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The Impact of Immersion on Cluster Identification Tasks

M. Kraus, N. Weiler, D. Oelke, J. Kehrer, D. A. Keim, and J. Fuchs
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Fig. 1. A cluster identification task was performed and evaluated in four different visualization design spaces. Two screen-based
methods, namely a scatterplot matrix (a) and a 3D scatterplot in a cube (b), and two visualizations in a VR environment: a 3D scatterplot
on a virtual table (c) and a room-sized scatterplot (d). Gray lines emphasize transitions between visualization design spaces.

Abstract—Recent developments in technology encourage the use of head-mounted displays (HMDs) as a medium to explore
visualizations in virtual realities (VRs). VR environments (VREs) enable new, more immersive visualization design spaces compared
to traditional computer screens. Previous studies in different domains, such as medicine, psychology, and geology, report a positive
effect of immersion, e.g., on learning performance or phobia treatment effectiveness. Our work presented in this paper assesses the
applicability of those findings to a common task from the information visualization (InfoVis) domain. We conducted a quantitative user
study to investigate the impact of immersion on cluster identification tasks in scatterplot visualizations. The main experiment was
carried out with 18 participants in a within-subjects setting using four different visualizations, (1) a 2D scatterplot matrix on a screen,
(2) a 3D scatterplot on a screen, (3) a 3D scatterplot miniature in a VRE and (4) a fully immersive 3D scatterplot in a VRE. The four
visualization design spaces vary in their level of immersion, as shown in a supplementary study. The results of our main study indicate
that task performance differs between the investigated visualization design spaces in terms of accuracy, efficiency, memorability, sense
of orientation, and user preference. In particular, the 2D visualization on the screen performed worse compared to the 3D visualizations
with regard to the measured variables. The study shows that an increased level of immersion can be a substantial benefit in the context

of 3D data and cluster detection.

1 INTRODUCTION

Different visualization design spaces, i.e., spaces in which a visual-
ization is projected, exist. Visualizations often need to adapt to the
given design space, which can change their level of immersion. An
example of a common visualization design space is a two-dimensional
space on a monitor screen. Any visualization that encodes a maximum
of two attributes with one position can be displayed within this space
(e.g., 2D scatterplot [9] or 2D parallel coordinates [24,60]). Another
visualization design space is created if an additional third attribute is
encoded in the visual variable “position” (e.g., space time cubes [3,29]
or 3D scatterplots [37,43,45]). The level of immersion may already
differ between the two exemplary design spaces (2D and 3D design
space) as a higher degree of abstraction is necessary to display the same
information in 2D as compared to a more natural display in 3D. For
instance, a 3D scatterplot can be visualized in the 2D visualization
space as a scatterplot matrix or after a PCA projection in a 2D scatter-
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plot, both being more abstract than a 3D scatterplot visualized in a 3D
visualization design space. The more familiar nature of the 3D data
representation may lead to a more intense perception of immersion.
Over the last few years, augmented-, virtual-, and mixed-reality
(AR, VR, MR) hardware and software have been on the rise, opening
up new design spaces for visual analytics (VA) applications. Various
examples of visualizations exist in VR, AR, and MR, either restricting
the visualization’s space to a small area [4] or allowing it to occupy the
entire space around the observer [14,30]. As the level of immersion
with regard to the visualization differs largely between the two kinds,
their visualization design spaces can be seen as two individual ones.
It is often not a trivial decision which design space is best suited
for a specific task. There are several studies comparing visualizations
in VREs to those in conventional design spaces, but they often focus
on differences resulting from different visualization and interaction
techniques [4, 58]. These studies do not capture how much of the dif-
ferences in performance can be ascribed to those two factors and how
much to the different levels of immersion. In this paper, we want to
investigate how much influence the choice of the design space, and the
associated level of immersion, has on the overall performance of visu-
alizations. Since this is a rather broad question, we specifically focus
on the task of cluster detection in scatterplot visualizations. Our study
builds upon the work of Wagner Filho et al. [58] who investigated the
effects of immersion provided by VREs. However, they compared the
level of immersion provided by different interaction techniques and not
the level of immersion provided by the design space. In particular, we
investigated differences between four visualization design spaces, each
having a certain level of immersion. In order to focus on differences
due to the design spaces themselves, we minimized user interaction and
used three-dimensional data in combination with a simple visualization.

Konstanze©Online-Publikations-Syste(KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1nayktaycvi2t



2 RELATED WORK

In this section, we provide a brief overview of the most related strains
of research. First, we target research in which 2D visualizations were
deployed and quantified for cluster identification tasks. Second, we
present several examples of effects of immersion in various domains,
which motivated our research to assess similar effects for InfoVis tasks.
At the same time we outline how immersion was measured in previous
work. We then focus specifically on 3D visualizations and 3D scatter-
plots since they are an integral part of the current work for the reason
that they serve as a base visualization in the present study. Subse-
quently, we discuss advantages and disadvantages of data visualizations
using stereoscopic displays as the current work investigates possible
benefits and drawbacks of visualization design spaces in VR compared
to screen-based ones by means of scatterplots.

2.1 Cluster Identification with static 2D Visualizations

For cluster identification tasks, a number of static 2D visualizations
are commonly deployed, such as parallel coordinate plots [22, 62],
dendograms [34,66] and heatmaps [46, 56]. For the analysis of higher
dimensional data, scatterplot matrices are a common technique for
cluster identificaiton tasks [12,23].

While various techniques for the visual exploration of previously
extracted clusters in scatterplots exist [23,25], the technique is also
deployed for visual identification tasks of clusters. Cavallo et al. [7]
propose a framework in which they make use of scatterplots to identify
clusters. In their framework, they also deploy other techniques, such as
silhouette plots and heatmaps. Etemadpour et al. [15] deployed an eye
tracker to monitor user behavior when exploring 2D scatterplots for
various tasks. They found that cluster density is more influential than
cluster size in cluster identification tasks. They also discuss issues of
cluster separation and cluster preservation for deployed dimensionality
reduction techniques and their impact on user performance. Therefore,
we included cluster density as an experimental side factor.

2.2 The Effects of Immersion

Several studies have shown that immersion can have a benefit in dif-
ferent fields, e.g., geology, architecture, and medicine. Examples from
these areas show that increased immersion can foster spatial under-
standing and orientation [47] and increase focus capabilities of users
by helping them to fade out distractions [5]. It was also shown that a
higher level of immersion can increase task efficiency and effective-
ness for spatial problem solving applications [19] and psychological
treatment procedures (e.g., phobia treatment) [59]. Positive effects of
immersion on learning performance in the context of medical educa-
tion [20], on memorization [40], as well as for visualizing abstract
visualizations [31,41] have been reported.

In many studies it is just presumed, without elaboration, proof or
reference, that VREs convey higher levels of immersion than screen-
based mediums. However, to prove this assumption, some metric needs
to be introduced measuring immersion. According to Slater et al. [51],
immersion can be seen as a rather objective property of a system that
introduces a subjective impression of presence to the user. Various
researchers intended to measure immersion by quantifying system
properties, such as resolution, field of view, degrees of freedom in
movement and so on [21,52]. This is, however, quite hard to quantify
and measure. Witmer and Singer [61] propose to measure subjectively
perceived presence and infer results back to immersion. In the past,
researchers developed and applied several presence questionnaires
under that premise [32,42]. The most established one is the Presence
Questionnaire (PQ) from Witmer and Singer [61].

2.3 3D Visualizations

Previous work has shown that 3D visualizations are often vulnerable to
artifacts caused by the rendering of depth-related information, such as
line-of-sight ambiguities, occlusion, and perspective distortion [18,37].
Depending on the viewpoint, the visualization is distorted differently,
hampering cognition and impeding the interpretation of distances and
proportions between objects. Therefore, visual variables that perform
well in 2D visualization spaces, such as length, size or position, may be

less suitable in 3D visualizations due to depth distortion and the missing
alignment with respect to a common baseline. Nevertheless, there are
several advantages of 3D visualizations in general and, hence, various
3D visualization applications exist in different domains [35,53]. Mul-
tiple studies show benefits of 3D in exemplary visualizations [18,36],
among others with regard to accuracy and efficiency. Moreover, studies
indicate that 3D visualizations perform even better when inspected
using stereoscopic displays due to a more natural, familiar and accurate
perception of information [14].

3D scatterplots are used in various applications for visualizing multi-
dimensional data [37,43,45,65], e.g., to visualize network data [53]
or a development over time in space time cubes [17,35]. Sedlmair
et al. [48] compared 2D scatterplots, 3D scatterplots and scatterplot
matrices. They examined the effectiveness of these visualizations for
separating clusters in datasets that have been transformed with the help
of a dimension reduction technique. They found that 2D scatterplots
could be used to perform the given task to a satisfactory extent, but
that in most cases participants using scatterplot matrices outperformed
others using 2D scatterplots. According to them, using 3D scatterplots
for the examined task rarely helped, and sometimes even impaired the
results. However, they only used data which previously was subject to
a dimension reduction procedure and did not evaluate scatterplots in
a VRE. Since they assumed that differences in performance between
the designs mainly result from the data and not the users, the study
was conducted with only two expert users. Each of them inspected and
classified 816 scatterplots.

2.4 Evaluation of Stereoscopic Visualizations

Wagner Filho et al. compared 2D scatterplots with screen-based 3D
scatterplots and VR-based 3D scatterplots [58]. Their tasks included
finding nearest neighbors, finding the nearest class, identifying class
outliers and comparing two classes to each other. Users in this study
were faster using the 2D scatterplot and found it slightly more intuitive
for the given tasks. On the other hand, participants were slightly more
accurate and subjectively more engaged using the VR scatterplot. In
a follow-up study, Wagner Filho et al. [57] present and evaluate an
analysis environment in which the user is seated and interacting with
scatterplot visualizations using gestures. The authors further investi-
gated user capapabilities to evaluate dimension reduced 3D scatterplot
visualizations in immersive and screen-based scenarios [16].

Prabhat et al. [38] conducted a study to evaluate environments
differing in their level of immersion by means of different data analysis
tasks. However, to the best of our knowledge, there is no study
evaluating the impact of the degree of immersion in VREs on user
performance during scatterplot analysis. By now, research has not
extensively assessed the opportunities and disadvantages of design
spaces in VR for abstract visualizations in VA tasks.

3 DESIGN SPACES

In this paper, we investigate user performance in a cluster identifica-
tion task by means of scatterplots in four different visualization design
spaces (see concept in Figure 1 and realization in Figure 2). The con-
ducted study solely targets the visual detection of clusters in a dataset
visualized as a scatterplot without encoding the cluster membership of
data points and compares user performance in different visualization
design spaces. In this section, each of the examined design spaces is
briefly described. Subsequently, we reason why we chose the presented
design spaces. In our basic scientific research approach, we consider
three-dimensional data only. In many cases, multi-dimensional datasets
can be effectively projected into 3D space using dimension reduction
methods (e.g., PCA [27], t-SNE [54]). However, for truly high dimen-
sional data, projections into 2D or 3D space might not be suitable for
cluster identification tasks. In cases like that, three dimensions could be
compared at a time in small multiple visualizations. We argue that we
investigate basic visual perception and the users’ capability to identify
clusters in three-dimensional datasets. We only deploy the visual vari-
able position and abstain from using additional visual variables (e.g.,
color, shape) to keep the experiment as simple as possible. Because
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Fig. 2. Representation of one exemplary dataset in all four investigated visualization design spaces. Except for the scatterplot matrix (a), all
visualization design spaces had some kind of navigation available to inspect the visualization from different perspectives.

a maximum of three dimensions can be encoded in 3D visualizations
exclusively by position, we focused on the reduction to three dimen-
sions. Consequences of this constraint, in particular with regard to the
2D design space, are discussed in Section 8.

Screen2D: 2D on Screen — The first design space is a 2D space
on a monitor screen. To represent three-dimensional data in two-
dimensional space, there are at least two intuitive options. One option is
to use a dimension reduction technique, map the data to two dimensions,
and visualize the resulting projection in a standard two-dimensional
scatterplot. We decided against this approach as sometimes clusters
vanish in the projection. Figure 3 depicts a two-dimensional projection
of three-dimensional data displayed in Figure 2 after a PCA dimension
reduction. The visualization demonstrates that, for some use cases, a
PCA transformation can be unsuitable for cluster identification tasks. In
the given example, only four out of six clusters are clearly distinguish-
able in the PCA projection (see Figure 3). More advanced dimension
reduction techniques, such as t-SNE [54], often require a set of param-
eters that must be customized for each dataset to result in an optimal
representation for the cluster identification task. In the case of our study,
this would require additional user interaction and significantly increase
interaction efforts for this visualization design space and consequently
affect results. Moreover, due to individual adjustments of parameters,
results of different participants would not be comparable anymore.

Another option is the display of 3D data in a scatterplot matrix
representation, which is often used to visualize multi-dimensional data
in various domains [6, 12,44]. The scatterplot matrix is a projection
of high-dimensional data into a 2D representation consisting of small
multiples (2D scatterplots). For data with three dimensions (x, y, z),
the resulting visualization is a compound of three different scatterplots
(x&y, x&z, y&z) and rotated and mirrored versions of them as can be
seen in Figure 2a. In our investigations, we chose to use a scatterplot
matrix to visualize the data in this design space. The observer is looking
at a static, non-interactive scatterplot matrix on a screen.

Fig. 3. PCA projection of data displayed in Figure 2. The dataset
contains six clusters (highlighted on the right). Two clusters are hardly
recognizable in the PCA projection (orange Y and green S).

Screen3D: 3D on Screen — The second design space is a 3D space on
a monitor screen. The resulting visualization is a virtual 3D cube on a
screen, containing the three-dimensional data as a 3D scatterplot. This
design space is also frequently deployed in related works [12,37,45].
The observer is looking at a projection of a 3D visualization on a screen,
inspecting the data by rotating the scatterplot in arbitrary directions.

VRTable: Miniature 3D in VRE - The third design space is a re-
stricted 3D space in a VRE. This design space is limited spatially so
that the observer is able to walk around the visualization and observe it
from outside. The resulting visualization is a 3D scatterplot on a virtual
table in a VRE (table height: 75 cm; cube dimensions: 1 m X 1 m x
1 m; data point size: 2.5 mm). The observer is standing in front of a
virtual table with a 3D scatterplot on top of it, inspecting it by walking
around the table.

VRRoom: Room-Scaled 3D in VRE - In the fourth design space,
we adjusted the size of the 3D scatterplot to the size of the en-
tire VRE (dimensions: 3 m x 3 m x 3 m; data point size: 7.5
mm). The entire space around the observer is used as visualiza-
tion design space. The observer is standing inside the visualization
and inspects the scatterplot from within by walking and looking around.

Design Decisions: In order to investigate the effects of immer-
sion provided by design spaces, we aimed to create several different
design spaces with varying degrees of immersion. First, we chose
to introduce a 2D design space located on a 2D screen (Screen2D).
This is a commonly used design space and can be seen as a baseline
for the other design spaces. In line with the definition of immersion
by Slater [50], we perceive a virtual object as more immersive if it
reflects the characteristics of a real object. Therefore, to increase the
degree of immersion provided by the design space, the resemblance
with real-world objects has to be increased for virtual objects. This
can be achieved by using a 3D design space located on a 2D screen
(Screen3D). Thereby, data points are displayed more “naturally” as
the real world is 3D itself. Moreover, with regard to scatterplots, we
can easily perceive all three dimensions at the same time in a 3D en-
vironment, whereas heavy mental mapping is required to extract all
dimensions of a data item from a scatterplot matrix.

Presenting a 3D object on a 2D screen usually introduces perspective
distortions [18]. These distortions change how a person perceives the
object and, therefore, may reduce immersion as the object reflects the
characteristics of a real object to a lesser extent. This effect can be
avoided by using VREs. Therefore, we deployed VR in the third and
fourth design space. In the third design space (VRTable), we introduced
the restriction that the user can only observe the visualization from
outside and is not able to enter the visualization itself. We argue that
this restriction is insofar reasonable as the same restriction applies to
the previous design spaces. Removing the restriction (VRRoom) may
lead to an even more increased level of immersion as the user enters
the visualization itself and is fully enclosed by it.



In order to validate our hypothesis that the level of immersion
increases in each design space (see Figure 2, a to d), we conducted a
supplemental sub-study, in which we investigated solely this specific
issue (Section 4).

4 PRE-STUDY: LEVELS OF IMMERSION

Among others, the property level of immersion discriminates visuali-
zation design spaces. According to Slater [50], immersion describes
how much a system preserves the fidelity of sensory modalities. To
confirm differences between the proposed design spaces (presented
in Section 3) with regard to their level of immersion, we conducted a
pre-study. As it is hard to directly measure the properties of the system,
we rely on the approach of Witmer and Singer [61], i.e., measuring
presence and referring it back to immersion. In this pre-study, we
evaluated participants’ level of self-reported immersion for each design
space. Further subjective observations, opinions and perceptions of par-
ticipants concerning the design spaces (e.g., abstractness, preference)
were gathered.

4.1 Study Description and Hypothesis

The only experimental factor of this study was visualization design
space. All four design spaces introduced in Section 3 were examined
by means of a within-subjects design. We hypothesize that the design
spaces can be sorted by their level of immersion as follows: Screen2D is
the least immersive design space, followed by Screen3D, VRTable and
VRRoom. As there was no reason to assume an impact on participants’
physical or mental health, no institutional review board (IRB) was
consulted for the study. Also, the participants could abort the study at
any time.

After a training session in all design spaces, 12 participants (six fe-
male, six male) conducted one cluster identification task in each design
space. The order of designs and used datasets were counterbalanced.
All datasets had similar properties, contained between five and seven
clusters and were enriched with the same amount of noise. Subjects
were asked to identify and count all clusters in the data and to report
their result to the examiner. After each of the four trials, participants
completed a questionnaire. Both a multiple measures questionnaire
for immersion (consisting of 18 questions) and a single measure of
immersion (consisting of one question) were used. The first question
served as a single measure of the subjectively perceived immersion in
the respective design space: “How immersed did you feel in the virtual
environment?” (see Appendix A.4.1). The following set of 18 questions
were adopted from questionnaires by Regenbrecht et al. [42] (IPQ),
Witmer and Singer [61] (PQ), Lessiter et al. [32] (ITC) and Jennett
et al. [26] (IEQ). We carefully selected questions that fit all design
spaces as well as the current task. Therefore, we excluded, for instance,
questions that are explicitly aimed at gaming experiences in VREs. The
resulting questionnaire we used is attached in the Appendix (A.4.2).
After the completion of all four trials, we conducted a semi-structured
interview (see Appendix A.4.3 for the structure of the interview). At
the end of the experiment, participants received 10 € as compensation.
The apparatus of this study was similar to the one in the main study
described in Section 5.4.

4.2 Results of Pre-Study
4.2.1 Questionnaires

Statistical tests were performed using IBM SPSS Statistics (version
24). In this section, we only report significant results. A Bonferroni
correction was applied (to control for multiple testing) and, hence, all
effects are reported at a .008 level of significance. A detailed overview
of all results can be found in the Appendix (A.4).

To evaluate differences in the level of immersion between de-
sign spaces with regard to the single measure of immersion, a non-
parametric Friedman test was deployed (x2(3) = 22.49, p < .001). We
used a non-parametric test because of skewed distributions. Wilcoxon
signed-rank tests were computed as post hoc tests to follow up this
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finding (see Figure 4 left). The post hoc tests revealed that the subjec-
tive experience of immersion was significantly lower in the Screen2D
design space (Mdn = 1.00) as well as in the Screen3D design space
(Mdn =2.50) compared to both VR spaces, namely VRTable (Mdn =
4.00) and VRRoom (Mdn = 4.00): Screen2D-VRTable: 7 = —2.84, p
=.001; Screen2D-VRRoom: z = —2.75, p = .002; Screen3D-VRTable:
z=—2.85, p=.001; Screen3D-VRRoom: 7 = —2.61, p = .003.

For the multiple measure of immersion (i. e. the immersion question-
naire), immersion scores were computed by summing up participants’
responses to all 18 questions. The same statistical approach was used
as for the analysis of the single measure of immersion (x2(3) =24.23,
p < .001). As depicted in Figure 4 (right), Wilcoxon signed-rank tests
showed that the level of immersion was significantly lower in both the
Screen2D design space (Mdn = 19.50) and the Screen2D design space
(Mdn = 34.50) than in the two VR spaces, namely VRTable (Mdn =
59.50) and VRRoom (Mdn = 71.00): Screen2D-VRTable: z = —2.90, p
=.001; Screen2D-VRRoom: z = —2.90, p = .001; Screen3D-VRTable:
z=-2.94, p < .001; Screen3D-VRRoom: 7z = —2.87, p =.001.
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The evaluation of the interview questions on abstraction and presence,
which can be regarded as substitute variables for immersion [61, 63],
revealed the predicted order of design spaces (see median user
ratings depicted in Figure 5, left and center). Participants perceived
the VR design spaces as less abstract and therefore more natural
compared to the two screen-based ones (Screen2D: Mdn = S5;
Screen3D: Mdn = 2.5; VRTable: Mdn = 2; VRRoom: Mdn = 2).
Particularly for the subjective user rating of how present they felt in
the respective design space, the assumed pattern emerged (Screen2D:
Mdn = 1; Screen3D: Mdn =2; VRTable: Mdn = 4; VRRoom: Mdn =5).
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Fig. 5. Interview —Median user ratings for the design spaces with regard
to abstractness (left) and presence (center). Participants were asked to
rate the abstractness and presence of each design space on a five-point
Likert scale from 1 = not abstract/not present to 5 = very abstract/very
present. Right: Combined median of the abstractness and presence
scores used for statistical evaluation and as a measure of immersion.



We conducted a Friedman test (x?(3) = 30.28, p < .001).
Bonferroni-corrected Wilcoxon signed-rank tests revealed significant
differences between all design spaces: Screen2D-Screen3D (z = —2.89,
p = .001), Screen2D-VRTable (z = —3.27, p < .001), Screen2D-
VRRoom (z = —3.28, p < .001), Screen3D-VRTable (z = —2.75, p =
.002), Screen3D-VRRoom (z = —2.97, p = .001), VRTable-VRRoom
(z=-2.67, p=.005).

These results are supported by the interview question, in which the
participants were asked to sort the design spaces by the amount of
perceived presence. All subjects put VRRoom in first place (n = 12) and
Screen2D last. Only one participant put Screen3D in second place and
VRTable in third place — all others put the design spaces in the expected
order.

4.3 Conclusion

Overall, our pre-study supports the previously stated hypothesis and
verifies the assumed order of design spaces with regard to the level of
immersion:

Screen2D < Screen3D < VRTable < VRRoom.

5 MAIN EXPERIMENT

As shown in previous research, the degree of immersion can have
an effect on spatial cognition and memorability in various contexts
[11,33]. Some studies even indicate correlations between the degree of
immersion and efficiency in cluster identification, distance estimation,
and outlier detection tasks in scatterplot visualizations [4,41]. However,
many existing studies use a variety of different interaction techniques
individually for each design space, disguising possible effects caused
solely by characteristics of the different design spaces. In order to
avoid possible confounding factors resulting from different interaction
techniques, we limited our study to an absolute minimum of interaction
techniques. No institutional review board (IRB) was consulted for the
study as there was no reason to assume any impact on participants’
physical or mental health. Participants could end the study at any point.

5.1 Study Design

Our main experimental factor was the visualization design space. Be-
sides, we investigated the impact of noise level, cluster shape, and
cluster density. All three study side factors (noise, shape, density) were
introduced to examine if the designs are differently robust to dataset
characteristics and to ensure that our main results are generalizable to
different kinds of datasets. A prototype, developed specifically for the
purpose of this study, was used for the execution of the study.

Visualization Design Space: As main experimental factor the
design spaces introduced in Section 3 were examined. In each design
space, an adaption of a scatterplot was displayed (scatterplot matrix, 3D
scatterplot). Figure 2 shows one exemplary dataset in all four designs.

Noise Level: The first additional experimental factor was the level
of introduced noise. With regard to the noise level, two kinds of datasets
were generated. One contained 1,000 additional randomly positioned
points (low noise level), the other one 3,000 additional noise points
(high noise level).

Cluster Shape: As a second additional experimental factor, the
shape of clusters was manipulated. Half of the datasets contained
convex clusters (spheres, capsules, discs), the other half contained
non-convex clusters (spirals, donuts, y-shapes, s-shapes, sinus-curved
pipes). We statistically counterbalanced noise level and cluster shape,
i.e., all four possible combinations (low-noise & convex, low-noise
& non-convex, high-noise & convex, and high-noise & non-convex)
occurred equally often.

Cluster Density: The third additional experimental factor was
cluster density. Two different types of clusters were created with regard
to cluster density. We used the DBSCAN algorithm, introduced by Ester
etal. [13], as a measure to distinguish between dense and sparse clusters.
For sparse clusters the parameters r; = { MinPts =10, € =0.15m }
were used as thresholds, and for dense clusters #, = { MinPts =30, € =
0.10 m }. The two parameter sets were systematically refined during
several trial dataset generation procedures to generate two visually
distinguishable types of clusters. The clustering was performed in a
cube with the dimensions 2 m x 2 m x 2 m. With the lower threshold
t1, all clusters, but nothing else, should be found by the DBSCAN
algorithm, and with the higher threshold #,, solely all dense clusters
should be found. In contrast to the other three side factors, each dataset
contained both sparse and dense clusters at the same time. However,
the error rate was measured separately for both types of clusters.

5.2 Procedure

The experiment was structured in four blocks (see Appendix B.1).
Each block was dedicated to one visualization design space (Screen2D,
Screen3D, VRTable, VRRoom). In each block, the participant completed
four trials by pointing to all clusters found and reporting the overall
count to the study supervisor. Each trial had a different dataset. The
order of blocks was structurally alternated with the only constraint
that always the two screen-based and the two VR design spaces were
directly after each other. We chose to introduce this constraint because
pretests showed that some participants experienced varying levels of
discomfort after switching in or out of the VRE. Half of the participants
started with VR design spaces, half of them with screen-based ones.
Participants were systematically assigned to one order.

At the beginning of the experiment, written informed consent was
obtained from the participants and they were asked to fill in a ques-
tionnaire assessing demographic variables. After that, participants
completed four blocks, each beginning with a training session for the
respective visualization. A total of three practice trials had to be com-
pleted before the first real trial of the block could start. In each trial
block, participants completed eight tasks. At the end of the second
block, participants were again asked to fill in a brief questionnaire
examining participants’ memory of the last completed trial (see Ap-
pendix B.4.1). A third questionnaire was administered after the last
block, collecting information about personal preferences and subjective
opinions about the four visualizations (see Appendix B.4.2). Finally,
participants were thanked and received a monetary compensation for
participating (10 €). During the experiment, sound, video, and position
data were recorded.

5.3 Data and Task

Sedlmair et al. [49] proposed a taxonomy of visual cluster separability
factors in scatterplots. They describe various factors of clusters, such
as shape, size, or number of items, that affect the observer’s capability
to identify the centroid of each cluster in dimensional reduced datasets
presented as 2D scatterplots. For the generation of our study datasets,
we varied the identified variables shape, size and density. We first
created a set of 16 different clusters. In this context, we refer to
clusters as areas with a higher density of data points compared to the
surrounding areas. In order to guarantee the cluster property and also
a consistency over all clusters, we applied the DBSCAN algorithm
after creating the clusters interactively in Unity. Two different types
of clusters were prepared with regard to density. Dense and sparse
clusters had to be found as only clusters by the DBSCAN algorithm
with a certain parameter set (MinPts = 10, € = 0.15). Sparse clusters
must not be found using another parameter set (MinPts = 30, € =0.1),
which should only detect all dense clusters (see Section 5.1).

Finally, we generated 32 study datasets as compositions of rotated
and flipped versions of the previously created clusters. Additionally,
we created a set of 20 extra datasets for training trials. Subsequently,
we added a certain amount of noise to each dataset (50% of the datasets
with high noise level). Half of the datasets contained only convex clus-
ters, and the other half only non-convex shaped ones. Each dataset was
constructed carefully so that all clusters were potentially identifiable



a) low noise level

b) high noise level

c) convex clusters

d) concave clusters

Fig. 6. Four sample datasets illustrating different properties. Top: low
noise condition (left) and high noise condition (right). Bottom: convex
clusters condition (left) and non-convex clusters condition (right).

in the scatterplot matrix (i.e., no cluster was occluded in all views).
Exemplary datasets from both conditions are depicted in Figure 6.

Although all our datasets were created with three attributes (one
coordinate each for the x-axis, y-axis, and z-axis), we do not see this as
a limitation of our study. Higher dimensional data can be transformed
into 3D data by projection techniques like a PCA. However, the type of
projection and its settings has a major impact on how well clusters can
be identified in the resulting visualization. For this study. Therefore,
we created datasets natively in three dimensions and abstained from
deploying dimension reduction techniques as it is common practice
in real-world applications. We only aim to investigate the effects of
immersion provided by the design spaces, which should not be affected
by a preceding data transformation step.

For the entire experiment, the task performed by participants re-
mained the same, even though interaction and visualization techniques
differed. The task was to identify clusters in a scatterplot visualization,
to point at them, and to count up all clusters. Participants were asked
to point at found clusters (with the mouse or VR controller) and report
their detection to the study supervisor. At the end of each trial, they
indicated the overall count of found clusters.

5.4 Apparatus

The experiment took place in a quiet, closed room at the University of
Konstanz. Participants were individually invited to the laboratory. Be-
sides the participant, the examiner was the only person present. During
two blocks (screen-based visualization design spaces), the participants
sat in front of a 24" monitor with a resolution of 1920 x 1200 pixel.
In those blocks, participants interacted with the study software solely
with the mouse as input device. During the remaining two blocks,
participants were equipped with a Vive HMD and one Vive controller
as a pointer. In those blocks, participants were initially positioned at a
specific starting point. During the task, they were allowed to walk freely
through the room within the bounds of the virtual environment (which
were visually highlighted in the VRE as blue walls). In the VRTable
visualization design space, participants were additionally instructed not
to walk into the virtual table.

5.5 Sample

A sample of N = 18 participants (5 female, 13 male) was recruited using
short notices distributed around the university. Most of the participants
had none or only little experience with scatterplot matrices (66.6%), but
had experienced a VRE at least once before (72.2%). We introduced

a training phase at the beginning of each of the four blocks in order
to minimize any effects resulting from different levels of experience.
Participants were aged 19 to 41 years (M = 26,SD = 4.87). Three
participants were still in high school, nine held a Bachelor’s degree,
and six a Master’s degree. The background of the participants was
quite diverse with eight having a computer science background (44%)
and the rest from various domains without advanced computer science
knowledge.

5.6 Dependent Variables

To compare differences caused by changes in the independent variables
(visualization design space, noise level, cluster shape, and cluster den-
sity), we analyzed multiple dependent variables. For each trial, the
error rate was calculated as the percentage of clusters not found. All
trials were recorded for later video analysis to count errors and find
frequent patterns in participant behavior. Participants were instructed
to point at identified clusters throughout the trials using the mouse
(screen) or the laser pointer attached to the Vive controller (VR). After
the study, we analyzed the recordings by coding which clusters were
found in each trial. All videos were encoded by at least two people
to avoid counting errors. In addition, the task completion time was
logged. For all VR trials, the VR headset was tracked (head position
and orientation). Besides, two questionnaires were issued gathering
information about personal preferences and the memorability of data
(count, shapes, and positions of clusters) in a previously completed task.
An overview of all gathered data is provided in the Appendix (B.2).

5.7 Hypotheses

Based on subjective indications from two exploratory pilot studies
and in part based on results of studies presented in the related work
section, we derived the following hypotheses. All hypotheses refer to
the deployed tasks and variants of scatterplot visualizations.

H1 VR vs. Screen — Error Rate: We expect error rates to be lower when
participants work with VR visualization design spaces. This hypothesis
is based on Filho et al. [16] and Arns et al. [2] experiments on the
analysis of multi-dimensional data in 3D scatterplots. They report on
beneficial effects of immersion with regard to distance and structure
perception. Both properties are crucial for cluster identification.

H2 VR vs. Screen — Task Completion Time: Participants will
be more active and need more time to complete the task when
working in VR visualization design spaces compared to them working
in screen-based ones. Bach et al. [4] came to the conclusion that
participants need more time in AR environments because they move
more, take extra time to explore the visualization, and are new to the
device. We expect similar findings in our VR settings.

H3 VR vs. Screen — Memorability: Participants will show bet-
ter memory performance when working in VR design spaces compared
to them working in screen-based design spaces. Previous studies have
shown that in certain VR scenarios the spatial memory is crucially
better compared to applications on the screen due to a more natural
navigation [10].

H4 VR vs. Screen — Subjective Preference: Visualizations in
VR visualization design spaces will come more naturally to the
participants than the ones in screen-based design spaces. This
hypothesis is based on the assumption that the level of abstraction of
VR visualizations should be relatively small as, for instance, distances
can be measured in “real” measures such as inches or centimeters.
Additionally, the possibility to navigate the data space like in the
real-world (e.g., walking around or rotating the head) is expected to
increase the engagement of participants [4].

HS Full Environment vs. Restricted Area — Error Rate: Com-
paring the VR visualization design spaces, participants will perform
worse in the totally immersive design space (VRRoom) compared to
the VRTable design space with regard to the error rate. This hypothesis



is based on the assumption that participants will miss clusters due to
blind spots (clusters behind, underneath or above the observer) or a
possible loss of orientation due to the missing overview as reported by
Etempadpour et. al. [14].

6 RESULTS oF MAIN STUDY

We report significant results of our quantitative analysis, as well as
qualitative feedback.

6.1 Statistical Analysis

All statistical tests were performed using IBM SPSS Statistics (version
24) and are based on a significance level of o = .05. To evaluate dif-
ferences between the visualization design spaces related to the error
rate, i.e., the percentage of clusters not identified, a Friedman test was
used. Due to serious violations of assumptions, in this case we have de-
cided against an ANOVA and opted for its non-parametric counterpart.
Wilcoxon signed-rank tests were computed as post hoc tests. Moreover,
a one-way repeated measures ANOVA was applied to compare the
time participants required for performing the task (completion time).
Mauchly’s sphericity test was used to confirm the sphericity assumption
needed for a one-way repeated measures ANOVA.

In case of a significant omnibus F-test, we report the results of
Bonferroni-corrected pairwise comparisons. Finally, head rotation
data were analyzed using a paired samples z-test. Note that time data
and head rotation data were log-transformed because of skewed dis-
tributions. Shapiro-Wilk tests were used to check the assumption of
normality after the log transformations and before the 7-tests.

6.2 Error Rate

Error rates differed significantly between the visualization design
spaces (¥>(3) = 40.67, p < .001). As depicted in Figure 7 (left),
Wilcoxon signed-rank tests revealed that with regard to the error rate
participants performed significantly worse in the design space Screen2D
(Mdn = 16.67%) compared to all other design spaces: VRTable
(Mdn = 0%, z=—4.87, p < .001), VRRoom (Mdn = 0%, z = —4.57,
p < .001) and Screen3D (Mdn = 14.29%, z = —3.95, p < .001).

When also taking noise into account, there was a significant dif-
ference in error rates between the low noise (Mdn = 8.45%) and the
high noise condition (Mdn = 12.47%; z = —2.24, p < .025). For each
visualization design space, error rates increased with an increasing
noise level. However, the resulting change differed between the design
spaces: The difference in error rates between the low noise and the high
noise condition was 6.54% for Screen2D, 1.3% for Screen3D, 5.74%
for VRTable and 5.54% for VRRoom. Statistical tests showed signifi-
cant differences between noise conditions in both VR design spaces
(VRTable: t(17) = —2.27, p < .05, r* = .23; VRRoom: t(17) = —2.19,
p<.05, 12 =.22).
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Fig. 7. Average error rate and completion time as a function of visual-
ization design space. Bars indicate the 95% CI of the mean, asterisks
significant differences between design spaces (*** p < .001). Note that for
statistical analysis task completion times were log transformed because
of skewed distributions, while in this figure original data is displayed.

With regard to the side experimental factors cluster shape and cluster
density, no significant differences emerged with respect to the error
rate.

6.3 Task Completion Time

As depicted in Figure 7 (right), the average completion time in the
Screen3D design space (M = 61.79 s) was the lowest, followed by
VRTable (M = 72.14 s), VRRoom (M = 75.19 s) and Screen2D (M =
90.12 s). Task completion times differed significantly between the
four design spaces, F(3,51) = 4.4, p < .01, nj = .206. Bonferroni-
corrected post hoc tests were applied. After correcting for alpha error
accumulation, none of the pairwise comparisons reached significance.
The experimental side factor noise level had no significant influence on
task completion time.

6.4 Memorability

In the questionnaire which was administered after the second block
participants were asked to recall the count, shapes, and positions of all
clusters in the last completed trial. Results show that, with regard to the
error rate, participants performed better in the VRTable design space
(M = 0%) compared to all other design spaces (Screen2D: M = 43.33%;
Screen3D: M = 32.67%; VRRoom: M = 20.42%). The percentages
reflect how many clusters of the previously found clusters could not
be remembered with the correct shape. To prevent training effects,
each participant performed the memory task only once. Therefore, the
sample size per design space is rather small (n ~ 4).

6.5 Subjective Preference

As part of the final questionnaire, participants were asked to rank the
visualizations by difficulty (1 = easy to 4 = hard). As Figure 8 depicts,
ranks assigned to visualizations in the Screen3D design space show
a positive skewness (ranks 1 & 2: 61.1%; ranks 3 & 4: 39.9%). To
visualizations in the Screen2D design space, participants only assigned
the lowest ranks 3 (22.2%) and 4 (77.8%). To visualizations in the
VRRoom design space, mainly middle ranks were assigned (rank 1:
11.1%; ranks 2+3: 88.9%). The distribution of visualizations in the
VRTable design space is positively skewed with the mass center on the
upper ranks (ranks 1 & 2: 83.3%; ranks 3 & 4: 16.7%).

In accordance with these results, 50% of the participants mentioned
the VRTable design space as their preferred design space, 33.3% the
Screen3D design space and 16.7% the VRRoom design space. In con-
trast, none of them indicated the Screen2D design space as their pre-
ferred visualization design space.

Regarding disadvantages and opportunities perceived by participants,
several findings emerged. As benefits of VR visualizations, participants
rated VR design spaces to be more comprehensive (n = 8), intuitive
(n =5) and to provide a better overview when the visualization is
inspected from outside (VRTable, n = 2). Moreover, participants men-
tioned that naturally changing the perspective (moving the head) helps
to grasp the visualization (n = 4). As drawbacks, participants men-
tioned poor overview in the VRRoom environment (n = 9), increased
expenditure of time (n = 4) and expensive hardware (n = 2).
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Fig. 8. Subjective preference: ranks (1 = easy to 4 = hard) assigned to
the four visualization design spaces by the participants.



Fig. 9. Top-down view on the VRE. Participants’ movements while solving
study trials in the design space VRTable (left) and VRRoom (right).
In the VRTable environment, participants were explicitly asked not to
walk into or through the virtual table. Except for this, the area covered
is approximately the same. However, in the VRRoom environment,
participants covered roughly twice as much distance compared to the
VRTable environment.

6.6 Space Utilization and Motion

Except for the area in which the table was located (i.e., the area partic-
ipants were instructed not to cross), participants used approximately
the same amount of space in the two VR visualization design spaces
(see Figure 9). However, total walking distances varied significantly
between the design spaces, #(17) = —8.80, p < .001, 1> = .82. In the
fully immersive environment (VRRoom), participants covered consid-
erably more distance (M = 32.20 m, SD = 0.14) compared to the less
immersive design space (VRTable: M = 16.77 m, SD = 0.18).

The two VR environments varied significantly concerning the head
rotations of participants, #(17) = —8.80, p < .001, 2 = .82. In the
fully immersive environment (VRRoom), participants tended to look
around much more (M = 32196°, SD = 0.03) compared to the less
immersive design space (VRTable: M = 16771°, SD = 0.04).

6.7 Video Analysis

In order to evaluate the experimental trials, we manually examined the
videos of each trial. While watching the videos, not only participants’
final answer, but also observations throughout the entire task were noted
down in a database. We identified several mistakes that were made
repeatedly by participants. In particular, four frequent scenarios could
be observed: (1) the participant “finds” a cluster twice (double count),
(2) the participant finds all clusters, but skips one in the final counting,
(3) the participant counts a sparse and a dense cluster as one and (4) the
participant detects a sparse cluster, but neglects it as noise. For each of
these scenarios, we manually counted the number of occurrences.
The final comparison revealed that all double count-errors were
made in screen-based design spaces (Screen2D: n =7, Screen3D:
n = 2). Moreover, most adding up-errors (missing to count a cluster
in the end) appeared in screen-based design spaces (Screen2D: n =17,
Screen3D: n = 4, VRTable: n =2, VRRoom: n = 3). Only in the
Screen2D design space, it occurred that participants counted a sparse
and a dense cluster as one (n = 2). Mainly in VR-based design
spaces, participants tended to neglect detected sparse clusters as noise
(Screen2D: n =1, Screen3D: n =2, VRTable: n = 1, VRRoom: n =5).

7 DiscussION

In this section, the results, as well as their implications, are discussed
with the focus being on accuracy, efficiency, memory, and orientation.
In the course of the discussion, we will address all hypotheses.

7.1 Accuracy

H1 implies that in cluster identification tasks error rates are directly
influenced by the degree of immersion present in the respective de-
sign space when comparing screen-based design spaces with VR-based
ones. Specifically, we assumed that participants perform better in de-
sign spaces characterized by higher immersion levels (VR-based design
spaces). The results partially correspond to that assumption. In case
of the Screen2D design space, significant differences emerged. As a

basis for this hypothesis it was suggested, among other things, that
VR visualizations come more naturally to participants in comparison
with abstract visualizations or non-stereoscopic 3D visualizations on
the screen (cf. H4). Video analysis revealed that situations containing
a loss of orientation or navigational problems mostly occurred in the
screen-based design spaces. This indicates improved navigation and
orientation capabilities in VREs, which again could be due to a better
spatial memory (see Section 7.3). Hypothesis H4 is also strongly sup-
ported by qualitative feedback. Multiple participants stated to prefer VR
visualizations due to a more comprehensive and intuitive representation
of the data. Moreover, participants tended to classify VR visualizations
as rather easy to work with compared to screen-based ones (in partic-
ular, the scatterplot matrix was frequently rated as the most difficult
visualization). For the two VR visualization design spaces differed,
no significant difference was found in terms of accuracy. Hence, we
cannot confirm hypothesis H5.

7.2 Efficiency

Contradicting hypothesis H2, no significant differences emerged be-
tween pairwise-compared visualization design spaces in terms of task
completion time. Nevertheless, the hypothesis can partially be accepted
as the statistical analysis revealed a main effect of visualization design
space on task completion time and an almost significant difference be-
tween the design spaces Screen3D and VRRoom. Moreover, the average
completion time in the design space Screen3D was lower compared
to the average completion time in both VR design spaces. One reason
for that could be the requirement for the user to be more active in VR
design spaces. Instead of sitting in front of a computer screen and
operating a mouse, the participant had to move and look around. Tasks
in the Screen2D scenario required on average much more time than in
all other design spaces. This could partially be due to a high learning
curve for scatterplot matrices due to small multiples. Participants had
to mentally match data points in different visualizations in order to
avoid counting a cluster twice or missing one. However, the evaluation
of participants familiar with scatterplot matrices did, as well, not reveal
a difference. Corroborating the second part of the hypothesis (activity
of participants), the total walking distance and the total head rotation
differed significantly. The means of both attributes are on average
approximately twice as large in the VRRoom design space. Possible rea-
sons can be derived from video analysis and user feedback. Participants
had to change their position more often in the VRRoom design space
in order to prevent occlusion or blind spots and they had to turn their
heads 360 degrees in order to observe the entire visualization space.
One trade-off of the “natural” navigation in VR design spaces is the
necessary activity compared to conventional mediums. Especially for
long sessions, the increased physical effort could lead to fatigue, which
in turn could affect accuracy and efficiency. Therefore, if using VR
design spaces, present findings suggest favoring the VRTable design
space as it minimizes the required physical activity.

7.3 Memory and Orientation

Participants performed better with regard to memorizing previously
identified clusters in VR visualization design spaces compared to
screen-based ones. In the VRTable scenario, participants had the least
difficulties remembering all clusters and their shapes correctly. More-
over, video analysis revealed that more memory-related errors, such as
double counts or missing counts, occurred within screen-based design
spaces. Therefore, H3, which states an advantage of VR visualization
design spaces in terms of memorability, can be considered confirmed.
After working with the abstract visualization (scatterplot matrix),
participants had most difficulties to recall all found clusters. We assume
that the higher level of abstraction compromises users’ orientation capa-
bilities, as building a mental model of the small multiples is necessary
to notice connections between clusters in different windows of the
scatterplot matrix (e.g., to find one cluster in all views). An increased
level of difficulty, accompanied by the requirement for a mental model,
is also evident from user feedback. Participants voted the Screen2D
design space to be the most difficult and least preferred design space.



8 LIMITATIONS AND GENERALIZABILITY

Some limitations need to be taken into account. It is discussable
whether and to what extent our findings are generalizable and transfer-
able to other visualizations in the given visualization design spaces. We
argue that most of the findings rather refer to properties of the design
spaces than to characteristics of the individual visualizations (e.g.,
immersion, spatial memory, orientation, or navigation). Nevertheless,
it has to be investigated if found distinctions between design spaces
also emerge if alternative visualizations are employed. Changing the
type of visualization or allowing more advanced interaction techniques
might redistribute assigned characteristics to the visualization design
spaces and influence final outcomes.

The Screen2D visualization design space is fundamentally different
from the other design spaces hampering pairwise comparisons. The
scatterplot visualization in the Screen2D design space is fixed to a
certain viewpoint and does not provide any interactions aside from
pointing on clusters. During the generation of datasets, we made sure
that every single cluster is potentially detectable in the scatterplot
matrix visualization as well and avoided pairs of clusters that overlap
in all small multiples of the matrix. Additionally, the data used for
the experiment was three-dimensional. In the all 3D design spaces
(Screen3D,VRTable and VRRoom) the data was visualized in its natural
space whereas in the Screen2D scenario, multiple 2D scatterplots had
to be displayed to compensate for the third dimension.

Another limitation of the present study is the exclusive deployment
of a cluster identification task. Compared to the VRTable design
space, the VRRoom design space helps to reduce occlusion since the
visualization occupies the entire virtual environment of the observer.
However, this comes at the price of tremendous overview loss. These
properties likely have a different impact on cluster identification
tasks compared to other visual analytics tasks. Future studies should
investigate whether a combination of the VRRoom and VRTable design
spaces are preferable for specific tasks. One has to keep in mind that
excessive interaction and switching between the two design spaces
could impair some of the benefits, such as improved spatial memory
capabilities. For 3D scatterplots, Yu et al. [64] presented a toolset of
effective selection techniques in 3D pointclouds. In future research,
such advanced techniques for the accurate selection of clusters could
be implemented to assess if participants found the entire cluster. Also,
advanced techniques that support the detection of clusters could be
deployed, such as highlight-planes presented by Prouzeau et al. [39].
Besides the impact of interaction, it would be interesting to assess
properties of the screen deployed. For instance, a larger screen with
higher resolution might lead to higher levels of perceived immersion
and increase task performance.

A larger sample size would have been beneficial to assess every
experimental side factor accurately. However, we argue that the ex-
perimental side factors (noise, shape, density) were mainly deployed
to guarantee the stability of results in the analysis of the visualization
design spaces. We analyzed them as additional factors, but set the focus
on the comparison of results for different visualization design spaces.
Even though there was an exhaustive training session, and statistically
no difference between experts and non-experts emerged, different out-
comes could have emerged if we had conducted the study only with
experts. We deployed two different kinds of datasets with regard to
their noise level, much higher levels of noise could have changed the
performance of users differently in each visualization design space.

One major limitation of our study is the restriction to three-
dimensional data, favoring 3D design spaces, and thereby introducing
a bias. However, we argue that our foundational research is targeting
cases where dimension reduction to two dimensions is impossible or
not advisable (e.g., see Figure 3). For truly high dimensional data a
projection to 3D space might not make sense for cluster identification.
We chose to focus on three dimensions as this is the maximum number
of dimensions that can be encoded by the visual variable ‘position’
at a time in all deployed design spaces. However, this favors the
3D scatterplot visualizations as, for instance, if more than three

dimensions had been represented in the visualization, a scatterplot
matrix would have outperformed the three-dimensional scatterplots
due to its dynamic scalability with regard to the number of dimensions.
In addition to that, the 2D design space was disadvantaged as a higher
learning curve can be expected for scatterplot matrices. More than half
of the participants had none or few experience with scatterplot matrices.

Especially in the domain of molecular biology, 3-dimensional repre-
sentations of molecular surfaces are often used, e.g., to investigate the
size of genes, to compare proteins, or to identify substructures in elec-
tron tomography [28]. These spatial structures are comparable to point
clouds visualized in 3D scatterplots. Therefore, we expect our results
to be also true for similar tasks in such settings. Similarly, our find-
ings could be applicable for applications with flow visualizations [55],
spatio-temporal visualizations [1] and graph visualizations [8] in which
entities have to be identified in a large 3D environment. Although
not significant, participants performed better in the VRTable condition
compared to VRRoom. When analyzing the subjective feedback, partic-
ipants reported that they were missing an overview of the data when
being entirely immersed in the VRRoom design space. We expect this
circumstance to be independent of the visualization technique used. As
a consequence, researchers should think about techniques to provide an
overview of the data in VR environments.

To generally assess the possibilities of abstract visualizations for
VA purposes in VR, future research should compare specific scenarios
(task + visualization + data) in various visualization design spaces. The
ultimate goal would be to establish some rules of thumb, advising one
to avoid certain VA tasks and visualizations in VR design spaces and to
favor the usage of others.

9 CONCLUSIONS

We presented a user study with 18 participants examining differences
between four visualization design spaces with regard to cluster identifi-
cation in scatterplots. The four employed visualization design spaces
differed in their degree of immersion as confirmed by an additional
study. Two of the design spaces were observed using a standard com-
puter monitor (2D and 3D spaces on screen) and two using VR HMDs
(restricted area in VRE and entire VRE). While the results show that
more immersive visualization design spaces generally fit better to the
given task, a fully embracing analysis environment may not be the
best choice for scatterplot analysis due to a lack of overview and blind
spots. Hence, for cluster identification tasks in scatterplots, results
suggest favoring a restricted area in a VRE as visualization design
space. It is difficult to give a general recommendation when to use
screen-based design spaces and when to deploy HMDs. We found
that for scatterplot visualizations it can be beneficial to convey infor-
mation by using three-dimensional VR design spaces if the task is to
identify clusters in three-dimensional data. Results imply that thereby
memory and orientation capabilities are increased. In comparison to
abstract representations, 3D visualizations tend to be more comprehen-
sive (maximally by using stereoscopic perception) and therefore ease
the identification of clusters. However, abstract visualizations deliver
more detail on single points or groups of points as extracting exact
information from 3D visualizations can be difficult for humans due to
distortion and a missing common baseline for comparing values that
refer to multiple axes. Overall, we can state that VREs can indeed
provide suitable design spaces for abstract visualizations such as scat-
terplots. Moreover, it became apparent that getting an overview of
three-dimensional data can be enhanced by means of VR due to a more
natural navigation, and better orientation and memorability capabilities.
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