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Abstract

We present Scalable Insets, a technique for interactively exploring and navigating large numbers of 

annotated patterns in multiscale visualizations such as gigapixel images, matrices, or maps. 

Exploration of many but sparsely-distributed patterns in multiscale visualizations is challenging as 

visual representations change across zoom levels, context and navigational cues get lost upon 

zooming, and navigation is time consuming. Our technique visualizes annotated patterns too small 

to be identifiable at certain zoom levels using insets, i.e., magnified thumbnail views of the 

annotated patterns. Insets support users in searching, comparing, and contextualizing patterns 

while reducing the amount of navigation needed. They are dynamically placed either within the 

viewport or along the boundary of the viewport to offer a compromise between locality and 

context preservation. Annotated patterns are interactively clustered by location and type. They are 

visually represented as an aggregated inset to provide scalable exploration within a single 

viewport. In a controlled user study with 18 participants, we found that Scalable Insets can speed 

up visual search and improve the accuracy of pattern comparison at the cost of slower frequency 

estimation compared to a baseline technique. A second study with 6 experts in the field of 

genomics showed that Scalable Insets is easy to learn and provides first insights into how Scalable 

Insets can be applied in an open-ended data exploration scenario.
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1 Introduction

Many large datasets, such as gigapixel images, geographic maps, or networks, require 

exploration of annotations at different levels of detail. We call an annotation a region in the 

visualization that contains some visual patterns (called annotated pattern henceforth) as seen 

in Fig. 1. These annotated patterns can either be generated by users or derived 

computationally. However, annotated patterns are often magnitudes smaller than the 

overview and too small to be identifiable, also known as “desert fog” [33]. This makes 

exploring, searching, comparing, and contextualizing challenging, as considerable 

navigation is needed to overcome the lack of overview or detail.

Exploring annotated patterns in their context is often needed to assess their relevance and to 

dissect important from unimportant regions in the visualization. For example, computational 

biologists study thousands of small patterns in large genome interaction matrices [12] to 

understand which physical interactions between regions on the genome are the driving factor 

that defines the 3D structure of the genome. In astronomy, researchers are exploring and 

comparing multiple heterogeneous galaxies and stars with super high-resolution imagery 

[53]. In either case, inspecting every potentially important region in detail is simply not 

feasible.

Exploring visual details of these annotated patterns in multiscale visualizations requires a 

tradeoff between several conflicting criteria. First, annotated patterns must be visible for 

inspection and comparison (DETAIL). Second, enough of the overview needs to be visible to 

provide context for the patterns (CONTEXT). And, third, any detailed representation of an 

annotated pattern should be close to its actual position in the overview (LOCALITY). Current 

interactive navigation and visualization approaches, such as focus+context, overview+detail, 

or general highlighting techniques (Sect. 2), address some but not all of these criteria and 

become difficult as repeated viewport changes, multiple manual lenses, or separate views at 

different zoom levels are required, which stress the user’s mental capacities.

In this paper, we describe Scalable Insets—a scalable visualization and interaction technique 

for interactively exploring and navigating large numbers of annotated patterns in multiscale 

visual spaces. Scalable Insets support users in early exploration through multi-focus 

guidance by dynamically placing magnified thumbnails of annotated patterns as insets 

within the viewport (Fig. 1). The design of Scalable Insets is informed by interviews with 

genomics experts, who are engaged in exploring thousands of patterns in genome interaction 

matrices. To keep the number of insets stable as users navigate, we developed a technique 

for interactive placement of insets within the viewport and dynamic clustering of insets 

based on their location, type, and viewport (Sect. 4.3). The degree of clustering constitutes a 

tradeoff between CONTEXT and DETAIL. Groups of patterns are visually represented as a single 

aggregated inset to accommodate for DETAIL. Details of aggregated patterns are gradually 

resolved as the user zooms into certain regions. We also present two dynamic mechanisms 

(Sect. 4.2) for placing insets either within the overview (Fig. 1 left and center) or on the 

overview’s boundary (Fig. 1 right) to allow flexible adjustment to LOCALITY. With Scalable 
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Insets, the user can rapidly search, compare, and contextualize large pattern spaces in 

multiscale visualizations.

We implemented Scalable Insets as an extension to HiGlass [36], a flexible web application 

for viewing large tile-based datasets. The implementation currently supports gigapixel 

images, geographic maps, and genome interaction matrices. We present two usage scenarios 

for gigapixel images and geographic maps to demonstrate the functionality of Scalable 

Insets. Feedback from a qualitative user study with six computational biologists who 

explored genome interaction matrices using Scalable Insets shows that our technique is easy 

to learn and effective in analytic data exploration. Scalable Insets simplify the interpretation 

of computational results through identification and comparison of patterns in context and 

across zoom levels. Results from a controlled user study comparing both placement 

mechanisms of Scalable Insets to a standard highlighting technique provide initial evidence 

that Scalable Insets can reduce the time to find annotated patterns at identical accuracy and 

improve the accuracy in comparing pattern types. This comes at the cost of slightly slower 

frequency estimation of the annotated patterns. Whether this overhead is acceptable depends 

on the importance of the visual details of patterns for navigation.

To our knowledge, Scalable Insets is the first inset-based technique that supports the 

exploration of multiscale visualization where the number of insets far exceeds the available 

screen space and that provides first insights when an inset-based technique can provide 

useful and efficient guidance at scale.

2 Related Work

Pan and Zoom:

Pan and zoom [22] is a common technique for navigating large multiscale visualizations. 

Despite its widespread use, it can require a large amount of mental effort as either context or 

details are lost and navigating to distant regions can be time consuming [21]. Techniques 

have been developed to leverage the data structure to facilitate navigation and exploration. 

For networks, Bring&Go [48] implements navigation along a network’s links and provides 

navigational cues through direct visualization of a node’s neighborhood. Similarly, Dynamic 

Insets [23] utilizes a network topology to dynamically place off-screen nodes (i.e., annotated 

patterns) as visual insets inside the boundaries of the actual view. However, many data sets 

do not provide semantic structures to support this kind of navigation.

Highlighting:

Highlighting details is used to alleviate the lack of navigational cues [33]. For reviews on 

general highlighting techniques see [26,27,39,58,66]. Irrespective of the navigation 

technique, knowing details about the outcome of a navigation upfront can avoid spending 

time on unnecessary user interactions. For instance, Scented Widgets [71] embed visual cues 

and simple visualizations into user interface elements. Ip and Varshney [30] describe a 

salience-based technique for guiding users in gigapixel images. They utilize color to 

highlight regions of high salience. While this is very effective to provide visual cues, these 

cues do not enable the user to get an understanding of the detailed visual structure of the 

Lekschas et al. Page 3

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highlighted regions without having to manipulate the viewport. Scalable Insets draws on 

these ideas to display the details of annotated patterns across scales.

Aggregation and Simplification:

Scalability for large visualizations can be achieved through aggregation and simplification of 

sets of elements. For instance, ZAME [17] is a matrix visualization technique that presents a 

visual summary of multiple cells at a higher level. Such a summary is composed of an 

embedded visualization showing the distribution of aggregated cell values. Milo et al. [47] 

describe network motifs, which are repetitive network patterns, to facilitate a more concise 

view of large networks through visual simplification [14]. Van den Elzen and van Wijk [67] 

integrate the ideas of ZAME and Network Simplification into a very concise overview of 

large networks where nodes are aggregated into small statistical summary diagrams. These 

techniques work well to gain an overview but the visual details of patterns are lost, which 

applies to many semantic zoom interfaces.

Overview+Detail:

To address the problem of lost context or missing details, one can juxtapose multiple panels 

at different zoom levels. The separation between these panels provides flexibility but comes 

at the cost of divided user attention [45]. For example, in PolyZoom [32] different zoom 

levels are organized hierarchically and appear as separate panels, which limits the number of 

regions that the user can simultaneously focus on. TrailMap [73] shows thumbnails of 

previously visited locations in a map visualization to support rapid bookmarking and time 

traveling through the exploration history. Hereby, separate panels work well as the user has 

already seen each location in detail before it appears as a thumbnail, but it is not clear how 

effective such an approach would be for guidance to new locations. HiPiler [41] supports 

exploration and comparisons of many patterns through interactive small multiples in a 

separated view. While this approach works well for out-of-context comparison, it has not 

been designed for guided navigation within the viewport of a multiscale visualization.

Focus+context:

Focus+context techniques show details in-place, while maintaining a continuous relationship 

to the context, often via distortion. The most common type of these techniques are lenses 

that can be moved and parameterized by the user (see [65] for a comprehensive review). For 

example, Table Lens [56] utilizes a degree-of-interest approach to enlarge or shrink cells of a 

spreadsheet. Similarly, Rubber Sheet [59] and JellyLens [54] are distortion-based techniques 

that enlarge areas of interest in a visualization. Mélange [16] takes a different approach by 

folding unfocused space into a 3rd dimension like paper. Unlike our method, these 

techniques benefit from maintaining a continuous view at the expense of distorting the direct 

context around a focus region and limiting the ability to simultaneous focus on many 

regions.

Detail-In-Context:

Hybrid approaches magnify annotated patterns and place them as insets within the 

visualization [9]. For example, Pad [50] and Pad++ [3] were one of the first tools to 
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visualize details through insets. Detail Lenses [7,34] emphasize several regions using insets 

that are arranged along the inner border of a map visualization. The insets are only loosely 

connected to their origin through sequential ordering and sparse leader lines, which ensures 

that the center of the map visualization is not occluded. This technique works well for up to 

a dozen insets but doesn’t support dynamic exploration. VAICo [60] uses insets for 

integrative comparison of visual details between multiple aligned images but does not 

concern about navigation and scalability. DragMag [70] extended the concept of Pad into a 

hybrid approach where magnified insets can be manually placed either within the image or 

on the outside border. Our new technique builds on the idea of DragMag [70] and extends it 

with a dynamic aggregation mechanism as well as interactive exploration (DETAIL and 

CONTEXT). This allows Scalable Insets to work for cases where annotated patterns are placed 

very close to each other and would otherwise result in clutter.

Label Placement:

Placing insets onto an existing visualization can be compared to placing labels, e.g., on maps 

[72]. Many papers focus on static and point-feature label placement, i.e., the static placement 

of a label directly adjacent to a data point. Instead, our tool requires dynamic, excentric [20] 

(i.e., labels are distant from their targets), and boundary [6,38] placement as insets are to be 

positioned interactively and out-of-place to avoid occluding other essential details in the 

visualization. Dynamic labeling [51,52,55], which has been formalized into the “consistent 

dynamic map labeling” and “active range optimization” problem by Been et al. [4,5], 

describes label placement in the context of pan and zoom interfaces, where the position and 

size of labels are not fixed. In order to provide real-time placement, dynamic map labeling 

techniques require dedicated preprocessing, which is time-consuming and, thus, hinders 

dynamic view composition. More importantly, Been et al. state in requirement D1 of the 

dynamic map labeling problem that “except for sliding in or out of the view area, labels 

should not vanish when zooming in or appear when zooming out” [4]. In contrast, we 

require that the number of insets decreases upon zooming in once the annotated patterns are 

large enough to be identifiable. Therefore, we’re studying an inverted version of the dynamic 

map labeling problem where insets should only be shown for annotated patterns that are too 

small to be identifiable to provide navigational cues and alleviate the desert fog challenge 

[33]. In order to address these challenges, Scalable Insets employ simulated annealing [46] 

as it is a generic approach [15] and can easily incorporate the requirements for DETAIL, 

CONTEXT, and LOCALITY. Also, it has the potential to produce high-quality label placements 

[10] and is fast enough for interactive navigation [69].

3 Scalable Insets: Overview

The design of Scalable Insets is driven by the three functional requirements for detail-in-

context methods. It provides a dynamic tradeoff for DETAIL, CONTEXT and LOCALITY to 

overcome the issues one would run into with naive approaches (Fig. 3). In the following, we 

give an overview of the technique and demonstrate the visualization and guidance aspects. 

Technical details on how we achieve this tradeoff are given in Sect. 4.
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In multiscale visualizations (Fig. 2.1) that contain several annotated patterns (henceforth just 

called patterns), not all patterns will be identifiable at every zoom level. To this end, the 

notion of identifiability can be described as patterns being fully contained in the viewport 

and having a minimal output resolution, e.g., 24 × 24 pixels. Whenever a pattern is 

identifiable we are able to perceive its detailed visual structure (Fig. 2.4). This setup lets us 

imagine a virtual pattern space (Fig. 2.2), which defines when a pattern is visible or how 

much zooming is needed to identify its detailed visual structure. To reduce the interaction 

and navigation time to assess these visual details of patterns, we extract thumbnails of 

unidentifiable patterns at the zoom level that renders the pattern identifiable and place these 

thumbnails within the viewport as insets. The number of displayed insets can be limited by 

clustering several closely-located patterns into a group (Fig. 2.3) and representing this group 

as a single aggregated inset (Fig. 2.4). Together with a dynamic placement strategy that 

avoids occlusion of insets and patterns, this enables Scalable Insets to provide guidance for 

high numbers of patterns while reducing navigation time.

3.1 Usage Scenarios

The following two usage scenarios, on a gigapixel image and geographic map application, 

depict typical exploration tasks, such as searching, comparing, and contextualizing patterns, 

and focus likewise on overview and detail. A third, more complex use case in genomics is 

presented in Sect. 6.2.

Exploring Gigapixel Images: In a gigapixel image of Rio de Janeiro [63,64] with a 

resolution of 454330 × 149278 pixels (Fig. 4.1) users have annotated 924 patterns such as 

birds, people, or cars. Some of these patterns are close together, e.g., on the same street, 

while others are isolated in the sea. However, most of them are not identifiable without 

considerate pan and zoom. We follow a hypothetical journalist who is writing an article 

about unseen aspects of Rio de Janeiro, which requires finding, comparing, and localizing 

the annotated patterns to assess “Which neighborhoods are particularly interesting to 

viewers?”, “What kind of patterns are most frequently annotated?”, and “Are there any 

unexpected patterns given their location?”.

Scalable Insets places insets for patterns too small to be identifiable within the viewport 

(Fig. 4.1). Insets that would be in too close proximity to each other are grouped and 

represented as aggregated insets. In this example, we kept the number of insets between 25–

50, which provides a good tradeoff between the DETAIL and CONTEXT criteria. The size of the 

insets ranges from 32 to 64 pixels (for the longer side) and depends on the original size of 

the annotated pattern, i.e., the inset that is related to the smallest pattern is 32 pixels long or 

wide and the inset that is related to the largest pattern is at most 64 pixels long or wide. The 

popularity of patterns (given by view statistics) is mapped onto the border such that thicker 

borders indicate higher popularity.

The journalist starts by examining the entire picture to gain an overview. At first glance, 

Scalable Insets reveals a relatively equal distribution of patterns, with higher frequency in 

areas of man-made constructions (Fig. 4.1). The journalist immediately finds popular 

patterns as they are highlighted by a thicker border. They notice a relatively high frequency 
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of annotated swimming pool areas (insets with a red border in Fig. 4.2), which are scattered 

across the entire image. Upon hovering over an inset, its origin is highlighted through small 

red dots and a red hull in the overview. Via a click, insets are scaled up and more details of 

the patterns are seen. This enables the journalist to quickly identify a bird (Fig. 4.3i) sitting 

on a locally known rock and to find interesting street art (Fig. 4.3ii). Also, with Scalable 

Insets, several patterns located in monotone regions (Fig. 4.3iii), such as the sea, are 

explorable with minimal pan and zoom. As the journalist inspects a specific region more 

closely, aggregated insets gradually split into smaller and smaller groups (Fig. 4.4), 

presenting more details while maintaining a relatively fixed number of insets.

Exploring Geographic Maps: Our second scenario involves the exploration of ski areas 

in a geographic map from Mapbox [43] and OpenStreetMaps [49]. We obtain an estimation 

of the location of the world’s ski areas by analyzing aerialway annotations [35] from 

OpenStreetMap as these annotations describe potential paths of ski lifts, slopes, and other 

aerial ways.

The user sets out to find, compare, and localize interesting ski areas. Interest is defined by 

the size of individual ski areas and the size of multiple ski areas within close proximity. 

Localization of ski areas is important to determine the accessibility and proximity by car 

between multiple closely-located ski areas. This time, insets are shown outside the map to 

provide full access of information in the map, such as streets, cities, mountains and other 

important geographical information needed for localization.

The user starts exploring around Utah and Colorado (Fig. 4.5). The map shows two regions 

with several closely-located ski areas nearby Salt Lake City (Fig. 4.5i) and Denver (Fig. 

4.5ii). Upon scaling up an inset, the user can explore the size and shape of up to four 

representative ski areas among a group. This allows for fast comparison of the ski areas 

without the need to navigate. For example, the user compares three promising groups of 

several ski areas (Fig. 4.5iii, 5iv, and 5v). Through hovering over different images in an 

aggregated inset, shown in Fig. 4.5iii, the user identifies that this group contains only small 

ski areas as well as an outlier, i.e., a pattern that does not correspond to a ski area. While the 

second group (Fig. 4.5iv) indeed represents several large ski areas, close inspection (Fig. 

4.6) reveals that the road connecting these ski areas is closed during winter (Fig. 4.6i). 

Zooming out again, the user finds a suitable region with several larger ski areas (Fig. 4.7) 

that are conveniently accessible by car through the Interstate 70 nearby Vail (Fig. 4.7i).

4 Scalable Insets: Technique

4.1 Inset and Leader Line Design

Insets I are small, rectangular thumbnails at an increased magnification of a subset S of 

annotated patterns A that are too small to be identifiable. The level of magnification is 

defined by the display size (in pixels) of the insets and zoom level. The display size of insets 

can depend on a continuous value, e.g., a confidence score or range between a user-defined 

minimum and maximum, but is invariant to the zoom level to give more control over DETAIL 

and CONTEXT. This comes at the cost of reduced awareness of the depth of annotated 

patterns, which we consider less important for Scalable Insets as it does not directly support 
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finding, comparing, and contextualizing patterns. The thickness of the border can be used to 

encode additional information and the hue of the border is adjustable to reflect different 

categories of annotated patterns. Both encodings are illustrated in Fig. 5.1ii and Fig. 5.1iii.

A leader line is drawn between an inset i ∈ I and its source annotation si ∈ S in order to 

establish a mental connection as their positions may not coincide (Sect. 4.2). We designed 

three different leader line styles. Plain and fading leader lines are static and only differ in 

their alpha values along the line (Fig. 5.3i and Fig. 5.3ii). Dynamic leader lines adjust their 

opacity depending on the distance of the mouse cursor to an inset or a source annotation. 

Fading and dynamic leader lines minimize clutter in the event of leader line crossing to 

preserve context and have been shown to maintain a notion of connectedness [11, 42]. We 

chose to limit Scalable Insets to straight leader lines for simplicity and performance reasons. 

While other techniques such as edge bundling [29] or boundary labeling [6] exist, the 

benefits are expected to be minimal. For the inner-placement, leader lines are usually very 

short since insets are positioned as close as possible to their source annotation. Barth et al. 

[2] have shown that straight leader lines for boundary labeling, which is similar to our outer-

placement (Sect. 4.2), perform comparably to or even better than more sophisticated 

methods.

After the border encoding and leader line style have been set by the user (see Sect. 5), 

Scalable Insets will dynamically update the appearance based on the viewport. Hence, the 

visual encodings are relative to the currently visible insets.

4.2 Inset Placement

We have developed an algorithm for placing an inset i at a position pi either within the 

viewport (inner-placement) or at the boundary of the viewport (outer-placement), where pi is 

defined as a sequence of k moves mi
k that are determined with simulated annealing [46]. The 

goal for moving an inset i is to maximize DETAIL and CONTEXT while minimizing LOCALITY 

by optimizing a cost function C. This cost function depends on the current position pi
k and 

the potential move mi
k + 1 to the next position. The resulting cost determines whether a 

particular move from one position to another improves the placement. The final position of 

an inset pi is then given by a sequence of k moves where pi
k + 1 = pi

k + mi
k + 1 and pi

0 is set to 

the center of i’s source annotation.

The cost function consists of four main components. First, pairwise overlap oij between two 

insets i and j should be minimized. Next, for the inner-placement pairwise overlap (OS and 

OA) between an inset i, source annotations S, and other annotated patterns A should be 

minimized. Also, insets should be placed as close to their source si as possible, i.e., the 

distance disi
 between i and si should be minimal. Finally, leader line crossings lij between 

two insets i and j should be avoided, where lij is 1 if the leader lines intersect and 0 

otherwise. Fig. 5.4i and 5.4iii illustrate both placement strategies.

Following only the above criteria could lead to drastic changes in the positioning even at 

minimal pan and zoom. For example, in Fig. 5.4ii a subtle zoom out would lead to the 
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occlusion of other annotated patterns (indicated as dashed, red boundaries), which could 

cause the inset to jump to the next best position. Similarly, in Fig. 5.4iv subtle panning to the 

left would change the closest available position on the boundary and make the inset jump 

from one side to the other. Since these phenomena would significantly harm the usability of 

Scalable Insets, the Euclidean distance between an old and a new placement of i, denoted as 

dmi
, is minimized to avoid movements that would lead to only marginal improvements. In 

summary, the cost of moving an inset mi is comprised of the following components, where 

the ws stand for individual weights and di j
min is defined as max(0,(ri+rj)−dij) with ri being 

half of the diagonal of i to ensures a minimal distance between i and j.

• Inset distance: D = wDdisi

• Inset movement: M = wMdmi

• Leader line crossing: L = wL∑ j ∈ I, j ≠ i li j

• Inset–source overlap: OS = wOS∑s ∈ S, s ≠ si
ois

• Inset–source minimum distance: DS = wDS∑s ∈ S, s ≠ si
dis

min

• Inset–inset overlap: OI = wOI∑ j ∈ I, j ≠ ioi j

• Inset–inset minimum distance: DI = wDI∑ j ∈ I, j ≠ idi j
min

• Inset–annotation overlap: OA = wOA∑a ∈ A′oia

• Inset–annotation minimum distance: DA = wDA∑a ∈ A′dia
min

Finally, each metric is normalized to adjust for the different value ranges as follows. The 

distances disi
, dis

min, di j
min, dia

min, and dmi
 are divided by ri. The overlap oij between two insets is 

normalized by the area of the smaller inset. In contrast, the overlaps ois and oia are 

normalized by the source or annotation. The intuition is that insets should ideally never 

overlap with other insets or their sources as this would harm DETAIL and CONTEXT. On the 

other hand, the larger an annotation is the less distracting an overlaying inset presumably is. 

For example, if a park in a maps visualization is annotated and spans 80% of the screen, 

overlaying a small 24 × 24 pixel-sized inset will presumably not harm the identifiability of 

the park as the inset covers only a small portion of the park. Detailed formulas and default 

weights are provided in Supplementary Table S1. The cost function is then defined as the 

sum of all components:

C i, mi, I, S, A = D + M + L + OS + DS + OI + DI + OA + DA (1)

In simulated annealing the k-th move mi
k of i is chosen at random and accepted with a 

probability equal to:
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P = exp(−
ΔCk i, mi, I, A

ti
k ) (2)

where ΔCk(i,mi,I,A) is defined as the difference between the cost of the k-th and the (k−1)-th 

move and ti
k is the temperature of i at that move. The value of ti continuously decreases and 

controls the likelihood that moves, which result in higher costs, are accepted. I.e., the 

smaller ti the less likely it is that i moves to a position with higher cost. We employ 

exponential cooling such that ti
k = ti

k − 1 * β, where β is adjustable and set to 0.8 by default. 

Upon zooming, the temperature of already existing insets is reset to 5% of the initial 

temperature to allow insets to move to better positions but avoid unnecessary moves where 

the cost is almost the same or worse.

Additionally, ‖mi‖2 is limited mmax to avoid too large changes within one iteration of 

simulated annealing and decreases linearly with t until 0.5 * mmax. Finally, in the outer-

placement approach, insets are initially placed at the closest side that has the fewest insets 

assigned at the corresponding x or y position already. Upon pan and zoom, insets should not 

be moved to the opposing side as such jumps would impose high cognitive load for keeping 

a mental model of the insets’ positions. See Supplementary Algorithm S1 for details.

4.3 Aggregation

To provide scalability beyond a handful of annotated patterns and preserve CONTEXT, we 

have developed a density-based dynamic clustering algorithm that assigns every annotated 

pattern in the viewport to a particular group, called a cluster. Each cluster is represented as a 

single visual entity and referred to as an aggregated inset. Our clustering approach is based 

on the spatial distance between annotated patterns in the viewport. Starting with a randomly 

selected pattern we find the closest cluster. Only if the distance between the pattern and the 

bounding box of the cluster is closer than a user-defined threshold and the area of the cluster 

combined with the pattern is smaller than a user-defined threshold do we assign the pattern 

to that given cluster (Fig. 5.5i). Otherwise, we create a new cluster composed of the selected 

pattern. See Algorithm S2 for details. Upon adding patterns to clusters, we keep a sorted list 

of the nearest neighbors for each newly added pattern (Algorithm S3), which will help us to 

determine breakpoints when zooming-in. The clustering is re-evaluated upon navigation. To 

improve cluster stability between short, repeated zoom changes, the distance threshold, for 

deciding whether an inset should be assigned to a particular cluster, is dynamically adjusted 

as illustrated in Fig. 5.5ii. During zoom-in, clusters remain unchanged until the distance 

between the farthest nearest neighbors is larger than 1.5 times the distance threshold. During 

zoom-out, clusters and insets will not be merged until their distance is less than half the 

distance threshold. This limits the changes to cluster composition upon navigation to 

facilitate the user’s mental map of the pattern space. Details about the re-evaluation 

algorithm are provided in Algorithm S4. Our clustering approach is relatively simple to 

ensure high rendering performance. Our approach is inspired by DBSCAN [18] but we do 

not implement recursive scanning of nearby neighbors as we strive for a spatially-uniform 

partitioning to provide useful navigational cues rather than continuous clusters.
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We designed two approaches to visually represent clusters. When exploring matrices, 

clusters are aggregated into piles and feature a 2D cover matrix together with 1D previews 

[1,41]. The cover matrix represents a statistical summary of the patterns on the cluster, e.g., 

the arithmetic mean or variance. 1D previews are averages across the Y dimension and 

provide a visual cue into the variability of patterns on the pile. The number of previews is 

limited to a user-defined threshold. For larger numbers of previews, we employ KMeans 

clustering and only represent 1D previews for the average patterns of each KMeans cluster. 

Clusters of patterns from photographic images and geographic maps are aggregated into a 

gallery of cluster representatives. A small digit indicates the number of patterns for clusters 

larger than four. Drawing on insights from work on parameter exploration, design, or 

ideation space [40, 44, 61, 62], we show a diverse set of patterns as the representatives. The 

largest pattern in the gallery is representing the most important pattern, according to a user-

defined metric like a confidence score or click rate, or simply the area of the annotated 

pattern by default. The other three gallery images are chosen to represent the clusters 

diversity as described in detail in Algorithm S5. The pile-based aggregation is useful for 

patterns with well-alignable shapes, e.g., rectangles, lines, or points, to provide a concise 

representation of the average pattern and pattern variance. The gallery aggregation is 

preferable for patterns of diverse shapes as an average across shape boundaries does not 

provide meaningful insights.

4.4 Inset Interaction

Scalable Insets introduces a small number of interactions and is otherwise agnostic in terms 

of the navigation technique. Upon moving the mouse cursor over an inset the hue of its 

border and leader line change and a hull is drawn around the location of the annotated 

patterns represented by the inset. Upon scale-up (Fig. 5.6i), it is possible to leaf through the 

1D previews of a pile or the representatives of a gallery (Fig. 5.6ii). Insets are draggable 

(Fig. 5.6iii) to allow manual placement and uncover potentially occluded scenery in the 

overview (CONTEXT). Dragging disconnects insets from the locality criterion to avoid 

immediate re-positioning to the inset’s previous position upon zooming. This is visualized 

with a small glyph indicating a broken link (Fig. 5.6iii) and can be reversed through a click 

on this glyph.

5 Implementation

To demonstrate the utility of Scalable Insets, we built a web-based prototype for gigapixel 

images, geographic maps, and genome interaction matrices. Scalable Insets is implemented 

as an extension to HiGlass [36], an open-source web-based viewer for large tile-based 

datasets. The Scalable Insets extension to HiGlass is implemented in JavaScript and 

integrates into the React [19] application framework. D3 [8] is used for data mapping and 

matrices are rendered in WebGL with PixiJS [25]. Scalable Insets utilizes HTML and CSS 

for positioning and styling insets and leader lines. Almost all parameters can be customized 

via a JSON configuration file1 and fall back to sensible default values otherwise. The server-

side application, which extracts, aggregates, and serves the images for insets, is implemented 

1https://github.com/fltps://g/higlass-scalable-insets#config

Lekschas et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/fltps://g/higlass-scalable-insets#config


in Python and built on top of Django [13]. Both, the front-end and back-end applications, are 

open-source, and freely available at https://github.com/flekschas/higlass-scalable-insets.

6 Evaluation

6.1 Study 1: Quantitative Evaluation

In the first user study we compare the performance of Scalable Insets to boundary boxes 

highlighting in terms of frequency estimation, visual search, and comparison, and we assess 

the effects of CONTEXT and LOCALITY on the two placement techniques of Scalable Insets.

Techniques: We compared the following three techniques, which are illustrated in Fig. 6. 

We chose bounding boxes (BBox) as the baseline technique given its minimal interference 

with the visualization, its support for areal and point annotations, and its frequent 

application. The method is also easy to implement and computationally simple, which 

enables us to evaluate the performance overhead of Scalable Insets on tasks for which the 

visual details of annotated patterns are irrelevant. We compare the baseline technique against 

Scalable Insets’ inner- (Inside) and outer-placement (Outside), where annotated patterns are 

shown as insets placed inside and outside the visualization respectively together with mildly-

translucent boundary boxes.

Data: For the study, we chose seven photographic gigapixel images2 from Gigapan [24] 

showing different cities (e.g., Fig. 6). We used two images for practice trials and the 

remaining five for the test trials. The annotated patterns represent user-defined annotations 

from Gigapan. Image sizes ranged from 100643 × 43935 pixels to 454330 × 149278 and the 

number of patterns ranged from 82 to 924.

Tasks: We defined three tasks (illustrated in Fig. 6) for which we measured completion 

time (in seconds) and accuracy (in percentage). In Region we asked the participants, “Which 
region contains more fully enclosed annotations: A or B?”. The goal of REGION is to test 

whether the computational and visual overhead introduced by Scalable Insets impacts the 

general performance in exploring multiscale visualizations. Since REGION does not require 

the user to know the visual details of annotated patterns, all techniques should perform 

equally. Frequency estimation is a common task for visual attention or highlighting [27] and 

helps to guide users [71]. Evaluating the general performance is essential as pattern 

exploration in multiscale visualizations consists of several tasks and worse performance in 

one of them could reduce the overall applicability. In Pattern the participants had to “find an 
annotation showing [pattern] and select it”. Where [pattern] was replaced with a description 

of a manually chosen pattern that appears 2–3 times in the image, e.g., “a helicopter landing 

field”, and is not identifiable at the initial zoom level, as this would have otherwise made the 

task trivial. Efficiently locating a target is a critical property of navigation and guidance 

techniques [32,68]. The question is whether showing visual details (DETAIL) of patterns too 

small to be visible at a certain zoom level is beneficial for search and if the distance between 

insets and their origins (LOCALITY) influences the performance. In Type we asked the 

2Gigapan IDs: 149705, 40280, 48635, 47373, 33411, 72802, and 66020
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participants “which visual pattern type appears more frequently: A or B?”, where A and B 
were replaced with two generic pattern types appearing multiple times but not equally often, 

e.g., “swimming pools” and “construction sites”. Most of these patterns were again not 

identifiable at the initial zoom level. Navigation often incorporates comparing multiple 

pattern instances [32] to decide which area to explore in more detail. Here we try at find out 

if CONTEXT and LOCALITY influence the performance in pattern comparison. Finally, It should 

be noted that all tasks were conducted with interactive visualizations and especially PATTERN 

and TYPE required panning and zooming to be solved accurately.

Hypotheses: We formulated one hypothesis per task: First (H1), there will be no 

significant difference in time and accuracy between any of the techniques for REGION as the 

detailed visual structure of annotated patterns is not important for estimating the pattern 

frequency. Second (H2), for the PATTERN task, INSIDE will be faster than OUTSIDE and OUTSIDE 

will be faster than BBOX. We expect the inner-placement of insets to be most efficient as the 

detailed visual structure of annotated patterns is displayed spatially close to their original 

location, i.e., eye movement is minimized. We expect the outer-placement of insets to be 

slightly slower compared to INSIDE, due to eye movement, but faster than the baseline 

technique as it still shows the visual details of annotated patterns. Finally (H3), for the TYPE 

task, INSIDE and OUTSIDE will be faster than BBOX. We expect Scalable Insets with both 

placement mechanisms to perform equally fast and better than BBOX as they both highlight 

the detailed visual structure of annotated patterns.

Participants: We recruited 18 participants (7 female and 11 male) from Harvard 

University after obtaining approval from Harvard’s Institutional Review Board. 3 

participants were aged between 18 to 25, 13 were aged between 25 to 30, and the remaining 

2 were aged between 31 and 35. All participants volunteered, had no visual impairments, 

and were not required to have particular computer skills. Each participant received a $15 gift 

card upon completion of the experiment.

Study Design: We used the following full-factorial within-subject study design with Latin 

square-randomized order of the techniques:

18 participants

× 3 techniques: BBox, Inside, Outside

× 3 tasks: Region, Pattern, Type

× 5 timed repetition (excluding 2 practice trials)

810 total trials (45 per participant)

Participants were split evenly between the 3 Latin square-randomized technique orders. The 

task order was kept constant across all participants and conditions. To avoid learning effects 

between images, the set of annotated patterns was split into 3 groups of an equally-sized 

region in the image. The order of these regions was kept constant, i.e., the first technique 

always operated on the first quadrant of the images. To avoid memory effects between 

REGION and PATTERN, we excluded the patterns relevant in PATTERN from the REGION trials. 
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Furthermore, the patterns for PATTERN were chosen such that they are not contained in or in 

close proximity to the two regions that were compared in REGION. Each trial is repeated on 

the 5 different images. Finally, we ordered the images by size and amount of patterns. The 

first image is the smallest and contains the fewest annotations. The annotation frequency, 

size, and structural difficulty increase with the last image being the largest and most 

frequently annotated. The order of the images was kept the same.

Setup: The study was conducted on a MacBook Pro (Table S7), which was equipped with a 

standard two-button scroll-wheel mouse. INSIDE and OUTSIDE parameter settings are provided 

in Table S5.

Procedure: The study was conducted in individual sessions that started with an overview 

of the general procedure, obtaining consent, and briefly introducing the study software (2 

minutes), which guided the participants through each task. In the beginning, gender and age 

group was collected and participants had to solve a 12-image Ishihara color blindness test 

[31]. Prior to the actual test trials, participants were shown detailed instructions and had to 

complete two practice trials to familiarize themselves with the user interface and respective 

task. Once the user selected an answer the timer stopped and a click on the next button was 

awaited before starting the next trial. Participants were instructed to finish the trials as fast as 
and as accurately as possible but to also rely on their intuition when estimating frequencies 

(REGION and TYPE). In the end, participants were asked to anonymously fill out a 

questionnaire on the general impression of Scalable Insets.

Results.—We found that completion time was not normally distributed after testing 

goodness-of-fit of a fitted normal distribution using a Shapiro-Wilk test. We visually 

inspected dot plots with individual data points and removed trials that are more than 4 

standard deviations away from the arithmetic mean time. These trials are most likely related 

to severe distraction. This resulted in the removal of 3 trials from REGION, 1 trial from 

PATTERN, and 1 trial from TYPE. Given the non-normal distribution of completion time and 

the unequal number of trials due to outlier removal, we report on non-parametric Kruskal-

Wallis and post-hoc Holm–Bonferroni-corrected [28] Mann-Whitney U tests with for 

assessing significance. For accuracy, we used a Chi-square test of independence. All p-

values are reported for α = .05. In the following, we report on time (in seconds) and 

accuracy (in percent) by task and use pp to denote percentage points. Fig. 7 summarizes the 

results.

Results for Region: A pairwise post-hoc analysis revealed a significant difference for 

completion time between BBOX-INSIDE (p=.0187) and BBOX-OUTSIDE (p=.0031) but not for 

INSIDE-OUTSIDE. The respective mean times are BBOX=13.4s (SD=14.2), INSIDE=14.1s 

(SD=10.4), OUTSIDE=14.2s (SD=8.25). This constitutes an approximate speedup of 5.0% for 

BBOX over INSIDE and 5.6% for BBOX over OUTSIDE. These results let us reject H1 as BBOX 

was fastest. Given that in absolute numbers INSIDE and OUTSIDE are only 0.7s and 0.8s slower 

than BBOX suggests that overhead imposed by insets is fairly small and likely diminishes 

upon performance improvements to the current implementation of Scalable Insets as 

discussed later. For accuracy, we found a significant increase for BBOX (27pp) and INSIDE 
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(24pp) over OUTSIDE (χ2(1,N=177)=30.4, p<.0001 and χ2(1,N=179)=22.7, p<.0001). We 

believe that this difference might be caused by misinterpretation or confusion of leader line 

stubs as they might have appeared like or occluded the bounding box around annotated 

patterns.

Results for Pattern: We found marginally significant differences for completion time 

between BBOX-INSIDE (p=.057) and significant difference between BBOX-OUTSIDE (p=.0018). 

The mean times were BBOX=39.4 (SD=42.5), INSIDE=26.2 (SD=25.1), OUTSIDE=21.8 

(SD=22.9). This amounts for an approximate 44.9% speedup for OUTSIDE over BBOX and 

33% speedup for INSIDE over BBOX and shows high potential for search tasks when the 

detailed visual structure of patterns and their location is important. While we could not 

confirm the superiority of INSIDE over OUTSIDE, we find a clear improvement of Scalable 

Insets over the baseline technique BBOX. We can thus partly accept H2. The speedup is a 

very strong indicator that the core principal of Scalable Insets is efficient for pattern search. 

We hypothesize that the stronger speedup for OUTSIDE might be due to the alignment of 

insets in the outer-placement mechanism as this is potentially beneficial for fast sequential 

scanning. This advantage might diminish when contextual cues are included in the search 

task as well, e.g., find an annotated car at an intersection, which we did not explicitly test 

for. For accuracy, we did not find any significant differences.

Results for Type: We found no significant differences for completion time between 

BBOX, INSIDE, and OUTSIDE. The mean times were BBOX=32.7 (SD=21.3), INSIDE=28.3 

(SD=16.1), OUTSIDE=26.6 (SD=17.2). Although only marginally significant, we recognize an 

approximate 18.7% speedup for OUTSIDE over BBOX on completion time. These results let us 

reject hypothesis H3. For accuracy, our results show pairwise significant differences between 

BBOX-INSIDE (χ2(1,N=179)=9.66, p=.0022) and BBOX-OUTSIDE (χ2(1,N=180)=23.5, p <.

0001). This describes an approximate improvement of 22pp for INSIDE over BBOX and an 

approximate improvement of 32pp for OUTSIDE over BBOX. While the completion time alone 

is not conclusive, the results for accuracy indicate that OUTSIDE and INSIDE provide a much 

better understanding of the distribution of pattern types. Participants with BBOX were only 

marginally significantly slower but made a lot more mistakes.

Finally, the 5 repetitions were completed on different images. Since all participants 

performed each task with every design on all images, the differences between images have 

equal impact on all designs and the comparison between the 3 designs indicates true 

differences. Intra-task variation is not our concern but it would be an interesting research 

question for future work.

Qualitative feedback: In the closing questionnaire (Supplementary Table S2), 

participants were asked to rank the general impression (Q1), usefulness (Q2), and simplicity 

to learn (Q3) on a 5-point Likert scale ranging from strongly disagree or negative (1) to 

strongly agree or positive (5) (Fig. 9). Overall, the participants perceived the Scalable Insets 

approach as promising (Q1) and useful (Q2) for exploration. The high ratings for the 

usability (Q3) indicate that the participants had no problem learning how to use Scalable 

Insets. In the free-form questions on intuition and general feedback (Q4 and Q5), two 

aspects were mentioned multiple times: sudden disappearance of insets once the size of the 
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original location is larger than a pre-defined threshold (Q4) and the relatively low resolution 

of insets until scale-up (Q5). The first aspect could be addressed in the future by employing 

a doi function for dynamically adjusting the behavior of insets. The relatively low resolution 

was due to performance reasons and can be mitigated through preprocessing of the inset’s 

images.

6.2 Study 2: Qualitative Evaluation

The goal of our second study was to evaluate the usability and usefulness of Scalable Insets 

in a scientific setting. To that end we conducted exploratory sessions with computational 

biologists, exploring large-scale matrices from structural genomics (Fig. 8) using INSIDE and 

OUTSIDE. The apparatus was the same as in the first study.

Dataset: We obtained genome interaction matrices at the order of 3 × 3 million rows and 

columns that are visualized as a heatmap. These heatmaps contain various types of visual 

patterns that act as proxies for cellular properties and functions and are annotated 

algorithmically. The frequency of these patterns ranges from a few hundred to hundreds of 

thousands per matrix, and analysts are interested in finding, comparing, and contextualizing 

patterns across many zoom levels (more details are described elsewhere [41]).

Participants: We recruited 6 computational biologists (2 female and 4 male) working in 

structural genomics. 3 experts are PhD candidates and 3 are postdoctoral researchers. Every 

expert was familiar with HiGlass [37] but did not see Scalable Insets. All participants 

volunteered, had no visual impairments, and received $15 upon completion.

Tasks & Study Design: The study consisted of individual open-ended sessions lasting 

between 20 to 30 minutes. The domain experts were asked to verbalize their thoughts and 

actions. Most participants started with INSIDE and some with OUTSIDE. In both cases the 

participants switched the layout after half the time.

Procedure: After collecting consent, each participant was briefly introduced to Scalable 

Insets and the data that was to be explored (<2 minutes). Next, we asked the participants to 

freely explore the data while the screen and audio was recorded for later analysis. Finally, 

each participant anonymously filled out a questionnaire.

Results.—The results suggest that Scalable Insets is easy-to-learn as the participants 

immediately picked up the core concept of Scalable Insets and started exploring the dataset. 

Having magnified and aggregated views of annotated patterns inside the visualization was 

perceived useful for exploring genome interaction matrices. The domain experts noted that 

they were able to find and evaluate the detailed visual structure of the patterns without 

having to navigate extensively. See Supplementary Table S3 for the complete protocol.

In general, we found that insets were often used as quick previews to assess a pattern before 

zooming into a specific location. Frequently, this assessment included comparison between 

different patterns and involved sequential scale-ups of the compared insets via mouse clicks. 

Also, some participants first sequentially hovered over the insets or moved the mouse cursor 

along the diagonal of the matrix to localize the insets. During pan-and-zoom, we noticed that 
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participants used insets as navigational guidance by hovering the target inset, which 

subsequently highlighted the original location of the annotated pattern. Furthermore, we 

observed that INSIDE and OUTSIDE led to different behavior. For OUTSIDE, participants zoomed 

less often into the original location of an inset and instead compared the visual details of the 

patterns more frequently. P3 noticed, “It’s easier to compare [the patterns] since they are all 
lined up nicely.”. Some participants preferred one placement approach over the other but 

everyone noted that it would be useful to have the ability to switch between placement 

modes interactively. Some participants needed time to get used to the OUTSIDE with fading 

leader lines but appreciated the benefit for context preservation quickly. A drawback of the 

current implementation, mentioned by many participants, is the sudden disappearance of 

insets once their original location is large enough (e.g., 24 × 24 pixels). Although it is 

necessary to remove insets to release visual space for other annotated patterns, it could be 

beneficial to adjust the threshold based on a doi function. Insets in close proximity to the 

mouse cursor could remain visible until the user changes its focus.

Finally, as in the first user study, participants rated (Fig. 9) how useful and easy it was to 

learn Scalable Insets (Table S4 Q1–3) and also compared the functionality and usefulness 

for the domain-specific application (Table S4 Q5–10). The domain experts strongly 

indicated that they would use Scalable Insets to explore their own data, given that additional 

application-specific features are added. For example, P4 would like to “pin” insets to 

compare and aggregate them with other far-away annotated patterns. Others asked for the 

ability to dynamically change the color map, resolution, or size of an inset as well as 

annotating patterns interactively.

6.3 Computational Performance

We conducted a preliminary performance analysis of Scalable Insets’ placements and 

clustering algorithms on the gigapixel image shown in Fig. 6 with all 924 annotations. We 

decided to focus only on the placement and clustering algorithms as those are the core 

contributions of this paper. The choice of preprocessing, representation sampling, 

aggregation, or data transfer has an additionally impact on the performance but is highly 

application dependent. For reproducibility, we used a scripted navigation trajectory that we 

interpolated with D3 [8] zoom. We ran the animation 10 times and measured the frames per 

second (FPS) in Google Chrome’s DevTools (v74) on the same computer from Sect. 6.1. 

Table 1 provides a summary of the FPS across the animated trajectory that is shown in detail 

in Supplementary Figure S3. The inner- and outer-placement show an average frame rate of 

31 and 41 FPS respectively. The frame rate drops noticeably when more than 30 insets are 

displayed, the overall number of annotations gets close to 1000, or the location changes 

markedly in a short amount of time. Without Scalable Insets the animation runs at 60 FPS.

7 Discussion

We designed Scalable Insets as a guidance technique to improve exploration and navigation 

of high numbers of annotated patterns for tasks that involve awareness of the patterns’ 

detailed visual structure, context, and location. As the first study indicates, there is strong 

evidence that Scalable Insets support pattern search and comparison of pattern types. The 
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second study found that the choice of placement depends on the importance of overview and 

context; inner-placement was preferred for contextualizing annotated patterns, while outer-

placement was preferred for pattern comparison and gaining an overview.

Scalability and Limitations:

Scalable Insets has been designed for dense but sparsely-annotated multiscale visualizations 

where every pixel is associated with a data point. The current prototypical implementation 

can simultaneously visualize and place up to 100 insets from up to 1000 annotations within a 

viewport. The performance can be improved in the future through advanced preprocessing or 

more extensive use of WebGL. In general, the usefulness and performance of Scalable Insets 

decrease when the clusters of aggregated insets get significantly greater than 10 over several 

zoom levels. Also, the total number of insets should be limited to at most 50 to avoid low 

FPS and high cognitive load. Therefore, applying Scalable Insets to densely-annotated 

visualizations would require additional features such as filtering to ensure effective 

guidance.

Tradeoff Between Details, Context, and Locality:

Scalable Insets set out to provide a tradeoff between DETAIL, CONTEXT, and LOCALITY to 

manage exploration of high numbers of annotated patterns but to this end, the tradeoff is 

configured upfront by employing sensible defaults for the three use cases presented in this 

paper. To determine the parameters for placement and clustering, we manually inspected the 

visualization at an overview and detail viewpoint a few times to balance DETAIL and 

CONTEXT. For unevenly distributed annotated patterns we loosened the LOCALITY requirement 

to make use of areas without annotations. An unsolved question beyond the Scalable Insets 

technique is what defines a “good” tradeoff and how could this tradeoff be adjusted 

interactively during navigation and exploration depending on the user’s task.

Inset Design and Cluster Representation:

The design of the insets content highly depends on the data type and specific tasks. We 

provide two generic approaches: piling for pattern types of homogeneous shape, such as dots 

or blocks in matrices, and a gallery view of cluster representatives for pattern types of high 

variance and diverging shapes, such as patterns found in images and geographic maps. As 

participants in both studies noted, there are further possibilities for application-specific 

cluster representations. For instance, we employ a relatively simple representative sampling 

technique (Algorithm S5) based on Euclidean distance for visual diversity and performance. 

It would be interesting to study other types of sampling techniques in future work that 

incorporate the semantics of the underlying pattern.

Generalizability:

Scalable Insets is not limited to the three data types presented in this paper. Our technique 

can be applied to any types of multiscale visualization that exhibit a large number of 

sparsely-distributed patterns. Even mono-scale visualizations that entail a third dimension, 

such as magnetic resonance imaging, could be enhanced with Scalable Insets. The 

effectiveness of Scalable Insets depends on how important the detailed visual structure, 
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context, and location of the annotated patterns is. Finally, Scalable Insets is designed as a 

guidance technique with a minimal interaction space to be compatible with a wide range of 

navigation techniques like PolyZoom [32].

8 Conclusion and Future Work

Scalable Insets enable guided exploration and navigation of large numbers of sparsely-

distributed annotated patterns 2D multiscale visualizations. Scalable Insets visualizes 

annotated patterns as magnified thumbnails and dynamically places and aggregates these 

insets based on location and pattern type. While Scalable Insets currently supports images, 

maps, and matrices, we plan for other data types and scenarios, investigate techniques to 

cope with dense regions of patterns, and support more free-form exploration, e.g., through 

pinning and manually grouping of insets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Scalable Insets applied to a genome interaction matrix [57], gigapixel image [63], and 

geographic map from Mapbox [43] and OpenStreetMaps [49] (left to right). Various 

annotated patterns are highlighted in red.
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Fig. 2. 
The core idea of the Scalable Insets. (1) A multiscale visualization with annotated patterns, 

some of which are too small to be identifiable (indicated by “???”). (2) A space-scale 

diagram of the virtual pattern space, showing the pattern identifiability by zoom level. (3) To 

provide guidance, small patterns are placed as insets into the current viewport. Scalability is 

ensured by dynamically grouping insets in close proximity and representing them as an 

aggregate as shown in (4).
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Fig. 3. 
Three approaches exemplifying naive optimization of (1) LOCALITY, (2) CONTEXT, and (3) 

DETAIL only. The red rectangle in (C) indicates the size of the occluded image for reference.
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Fig. 4. 
Demonstration of the Scalable Insets approach on a gigapixel image of Rio de Janeiro [63] 

by The Rio—Hong Kong Connection [64] and ski areas around Utah and Colorado shown 

on a map from Mapbox [43]. The screenshots illustrate how Scalable Insets enables pattern-

driven exploration and navigation at scale; details are explained in Sect. 3.1. See 

Supplementary Figures S1 and S2 for scaled-up screenshots.
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Fig. 5. 
Schematic design principals of Scalable Insets. (1) Inset design and information encoding. 

(2) Visual representation of aggregated insets. (3) Leader line styles. (4) The inset placement 

mechanism and stability considerations of Scalable Insets. (5) Aggregation procedure and 

stability considerations. (6) Interaction between insets applied in Scalable Insets.
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Fig. 6. 
Screenshots from the first user study showing Rio de Janeiro [64] with examples of each 

task and technique. (1) Comparing the frequency of annotated patterns in two distinct 

regions with BBOX. (2) Finding a specific pattern that shows a Brazilian flag with INSIDE. (3) 

Comparing the global frequency of patterns showing a “player or sports field” against 

“Brazilian flag” with OUTSIDE.
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Fig. 7. 
Mean completion time in seconds (lower is better) and mean accuracy in percent (higher is 

better) across tasks and techniques. Error bars indicate the standard error. Note, due to non-

normal distribution of completion time we report significance on the median time using 

Kruskal-Wallis and Holm-Bonferroni-corrected Mann-Whitney U tests.
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Fig. 8. 
Notes from the second user study. (1) Detailed inspection of an unexpected pattern through 

scale-up. (2) Zoom into the original location of a clustered pile of insets until it disperses. 

(3) Upon zoom-out, a new pattern appeared as an inset (see red arrow) and was recognized 

immediately. (4) Manual inspection of the context around the pile’s origin (end of the blue 

line). (5) Focus on a pile of two insets due to their location.
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Fig. 9. 
Results of the closing questionnaire. Mean values are indicated by a black bar. Questions 

marked with an asterisk have low absolute votes and are inconclusive. For details see 

Supplementary Table S6.
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Table 1.

Summary of the performance analysis. OUTSIDE has a slightly higher frame rate. For details see Supplementary 

Figure S3.

Time (s) 0 2 4 6 8 10 12 14 16 18

FPS Inner 14 15 35 51 32 21 47 45 23 24

FPS Outer 22 31 54 59 38 40 59 53 25 32

| Insets | 42 40 33 18 14 36 22 15 26 30

| Annotations | 924 893 492 123 120 281 361 116 165 674
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