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Dynamic Nested Tracking Graphs

Jonas Lukasczyk, Member, IEEE, Christoph Garth, Member, IEEE, Gunther H. Weber, Member, IEEE,
Tim Biedert, Ross Maciejewski, Member, IEEE, and Heike Leitte, Member, IEEE

Fig. 1. The topology-based visual analytics framework supports the feature-centered navigation of Cinema databases consisting of
image and analysis products generated during large-scale simulation runs, where numerous features are organized into a manageable
amount of hierarchical groups that can be explored in a level-of-detail approach. Here, the interface shows an ensemble member
of the viscous finger dataset, where colors encode individual fingers for salt concentration level 30. The prime interaction device of
the framework is a nested tracking graph (NTG) that simultaneously displays the temporal evolution of superlevel set components
for multiple levels (bottom). The NTG is used to navigate through time and retrieve component images from the database (top left),
whereas the split tree (top center) and persistence diagram (top right) support the user in selecting important levels and filter criteria.

Abstract— This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel
set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema
database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph
operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size,
overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to
query specific database elements and update feature parameters, facilitating flexible post hoc analysis.

Index Terms—Topological Data Analysis, Nested Tracking Graphs, Image Databases, Feature Tracking, Post Hoc Visual Analytics

1 INTRODUCTION

In many applications, interesting features can be characterized via su-
perlevel set components—i.e., connected areas within scalar fields that
exceed a given threshold (level). Examples include highly turbulent
regions in flow fields (vortices), areas in combustion simulations above
a fuel consumption rate threshold (burning regions), and parts of the
universe exceeding a certain dark matter density (halos). Large-scale
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simulations that model such physical processes pose additional chal-
lenges to the already complex task of feature identification, tracking,
and visualization. Specifically, it is often infeasible to write every sim-
ulation state to disk due to bandwidth and disk space constrains. These
limitations necessitate in situ algorithms that store the least amount of
information needed to still support flexible post hoc analysis; including
the capability to select, filter, track, and render features. Addition-
ally, visual analytic interfaces for massive amounts of features require
level-of-detail techniques that intelligently organize features in groups.

This work describes an approach that addresses these issues by
combining and extending so-called Cinema databases [2] (for in situ
database generation) and nested tracking graphs (NTGs) [19] (for post
hoc database exploration). A NTG consists of layers of common track-
ing graphs, where the branches (tracks) of a layer visualize the evolution
of individual superlevel set components for a fixed level, and branches
of different layers are drawn inside each other based on the nesting
hierarchy of the components (Fig. 1). The presented approach is based
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Fig. 2. Processing pipeline of the presented approach that consisits of the in situ database generation and the post hoc database exploration. During
simulation runtime, the approach derives for each timestep the split tree and its associated domain segmentation to compute tracking information,
images of feature groups, and refined split trees, which are stored in a Cinema database. During post hoc analysis, the database elements are
used to dynamically compute nested tracking graphs, composite 3D views of feature groups, and to visualize the split trees and their corresponding
persistence diagrams, which are all in turn integrated in a feature-centered visual analytics framework to effectively explore the underlying simulation.

on the fact that superlevel set components merge as the level decreases,
and therefore lower-level branches of the NTG automatically bundle
higher-level branches. Thus, NTGs can be used to control the maxi-
mum number of visible branch bundles that represent feature groups.
This hierarchical decomposition is also used during database genera-
tion to store images of these groups instead of individual components,
which reduces the amount of stored information while still supporting
flexible post hoc analysis via linking and brushing. This work also
describes a novel graph operation-based NTG algorithm (GO-NTG)
that efficiently computes NTGs post hoc based on topological abstrac-
tions that are derived and stored at simulation runtime. Combining
these contributions yields a scalable methodology for effective post hoc
analysis of simulations containing numerous features. To summarize,
the contributions of this work are:

• A graph operation-based NTG algorithm (GO-NTG);
• The topology-based generation and navigation of Cinema databases;
• A scalable visual analytics framework that enables the post hoc

analysis of large-scale simulations with numerous features; and
• The implementation of all algorithms in the Topology ToolKit [32].

2 RELATED WORK

This work primarily builds on the nested tracking graph (NTG) [19],
a topological abstraction that records the evolution of superlevel set
components across time and levels. Each layer of the NTG is a common
tracking graph [5,26,28,29,34] that effectively illustrates the evolution
of superlevel set components for a single level, where edges of different
layers are drawn inside each other based on the nesting hierarchy of
their associated components. However, the original algorithm proposed
by Lukasczyk et al. [19] requires access to the entire raw simulation
data, as it explicitly computes and tracks for each timestep and a prede-
fined set of levels the corresponding component geometries, which does
not scale for increasing simulation sizes due to IO constraints [2]. This
work proposes a graph operation-based NTG algorithm (GO-NTG)
that computes NTGs based on unaugmented merge trees [7] and meta
edges [34], i.e., topological abstractions that are much smaller than
the raw simulation data they are derived from. At simulation runtime,
the proposed approach first computes the augmented merge tree of the
current timestep with the task-parallel algorithm proposed by Gueunet
et al. [13], then adds so-called meta edges [34] between vertices of
the current and the previous merge tree that record the amount of over-
lap between the corresponding domain segments, and then stores the
unaugmented merge tree together with the meta edges in a Cinema
database (Fig. 2). Specifically, Sect. 3.2.1 describes an adaption of
the original meta edges algorithm [34] that first refines the augmented
merge tree into smaller scalar intervals to increase tracking accuracy,
and then computes meta edges in parallel. The GO-NTG algorithm
then processes these abstractions during post hoc analysis to compute
NTGs, where the layout is derived with the algorithm of Lukasczyk
et al. [19]. Recently, Köpp et al. [16] proposed an improved layout
algorithm that could be used instead.

Several other authors have examined feature tracking based on topo-
logical abstractions. Oesterling et al. [20] proposed an algorithm to
compute the time-varying merge tree by deriving a sequence of local
updates that iteratively transform the trees over time. These updates
are extremely expensive to compute, which makes them currently un-
suitable for interactive systems and large datasets. Recently, Soler et
al. [30] proposed to compute the newly introduced lifted Wasserstein
distance between persistence diagrams to derive an optimal matching
between critical point pairs. However, matched superlevel set compo-
nents across different levels are not necessarily nested, which is why
their method can not be trivially integrated into the proposed methodol-
ogy. Yet, extending the method to ensure a nesting hierarchy appears
fruitful, and can be addressed in future work. Bremer et al. [5] analyzed
and tracked flame fronts in combustion simulations by computing a
four-dimensional space-time Reeb graph that spans the entire data set
in time, where edges in this graph correspond to evolving features. This
allows them to flexibly change feature parameters without laborious
recomputation. In later work, Bremer et al. [6] computed the overlap
of static-threshold features based on a precomputed merge-tree seg-
mentation that could be generated in situ. They combine this with
presegmented data to build a visual analysis system.

The proposed methodology links edges of the NTGs to images of
the corresponding component groups [8] that have been stored during
the simulation in a so-called Cinema database [2]. Originally, these
databases are structured image collections that enable the interactive
post hoc visual analysis of extreme-scale simulations by simply brows-
ing images that have been stored in situ for a fixed sampling of the
parameter space. The current specification [25] supports any kind of
data product; in particular depth images that can be used to compos-
ite 3D renderings of the scene post hoc [18]. Biedert et al. [4] also
investigated the Cinema-inspired idea of combining in situ topological
analysis and simplification with compact image-based storage in so-
called contour tree depth images, which record at each pixel the list of
depth values of individual contours from front to back. The proposed
methodology improves on this idea by storing images of feature groups
that are determined by a branch decomposition of the merge tree [22].
This makes it possible to use dynamic nested tracking graphs—whose
edges are linked to the branch decompositions—as intelligent interac-
tion devices to effectively navigate the massive databases.

3 METHOD

After introducing the necessary background (Sect. 3.1), this section de-
scribes the proposed approach outlined in Fig. 2 that derives a database
at simulation runtime (Sect. 3.2) which supports flexible post hoc anal-
ysis (Sect. 3.3). This includes robust methodologies to identify and
track superlevel set components (Sect. 3.2.1), presciently generate im-
ages of component groups (Sect. 3.2.2), efficiently compute NTGs in
real-time (Sect. 3.3.1), compose images from the database (Sect. 3.3.2),
and effectively explore the underlying simulations using the described
algorithms in a visual analytics interface (Sect. 3.3.3).



3.1 Background
This section provides the formal background of nested tracking graphs,
split tree segmentations, and persistence-based branch decompositions.

3.1.1 Nested Tracking Graphs
Common tracking graphs are one-dimensional simplicial complexes
that effectively illustrate the evolution of superlevel set components for
a fixed level. Their vertices represent individual components (white
discs of Fig. 3, top), and edges connect vertices of adjacent timesteps iff
their corresponding components are deemed related, either via spatial
overlap or more advanced feature tracking methods (blue edges in
Fig. 3, top). However, tracking graphs are limited to said level, and even
slight variations can drastically change their structure, which makes it
difficult to compare tracking graphs for different levels. Lukasczyk et
al. [19] addressed these issues by proposing a topological abstraction
called the nested tracking graph (NTG), which can be used to draw
edges of different levels inside each other based on the nesting hierarchy
of the components (red edges in Fig. 3, top). Formally, a NTG is a
one-dimensional simplicial complex N = V ∪ET ∪EN whose vertices
V represent individual components for multiple timesteps and levels
(white discs of Fig. 3, top), where the edges ET record the tracking
relationship between vertices of the same level at adjacent timesteps
(blue edges in Fig. 3, top), and the edges EN record the nesting hierarchy
of components at the same timestep for adjacent levels (red edges in
Fig. 3, top). The edges ET and EN are also referred to as tracking graphs
and nesting trees, respectively. Thus, to compute a NTG, it is necessary
to perform the following tasks:

Task 1: Identify the superlevel set components that are
present for a set of levels (the vertices V).

Task 2: Compute the nesting hierarchy of the components for
adjacent levels (the nesting trees EN ).

Task 3: Determine the relationship between components for
adjacent timesteps (the tracking graphs ET ).

3.1.2 Split Tree Segmentations
This work describes a graph operation-based NTG algorithm that solves
all tasks by processing intermediate graph structures that are computed,
at simulation runtime, based on merge tree segmentations, or—more
precisely—on split tree segmentations as the proposed method focuses
on superlevel sets. Fig. 4 illustrates a split tree segmentation for one
timestep, where scalar data f : K → R is given on the vertices of
a simply connected simplicial complex K, and values inside higher
dimensional simplices are linearly interpolated. A split tree is then
a one-dimensional simplicial complex T whose edges represent the
evolution of individual superlevel set components during a positive
level sweep [7, 13] (Fig. 4a). The tree also provides a domain partition
φ : K→ T that maps any point of K to a vertex or edge of T (Fig. 4b),
and a new scalar field ψ : T → R that assigns to each point of T the
corresponding scalar value of f (y-axis of Fig. 4, right). To simplify
notations, 〈u,v〉 ∈ T denotes a split tree edge such that ψ(u)< ψ(v),
and the second vertex is called the edge representative as it can uniquely
identify the edge. A crucial property of T and ψ—which is the basis
for all following algorithms—is that each individual superlevel set
component for a given level l ∈ R corresponds to a subtree of T where
ψ ≥ l, which is referred to as a crown (Fig. 4c).

3.1.3 Persistence-Based Branch Decompositions
The simplices of a split tree T can be grouped into branches B by
first sorting all maxima by value in descending order, and then grow-
ing a new branch from each maximum towards the root until it either
reaches the root, or another branch with a larger maximum (Fig. 4d
right). Each resulting branch B ∈ B creates a so-called persistence
pair consisting of the two endpoint vertices u = argminx∈B(ψ(x))
and v = argmaxx∈B(ψ(x)), where the corresponding value range
ψ(v)−ψ(u) is called the persistence of the branch that measures its
significance. Branch decompositions are used in the proposed approach
to further group branches into a fixed number of bundles by assigning
less persistent branches to the most persistent branch they are attached
to; for example, to depict components in groups (Fig. 4d, left).
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Fig. 3. (Bottom) Superlevel set components of a time-varying scalar-
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Fig. 4. Illustration of a split tree segmentation S = (T , φ , ψ) for a scalar
field (a, left) consisting of a split tree T (a, right), its scalar field ψ (y-axis,
right), and the domain segmentation φ (b). Each individual superlevel set
component for a level l corresponds to one connected subtree of the split
tree above the level threshold, and vice versa (c). A persistence-based
branch decomposition of T can be used to further group branches into
bundles whose components can be depicted in one image (d).



3.2 In Situ Database Generation
During the simulation, the proposed approach computes the complete
split tree segmentation S = (T ,φ ,ψ) for every timestep with the task-
parallel algorithm proposed by Gueunet et al. [13], which is imple-
mented in the Topology ToolKit [32]. Optionally, the scalar field can
be simplified by persistence to remove noise [10, 11, 33]. Next, the
unaugmented split tree T and its scalar function ψ are directly stored in
a Cinema database to later solve Task 1 and 2 of the NTG computation,
whereas S is used to derive in situ so-called meta edges between unaug-
mented merge trees of adjacent timesteps (Sect. 3.2.1) to efficiently
solve Task 3 post hoc. S is also used to store, at simulation runtime, a
reduced set of images of component groups (Fig. 4d) that can later be
composed again into 3D scenes (Sect. 3.2.2).

3.2.1 Split Tree Segmentation-Based Tracking
To compute tracking graphs, it is necessary to solve the correspondence
problem between superlevel set components of adjacent timesteps.
During post hoc analysis, it is no longer possible to explicitly compute
component geometries and test them for overlap as the raw simulation
data is no longer available. In situ algorithms address this problem
by precomputing tracking information that can later be used to derive
tracking graphs without reprocessing the original data [6, 20, 34]. A
prime example of such an approach are so-called meta edges [34] that
record the overlap of component groups for discrete level intervals.
Alg. 1 is an adaption of this approach that processes two split tree
segmentations that are defined on the same simplicial complex K.
Recall, each segmentation partitions the domain into connected regions,
called segments, that correspond to individual split tree edges (Fig. 4b),
and each superlevel set component is completely contained in the
domain segments of its crown (Fig. 4c). Alg. 1 uses these facts to
collectively track components based on the segments they are contained
in. As a direct consequence, the accuracy of the tracking depends on
the level intervals of the split tree edges—i.e., the granularity of the
segmentation—where the accuracy can be increased by introducing
regular vertices on edges to further subdivide segments (Fig. 5). If two
segments of adjacent timesteps overlap at the same vertex v, then it is
guaranteed that at least the components for the smallest level among
both corresponding intervals—called the base level—intersect at v.
Following this principle, Alg. 1 records the amount of spatial overlap
between segments via meta edges M that connect the representatives
of the corresponding split tree edges (all arrows of Fig. 5).

Specifically, Alg. 1 initializes the set of meta edges M as an empty
set, and then iterates over each vertex v of the complex K to add edges
to M. Fig. 5 illustrates this process for one iteration, where each
iteration first retrieves the edges of both split trees that correspond
to v via the domain segmentation functions φt−1 and φt (split tree
edges with white discs in Fig. 5, bottom). As explained earlier, this
overlap only guarantees that the superlevel sets for the base level of
both intervals intersect at v. Therefore, the algorithm determines the
base level b using ψt−1 and ψt , and then traverses both trees towards
the root until it finds the so-called base edges whose intervals include b
(thin split tree edges in Fig. 5, bottom). Subsequently, the algorithm
adds a meta edge to M between the representatives of the base edges.
Furthermore, if components of these edges overlap, then so do the
components of the edges towards the root. Thus, the algorithm also
synchronously traverses both trees towards the root and adds meta
edges to M between the representatives of the visited edges (red edges
of Fig. 5). This procedure can additionally record the amount of spatial
overlap between segments on the meta edges, and the size of segments
on their respective split tree vertices. These properties are used during
post hoc analysis to filter and scale NTG edges (Sect. 3.3.3). After all
iterations, the set of meta edges M between the two segmentations is
complete (all arrows of Fig. 5), and M is stored in the Cinema database.

This procedure is executed every time the simulation advances one
timestep, and it is only necessary to keep the segmentation of the
previous and current timestep in memory. Formalizing the algorithm in
this fashion makes it also possible to execute iterations in parallel, and
subsequently unify the generated meta edges. The stored meta edges
are then processed post hoc by the GO-NTG algorithm (Sect. 3.3.1).
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Fig. 5. Illustration of the segmentation-based tracking approach that
processes two split trees (bottom) and their respective domain segmenta-
tions (top) of two adjacent timesteps (left and right). From the previous to
the current timestep, the maximum B splits into the two maxima D and E ,
and the maximum A (later labeled C) moves from the left to the right side
of the domain. The overlap of segments are recorded by so-called meta
edges between their corresponding representatives (all arrows). For
example, the dark blue and dark green segments overlap, which justifies
the meta edge 〈A′,C′〉. The light blue and the light green segments,
however, do not overlap, and thus there exists no meta edge between A
and C. The figure also highlights a single iteration of Alg. 1 for a vertex v
of the domain. First, the algorithm retrieves for the segments in which
v resides the corresponding edges of both split trees (split tree edges
with white discs), then determines the corresponding base edges in both
trees (thin split tree edges), and finally adds meta edges (red arrows)
between the representatives of the base edges and all connected edges
towards the root. Note, the complete set of meta edges (red and gray
arrows) correctly record the overlap of segments across all intervals. Yet,
the accuracy of the matching depends on the resolution of the intervals.

Algorithm 1: ComputeMetaEdges( K, (Tt−1, φt−1, ψt−1), (Tt ,φt ,ψt ) )

1 M← /0 // Set of Meta Edges

2 foreach vertex v ∈K do
3 // Get edges that correspond to segments
4 (et−1, et) ← GetSegmentEdges( v, Tt−1, φt−1, Tt , φt )

5 // Get edges that include base level
6 b ← min( minψt−1(et−1), minψt(et ) )
7 (ēt−1, ēt) ← GetBaseEdges( b, Tt−1, ψt−1, et−1, Tt , ψt , et )

8 // Connect all representatives towards the root
9 AddMetaGraphEdges( M, ēt−1, ēt , Tt−1, ψt−1, Tt , ψt )

10 StoreInCinemaDB( M, t−1 )



3.2.2 Image Generation
To provide an interactive 3D rendered view of the simulation post
hoc, the proposed approach also stores, at simulation runtime, images
of superlevel set component groups that can later be composed into
3D scenes. The following algorithm is built on top of the original
Cinema approach [2] that generates images for a Cartesian product
of the parameter space; e.g., images of contours for three isovalues at
every fifth timestep from 20 different camera angles. Database viewers
then enable users to browse the structured image stores by selecting
interesting parameter combinations from parallel coordinate plots [35],
by performing queries [3, 32], or by snapping to the closest available
camera locations while navigating an emulated 3D view [21]. It is also
possible to approximate the depicted surfaces to enable free camera
movement [18]. However, a limitation of Cinema databases is that the
flexibility of the post hoc analysis is limited by the generated images.
Thus, if the database does not contain individual feature images, it is
not trivially possible to toggle their visibility. Storing an image of each
feature is also problematic as this drastically increases the amount of
database elements. Therefore, it is necessary to intelligently depict
feature groups with common post hoc analysis tasks in mind.

In the context of tracking superlevel set components in large-scale
simulations, analysts should at least be able to toggle the visibility of
components that are locally clustered together, and further filter com-
ponents based on persistence. To this end, the proposed approach parti-
tions components into a predefined number of groups based on a branch
decomposition B of the current split tree Tt , and a list of persistence
intervals. The algorithm then generates images for each component
group (Fig. 6). Specifically, the inputs of Alg. 2 are the entire simplicial
complex K, its scalar function f , a split tree segmentation (Tt , φt , ψt),
a set of camera specifications C, a set of levels L, a sorted list of per-
sistence thresholds P, and the maximum number of component groups
n; i.e., each timestep yields at maximum |C| · |L| · |P| ·n images. First,
the algorithm sorts all branches by persistence in descending order, and
then inserts the n most persistent branches into their own new group
(line 1-6). Each remaining branch is then inserted into the group that
contains the most persistent branch it is attached to (lines 7-11). Note,
such a branch and the corresponding group must exist as the branches
are processed in sorted order.

Next, the algorithm iterates over the groups G ∈ G, and the persis-
tence intervals defined by P, to determine in each iteration the branches
B′ ⊆ G ∈ G inside the current persistence interval (Pi,Pi+1]. Then, the
algorithm derives for each level l ∈ L the set of individual contours
X of the current group, i.e., the borders of the superlevel set compo-
nents. This is done by first determining the branches that include the
current level, where each such branch B indicates the existence of an
individual superlevel set component (Fig. 4c). To derive the set of
simplices K′ ⊆K that together completely contain the component of
B, the algorithm first collects the set of edges T ′ that are connected
to B above the current level (the crown of B that exceeds the level),
and then retrieves all simplices of K that share at least one vertex with
the subtree domain φ−1(T ′). It is necessary to include the tetrahe-
dra adjacent to the subtree domain as they might contain parts of the
linearly-interpolated contours.

Finally, the algorithm renders for all camera angles C a depth image
and an ID mask of all group contours, where the depth images are used
during post hoc analysis to compose 3D views, and a pixel of the ID
mask stores the representative of the split tree edge that corresponds
to the depicted contour. The images are then stored in the Cinema
database, where they are also associated to the parameters that uniquely
identify the images: their group ID, persistence interval, level, and
camera angle. To efficiently retrieve during post hoc analysis an image
that depicts a specific contour, the algorithm also stores, in line 28, the
branch groups G of the current timestep in the Cinema database.

Note, the image generation is embarrassingly parallel as images for
component groups and camera angles can be rendered independently. A
limitation of this approach is that the sampling resolution of the param-
eter space is directly proportional to the resulting image database size.
Moreover, the parameter sampling has to be determined beforehand, in
which case adequate parameters might be unknown.

Fig. 6. Illustration of the image generation process for ∼ 5k vortices of
the jet dataset at timestep 2000 based on two groups (cool and warm)
and two persistence intervals (light and dark).

Algorithm 2: GenerateImages( K, f , Tt , φt , ψt , C, L, P, n )

1 // Get branches sorted by persistence in descending order
2 B ← ComputeBranchDecomposition( T , ψt )

3 // Create groups for the first n most persistent branches
4 G ← /0
5 for i← 0 to n−1 do
6 NewGroup( G, Bi )

7 // Add remaining branches to closest group
8 for i← n to |B| do
9 B ← GetMostPersistentAttachedBranch( B, Bi, ψt )

10 G← GetGroup( G, B )
11 AddToGroup( G, Bi )

12 // Generate group images for all persistence intervals and levels
13 foreach group G ∈ G do
14 foreach threshold pi ∈ P where pi 6= max(P) do
15 // Filter grouped branches by persistence
16 B′←{ B ∈ G | pi < (max ψt(B)−min ψt(B))≤ pi+1 }
17 foreach level l ∈ L do
18 // Add contour for each filtered branch that includes level
19 X ← /0 // Set of contours
20 foreach B ∈ B′ where min ψt(B)< l ≤ max ψt(B) do
21 T ′ ← GetUpperTreeOfBranch( B, Tt , ψt , l )
22 K′ ← { σ ∈K | σ ∩φ

−1
t (T ′) 6= /0 }

23 AddContour( X , K′, f , l )

24 // Render depth and ID image of contours for each camera
25 foreach camera c ∈C do
26 I ← RenderContours( X , c )
27 StoreInCinemaDB( I, G, pi, pi+1, l, c )

28 StoreInCinemaDB( G, t )



(a) (b) (c) (d)

Fig. 8. Depth image-based rendering pipeline: multiple depth images and ID masks (a) are respectively composed into a single image (b), which are
shaded based on approximated surface normals (c) and screen space ambient occlusion (d).

3.3 Post Hoc Database Exploration
This section describes the novel graph operation-based NTG algorithm
(Sect. 3.3.1), the image compositing pipeline (Sect. 3.3.2), and the
visual analytics framework (Sect. 3.3.3) that all use the generated
Cinema database to effectively explore the underlying simulation.

3.3.1 Dynamic Nested Tracking Graphs
The core element of the post hoc analysis interface is a NTG that
enables users to browse the simulation data across time and levels.
Computing the NTG with the original algorithm [19] would make it
necessary to predefine a set of levels, explicitly compute the superlevel
set components for those levels, and then test the resulting component
geometries for spatial overlaps across time (to determine their evolution)
and across levels (to determine their nesting hierarchy). Thus, updating
the graph is inefficient and unsuitable for large-scale simulations and
in situ use cases. Alg. 3 describes a novel graph operation-based
NTG algorithm (GO-NTG) that efficiently solves the three tasks of the
NTG computation for a sorted list of adjacent timesteps T , a sorted
list of levels L, and the graph structures that have been stored in the
Cinema database at simulation runtime: the split trees T , their scalar
functions ψ , and the meta edges M.

First, the algorithm determines the superlevel set components that
are present for all timesteps and levels based only on the split trees T
and their corresponding scalar fields ψ . Given a timestep t ∈ T and a
level l ∈ L, the algorithm inserts a new vertex into the set V for each
edge 〈u,v〉 ∈ Tt whose corresponding level interval includes l, as each
such an edge represents an individual superlevel set component (red
vertices in Fig. 7). In the following, each vertex of V is denoted as vl

t
to compactly indicate its corresponding timestep t, level l, and edge
representative v in the split tree Tt .

The nesting hierarchy EN (red edges in Fig. 7) of the computed
vertices V follows immediately from the structure of the split trees
(black edges in Fig. 7). To identify the connections between vertices at
level li ∈ L for i > 0 (children) with vertices at level li−1 ∈ L (parents),
the algorithm simply traverses the tree from each child towards the
root until it encounters a parent and then inserts a new edge into EN
accordingly. Since the algorithm descends in a rooted tree, there always
exists exactly one parent for each child.

The last task needs to establish the relationships between vertices
at the same level for adjacent timesteps t and t +1. This can be done
efficiently via the meta edges Mt of timestep t. Specifically, for each
two vertices ul

t and vl
t+1 one can determine if their corresponding

segments overlap by checking if Mt contains the meta edge 〈u,v〉. If it
does, the algorithm adds the edge 〈ul

t , vl
t+1〉 to ET . It is possible to filter

tracking graph edges via an overlap threshold, or relax the tracking
accuracy by adding edges if there exists an meta edge for a vertex pair
further down in the split tree. Such a relaxation enables the tracking of
fast moving components whose corresponding segments only overlap
for lower levels. The advantage of the proposed algorithm is that such
criteria can be chosen post hoc without access to the raw simulation
data, and that all its steps can be trivially parallelized. Finally, the NTG
is visualized according to the original approach of Lukasczyk et al. [19],
where the width of edges can be linearly interpolated based on the
segment sizes stored on the split tree vertices.
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Fig. 7. Vertex and nesting tree computation based on split trees. Vertices
correspond to edge-cuts (red nodes) for a set of levels (dashed lines),
where each vertex represents a single superlevel set component, and
is labeled by its corresponding edge representative, level, and timestep
(here omitted). To determine their nesting hierarchy (red edges), the
algorithm traverses the split tree from each vertex at level li with i > 0
towards the root, until the algorithm reaches its parent at level li−1.

Algorithm 3: GO-NTG( T , L, T , ψ , M )

1 V, EN , ET ← /0 // Vertices, Nesting Trees, Tracking Graphs

2 // Compute Vertices
3 foreach timestep t ∈ T do
4 foreach level l ∈ L do
5 foreach edge 〈u,v〉 ∈ Tt where ψt(u)< l ≤ ψt(v) do
6 AddVertex( V , v, l, t )

7 // Compute Nesting Trees
8 foreach vertex vl

t ∈ V where l 6= min(L) do
9 AddEdge( EN , vl

t , GetParent(vl
t , V , Tt , ψt ) )

10 // Compute Tracking Graphs
11 foreach vertex ul

t ∈ V where t 6= max(T ) do
12 foreach vertex vl

t+1 ∈ V do
13 if 〈u,v〉 ∈Mt then
14 AddEdge( ET , ul

t , vl
t+1 )

15 return V ∪EN ∪ET

3.3.2 Image Retrieval and Compositing

To retrieve the image of a component corresponding to a vertex vl
t ∈ V

of the NTG for a specific camera angle, one first determines its branch
group G ∈ Gt , and then computes the persistence interval of the branch
containing the edge represented by the vertex v ∈ Tt (Sect. 3.2.2). All
parameters are then used to retrieve the closest available image in the
database.

Fig. 8 illustrates the Depth Image Based Rendering (DIBR) pipeline
that composes multiple depth images and ID masks into a single image.
To improve spatial perception, the images are shaded based on approxi-
mated surface normals and screen space ambient occlusion [24], where
components are colored based on the ID masks (Fig. 8c-d).



3.3.3 Visual Analytics Framework

Fig. 1 shows all linked views of the post hoc visual analytics framework
that enable users to effectively explore the generated Cinema database:
a composed 3D scene (top left), a split tree (top center), a persistence di-
agram (top right), and a nested tracking graph (bottom). User interface
(UI) elements that correspond to an individual superlevel set component
are consistently colored across all views, i.e., edges of the NTG, images
of the components, branches of the split tree, and critical-point pairs
of the persistence diagram. The core element of the interface is the
NTG that illustrates the evolution of components for multiple levels,
whereas the split tree shows their nesting hierarchy for the current
timestep, and the persistence diagram shows their significance. The
NTG is used to select time intervals, individual timesteps, and specific
components, and the split tree and persistence diagram support analysts
in choosing appropriate levels and persistence thresholds. The current
persistence threshold is drawn as a diagonal red line in the persistence
diagram, and levels of the NTG are drawn as horizontal lines in the split
tree and persistence diagram, where the line of the currently selected
level is also colored red. The 3D view is composed of images that
are closest to the current parameter settings, i.e., the closest available
database elements for a requested view angle, persistence interval, and
selected level. Filtered components or components that do not exists
for a selected level are grayed out in all views.

The interface provides three key mechanisms to handle numerous
components: 1) before parameter updates the interface indicates the
resulting numbers of components, split tree branches, and NTG edges;
2) components can be filtered based on size, persistence, and overlap
thresholds; and 3) if numerous components have been chosen for visual-
ization, the interface initially groups them together based on the nesting
hierarchies and persistence values to generate a manageable amount
of UI elements. Specifically, instead of rendering the entire split tree
at once, the interface initially draws only a user-controlled number of
the most persistent branches. Analysts then have the option to further
expand individual branches, where the number of children is encoded
by the width of the parent branch. Similarly, instead of rendering nu-
merous tracks of the NTG for a certain level, these tracks are initially
represented by their parent edges at the lower layers, and analysts can
interactively toggle their visibility in a level-of-detail approach.

Layout updates of the graphs are only performed when necessary,
or on request. For example, tightening the thresholds filters more
components, which results in less NTG edges, split tree branches, and
critical point pairs. Instead of updating the graph layouts immediately,
the corresponding UI elements are simply removed, so that analysts can
easily comprehend the updates without reorienting themselves within
a new layout (Fig. 9 middle and bottom). However, analysts always
have the option to recompute the layouts while ignoring the filtered
components to generate smoother graphs. The interface also provides
visual consistency when a new level is added to the NTG. Specifically,
the layout algorithm described by Lukasczyk et al. [19] processes the
layers of the NTG individually, and then stacks them in a bottom-up
approach. As a consequence, inserting a level does not effect the layers
of levels smaller than the new level.

Overall, the interface enables analysts to follow the history of indi-
vidual components and component groups, filter them based on various
metrics, and explore the simulation in a focus+context approach.

4 RESULTS

This section evaluates the proposed methodology based on three real-
world examples. The first case study compares the post hoc tracking al-
gorithm to the explicit approach [19] by contrasting the resulting graphs
for the 2016 scientific visualization contest dataset [14] (Sect. 4.1). To
substantiate the claim that the proposed approach can be used to ef-
fectively explore large-scale simulations with numerous components,
the other two case studies deal with much larger and more complex
datasets—i.e., the simulation ensemble of the 2018 scientific visual-
ization contest [15] (Sect. 4.2), and a computational fluid dynamics
simulation with thousands of vortex features (Sect. 4.3).

70 71 72 73 74 75
Fig. 9. NTGs of the viscous finger dataset for salt concentration levels 25,
30, and 35 (red to yellow). (Top) NTG generated with the explicit overlap-
based tracking approach of Lukasczyk et al. [19]. (Middle and Bottom)
NTGs generated with the split tree-based tracking approach, where the
bottom graph is filtered by persistence, size, and overlap thresholds.

4.1 Viscous Fingering

This case study compares the results of the graph operation-based track-
ing approach and the original overlap-based algorithm [19] for the finite
pointset method (FPM) simulation ensemble that was provided for the
2016 scientific visualization contest [14]. This ensemble was generated
to explore the process of viscous fingering: an instability phenomenon
that occurs at the interface between two mixing fluids of different
viscosity, and is prominent in many fields of science and engineering—
including geology, hydrology, and chromatography. Specifically, the
ensemble members model the mixing process of salt solutions inside a
water filled cylinder with an infinite salt supply at its top (gray surface
in Fig. 1), where simulations incorporate stochastic effects to model the
aleatoric uncertainty inherent in the strongly non-linear mixing process.
While the solutions sink down to the bottom of the cylinder, they form
characteristic structures with increased salt concentration values, called
viscous fingers (colored components in Fig. 1). Fingers can be identi-
fied algorithmically by first sampling the salt concentration density of
the pointsets on a regular grid and then deriving superlevel set compo-
nents below the salt supply [17]. Lukasczyk et al. [19] demonstrated
that NTGs can be used to effectively summarize shared properties of
the fingers across different runs, timesteps, and initial parameters.

The top and middle row of Fig. 9 show two NTGs for the same sim-
ulation run, where the first graph is derived with the original approach
that explicitly computes the overlap of superlevel set components, and
the second graph is derived with the graph operation-based algorithm
that processes meta edges and split trees. The graphs mostly match,
except that the new algorithm adds more edges than the original ap-
proach. This is due to the segmentation-based tracking approach, as
components inside a segment are collectively tracked based on the
largest component (Sect. 3.2.1). Thus, the new algorithm detects at
least the same amount of overlaps as the old approach, but also matches
components whose volumes not explicitly overlap, which has advan-
tages and disadvantages. For instance, the volumes of a fast moving
component might not overlap in time, and therefore the original al-
gorithm identifies the components in each timestep as new emerging
features, which is semantically incorrect. However, the corresponding
domain segments are likely to overlap since they correspond to the
same moving maximum, and therefore the segmentation-based algo-
rithm identifies the components as a single moving feature (thin lines
of Fig. 9). To increase the accuracy of this matching, it is necessary to



choose an appropriate segmentation refinement level during the meta
edge generation (Sect. 3.2.1). In all presented experiments, this refine-
ment level was set to the persistence threshold that was used to remove
noise, which yielded adequate results. In fact, choosing the refinement
level in this way produces the same NTG as the explicit approach for
the example shown in Fig. 9. The segmentation-based algorithm makes
it also possible to interactively restrict or relax tracking criteria by
respectively requiring a minimum amount of overlap, or by additionally
matching segments that are connected via meta edges further down in
trees. For instance, the bottom row of Fig. 9 shows the NTG of the
second row which has been aggressively filtered to reduce clutter.

The main advantage of the segmentation-based algorithm is that
once the meta edges have been computed, the NTG algorithm no
longer requires access to the volumetric simulation data. Processing
the meta edges and split trees is also significantly faster than explicitly
computing superlevel set components and their respective overlaps:
deriving NTGs for one ensemble member for the same parameters on
the same hardware takes on average ∼ 6 seconds with the old approach,
and ∼ 0.1 seconds with the new algorithm. NTGs for the following jet
and asteroid case studies can still be computed in milliseconds, whereas
the explicit approach requires several minutes. This speedup enables
analysts to interactively update level, persistence, overlap, and size
constraints. To summarize, the post hoc tracking algorithm is capable
of tracking even more features than the explicit approach, and enables
users to interactively generate and filter NTGs.

Obviously, an image database for such a small dataset requires far
more disc space than the original data (Table 1). In fact, storing images
become only beneficial for extremely large datasets, since the primary
advantage of an image database is that its size grows proportional
to the parameter sampling, independent of the size of the depicted
simulation [2]. This can be observed in all presented experiments.

4.2 Asteroid Impacts
This case study examines an ensemble of extreme-scale simulations that
are part of a threat assessment study of asteroid ocean impacts [15, 23],
where individual ensemble members correspond to various impact sce-
narios based on different asteroid sizes, impact angles, and airburst
heights. Specifically, each simulation is labeled according to the follow-
ing convention: the first letter is an ensemble index, the second letter
corresponds to the airburst height above sea level (A: None, B: 5km,
and C: 10km), the third letter represents the asteroid diameter (1: 100m,
3: 250m, and 5: 500m), and the fourth letter indicates the impact angle
(0: 27.4◦, 1: 45◦, and 2: 60◦). The main objective of the assessment is
to explore the relationship between these parameters and the severeness
of the tsunami they create upon impact. The following case study will
demonstrate that the proposed approach enables analysts to efficiently
explore and compare these different impact scenarios.

The original simulations advance an Eulerian grid that is adaptively
refined at significant areas using the XRAGE simulation code [12].
The simulations compute, among others, a temperature field on a reg-
ular grid with either 3003 or 5003 vertices. To generate a Cinema
database according to the proposed approach, these temperature fields
are streamed into an emulated in situ environment that processes each
timestep. Table 1 shows the total computation time and size of analysis
and image products on a cluster node with an Intel E5-2640v3 processor
(16 cores) and 256GB memory. The stated time measurements include
the computation of split tree segmentations [13], topological simplifi-
cations [33], and meta edges. Note, the image generation process is
embarrassingly parallel, so the actual image generation time is much
lower in practice. The provided image database contains 5122 depth
images and ID masks for 24 camera positions, 6 level values, 2 per-
sistence intervals, and 4 component groups, which enables users to
adequately rotate the 3D view and update parameters. Although the
size of simulation yA31 is almost five times bigger on the 5003 grid
than on the 3003 grid, their respective image databases are roughly the
same size since components are depicted in a fixed number of groups.
This demonstrates that the database size is decoupled from the size of
the underlying data. Thus, the proposed approach can scale to very
large data sizes with an acceptable trade-off in post hoc flexibility.

Fig. 10 shows for timestep 108 of simulation run yA31 (5003) the
split tree (bottom right), a composited 3D view (bottom left), and an
NTG that is once colored by layer (top), and once colored by individual
components for level 0.2eV (middle). Here, the NTG clearly illustrates
that at the time of impact the entire region around the impact site is a
single burning volume that disperses over time into four sub volumes
(blue, red, orange, and green UI elements). The fact that NTG layers in-
telligently partition components into groups enables analysts to explore
different levels and the corresponding components by expanding edges
of the split tree and NTG. With this focus+context approach analysts
can select individual components and their respective tracks for detailed
examination, and further filter the graph based on size, overlap, and
persistence thresholds, where the split tree and persistence diagram
indicate important parameters. Based on a component selection, the
interface then composes images from the Cinema database into a 3D
rendering of the simulation. Note, although the database contains only
two persistence intervals and therefore the visibility of some compo-
nents can not be toggled off, they can at least be colored gray to indicate
that they are filtered. All interface elements together guide users while
examining specific components or component groups; e.g., the split
tree indicates that the green component contains the global maximum,
the NTG shows its temporal evolution, and the 3D view shows the
component in the physical domain. The low overhead of the GO-NTG
algorithm and the image compositing enable analysts to quickly update
parameters and interactively cycle through the ensemble.

4.3 Jet Simulation
This case study focuses on a jet simulation and was chosen to illustrate
the utility of the proposed approach for feature-rich datasets. The
simulation describes a high-velocity fluid jet entering a medium at rest.
Due to viscous effects, a large vortex ring is generated at the top of the
jet that quickly breaks down into a large number of smaller vortices as
the flow transitions towards turbulence. From the original velocity data,
vorticity magnitude is computed and subjected to analysis to identify
individual vortices as superlevel set components of high vorticity.

Fig. 6 shows the roughly five thousand superlevel set components
that exist for level 500 at timestep 2000. Even after topological simpli-
fication, the split tree of that timestep still consists of more than 100k
branches. As explained previously, the image database size only grows
proportional to the parameter sampling and not to the feature complex-
ity and quantity (Table 1). Moreover, grouping components based on
split tree branches has the advantage that each group constitutes a local
component cluster. Toggling the visibility of these groups therefore
supports effective spatial peeling. As even hundreds of images can be
composed at interactive framerates, the proposed analysis framework
enables analysts to quickly browse through time and update parameters.
However, to provide more flexibility, it is necessary to generate image
databases for a larger number of component groups and persistence
intervals, which significantly increases the databases sizes even further.
To summarize, the demonstrated case studies show that image databases
are not necessarily small, but seem to grow significantly smaller when
moving towards extreme-scale simulations [2].

Dataset #Cells #Steps |C|·|L|·|P|·n TA TI SS SA SI

VF Run1 25.1 ·103 100 24×5×1×1 2 m 3 m 90 MB 3 MB 1 GB

VF Run2 25.1 ·103 100 24×5×1×2 2 m 7 m 90 MB 3 MB 2 GB

VF Run3 25.1 ·103 100 24×5×1×3 2 m 15 m 90 MB 3 MB 3 GB

yA31 12.4 ·107 260 24×6×2×4 45 h 43 h 121 GB 28 MB 21 GB

yA31 2.6 ·106 260 24×6×2×4 16 h 13 h 26 GB 17 MB 20 GB

yB31 2.6 ·106 260 24×6×2×4 17 h 13 h 26 GB 12 MB 19 GB

yC31 2.6 ·106 260 24×6×2×4 15 h 14 h 26 GB 14 MB 22 GB

Jet 3.3 ·107 3000 24×6×2×4 25 h 15 d 375 GB 108 MB 260 GB

Table 1. Statistics of the presented case studies. From left to right: name,
cell count (all regular grids), number of timesteps, image sampling, total
aggregated computation time of analysis and image products, and total
sizes of simulations, analysis products, and images (5122 pixels each).



92 94 96 98 100 102 104 106 108

92 94 96 98 100 102 104 106 108

0

0.1

0.2

0.3

0.4

Fig. 10. Analysis of the asteroid impact yA31 temperature field. (Top and Middle) NTGs visualizing the evolution of the temperature field for the levels
0.15eV , 0.2eV , and 0.28eV , where the second graph highlights level 0.2eV . (Bottom) The 3D composited view and the merge tree at timestep 108 for
level 0.2eV . The proposed approach naturally partitions the temperature volumes into groups: the asteroid trail (dark blue), the cloud that raises to
the stratosphere (dark red), the flame front that thrusts forward over the ocean (dark orange), and the burning region at the impact site (dark green).

5 CONCLUSION AND FUTURE WORK

This paper described a scalable processing pipeline that enables the
interactive visual analysis of large-scale scientific simulations where
superlevel set components and their evolution are of primary interest.
The approach first stores split trees, meta edges, and images of compo-
nent groups at simulation runtime in a Cinema database, which is later
used to explore post hoc the underlying simulation in a topology-based
visual analytics framework. To this end, the paper described a split tree
segmentation-based tracking algorithm (to correlate components over
time), a branch decomposition-based image generation algorithm (to
provide a rendering of component geometries), and a graph operation-
based NTG algorithm (to derive NTGs post hoc by processing the
stored topological abstractions). All algorithms have been implemented
in the Topology ToolKit (TTK) [32] and are therefore accessible as
VTK filters [27] inside ParaView [1].

The proposed post hoc exploration framework enables users for the
first time to navigate Cinema databases with a focus on features rather
than along predetermined parameter axes. However, the experiments
have shown that image databases are only advantageous if a) they are
much smaller than the raw simulation data, and/or b) if accessing and
rendering the raw data can not be done at interactive framerates. It
also appears fruitful to replace—or supplement—the image database
with downsampled volume data or simplified contour meshes. For
instance, the volume data could be compressed while preserving the
scalar field topology [31]. Moreover, the image generation and the
branch bundling are based on branch decompositions, which might
vary drastically over time and are susceptible to noise. In the presented
experiments, the branch bundling appears to be stable as long as there
is a relatively small number of bundles which contain many branches.
In the other extreme, i.e., many bundles consisting of few branches, it

becomes apparent that branches frequently change bundles. In future
work, this instability need to be explored further to mitigate its effect.
Note, the branch decomposition has no effect on the tracking accuracy
as Alg. 1 is based on segments and not on branches. However, the
accuracy of Alg. 1 depends on the scalar interval resolution of the split
tree segmentation, and a suitable resolution is often not known a priori.

It is also necessary to perform additional experiments that examine
the database generation during massively parallel in situ execution to
allow scaling to state-of-the-art, largest-scale simulations, which stand
to benefit from the proposed methodology. This hinges crucially on the
scalability of the split tree computation that is central to the approach;
here, e.g., the parallel peak pruning [9] approach could be used.

To facilitate practically usability, it appears possible to introduce
automation of parameters (such as number of persistence intervals or
camera angles stored) through heuristics or optimization techniques, to
keep the generated database within a given budget while maximizing
post hoc flexibility, or alternatively, to ensure a specified degree of flex-
ibility while minimizing database size. For example, the integration of
the VOIDGA approach [18] could reduce the number of stored camera
locations, which would allow to sample other parameters more densely.
Finally, database generation could benefit from low-level technical im-
provements, such as different compression methods and data formats.
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