinc datasets, whilst always sampling 10 %.

6.5 Dark Sky
The Dark Sky simulations are a series of cosmological N-body sim-
ulations of the evolution of the large-scale universe [20]. We study
a subset that consists of 111 million particles with a position, veloc-
ity, and unique identifier. Fig. 14 shows a visualization of the dataset
reduced to 5 %. Since the simulations investigate the clustering of
particles into galaxies, filaments, and the emergence of cosmic voids,
the spatial distribution of the particles is strongly non-uniform. Conse-
quently, a sampled subset of the data should preserve this distribution
of cosmological mass. This is not possible using Poisson disk sampling
or entropy-based adaptive sampling. In contrast, our uniform void-and-
cluster technique optimizes the blue noise property with respect to the
spatial density of particles in the dataset. The spatial distribution is thus
preserved, whilst the samples are optimally stratified.

6.6 Performance and Scalability
To assess the performance of our algorithm, we compare the run time
of different sampling strategies. For the measurements, we use an
Intel Core i7-6700 and an Nvidia Quadro RTX 8000. We enable GPU
acceleration where possible.

Measurements for all of our datasets are shown in Fig. 15. We were
not able to measure our implementation of LCCVD for larger datasets
since it is computationally demanding and we did not parallelize it. Al-
though Poisson disk sampling is a linear time algorithm, it is inherently
sequential and leads to long run times for large data sizes. Random
and stratified sampling are fast even though no GPU acceleration is
used. In comparison, the void-and-cluster techniques are slower, but
considering the data sizes we argue that the performance is acceptable.
For example, we take 1,342,177 samples out of 134 million from the
ABC flow dataset in 68 seconds. Due to the non-uniform input data of
the dark sky simulation, a large kernel support is required that leads to
a significantly increased run time. The use of adaptive kernel sizes or
better suited data structures could potentially improve the efficiency of
the neighborhood search for non-uniformly distributed datasets.

The uniform and entropy-based sampling strategies perform similar.
However, for small sampling percentages the entropy computation is

noticeably slower since the computation depends on the kernel size h,
which increases for smaller sampling percentages, and scales with the
input data size. This is especially visible in the ABC flow where the
run-time of the entropy computation increases dramatically for smaller
sampling percentages due to the neighborhood lookup limiting the GPU
efficiency. In general, the run-time increases when a larger number
of samples is taken, which indicates that the void filling step is the
bottleneck.

Lastly, to measure the time complexity and scalability of the algo-
rithm, we measure GPU and single-threaded CPU performance with
differently sized sinc datasets. The measurements are shown in Fig. 16.
Although our GPU implementation is competitive with random and
stratified sampling, the single-threaded CPU implementation is con-
siderably slower. This highlights the benefits of parallelization and
GPU acceleration for our algorithm. Compared to LCCVD our single-
threaded implementation achieves an enormous speed-up. Although
not shown in the plot, LCCVD took more than 2,500 seconds to sample
a dataset of size 106.

7 FUTURE WORK: MULTI-NODE PARALLELISM

An important use case that has not been addressed so far is the par-
allel implementation for distributed memory systems. To scale the
sampling technique to multiple nodes on a compute cluster, the spatial
domain could be subdivided into uniform tiles. Each compute node
then performs void-and-cluster sampling of one tile. Although this
will produce tiles that are well distributed according to the blue noise
property, the samples in the border region between two or more tiles
are not necessarily well separated. If this is not acceptable, then the
cluster-and-void optimization step can be applied again to the whole
dataset. However, this would have to be performed on a single node
which might not be possible, for example due to memory constraints.
The extension of the proposed algorithm for multi-node parallelism is
thus still an open problem.

8 CONCLUSION

We present a novel approach for using statistical sampling to reduce
large scattered datasets for visualization and analysis. In particular, our
void-and-cluster technique optimizes sample distributions with respect
to the blue noise property and thus produces samples that evenly cover
the spatio-temporal domain. Our technique significantly improves
the accuracy of operations such as scattered-data interpolation or the
computation of the FTLE. In combination with the level-of-detail given
by our technique, we are able to generate interactive and clutter-free
visualizations of large datasets. Lastly, we introduce an error measure
to quantify the error of a subsampled dataset, which takes both spatial
and value domain into account. Our results show a clear correlation
between the error measure and the quality of derived quantities such as
scattered data interpolation.
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