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You can’t always sketch what you want:
Understanding Sensemaking in Visual Query Systems

Doris Jung-Lin Lee, John Lee, Tarique Siddiqui, Jaewoo Kim, Karrie Karahalios, Aditya Parameswaran

Abstract— Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified
using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice,
possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts
from three diverse domains—astronomy, genetics, and material science—via a year-long user-centered design process to develop a VQS
that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc
sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of
interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants
employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three

sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.

Index Terms—Visual analytics, exploratory analysis, visual queries

1 INTRODUCTION

Line charts are commonly employed during data exploration—the
intuitive connected patterns often illustrate complex underlying pro-
cesses and yield interpretable and visually compelling data-driven nar-
ratives [12]. However, discovering line charts that display certain
meaningful patterns, trends, or characteristics of interest is often an
overwhelming and error-prone process, consisting of manual examina-
tion of large numbers of line charts. For example, when trying to find
supernovae, which exhibits a unique pattern of brightness over time (an
initial peak followed by a long-tail decay), astronomers often have to
manually construct and inspect thousands of line chart visualizations to
find ones with their desired pattern. To address this exploration chal-
lenge, there has been a large number of papers dedicated to building
Visual Query Systems (VQSs)—a term coined by Ryall et al. [41] to
describe systems that allow users to specify and search for desired line
chart patterns via visual interfaces [9,11}18/20,25,27,41/47/49]. These
interfaces typically include a sketching canvas where users can draw a
pattern of interest, with the system automatically traversing all potential
visualization candidates to find those that match the specification.
While these intuitive specification interfaces were proposed as a
promising solution to the problem of painful manual exploration of
visualizations for time-series analysis [41,49], to the best of our knowl-
edge, VQSs have not lived up to these expectations and are not very
commonly used in practice. One likely reason for the lack of VQS adop-
tion may be attributed to how prior work has focused almost exclusively
on optimizing the pattern-matching algorithms and interactions, with
few invested in understanding actual user needs and how VQSs can be
used for solving real-world problems. Our paper seeks to understand
how VQSs can actually be used in practice, as a first step towards the
broad adoption of VQSs in data analysis. Unlike prior work on VQSs,
we set out to not only evaluate VQSs in-situ on real problem domains,
but also involve participants from these domains in the VQS design.
We present findings from a series of interviews, contextual inquiry, par-
ticipatory design, and user studies with scientists from three different
domains—astronomy, genetics, and material science—over the course
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Fig. 1: Lifecycle model summarizing our research approach and the outcome of each phase.

of a year-long collaboration. The amount of time we invested in each of
these three diverse domains surpasses the norm in this field and is key
to uncovering the insights presented in this paper. These domains were
selected to capture a diverse set of goals and datasets wherein VQSs
can help address important scientific questions, such as: How does a
treatment affect the expression of a gene in a breast cancer cell-line?
Which battery components have sustainable levels of energy-efficiency
and are safe and cheap to manufacture in production?

In this work, we adapt methods from user-centered design
(UCD) [14,311|32]], such as interviews, contextual inquiry, and partici-
patory design, into our design-implementation-evaluation cycle [44];
our methodology is summarized in Figure[T} Via contextual inquiry and
interviews, we first identified challenges in existing data analysis work-
flows in these domains that could be potentially addressed by a VQS.
Building on top of an existing open-source VQS, Zenvisage [47,/48],
we iterated on the design of the VQS with participants over the course
of a year to better compose data exploration workflows that lead to
insight discovery. Rather than targeting a domain-specific solution, we
engaged with multiple domains to observe differences and commonali-
ties across domains and synthesize high-level insights regarding the use
of VQSs. While conducting this multi-phased, mixed-methods research
agenda across three diverse use cases was challenging, this endeavor
was necessary for addressing the qualitative, participant-centered re-
search questions investigated.

We organize our design study findings into a taxonomy of VQS capa-
bilities, involving three sensemaking processes inspired by Pirolli and
Card’s notional model of analyst sensemaking [37]]. The sensemaking
processes include top-down pattern search (translating a pattern “in-the-
head” into a visual query), bottom-up data-driven inquiries (querying or
recommending based on data), and context-creation (navigating across
different collections of visualizations). We find that prior VQSs have
focused on enabling top-down processes (via sketching capabilities),
but have largely overlooked the two other processes that we found to
be essential in all three domains. These missing capabilities partially



explain why prior VQSs have not been widely adopted in practice.

We finally conducted an evaluation study with nine participants using
our final VQS prototype to address their research questions on their
own datasets. During this study, participants gained novel scientific
insights, such as identifying a star that was known to harbor a Jupiter-
sized planet, discovering a previously-unknown relationship between
solvent properties, and finding characteristic gene expression profiles
confirming the results of a related publication.

During this evaluation study, we were somewhat surprised to dis-
cover that sketching a pattern for querying is often ineffective on its
own. This is due to the fact that sketching makes the assumption
that users know the pattern that they want to sketch and are able to
sketch it precisely. However, this is typically not the case in prac-
tice. For example, the geneticists from our study often did not have a
preconceived knowledge of what to sketch for and relied heavily on
VQS-recommended common and outlying patterns to jumpstart their
queries. Likewise, while the material scientists from our study were
interested in datapoints that fall within specific value-ranges, they did
not have an apriori notion of what their desired patterns would look
like. Overall, participants typically opted to combine sketching with
other means of pattern specification—one common mechanism was
to drag-and-drop a recommended pattern onto the canvas, and then
modify it (e.g., by smoothing it out).

To further understand how participants engaged with VQSs in their
analytical workflows, we constructed a Markov model to characterize
how participants transitioned between different sensemaking processes
during their analysis. We found that participants often constructed a
diverse set of analytical workflows tailored to their domains by focusing
around a primary sensemaking process, while iteratively interleaving
their analysis with the two other processes. This finding points to
how all three sensemaking processes, along with seamless transitions
between them, are crucial for enabling the effective use and adoption
of VQSs for addressing real-world challenges.

To the best of our knowledge, our study is the first fo holistically ex-
amine how VQSs can be designed to fit the needs of real-world analysts,
and how they are actually used in practice. Working with participants
from multiple domains enabled us to compare the differences and com-
monalities across different domains, thereby identifying general VQS
challenges and requirements for supporting common analytical goals.
Our contributions include:

o a characterization of the problems addressable by VQSs through
design studies with three different domains,

« ataxonomy of essential VQSs capabilities, leading to a sensemak-
ing model for VQSs,

« an integrative VQS, zenvisage++ capable of facilitating rapid hy-
pothesis generation and insight discovery, resulting from iteration
with end-users,

« study findings on how VQSs are used in practice, leading to the
development of a novel sensemaking model for VQSs.

Our work not only opens up a new space of opportunities beyond
the narrow use cases considered by prior studies, but also advocates
common design guidelines and end-user considerations for building
next-generation VQSs.

2 ReLatep Work

We will now describe past work in visual query systems and existing
evaluation methods of visualization systems to provide background and
motivation for our work.

Visual Query Systems: Definition and Brief Survey

The term visual query system (VQS) was introduced by Ryall et al. [41]
and Correll and Gleicher [9] to describe systems that enable analysts to
directly search for line chart visualizations matching a queried pattern,
constructed through a visual specification interface. Examples of such
systems include TimeSearcher [[17}/18]], where the query specification
mechanism is a rectangular box, with the tool filtering out all of the line
charts that do not pass through it, and QuerySketch [49] and Google
Correlate [27]], where the query is sketched as a pattern on canvas,
with the tool filtering out all of the line charts that have a different
shape. Subsequent work, including TimeSketch [[11]], SketchQuery [9]],

and Qetch [25]], recognized the ambiguity in sketching by studying
how humans rank similarity in patterns. Finer-grained specification
interfaces and pattern-matching algorithms have also been developed to
improve the expressiveness of sketched queries and clarify how a sketch
should be interpreted. These VQSs include QueryLines [41]] where
queries can be flexibly composed of soft constraints and preferences and
SoftSelect [20] where users can vary the level of sketch similarity across
a search pattern. Beyond sketching, Zenvisage [47,|48]l, SketchQuery,
and TimeSearcher allow users to submit an existing visualization as
the query, either via drag-and-drop or double-clicking on the existing
visualization. In our work, we built on our system, Zenvisage, since it
was open-source, extensible, and included features beyond the pattern
match specification typically found in other systems, such as the ability
to add data filters and examine recommended patterns [48]].

Design and Evaluation Methodologies for Visualization Systems
Visualization systems are typically evaluated via in-lab usability studies
or controlled studies against existing visualization baselines [33}[38}50].
However, successful lab-tested systems do not always translate to
community acceptance and adoption. The unrealistic nature of con-
trolled studies has prompted the visualization research community
to develop more participant-centered, ethnographic approaches for
understanding how analysts perform visual data analysis and reason-
ing [2330,/38L143,/46]]. For example, multi-dimensional, in-depth,
long-term case studies (MILCs) combine interviews, surveys, logging,
and other empirical artifacts to create a holistic understanding of how a
visualization system can be used in its intended environment [46].

In the VQS literature, even though the development and evaluation
of advanced VQS algorithms and interactions has been well underway
for many years, prior work has yet to characterize and understand the
needs of target users and observe how VQSs may be used as part of
a real-world workflow, in order to address the initial questions of: 1)
whether the problems that VQSs aim to address are even the right ones
to address and 2) whether the chosen operations actually solve the user’s
problems. In the context of Munzner’s nested model for visualization
design and evaluation [30], this gap between research and adoption
stems from the common “downstream threat” of jumping prematurely
into the deep levels of encoding, interaction, or algorithm design,
before a proper domain problem characterization and datajoperation
abstraction design is performed. Our work fills this crucial gap in the
existing literature and highlights how incorrect assumptions adopted by
most prior work in this space regarding the first two stages of Munzner’s
model may have led to the present-day failures in VQS adoption.

We performed design studies [[23/43//46] with three different subject
areas for domain problem characterization by adopting user-centered
design practices. User-centered design (UCD) [[14}/31}/32] is a class
of techniques for iteratively designing a product that fits the needs
and desires of users. In UCD, users convey their needs to inform
design decisions. Through participatory design (PD) [29]|42], we
engaged potential stakeholders as active co-designers early on and
during every step of the design process, in order to develop a system that
they may eventually adopt in their analytical workflows. Participatory
design is a well-established UCD approach in the CHI and CSCW
communities and has been successfully applied to develop systems for
visual analytics [2}/7]], tangible museum experiences [8], and scientific
collaborations [|6,39]].

In order to “[/develop] a system model that will support [the] user’s
work” that subsequently “fosters participatory design”, Holzblatt and
Jones [[19]] describe contextual inquiry as a technique where researchers
observe participants in their own work environment. Likewise, we
first perform contextual inquiry and interviews with participants to
understand their research questions and the challenges associated with
their existing analytical workflows, and to identify design opportuni-
ties for VQSs. To better understand how VQSs can be used in-situ in
participant’s existing workflows, we regularly gathered feedback from
participants and collaboratively envisioned potential designs by demon-
strating preliminary versions of our protoype zenvisage++. Based on
our design findings, we contribute to the data/operation abstraction
design of VQSs in Munzner’s model by developing a taxonomy for
characterizing how analysts make use of VQSs to accomplish their ana-



lytical tasks. Finally, we validated our abstraction design with grounded
evaluation [21}/38]], where participants were invited to bring in their
own datasets and research problems that they have a vested interest in
to test our final deployed system.

3 MertHoDS

Via interviews and contextual inquiry in participants’ normal work
environments, we first identified the needs and challenges in partici-
pants’ existing data analysis workflows. Given these challenges, we
collaboratively designed VQS functionalities by engaging with experts
from three different domains throughout the design process, leading to
a final prototype zenvisage++. After the design phase, we conducted an
evaluation study to understand how VQSs are used in the real-world an-
alytical workflows. Our research methodology is illustrated in Figure[T}
we now describe the study procedure in more detail.

3.1 Phase I: Need-finding

We recruited participants by reaching out to research groups who have
experienced challenges in data exploration, via email and word-of-
mouth. Based on early conversations with analysts from 12 different
potential application areas, we narrowed down to three use cases in
astronomy, genetics, and material science through a process similar to
the “winnow” stage in Sedlmair et al. [43]. The domains were chosen
based on their suitability for VQSs as well as diversity in use cases.
Six scientists, with extensive research experience in their respective
fields, participated in the design process. We interviewed participants
to learn about their dataset and research questions, shadowed partici-
pants in conducting their existing analysis workflows, and subsequently
discussed the needs and challenges of their use cases. The interviews
were semi-structured and focused on how the analytical tasks in their
workflows relate to the scientific questions they were interested in.

3.2 Phase lI: Collaborative Prototyping

For iterative prototyping, we built on top of an existing open-source
VQS, Zenvisage [[47,/48]], to create a functional prototype to showcase
the capabilities of VQSs. The use of functional prototypes is a com-
mon and effective way of engaging with participants, by providing a
starting point for collaborative design [8]. We collaborated with each
team closely with approximately two 1-hour-long meetings per month,
where we learned more about their datasets, objectives, and what addi-
tional VQS functionalities could help address their research questions.
During these meetings, we collectively brainstormed with participants
on the design of the prototype. Participants also had the opportunity
to interact with the prototype through the help of a guided facilitator.
Through these excercises, we elicited feedback from participants on
how the VQS could better support their scientific goals and identified
and incorporated several crucial capabilities into zenvisage++.

3.3 Phase lll: Grounded Evaluation

After the prototyping phase, we performed a qualitative evaluation to
study how analysts interact with different VQS components in practice.
Participants used datasets that they have a vested interest in exploring to
address unanswered research questions (a total of six different datasets
across nine participants). The evaluation study participants included the
six scientists from Phase I and II, along with three additional “blank-
slate” participants who had never encountered zenvisage++ befor
The use of all or a subset of the project stakeholders as evaluation par-
ticipants is typical in participatory design [S[l. While the small sample
size of participants may be viewed as a limitation, this is a pervading
challenge when recruiting domain-experts [3}/26]]. Nevertheless, even
studies with a small group of domain experts involved are invaluable
for understanding expert needs [[43|].

Evaluation study participants were recruited from each of the three
aforementioned research groups, as well as domain-specific mailing
lists. Prior to the study, we asked potential participants to fill out a
pre-study survey to determine eligibility. Eligibility criteria included:
being an active researcher in the subject area with more than one year

"Details regarding participants can be found in the appendix in Table

of experience, and having worked on a research project involving data
of the same nature used in the design phase.

At the start of the in-lab evaluation study, participants were provided
with an interactive walk-through of zenvisage++ and given approxi-
mately ten minutes for a guided exploration of a preloaded real-estate
example dataset. After familiarizing themselves with the tool, we
loaded the participant’s dataset and encouraged them to talk-aloud
during data exploration, and use external resources as needed. If the
participant was out of ideas, we suggested one of the main VQS func-
tionalities that they had not yet used. If this operation was not applicable
to their specific dataset, they were allowed to skip the operation after
having considered it. The user study lasted for about an hour and ended
after they covered all the main functionalities. After the study, we asked
participants open-ended questions about their experience.

4 CurrenT PARTICIPANT WORKFLOWS AND OPPORTUNITIES

In this section, we describe our study participants, their scientific goals,
and their preferred analysis workflows, based on Phase I of our study.
While we collaborated with each application domain in depth, we focus
on the key findings from each domain to highlight their commonalities
and differences, in order to provide a backdrop for our VQS findings
described later on. Comparing and contrasting between the diverse
set of questions, datasets, and challenges across these three use cases
revealed new cross-disciplinary insights essential to better understand
how VQSs can be extended for novel and unforeseen use cases.

4.1 Astronomy

Participants and Goals:

The Dark Energy Survey (DES) is a multi-institution project that sur-
veys 300 million galaxies over 525 nights to study dark energy [10].
The telescope used to survey these galaxies also focuses on smaller
patches of the sky on a weekly interval to discover astronomical tran-
sients, i.e., objects whose brightness changes dramatically as a function
of time, such as supernovae or quasars. Their dataset consisted of a
large collection of light curves: brightness observations over time, one
associated with each astronomical object, plotted as a time series. Over
five months, we worked closely with A1, an astronomer on the project’s
data management team at a supercomputing facility. Their scientific
goal was to identify potential astronomical transients in order to study
their properties, i.e., identify patterns in line charts.

Existing Workflow and Design Opportunities:

Since astronomical datasets are often terabytes in scale, they are often
processed and stored in highly specialized data management systems
in supercomputing centers. As a preliminary step, the astronomer
downloads a data sample to explore in a Jupyter notebook, performs
data cleaning and wrangling, and verifies data fidelity by computing
a set of relevant statistics. Then, to identify transients, the primary
scientific goal of their exploration, the astronomer programmatically
generates visualizations of candidate objects with matplotlib and
visually examines each light curve. If an object of interest is identified
through visual analysis, the astronomer may inspect the image of the
object for verifying that the significant change in brightness was not
due to an imaging artifact. While experienced astronomers like A1 who
have examined many transient light curves can often distinguish an
interesting transient from noise by sight, manual searching for transients
is still very time-consuming and error-prone, since the large majority
of objects are false-positives. A1 immediately recognized the potential
of VQSs, since he could use specific pattern search queries to directly
identify these rare transients without cumbersome manual examination.

4.2 Genetics

Participants and Goals:

Gene expression is a common measurement in genetics obtained via
microarray experiments [35]. We worked with a graduate student
(G1) and professor (G3) at a research university who were using gene
expression data to understand how genes are related to phenotypes
expressed during early embryonic development. Their data consisted of
a collection of gene expression profiles over time for mouse stem cells,
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aggregated over multiple experiments. Their scientific goal was to
correlate gene function with their expression profiles (i.e., line charts)
by gaining a high-level overview of the expression profile patterns.
Existing Workflow and Design Opportunities:

G1 often downloads the raw microarray data from a public database
and preprocesses the data using a script written in R. Then, to explore
this data, G1 loads the preprocessed gene expression data into a custom
desktop application to visualize and cluster the gene expression profiles.
Prior to the study, G1 and G3 spent over a month searching for the
“right” number of groups to cluster the profiles, by iteratively tuning
the parameters on the clustering application and evaluating the output
via a mix of application-provided visualizations and programmatically-
generated statistics. While regenerating their results took no more than
15 minutes every time they made a change, the multi-step, segmented
workflow meant that all changes had to be done offline, this is, they
could only test out a few variations per week. When we first demon-
strated the capabilities of a VQS in our introductory meeting, G3 was
astonished to see that on performing an interaction, the recommended
visualizations updated almost instantaneously, as opposed to waiting
until the next meeting for G1 to re-generate the results. They expressed
an interest in VQSs, since the tool had the potential to dramatically
speed up their collaborative analysis process.

4.3 Material Science

Participants and Goals:

We collaborated with material scientists at a research university who
identify solvents for energy-efficient and safe batteries. These scientists
worked on a large simulation dataset containing chemical properties
for more than 280,000 solvents [22]. Each row of their dataset corre-
sponded to a unique solvent with 25 different chemical attributes. We
worked closely with a postdoctoral researcher (M1), professor (M2),
and graduate student (M3) to design a sensible way of exploring their
data. They wanted to use VQSs to discover solvents that not only have
similar properties to known solvents, but are also more favorable (e.g.,
cheaper or safer to manufacture). To search for these solvents, they
needed to understand how changes in certain chemical properties affect
others (expressed as trends in line charts) under specific conditions.

Existing Workflow and Design Opportunities:

M1 typically starts his data exploration process by applying filters to a
list of potential battery solvents using SQL queries (e.g., find solvents
with boiling point over 300 Kelvins and lithium solvation energy under
10 kcal/mol). By iteratively applying and adjusting different (often
complementary) sets of filters, he compares between different groups of
solvents by observing their properties across a small sample. He manu-
ally examines the properties of each individual solvent by inspecting
the 3D chemical structure of the solvent in a custom software, as well
as gathering information regarding the solvent by cross-referencing
an external chemical database and existing uses of this solvent in lit-
erature. The collected information, including cost, availability, and

other physical properties, enabled researchers to select the final set of
desirable solvents that could be feasibly experimented with in their lab.
While M1 could identify potential solvents through manual lookups
and comparisons, M2 and M1 saw the value in VQSs since it was often
impossible to manually uncover hidden relationships between different
attributes, such as how changes in one property affects the behavior of
others for a class of solvents, across large numbers of solvents.

4.4 Themes Emerging From Need-finding Phase

Across the domains, several themes emerged around the bottlenecks
that participants experienced in existing workflows.

¢ Need for Expressive Querying: While there is often a need to
compare among large numbers of data instances, it is difficult to
express and search for a desired shape-based pattern through pro-
gramming languages like SQL or Python. And yet, none of the
participants have heard of VQSs, let alone use them.

« Need for Integrative Workflows: Users often switched between
different analytical tasks, including preprocessing, parameter spec-
ification, code execution, and visualization comparisons. The
non-interactive nature of their segmented workflows impedes ex-
ploratory analysis and hinders collaboration.

¢ Need for Faceted Exploration: To deal with the large volume
of data present, users have to select particular samples or subsets
of data that are “worth investigating”. Often, the choice of what
criteria to apply as filters is also exploratory.

These themes seeded the collaborative feature discovery process, lead-
ing to the development of the system prototype, described next.

5 DesicN Process AND SysTEM OVERVIEW

Given the need for a VQS, we further collaborated with participants to
develop features to address their problems and challenges in Phase II of
our study. We first provide a high-level system overview of the design
product, zenvisage++, then we reflect on our feature discovery process.

5.1 System Overview

The zenvisage++ interface is organized into 5 major regions all of which
dynamically update upon user interactions. Typically, participants begin
their analysis by selecting the dataset and attributes to visualize in the
data selection panel (Figure[2JA). Then, they specify a pattern of interest
as a query (hereafter referred to as pattern query), through either sketch-
ing, inputting an equation, uploading a data pattern, or dragging and
dropping an existing visualization, displayed on the query canvas (Fig-
ure2B). zenvisage++ performs shape-matching between the queried
pattern and other possible visualizations, and returns a ranked list of
visualizations that are most similar to the queried pattern, displayed
in the results panel (Figure 2IC). At any point during the analysis, ana-
lysts can adjust various system-level settings through the control panel
(Figure[2D) or browse through the list of recommendations provided
by zenvisage++ (Figure 2E). For comparison, the existing Zenvisage
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Table 1: Taxonomy of key capabilities essential to VQSs and major features incorporated via user-centered design. We organize each feature based on its functional component. From left
to right, each of the three sensemaking processes (first column) is broken down into key functional components (second column) in VQSs. Each component addresses a pro-forma question
from the system’s perspective. Table cells are further colored according to the sensemaking process that each component corresponds to (Blue: Top-down, Yellow: Context creation, Green:
Bottom-up). We list the functional purpose of each feature based on how it is implemented in zenvisage++, example use cases from participatory design (A: astronomy, M: material
science, G: genetics), and similar features incorporated in past VQSs. Given the exhaustive nature of Table each motivated by example use cases from one or more domains, we further
organize the features in terms of the Section@sensemaking framework and assess their effectiveness in the Sectionmevalualion study.

system from [48] allowed users to query via sketching or drag-and-drop
and displayed representative and outlier pattern recommendations, but
had limited capabilities to navigate across different data subsets and had
few control settings. Our zenvisage++ system is open source and avail-
able at: http://github.com/zenvisage/zenvisage; other details
and documentation can be found at that link.

5.2 The Collaborative Feature Discovery Process

Throughout the design process, we worked closely with participants to
discover VQS capabilities that were essential for addressing their high-
level domain challenges. We identified various subtasks based on the
participant’s workflows, designed sensible features for accomplishing
these subtasks that could be used in conjunction with existing VQS
capabilities, and elicited feedback on intermediate feature prototypes.
Bodker et al. [4] cite the importance of encouraging user participation
and creativity in cooperative design through different techniques, such
as future workshops, critiques, and situational role-playing. Similarly,
our objective was to collect as many feature proposals as possible. We
further organized these features we added to zenvisage++ into Table[T]

through an iterative coding process [28]] by one of the authors.

We first collected the list of features, example usage scenarios, and
similar capabilities in existing VQSs as open codes, corresponding to
individual rows in Table[I] Then, we further organized this list into
axial codes representing “components”: core functionalities essential
to VQSs (second column in Table [I). Finally, the selective codes
capture each of the sensemaking processes (leftmost column in Table[T).
Instead of describing this table in detail, we present a typical example
of how this table is organized. From right to left, consider the row
corresponding to the Smoothing feature (column 3) in Table [T} one of
the common challenges in astronomy and material science is that noise
in the dataset can result in large numbers of false-positive matches. To
address this issue, smoothing is a feature in zenvisage++ that enables
users to adjust data smoothing algorithms and parameters on-the-fly to
both denoise the data and change the degree of shape approximation
applied when performing pattern matching. Smoothing, along with
range selection and range invariance, is part of the match specification
component: VQS mechanisms for clarifying how matching should
be performed. Both match specification and pattern specification (a


http://github.com/zenvisage/zenvisage

description of what the pattern query should look like) are essential
components for supporting the sensemaking process top-down pattern
search (in blue, as labeled in the leftmost column).

It is important to note that while some of the proposed features in
Table [T] (such as data filtering and view specification) are pervasive
in general visual analytics (VA) systems [1}|16], they have not been
incorporated in present-day VQSs. In fact, one of the key insights
here is in recognizing the need for an integrative VQS whose sum
is greater than its parts, that encourages analysts to rapidly generate
hypotheses and discover insights by facilitating all three sensemaking
processes. This finding is partially enabled by the unexpected benefits
that come with collaborating with multiple groups of participants during
the feature discovery process. Next, we reflect on what worked and
what didn’t work in the feature discovery process, to inform similar
design studies for visual analytics systems.

Cross-pollination and Generalization via Parallel Use Cases.
Introducing the newly-added features to zenvisage++ that addressed
a particular domain often resulted in unexpected use cases for other
domains. Considering feature proposals from multiple domains can
also result in cross-pollination of feature designs, often leading to
more generalized design choices. For example, around the same time
when we spoke to astronomers who wanted to eliminate sparse time
series from their search results, our material science collaborators also
expressed a need for inspecting only solvents with properties above
a certain threshold. Instead of developing separate domain-specific
features, data filtering arose as a crucial, common operation that was
later incorporated into zenvisage++ to support this class of queries.

The Hidden Upfront Cost of Domain Integration.

While we expected to spend most of our collaborative design effort on
figuring out the mechanics of visual query specification and matching,
instead, preparing participant datasets for use in our system by meeting
data and system requirements was the most time-consuming aspect
of this phasg”| Data requirements include gaining an understanding
of the problem domain, understanding the types of data suitable for
a VQS, and cleaning and loading of this data. System requirements
include features required for the data to be visualized appropriately.
Often, participants could only envision the types of queries to issue and
how variations to the system could help better address their needs after
seeing their data displayed for the first time in the prototype. We also
found that the time it took us to satisfy the data and system requirements
decreased as we progressed to the later domains, by leveraging existing
features in our prototype to satisfy some of the upfront needs.

Build Connectors, not Swiss-Army Knives.

Participants often envisioned how VQSs can be used in conjunction
with other resources that they are familiar with, including those used for
reference, computing statistics, browsing related datasets, or examining
other data attributes or visualization types not supported in the VQS
(scatterplots, histograms). The prevalence of external tools for support-
ing analytical inquiries stems from how analysts often require multiple
data sources or data attributes to further develop or verity their hypoth-
esis. For example, to determine whether a particular gene belongs to a
regulatory network, G2 not only needed to look at the expression data
in the VQS, but also enrichment testing and knockout data. Likewise,
others used specialized tools for visualizing telescope images and 3D
chemical structures. Instead of forcing our VQS prototype into a swiss-
army knife, we instead focused on building connectors that enable
smoother transitions between tools. For example, our data upload and
pattern upload feature invites participants to bring data from an external
tool into zenvisage++, while our data export feature allowed users to
download the similarity, representative trend, and outlier results as csv
files from zenvisage++ into an external tool. For example, geneticists
could export the clusters directly from zenvisage++ as inputs to their
downstream regression analysis.

The Art of Problem Selection.

While our collective brainstorming led to the cross-pollination and
generalization of features, this technique can also lead to unnecessary
features that result in wasted engineering effort. During co-design,

2We provide a detailed timeline in Appendix

there were numerous features proposed by participants, not all of which
were incorporated. The reasons for not carrying a feature from design
to implementation stage included:

o Nice-to-haves: One of the most common reasons for unincorporated
features comes from participant’s requests for nice-to-have features.
We use two criteria (necessity and generality across domains) to
judge whether to invest in developing a particular feature.

e “One-shot” operations: We decided not to include features that only
needed to be performed once and remain fixed thereafter in the
analysis workflow. For example, certain preprocessing operations
such as filtering null values only needed to be performed once
with an external tool, whereas data smoothing is a procedure that
requires some degree of tuning and adjustments.

o Substantial research or engineering effort: Some proposed features
did not make sense in the context of VQS or required a completely
different set of research questions. For example, the question of
how to properly compute similarity between time series with non-
uniform number of datapoints arose in the astronomy and genetics
use case, but requires the development of a novel distance metric
and algorithm that is out of the scope of our design study objective.

¢ Underdeveloped ideas: Other feature requirements came from ca-
sual specification that was underspecified. For example, A1 wanted
to look for objects that have a deficiency in one band and high emis-
sion in another band, but the scientific definition of “deficiency” in
terms of brightness levels was ambiguous.

The decision of whether to invest in developing a feature requires
a careful balance between promoting unforseen feature and wasted
engineering efforts. Failure to identify these early signs may result in
feature implementations that turn out not to be useful for the participants
or result in feature bloat.

6 A SensemakiNg MobpeL For VQSs

We now revisit Table|[T]in an effort to contextualize our design findings
using Pirolli and Card’s sensemaking framework [37]. Pirolli and
Card’s sensemaking model for expert intelligence analysis distinguishes
between information processing tasks that are top-down (from theory
to data) and bottom-up (from data to theory). Correspondingly, in the
context of VQSs, analysts can query either directly based on a pattern
“in their head” [43]] via top-down pattern specification or based on the
data or visualizations presented to them by the system via bottom-up
data-driven inquiry. In addition, when analysts do not know what
attributes to visualize, context creation helps analysts navigate across
different collections of visualizations to seek visualization attributes
of interest. In this section, we first describe the objectives of each
sensemaking process, then we discuss how each sensemaking process
is comprised of functional components that address the problem and
dataset characteristics of each domain.

6.1 Top-Down Pattern Search

Top-down processes are “goal-oriented” tasks that make use of “anal-
ysis or re-evaluation of theories [and] hypotheses [to] generate new
searches” [37]. Applying this notion to the context of VQSs, the goal
of top-down pattern search is to search for data instances that exhibit
a specified pattern, based on analyst’s intuition about how the desired
patterns should look like “in theory” (including visualizations from
past experience or abstract conceptions based on external knowledge).
Based on this preconceived notion of what patterns to search for, the
design challenge is to translate the pattern query from the analyst’s
head to a query executable by the VQS. This requires both components
for specifying the pattern (pattern specification), as well as controls
governing how the pattern-matching is performed (match specification).
Pattern Specification interfaces allow users to submit exact descrip-
tions of a pattern query. This is useful when the dataset contains large
numbers of potentially-relevant pattern instances. Since it is often diffi-
cult to sketch precisely, additional shape characteristics of the pattern
query (e.g., patterns containing a peak with a known amplitude, or
expressible as a functional form) can be used to further winnow the list
of undesired matches.



Match Specification addresses the well-known problem in VQSs
where pattern queries are imprecise [9}|11}20] by enabling users to
clarify how pattern matching should be performed. Match specification
is useful when the dataset is noisy. When the pattern query satisfies
some additional constraints (e.g., the pattern is horizontally invariant),
adjusting these knobs prune away matches that are false-positives to
help analysts discover true desired candidates.

Usage Scenario: Al knows intuitively what a supernovae pattern
should look like and its detailed shape characteristics, such as the
amplitude of the peak and the level of error tolerance for defining a
match. He first performs top-down pattern search by querying for
transient patterns through sketching, then adjusts the match criterion
by choosing to ignore differences along the temporal dimension and
changing the similarity metric for flexible matching.

6.2 Bottom-Up Data-Driven Inquiry

In Pirolli and Card’s sensemaking model, bottom-up processes are
“data-driven” tasks initiated by “noticing something of interest in
data” [37]. Likewise in VQSs, bottom-up data-driven inquiry is a
browsing-oriented sensemaking process that involves tasks that are
inspired by system-generated visualizations or results. The design chal-
lenge for VQSs to support bottom-up inquiries is to develop the right
set of “stimuli” through recommendations that could provoke further
data-driven inquiries, as well as low-effort mechanisms to search via
these pattern instances through result querying. As we will discuss
later, this process is crucial but underexplored in past work on VQSs.
Recommendations display visualizations that may be of interest to
users based on the current data context. In zenvisage++, recommenda-
tions comprise of representative trends and outliers, which are useful for
understanding common and outlying behaviors when a small number
of common patterns is exhibited in the dataset.

Result querying enables users to query for patterns similar to a selected
data pattern from the ranked list of results or recommendations. Typi-
cally, analysts select visualizations with semantic or visual properties
of interest and make use of result querying to understand characteristic
properties of similar instances.

Usage Scenario: G2 does not have an upfront knowledge of what to
search for. She learns about the characteristic patterns that exist in the
dataset through the representative trends, a form of bottom-up inquiry,
as a means to jump-start further queries via result querying, as well as
understand groups of data instances with shared characteristics.

6.3 Context creation

While top-down and bottom-up processes operate on a collection of
visualizations with fixed X and Y attributes, context creation operates in
the regime where the analyst may be investigating the relationships be-
tween multiple different attributes or values of interest. Context creation
enables analysts to navigate across different visualization collections
to learn about patterns in different regions of the data. The design
challenge of context creation is to help users visualize and compare
how data changes between these different contexts by constructing visu-
alization collections with different visual encodings (view specification)
or different data subsets (slice-and-dice).

View specification settings alter the encoding for all of the visualiza-
tions on the VQS currently being examined. This ability to work with
different collections of visualizations is useful when the dataset is mul-
tidimensional and the axes of interest are unknown. Modifying the view
specification offers analysts different perspectives on the data to locate
visualization collections of interest.

Slice-and-Dice empowers users to navigate and compare collections of
visualizations constructed from different subsets of the data. Data navi-
gation capabilities are essential when the dataset has large numbers of
“support attributes” that may be related to the visualization attributes
(e.g., geographical location may influence the time series pattern for
housing prices). Analysts can either make use of pre-existing knowl-
edge regarding these support attributes to navigate to a data region that
is more likely to contain the desired pattern (e.g., filtering to suburbs to
find cheaper housing) or discover unknown patterns and relationships

between different data subsets (e.g., housing prices are lower in winter
than compared to summer).

Usage Scenario: M1 recognizes salient trends in his dataset such as
inverse or linear correlations, but does not have fixed attributes that he
wants to visualize or a pattern in mind to query with. Given a list of
physical properties of potential interest, he performs context creation
by switching between different visualized attributes to understand the
dataset from alternative perspectives. He can also dynamically create
different classes of data (e.g., solvents with low solubility or have high
capacity) to examine their aggregate patterns.

The three aforementioned sensemaking processes are akin to the
well-studied sensemaking paradigms of search (top-down), browse
(bottom-up), and faceted navigation (context creation) on the Web [[15|
34]]. Due to each of their advantages and limitations given different
information seeking tasks, search interfaces have been designed to sup-
port all three complementary acts and transition smoothly between them
to combine the strength of all three sensemaking processes. Our evalu-
ation study reveals that this integrative approach not only accelerates
the process of visualization discovery, but also encourages hypotheses
generation and experimentation.

7 EvaLuation Stupy Finpings

Based on audio, video screen capture, and click-stream logs recorded
during our Phase III evaluation study, we performed thematic analysis
via open coding to label every event with a descriptive code. Event
codes included specific feature usage, insights, provoked actions, con-
fusion, need for capabilities unaddressed by the system, and use of
external toold’| To characterize the usefulness of each feature, we fur-
ther labeled whether each feature was useful to a particular participant’s
analysis. A feature was deemed useful if it was either used in a sensible
and meaningful way to accomplish a task or address a question during
the study, or has envisioned usage outside of the constrained time limit
during the study (e.g., if data was available or downstream analysis was
conducted). In this section, we will apply our thematic analysis results
to understand how each sensemaking process occurs in practice.

7.1 Uncovering the Myth of Sketch-to-Insight

To understand the usefulness of different visual querying modalities, we
analyzed their frequency of use in our evaluation study. To our surprise,
despite the prevalence of sketch-to-query systems in the literature, only
two out of our nine participants found it useful to directly sketch a
desired pattern onto the canvas. The reason why most participants did
not find direct sketching useful was that they often do not start their
analysis with a specific pattern in mind. Instead, their intuition about
what to query is derived from other visualizations they encountered
during exploration, in which case it makes more sense to query using
those visualizations as examples directly (e.g., by dragging and drop-
ping that visualization onto the canvas to submit the query). Even if a
user has a pattern in mind, translating that pattern into a sketch is often
hard to do. For example, A2 wanted to search for a highly-varying
signal enveloped by a sinusoidal pattern indicating planetary rotation

, which was hard to draw by hand.

We further investigated the processes that participants engaged in
to construct pattern queries. Pattern queries can be generated by either
top-down (sketching based on user’s in-the-head pattern) or bottom-
up (drag-and-drop based on what user observes from data) processes.
While our study is not intended as a quantitative study with different
querying modalities as conditions, we wanted to get an estimate of the
relative frequency of different mechanisms across users. We examined
the sequence of interactions that led to each pattern query and labeled
each one based on one of the five ways it can be generated—two top-
down and three bottom-up wayﬂWe find that bottom-up processes are
40% more commonly used than top-down processes for generating a
pattern query. Within top-down processes, a pattern query could arise

3See Appendix @for details on our coding protocol.

4Top-down: sketch-to-query, sketch-to-modify; Bottom-up: Result querying
via object of interest, via ranked result, or via recommendations. See Appendix
Figure@]for more details.
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sketch-modified queries in red. are largely missing from prior VQSs.

from users directly sketching a new pattern or by modifying an existing
sketch. For example, M2 first sketched a pattern to find solvent classes
with anticorrelated properties (pattern as a straight line with negative
slope) without much success in finding a desired match. So he instead
dragged and dropped one of the peripheral visualizations similar to
his desired one and then smoothed out the noise in the visualization
via sketching, yielding a straight line, as shown in Figure [3] (left).
M2 repeated this workflow twice in separate occurrences during the
study and was able to derive insights. Likewise, A3 was searching for
pulsating stars characterized by dramatic changes in the amplitudes of
the light curves. She knows that stellar hotspots also exhibit dramatic
amplitude fluctuations, but unlike pulsating stars, the variations happen
at regular intervals. Figure [3] (right) illustrates how A3 first picked out
a regular pattern (suspected starspot), then modified it slightly so that
the pattern looks more “irregular” (to find pulsating stars).

The infrequent use of top-down pattern specification was also re-
flected in the fact that none of the participants queried using an equation.
In both astronomy and genetics, the visualization patterns resulted from
complex physical processes that could not be written down as equations
analytically. Even in the case of material science when analytical rela-
tionships do exist, it is challenging to formulate patterns as functional
forms in a prescriptive manner.

We found that some users employed match specification to remedy
undesired results from their top-down pattern queries. While we did not
rigorously study the effects of different analytical parameter settings,
we observed that more users refined their matches by adjusting the
range and degree of approximation, rather than opting for a different
similarity metric. This points to future work in developing more flexible
and intuitive vocabularies for modifying the match along the research
directions pursued in [9}[25]] over incorporating additional complex,
off-the-shelf matching objectives in VQSs.

Our findings suggest that while sketching is a useful construct for
people to express their queries, the existing ad-hoc, sketch-only model
for VOSs is insufficient on its own without data examples that can help
analysts jumpstart their exploration. In fact, we found that sketch-to-
query only accounted for about a fifth of the total number of visual
queries performed during the study. This finding has profound impli-
cations on the design of future VQSs, since our comparison of VQS
features across existing work (Table2) suggests that past work has pri-
marily focused on top-down process components, without considering
how useful these features are in real-world analytic tasks. We suspect
that these limitations may be why existing VQSs are not commonly
adopted in practice. Note that we are not advocating for removing the
natural and intuitive sketch capabilities from future VQSs completely,
but instead focusing future research and design efforts to examine other
(often underexplored) VQS sensemaking processes. Such processes
could be applied in conjunction with sketching to help analysts more
flexibly express their analytical goals, described next.

7.2 Insights via Context Creation and Bottom-up Approaches

As alluded to earlier, bottom-up data-driven inquiries and context
creation are far more commonly used than top-down pattern search
when users have no desired patterns in mind, which is typically the
case for exploratory data analysis. In particular, top-down approaches
were only useful for 29% of the use cases, whereas they were useful for
70% of the use cases for bottom-up approaches and 67% for context
creatimﬂ ‘We now highlight some exemplary workflows demonstrating
the efficacy of the latter two sensemaking processes.

Bottom-up pattern queries can come from either the ranked list
of results, recommendations, or by selecting a particular object of
interest as a drag-and-drop query. The most common use of bottom-up
querying is via recommended visualizations. For example, G2 and
G3 identified that the three representative patterns recommended in
zenvisage++ corresponded to the same three groups of genes discussed
in a recent publication [13]: induced genes (profiles with expression
levels going up — ), repressed genes (starting high then decreasing
T\, and transients (rising first then dropping at another time point
_/\-). The clusters provoked G2 to generate a hypothesis regarding
the properties of transients: “Is that because all the transient groups
get clustered together, or can I get sharp patterns that rise and ebb
at different time points?” To verify this hypothesis, G2 increased
the parameter controlling the number of clusters and noticed that the
clusters no longer exhibited the clean, intuitive patterns he had seen
earlier. G3 expressed a similar sentiment and proceeded by inspecting
the visualizations in the cluster via drag-and-drop. He found a group of
genes that all transitioned at the same timestep, while others transitioned
at different timesteps. By browsing through the ranked list of results,
participants were also able to gain a peripheral overview of the data
and spot anomalies during exploration. For example, A1 spotted time
series that were too faint to look like stars after applying the filter
CLASS_STAR=1, which led him to discover that all stars have been
mislabeled with CLASS_STAR=0 as 1 during data cleaning.

Context creation in VQSs enables users to change the “lens” by
which they look through the data when performing visual querying,
thereby creating more opportunities to explore the data from differ-
ent perspectives. Echoing the sentiment from past studies in visual
analytics regarding the importance of designing features that enable
users to select relevant subsets of data [|1},16}24L/45], we found that all
participants found at least one of the features in context creation to be
useful.

Both Al and A2 expressed that context creation through interactive
filtering was a powerful way to dynamically test conditions and tune val-
ues that they would not have otherwise experimented with, effectively
lowering the barrier between the iterative hypothesize-then-compare
cycle during sensemaking. During the study, participants used filtering
to address questions such as: Are there more genes similar to a known
activator when we subselect only the differentially expressed genes?
(G2) and Can I find more supernovae candidates if I query only on
objects that are bright and classified as a star? (A1). Three participants
had also used filtering as a way to query with known individual objects
of interest. For example, G2 set the filter as gene=9687 and explained
that since “this gene is regulated by the estrogen receptor, when we
search for other genes that resemble this gene, we can find other genes
that are potentially affected by the same factors.”

While filtering enabled users to narrow down to a selected data
subset, dynamic classes (buckets of data points that satisfies one or
more range constraints) enabled users to compare relationships between
multiple attributes and subgroups of data. For example, M2 divided
solvents in the database into eight different categories based on voltage
properties, state of matter, and viscosity levels, by dynamically setting
the cutoff values on the quantitative variables to create these classes.
By exploring these custom classes, M2 discovered that the relation-
ship between viscosity and lithium solvation energy is independent of
whether a solvent belongs to the class of high voltage or low voltage
solvents. He cited that dynamic class creation was central to learning
about this previously-unknown attribute properties:

All this is really possible because of dynamic class creation, so this allows

3See Appendix@]for details on how this measure was computed.



you to bucket your intuition and put that together. [...] I can now bucket
things as high voltage stable, liquid stable, viscous, or not viscous and start
doing this classification quickly and start to explore trends. [...] look how
quickly we can do it!

7.3 Combining Sensemaking Processes in VQS Workflows

Given our observations so far as to how participants make use of each
sensemaking process in practice, we construct a Markov model to
further investigate the interplay between these sensemaking processes
in the context of an analysis workflow. Markov models have been
used in the past by Reda et al. [40] in a similar manner to analyze
interaction sequences from open-ended, exploratory analysis evaluation
studies. The goal of such analysis is to quantitatively capture how users
“transitions between mental, interaction, and computational states”
to afford researchers to qualitatively characterize the processes and
behavioral patterns “essential to insight acquisition” [40].

To compute the state transition probabilities in the Markov model,
we make use of event sequences from the evaluation study, where each
event consists of labels describing when specific features were used.
Using the taxonomy in Table[I] we map each usage of a feature in zen-
visage++ to one of the three sensemaking processes. Each participant’s
event sequence is divided into sessions, each indicating a separate line
of inquiry during the analysis. Based on these event sequences—one
for each session, we compute the aggregate state transition probabilities
(edge weight labels in Figure ) to characterize how participants from
each domain move between different sensemaking processe

The transition probability represents the probability that an action
from one class would be followed by one from the other. For example,
in material science, 60% of events that started with bottom-up explo-
ration lead to context creation and to top-down pattern search the rest of
the time. Self-directed edges indicate the probability that the participant
would continue with the same type of sensemaking process. For exam-
ple, when an astronomer performs top-down pattern search, 64% of the
transitions were followed by another top-down process and by context
creation the rest of the time, but never followed by a bottom-up process.
This high self-directed transition probability reflects how astronomers
often need to iteratively refine their top-down query through pattern or
match specification when looking for a specific pattern.

To study how important each sensemaking process is for partici-
pant’s overall analysis, we compute the eigenvector centrality of each
graph, displayed as node labels in Figure[d] These values represent the
percentage of time the participants spend in each of the sensemaking
processes when the transition model has evolved to a steady state [36].
Given that nodes in Figure ] are scaled by this value, in all domains,
we observe that there is always a prominent node connected to two less
prominent ones—but it is also clear that all three nodes are essential
to all domains. Our observation demonstrates how participants often
construct a central workflow around a main sensemaking process based
on their analytical goals and interleave variations with the two other
support processes as they iterate on the analytic task. For example, the
material scientists focus on context creation 56% of the time, mainly
through dynamic class creation, followed by bottom-up inquiries (such
as drag-and-drop) and top-down pattern searches (such as sketch modifi-
cation). The central process adopted by each domain is tightly coupled
with the problem characteristics associated with each domain. For
example, without an initial query in mind, geneticists relied heavily
on bottom-up querying through recommendations to jumpstart their
queries.

The Markov transition model exemplifies how participants adopted
a diverse set of workflows based on their unique set of research ques-
tions. The bi-directional and cyclical nature of the transition graphs in
Figure @] highlight how the three sensemaking processes do not simply
follow a linear progression towards finding a single pattern or attribute
of interest. Instead, the high connectivity of the transition model illus-
trates how these three equally-important processes form a sensemaking
loop, representing iterative acts of dynamic foraging and hypothesis

OResults were broken down by domain, rather than on an individual basis,
since the analytical patterns within the domains are very similar (possibily due
to the similarity between analytical inquiries and datasets within the domains).
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Fig. 4: Markov models computed based on evaluation study event sequences, with edges
denoting the probability that participant in the particular domain will go from one sense-
making process to the next. Nodes are scaled according to their eigenvector centrality,
representing the percentage of time participants would spend in a particular sensemaking
process in steady state. The data consists of 206 event actions taken by participants during
the study (80 for astronomy, 65 for genetics, and 61 for material science).

generation. This finding reinforces the importance of each sensemak-
ing process and indicates that future VQSs need to be integrative in
supporting all three sensemaking process to enable a diverse set of
potential workflows for addressing a wide range of analytical inquiries.

7.4 Limitations

Although evidence from our evaluation study points to the infrequent
use of direct sketch, we have not performed controlled studies with
a sketch-only system as a baseline to validate this hypothesis. While
we employed quantitative comparisons in various analysis throughout
this section, our goal is to gain a formative understanding of VQS
usage behavior across our small sample. Future studies with larger
sample sizes and more representative samples are required to generalize
these findings. The goal of our study is to uncover qualitative insights
that might reveal why VQSs are not widely used in practice; further
validation of specific findings is out of the scope of this paper. While
concerns regarding study results being focused on zenvisage++ must
be acknowledged, we note that zenvisage++ is one of the most compre-
hensive VQSs to-date, covering many of the features from past systems
and more (as evident from Table[2). We believe that our integrative
VQS, zenvisage++, can serve as a baseline for future research in VQS
to evaluate against and build upon. Given that this paper covered three
design studies along with one evaluation study, we were unable to cover
each domain to the level of detail typically found in a dedicated design
study paper. Instead, our focus was to highlight the differences and
similarities among these domains relevant to the capabilities required
in VQS. Future longitudinal studies may also help alleviate the novelty
effects that participants may have experienced during the evaluation
study. While we have generalized our findings beyond existing work by
employing three different and diverse domains, our case studies have
so far been focused on scientific data analysis with domain-experts, as
a first step towards greater adoption of VQSs. Other potential domains
that could benefit from VQSs include: financial data for business intel-
ligence, electronic medical records for healthcare, and personal data for
quantified self. These different domains may each pose different sets of
challenges (such as designing for novices) unaddressed by the findings
in this paper, pointing to a promising direction for future work.

8 ConcLusioN

While VQSs hold tremendous promise in accelerating data exploration,
they are rarely used in practice. We worked closely with analysts
from three diverse domains to characterize how VQSs can address
their analytic challenges, collaboratively design VQS capabilities, and
evaluate how VQSs are used in practice. Participants were able to
use our final system, zenvisage++, for discovering desired patterns,
trends, and valuable insights to address unanswered research questions.
Based on these experiences, we developed a sensemaking model for
how analysts make use of VQSs. Contrary to past work, we found
that sketch-to-query is not as effective in practice as past work may
suggest. Beyond sketching, we find that each sensemaking process
fulfills a central role in participants’ analysis workflows to address their
high-level research objectives. We advocate that future VQSs should
invest in understanding and supporting all three sensemaking processes
to effectively “close the loop” in how analysts interact and perform
sensemaking with VQSs.
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In Appendix A, we first describe additional details about the participatory design process, as well as domain-specific artifacts collected from
contextual inquiry. Next, in Appendix B, we articulate the space of problems amenable to VQSs and describe how the sensemaking processes
(introduced in Section [6) fit into different parts of the problem space. In Appendix C, we provide supplementary information regarding our

analysis methods and results for the evaluation study. In Appendix D, we acknowledge the individuals and agencies that have made this work
possible.

A  ArTiFacTs FROM PaRTICIPATORY DESIGN

Information about each participants can be found in Table 3]

ID Dataset P_articip_ated Position Year_s. of DaFa.S‘*.‘
in Design Experience Familiarity
g A1 DES v Researcher 10+ 3
& A2 Kepler Postdoc 8 5
2 A3 Kepler Postdoc 8 5
8 G Mouse v Grad Student 4 4
§ G2  Cancer Grad Student 2 2
3 G3 Mouse v Professor 10+ 2
s 8 M1 Solvent (8k) v Postdoc 4 5
%% M2 Solvent (Full) v Professor 10+ 5
=& V3 Solvent (Full) v Grad Student 3 5

Table 3: Participant information. The Likert scale used for dataset familiarity ranges from 1 (not familiar) to 5 (extremely familiar).

During the contextual inquiry, participants demonstrated the use of domain-specific tools for conducting analysis in their existing workflow,
including:

o Image Cutout Service (Astronomy)

o Short Time-series Expression Miner (Genetics)

o Solubility Database (Material Science)
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Fig. 5: Screenshots from contextual inquiry. Left: Al performs data smoothing to clean the data and then examines a light curve manually using a
Jupyter notebook. Right: G2 uses a domain-specific software to perform clustering and visualize the outputs.
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Fig. 6: Desired insights, problem and dataset challenges for each of the three application domains in our study.


http://descut.cosmology.illinois.edu
http://cs.cmu.edu/~jernst/stem/
http://srdata.nist.gov/solubility/

Our collaboration with participants is illustrated in Figure[7] where we began with an existing VQS (Zenvisage, as illustrated in Figure[8) and
incrementally incorporated features, such as dynamic class creation (Figure[9), throughout the PD process.
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B CHARACTERIZING THE PROBLEM SpPACE FOrR VQSs

We now characterize the space of problems addressable by VQSs and describe how each sensemaking process fits into different problem areas that
VQSs are aimed to solve. Visual querying often consists of searching for a desired pattern instance (Z) across a visualization collection specified
by some given attributes (X,Y). Correspondingly, we introduce two axes depicting the amount of information known about the visualized attribute
and pattern instance as shown in Figure [T0]

Along the pattern instance axis, the visualization that contains the desired pattern may already be known to the analyst, exist as a pattern
in-the-head of the analyst, or be completely unknown to the analyst. In the known pattern instance region (Figure [T0]grey cell), systems such
as Tableau, where analysts manually create and examine each visualization one at a time, is more well-suited than VQSs, since analysts can
directly work with the selected instance without having to search for which visualization exhibits the desired pattern. We define fop-down pattern
search as the process where analysts query a fixed collection of visualizations based on their in-the-head pattern (Figure[I0|blue). On the other
hand, bottom-up data-driven inquiries (Figure[T0| green) are driven by recommendations or queries that originate from the data (or equivalently,
the visualization), since the pattern of interest is unknown and external to the user.

The second axis, visualized attributes, depicts how much the analyst knows about which X and Y axes they are interested in visualizing. In both
the astronomy and genetics use cases, as well as past work in this space, the attribute to be visualized is known, as data was in the form of a time
series. In the case of our material science participants, they wanted to explore relationships between different X and Y variables. In this realm of
unknown attributes, context creation (Figure[I0]yellow) is essential for allowing users to pivot across different visualization collections.
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Fig. 10: The problem space for VQSs is characterized by how much the analyst knows about the visualized attributes and the pattern instance.
Colored areas highlight the three sensemaking processes in VQSs for addressing these characteristic problems. While prior work has focused
solely on use cases in the blue region, we envision opportunities for VQSs beyond this to a larger space of use cases covered by the yellow and
green regions.



C EvaLuartioN Stupy ProtocoL

Here, we detail the procedures that were conducted during the evaluation study. At the beginning of the study, participants were asked a set
of pre-study survey questions to collect basic information about participant’s dataset, scientific questions, and existing workflows. While this
information was similar to the ones collected through participatory design and contextual inquiry (Section[d)), the pre-study survey ensured that
we have background information even for the “blank-slate” participants (who were not part of the earlier design study).

e What is your current role as a scientist? What are some examples of recent questions you have researched?
o Describe the workflow that you currently use to analyze and make sense of this type of data.

e Can you describe an interesting finding you found with your current workflow and the process you took to obtain this insight?

After the tutorial and overview of the system, participant’s selected dataset was loaded in. Participants were asked about their familiarity with the
dataset and their analytical goals for the session.

e On a scale of 1-5, how familiar are you with this dataset? How long have you been working with this dataset? If you have worked with this
dataset before, is there any insight that you already know from this dataset?

e What is your goal for this dataset? What are you hoping to accomplish with this dataset?

During the main experiment, participants engaged in talk-aloud exercises as they explored their data. These two semi-structured interview
questions were often posed when participants begin a new line of analytical inquiry.

e What is your current goal in this phase of the exploration? What type of insights are you hoping to obtain?
e What actions are you planning to perform? How are you operationalize to achieve those goals?

In addition, we occasionally remind participants that they ask for help on something they want to accomplish on zenvisage++, but were not sure
about the sequence of interactions. They were also encouraged to use other tools in their existing workflow alongside zenvisage++ to perform
their analysis.

At the end of the study, we interviewed participants with a set of open-ended questions regarding their experience with zenvisage++, including:
e How was zenvisage++ different from your existing workflow?
e Can you describe how you would use zenvisage++ in your current workflow?
e On a scale of 1-10, how interested would you be in adopting this tool for your day-to-day workflow?
e What were some insights that you have gained from today’s session?

o Given the insights that you have obtained from zenvisage++, are there any additional analysis that you will run downstream before you
publish these results? Describe these additional downstream analysis steps.

e What are the pros and cons for using zenvisage++?
e Were there any queries that you were unable to address with zenvisage++ during today’s session?

e What are additional features in zenvisage++ that would help with your scientific workflow or serve your scientific need?



D EvaLuation Stupy ANALysis DeTaiLs

We analyzed the transcriptions of the evaluation study recordings through open-coding and categorized every event in the user study using the
following coding labels:
« Insight (Science) [IS]: Insight that connected back to the science (e.g. “This cluster resembles a repressed gene.”)
o Insight (Data) [ID]: Data-related insights (e.g. “A bug in my data cleaning code generated this peak artifact.”)
« Provoke (Science) [PS]: Interactions or observations that provoked a scientific hypothesis to be generated.
o Provoke (Data) [PD]: Interactions or observations that provoked further data actions to continue the investigation.
o Confusion [C]: Participants were confused during this part of the analysis.
o Want [W]: Additional features that participant wants, which is not currently available on the system.
« External Tool [E]: The use of external tools outside of zenvisage++ to complement the analysis process.
o Feature Usage [F]: One of the features in zenvisage++ was used.
o Session Break [BR]: Transition to a new line of inquiry.

Domain IS ID PS PD
astro 4 12 13 57
genetics g8 12 7 35
mat sci 14 8 7 44

Table 4: Count summary of thematic event code across all participants of the same domain.

W E BR F
18 20 22 67
13 1 21 52
11 3 12 48

IS !

In addition, based on the usage of each feature during the user study, we categorized the features into one of the three usage types:
o Practical [P]: Features used in a sensible and meaningful way.
« Envisioned usage [E]: Features which could be used practically if the envisioned data was available or if they conducted downstream analysis,
but was not performed due to the limited time during the user study.
o Not useful [N]: Features that are not useful or do not make sense for the participant’s research question and dataset.
The feature usage labels for each user is summarized in Figure[TT] A feature is regarded as useful if it has a P or E code label. Using the matrix
# of useful features in process
total # of features in processxtotal # of users "

from Figure |11} we compute the percentage of useful features for each sensemaking process as:

astro matsci genetics
Al A2 A3 M1 M2 M3 G1 G2 G3

. Sketch-to-query
Sketch-to-modify
Pattern Upload
Input Equation

Smoothing
Ignore x-range
Narrow x-range
Change Similarity Metric
Change Axis
Filter
Dynamic Class
Drag and Drop
Change Cluster Size
Representative and Outlier

I

Not Useful Envisioned Practical
Fig. 11: Heatmap of features categorized as practical usage (P), envisioned usage (E), and not useful (N). Columns are arranged in the order of
subject areas and the features are arranged in the order of the three foraging acts. Participants preferred to query using bottom-up methods such as
drag-and-drop over top-down approaches such as sketching or input equations. Participants found that context creation via filter constraints and
dynamic class creation were powerful ways to compare between subgroups or filtered subsets.
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Bottom-up Context
i Creation

Inquir

The Origins of Pattern Query

sketch-to-query

2 sketch-to-modify ;Z?{jgmnp
D object of interest
S ranked result
recommendation
o 1 5 4 4 5 & 7 & b 1w om

Usage Frequency
Fig. 12: The number of times a pattern query originates from one of the workflows. Pattern queries are far more commonly generated via
bottom-up than top-down processes.



Sensemaking Process
Top-Down Context Creation Bottom-Up
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Table 5: Table of example usage scenarios from each domain for each sensemaking process. We find that our participants typically have one
focused goal expressible through a single sensemaking process, but since their desired insights may not always be achievable with a single class
of operation, they make use of the two other sensemaking processes to support them in accomplishing their main goal.
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