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Exploranative Code Quality Documents

Haris Mumtaz, Shahid Latif, Fabian Beck, and Daniel Weiskopf
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Fig. 1. Exploranative code quality document for Lucene 2.0. A© Textual overview in terms of quality attributes, code smells, and bugs,
which includes embedded visualizations. B© Overview visualizations: parallel coordinates plot and scatterplot. C© Source code of a
class provided in the details view. D© Description of a quality attribute alternatively presented in the details view.

Abstract—Good code quality is a prerequisite for efficiently developing maintainable software. In this paper, we present a novel
approach to generate exploranative (explanatory and exploratory) data-driven documents that report code quality in an interactive,
exploratory environment. We employ a template-based natural language generation method to create textual explanations about
the code quality, dependent on data from software metrics. The interactive document is enriched by different kinds of visualization,
including parallel coordinates plots and scatterplots for data exploration and graphics embedded into text. We devise an interaction
model that allows users to explore code quality with consistent linking between text and visualizations; through integrated explanatory
text, users are taught background knowledge about code quality aspects. Our approach to interactive documents was developed in a
design study process that included software engineering and visual analytics experts. Although the solution is specific to the software
engineering scenario, we discuss how the concept could generalize to multivariate data and report lessons learned in a broader scope.

Index Terms—Code quality, interactive documents, natural language generation, sparklines

1 INTRODUCTION

To create high-quality software, the stakeholders involved need to ob-
tain information about code quality. Existing visualization approaches
provide an overview of metrics related to code quality, but they often
lack to put data into context. Findings related to different code quality
aspects need to get connected, explanations might be required for stake-
holders less experienced in software quality, and making transparent
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the workings of analysis algorithms will increase trust into the quality
assessment. In contrast, some tools integrated into the software devel-
opment chain already make a step in this direction, however, consider
different quality aspects separately and use only simple visualizations.
Our goal is to go a step ahead and integrate visualizations with con-
textual information. We argue that textual descriptions are key to com-
municate context and guide the data exploration process. Additional
textual explanations can make the interface fully self-explanatory, allow
the integration of abstract information that is hard to explain visually,
and facilitate blending domain terminology with data descriptions.

We suggest a visual analytics solution that combines text and visu-
alization. The idea is to automatically generate textual descriptions
that guide the users through the main findings of a code quality analy-
sis. We augment the generated text with visualizations that also allow
users to interactively explore different aspects of source code quality.
With this, we adopt the ideas of exploranation (explanation and explo-
ration) [58, 61] and explorable explanations [56] for a visual analytics
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application in a professional context. We describe our underlying con-
cept as a general approach to represent multivariate data before we
tailor it in a design study process to the specific application of code
quality analysis.

In the visual analytics system shown in Figure 1, we use a multi-view
interface to present different perspectives on the data. The overview
panels on the left (Figure 1 A and B) show code quality information
in the form of text and visualizations. The main text (Figure 1 A)
summarizes code quality attributes based on four important indicators
(left) and discusses code smells and the bug history. We use visual-
izations embedded in the text (A: small icons and bars in line with
text and bar charts between the text lines) as well as traditional visual
representations of multivariate data (B: a parallel coordinates plot and a
scatterplot) to report metric values for the classes of an object-oriented
system. While the bar charts show a subset of related metrics per class
(grouped by packages) in stacked bars, the parallel coordinates plot
displays all metrics for all classes (i.e., each line represents a class);
the scatterplot adds a different perspective for a user-selected pair of
metrics. All visualizations are interactive and linked with each other
to support further exploration. Details are provided on demand in
the right panel (Figure 1 C and D). For instance, the user can learn
about the specifics of a class (C: textual description and source code)
or get background information about a specific code smell (D: expla-
nation and example). The navigation between the views is supported
by multi-directional vis–text interactions. This means that the text is
interactively linked with the visualization and vice versa; for example,
hovering a class in the text or in any visualization highlights the other
representatives of the same class across all views. With these features,
the system guides through the result of the code analysis and supports
active exploration of the data. Overall, our paper provides the following
main contributions:

• A general concept building on textual explanations, explorable
visualizations, and consistent linking between them to represent
multivariate data as interactive documents.

• A visual analytics system that allows users to learn and under-
stand code quality aspects in an interactive environment driven
by textual explanations and visual exploration.

• An interaction model that provides close integration of text and
visualization by interactive linking.

• Lessons learned from our design study that could impact the
design of data-driven interactive documents.

We have followed a design process involving four authors with a di-
verse background in software engineering, visual analytics, interactive
documents, and text generation. We have also conducted a formative
study with different external experts to evaluate and improve our system
in an iterative manner. Our system is available as a web application at
https://vis-tools.paluno.uni-due.de/cqd. We also provide the system
as well as the material and data of our formative study as supplemental
material [38].

2 RELATED WORK

Our overview of related work covers aspects of software engineering,
visualization, and visual analytics, as well as interactive documents.

Code Quality – Code quality is multi-faceted and covers, for in-
stance, testability, maintainability, and readability. To examine these
aspects, certain quality attributes (e.g., coupling, complexity, size) are
quantified by underlying software metrics; for instance, McCabe’s soft-
ware complexity metrics measure readability aspects of the code [33].
For object-oriented systems, a popular set of metrics is the CK suite
introduced by Chidamber and Kemerer [15] and the QMOOD metrics
(Quality Model for Object-Oriented Design) [8]. Many approaches
employ such metrics suites to distinguish parts of the source code in
terms of good, acceptable, or bad quality [18, 46] or to identify code
smells (problematic properties and anti-patterns of the code) [40].

Software Metrics Visualization – Visualizations of software met-
rics have already been used to investigate source code quality—we

cannot report all approaches here but give a brief overview. For in-
stance, Emden and Moonen [55] present a graph-based approach to
automatically detect code smells and investigate how code smells can
be integrated into a code inspection tool. Murphy-Hill and Black [39]
integrate a software metrics visualization with a source code view.
Erdemir et al. [17] provide a graph-based visualization tool encoding
multivariate metrics in the node glyphs of the graph. Diverse software
maps and cities [7,13,59] arrange the structure of a software project on
a 2D map and visually encode software metrics on top of this structure
(often in the form of 3D buildings). Mumtaz et al. [37] support the
interactive detection of code smells using parallel coordinates plots and
scatterplots. Also, several tools are available that build on visualiza-
tions to assist developers in analyzing code quality in terms of software
metrics. For instance, SonarQube [5] controls and manages the code
quality in several ways, such as continuous inspection and issue de-
tection. The platform shows issues like code smells, bugs, etc. using
lightweight visualizations. It also helps developers collaborating with a
shared vision of code quality. There are some code analysis tools that
accomplish similar tasks as SonarQube, for instance, Checkstyle [2]
and PMD [4]. In contrast to these visualization approaches and tools,
we focus on providing more context to the data and explain the findings
and their background in detail. We are not aware of any approach that
uses a sophisticated text generation approach for this purpose.

Embedded Visualization – Visualizations included into the lines
or paragraphs of a text are known as sparklines [54], word-sized [12],
or word-scale graphics [20]. They allow close and coherent integration
of the textual and visual representations of data. Some approaches
apply these in the context of software engineering and embed them into
the code to assist developers in understanding a program. Harward et
al. [21] and Sulı́r et al. [52] suggest augmenting the source code with
visualizations to keep track of the state and properties of the code. Beck
et al. [9, 10] implement embedded visualizations for understanding
program behavior and performance bottlenecks. Similarly, Hoffswell
et al. [22] and Swift et al. [53] augment source code with visualizations
to aid understanding of runtime behavior. We embed visualizations
into natural language text (not into source code) to support better
understanding of the quality of the source code.

Natural Language Generation – Natural language generation al-
lows us to automatically generate text from raw or pre-processed
data [44]. There are plenty of approaches that focus on automated
text generation [19]. Few solutions also deal with the combined genera-
tion of text and visualization. Such combinations have been applied, for
instance, to operational or maintenance-related instructions for mechan-
ical devices [57], explanatory captions of diagrams for information
graphics [35], reports of brain imaging data [23], weather forecast
reports using predictive data analysis [42, 50], evaluation of learning
analytics in education [43], and author profiles of the visualization
community [27]. Automated text generation has also been employed
in the context of software engineering, for instance, for describing
software models, such as class diagrams or use case diagrams, where
they are augmented with textual descriptions [14, 29, 30, 34]. Even
more related to our solution are those approaches that deal with textual
reports for source code, such as code documentation and summariza-
tion [32, 36, 48], commit messages [16], or reports on the runtime
behavior of the code [11]. However, none of these approaches dis-
cusses code quality. Also, the results are usually not presented as
highly interactive documents that support the exploration of the data.

Text–vis Linking – The interactive linking of text and visualiza-
tions has only been explored to some extent. Beck and Weiskopf [12]
propose an abstract interaction model for documents containing text,
word-sized graphics, and regular visualizations; all three types of data
representations are linked via brushing-and-linking. Latif et al. [28]
describe an authoring solution for web documents to produce some
of those interactions. Our interaction model also uses and extends the
model by Beck and Weiskopf. Kim et al. [25] advocate for text–text
linking to facilitate document reading. In their approach, the linking
is supported between text in the main body and text in tables. Few
of the systems that generate both text and visualization—for instance,
VIS Author Profiles [27] and interactive Map Reports [26]—discuss
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interactions, but still focus more on explanations and offer limited
data exploration. Voder [49], in contrast, focuses more on interactions
and supports the data exploration process by offering short descrip-
tions about key findings in the data. However, it does not generate a
comprehensive report with longer descriptions.

In summary, although existing approaches present source code in-
formation, they lack in putting data into context and providing expla-
nations. None of the systems, also outside the software engineering
community, supports exploranation as a process blending explanations
and explorations in a way that we envision leveraging the interactive
combination of textual and visual descriptions. We are inspired by the
abstract idea of interactive linking of text and visualizations by Beck
and Weiskopf [12] to support exploranation. We adopt CK, QMOOD,
and McCabe’s metrics (listed in Table 1) and use them in combination
with pre-defined thresholds to analyze and present source code quality.

3 EXPLORANATIVE DOCUMENTS FOR MULTIVARIATE DATA

With our approach, we want to support active reading [6] of multivari-
ate data. The readers should not be restricted to passively consume
explanations but be facilitated to actively explore the data as well. They
can read with a specific focus, break the content apart, and analyze its
meaning. In contrast to traditional visual analytics interfaces, which
focus on exploration, we provide more guidance to the users in the
form of textual explanations, while—to some extent—preserving the
explorative power of an interactive visualization. While our concrete
implementation is tailored to software metrics and related code quality
characteristics, our general approach applies to multivariate data in a
broader sense and might even extend to wider classes of interactive
documents. In this section, we introduce the generic concept, before
the following sections present the details of the tailored solutions.

We build on ideas from Ynnerman et al.’s concept of explorana-
tion [61] and Victor’s explorable explanations [56]. Ynnerman et al.
introduce exploranation—a coinage stemming from the terms explo-
ration and explanation—for scientific communication, for instance,
to show visitors of a museum a visualization of an ancient mummy,
guide them to interesting aspects but also let them explore it; related
earlier work by Weiskopf et al. [58] combines visual explanation and
exploratory visual experiments for similar scenarios. We adopt this
idea for a visual analytics scenario. Although our targeted professional
audience is narrower, we also want to make the data easy to access.
Some of Ynnerman et al.’s design principles also apply to our scenario,
in particular, that explorative microenvironments blend with signposted
narratives. With respect to the visual representations used, Victor’s
suggestions for explorable explanations are even closer to our work as
they also focus on interactive documents. We employ explorable exam-
ples and contextual information, as two of three suggested categories
of explanations.

Our approach of exploranative documents for multivariate data com-
prises the following building blocks.

(I) Textual Explanations – The main feature that distinguishes
our approach from most other visual analytics solutions is the use
and integration of automatically generated textual explanations. We
discern different types of explanations: (i) Data-driven explanations
summarize the data and results of data analysis (e.g., identification of
patterns or clustering) while pointing to remarkable observations and
giving examples. (ii) Educational explanations provide background
on the domain concepts reflected in the data. (iii) Methodological
explanations give details about how the analysis was performed and
the reason why the system came to certain conclusions. While the
data-driven explanations are the focus of the documents, the two other
types provide important context. The users can obtain, on demand, for
what parts of the data summary they require background information.

(II) Explorable Visualizations – In addition to the textual explana-
tions, the explorative component is mostly contributed by interactive
visualizations. (i) Overview visualizations should have a consistent
location in the interface and be visible all the time. In the specific
solution, we will build on parallel coordinate plots and scatterplots
as such overview visualizations, but the approach is open to any ap-
propriate visualization of multivariate data (e.g., scatterplot matrices,

tabular-like representations, multivariate glyphs, projection methods).
(ii) Embedded detail visualizations, in contrast, enrich the text with
further information and just show subsets or aspects of the data. There
can be regular visualizations that scroll with the respective text, but also
word-sized representations embedded in the text (sparklines [12, 54]).
The better these visualization are integrated with the text, the easier it
will be for users to explore them along reading the text. In general, the
exploration process can happen visually by users deciding to look at
and investigate certain elements of the visualization. On top of that, in-
teractions to subselect the data and pick out individual elements further
extend the users’ abilities with respect to exploration.

(III) Consistent Linking – Like in a traditional multi-view visual
analytics system, a challenge is to maintain a clear linkage between the
different views. However, in our case, the linking becomes even more
difficult because data is described on very different levels of abstraction
and with different modalities (text and visualization). We apply the
concept of (i) vis–text interaction [12], which suggests linking all
three representations—textual, visual, and embedded visual ones—in
a bidirectional way using hover and click interactions. For instance,
hovering a word in a text, the related entities can be highlighted across
all views and also in textual descriptions. (ii) Consistent color coding
is used to further clarify relationships between the different textual and
visual descriptions of related data. We suggest applying a consistent
color coding of the different variables across all representations. Similar
variables can be grouped by hue and get assigned a different brightness.

With these concepts, we support active reading and the explorana-
tion process. The users are first confronted with a summary text and
associated overview visualizations. One group of readers, especially
first-time users, might follow mainly the provided narrative and start
reading at the top left. Whenever something is unclear from the high-
level summary, they can explore the required background on demand.
After having read the main text, they might switch to exploring the
data further using visualizations. In contrast, another group of users
that might be more experienced could immediately start the data explo-
ration process. While some information can be directly gained from the
visualizations, for other insights occasionally reading the textual expla-
nations can provide support. The textual summaries might also point
them to interesting findings that they might have missed otherwise.

The resulting approach can be classified as a visual analytics solution
that puts emphasis on presentation, storytelling, and dissemination. In
terms of the sensemaking process described by Pirolli and Card [41], it
covers the sensemaking loop (i.e., build a case, tell a story, search for
support, and reevaluate) rather than the foraging loop (i.e., search and
filter, read and extract, search for information, and search for relations).

4 CODE QUALITY ANALYSIS

In this section, we discuss the application scenario and explain the data
processing required for it.

4.1 Targeted Users

The targeted users of our system are mainly the stakeholders who are
concerned with source code and its quality. Being well-informed about
the quality of source code can help them in taking steps to improve
various aspects that need attention. The group includes mainly software
developers who work with the code on a daily basis; they need to read
and understand the code to be able to extend and maintain it. But the
group also extends to testers, software architects, product owners, or
project managers. For example, stakeholders like product owners and
project managers can use our system to assess the overall quality of a
project and use the gained information to prioritize quality concerns.
In essence, this target user group is much wider than just code quality
experts and highly experienced developers. For this reason, we believe
that integrating guidance and explanations will provide valuable support
for most of the users and allows them to draw actionable conclusions.
However, just presenting a static report would not suffice because the
prepared summaries and explanations can only be a starting point for
investigating a detected problem in detail.
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Table 1. Class-level software metrics (name and acronym) used for code quality analysis, grouped by quality attributes.

Quality Attribute Software Metric Acronym Description

Complexity Weighted methods per class wmc The sum of all method complexity values for a class.
Maximum cyclomatic complexity max cc The maximum of all the method-level complexity values of a class.

Coupling Afferent coupling ca The number of other classes that depend on a class (incoming dependencies).
Efferent coupling ce The number of other classes on which a class depends (outgoing dependencies).

Cohesion Lack of cohesion of methods lcom3 It checks whether the methods access the same set of variables of a class.

Inheritance Depth of inheritance dit The inheritance levels for a class.
Number of children noc The number of immediate descendants of a class.

Other Average method complexity amc The average size of the methods in a class.
Lines of code loc The total lines of code present in a class.
Number of public methods npm The number of methods declared as public in a class.
Number of bugs bug The number of bugs that have been associated with a class.

4.2 Data

Software metrics provide significant information on code quality. We
employ software metrics belonging to object-oriented metrics known
as Chidamber and Kemerer metrics suite [15], QMOOD metrics [8],
and McCabe’s complexity metric [33]. The metrics are at class-level
abstraction; they quantify quality attributes of the classes of a software
project. Specifically, we work with a subset of 11 metrics in total
(Table 1). The selected metrics are often employed to measure quality
attributes, for instance, the coupling between objects metric measures
the degree of interdependence between classes, which is consistent
with how coupling is traditionally defined. Excessive coupling results
in a weak modular design and limits the maintainability of a class. This
means that the coupling properties of a class need to be analyzed to
ensure better modularity and maintainability. Similarly, other metrics
measure different characteristics of the classes that need to be monitored
for better software quality. We selected the object-oriented metrics that
quantify four different quality aspects: complexity, coupling, cohesion,
and inheritance. The metrics listed in “Other” category (in Table 1)
reflect general properties like size or are required for the detection of
code smells. To show how bug-prone the code has been, we include the
number of bugs associated with each class at a respective point during
the development process.

4.3 Code Quality Analysis

From the related work, we observe that there are many class-level
metrics that can be linked to code quality [37,40,51]. These approaches
employ thresholds to detect code quality issues. Software metrics are
also used to express abstraction level quality characteristics, such as
coupling, complexity, cohesion, and inheritance [18,46]. In our system,
we also apply software metrics with the thresholds defined by Filó et
al. [18] to measure these quality attributes. We rate the quality level
(good, regular, or bad) of a component or the severity level of a problem
(high, medium, or low).

Code smells provide information on implementation decisions or
choices that might degrade code quality [63]. Again based on related
work [40], we detect four types of common class-level code smells:
Large Class, Functional Decomposition, Spaghetti Code, and Lazy
Class using class-level metrics. Large Class is the one that has many
fields and methods, resulting in many lines of code [63]. A class
with many private fields and methods is associated with Functional
Decomposition [63]. A class with Spaghetti Code has long methods
without proper structure [63]. A class with little to no functionality is
a Lazy Class [63]. Since we have class-level metrics, it is possible to
compute these code smells using predefined thresholds.

Based on the metrics and this analysis, the content of the code
quality document comprises three parts: first, quality attributes covering
coupling, complexity, cohesion, and inheritance; second, code smells
in terms of Large Classes, Functional Decomposition, Spaghetti Code,
and Lazy Classes; and third, information about bug history.

Summary Details

Data-driven 
explanations

Methodological 
explanations 

Overview Visualizations

Educational explanations

Parallel coordinates plot Scatterplot

Embedded detail 
visualizations

Source code

Fig. 2. Abstract representation of the interface structure.

5 EXPLORANATIVE CODE QUALITY DOCUMENTS

Using the described software quality analysis (Section 4) and our
generic approach (Section 3), we have developed a visual analytics so-
lution named Code Quality Documents. Our system is implemented as
a web application using the libraries D3js, JQuery, JQuery Sparklines
and builds on the standard D3js implementations of parallel coordinates
plots and scatterplots. In this section, we first give an overview of the
interface, then explain the individual components, and finally describe
the interaction model that links the different components.

5.1 Interface Structure
We designed a multi-view interface with different panels for overview
descriptions and details. Figure 2 shows an abstract representation
of the interface, which maps the building blocks described in Sec-
tion 3 to the different panels—specific examples of the interface can be
found in Figure 1 and Figure 3. The summary panel presents the main
data-driven textual explanations (I.i) summarizing the results of code
quality analysis (Section 4.3). In addition, it contains embedded visu-
alizations (II.i) and methodological explanations can be retrieved on
demand (I.iii). The panel for the overview visualizations (II.i) contains
a parallel coordinates plot and a scatterplot. The details view provides
educational explanations (I.ii) or class details on selection.

The data-driven text describes code quality along with quality at-
tributes, code smells, and bugs. The overview text contains detailed
embedded visualizations and a list of classes corresponding to certain
categories of code smells. By default, these details are not expanded in
this panel. An icon [+] indicates that details are available and can be
expanded. This dynamic expansion is similar to the concept of interline
in fluid documents [62], where additional details are shown within the
lines of the text. An info icon i© hints at the presence of methodolog-
ical explanations. Hovering this icon presents a tooltip (similar to a
popup in fluid documents [62]) that describes the methodology used to
come up with the respective detail. In Figure 4, the tooltip shows the
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Fig. 3. Various instances of vis–text interactions. A persistent highlighting (click on TraverseSchema) marks the related elements with bold font in text
(text–text), a black line in the parallel coordinates, a black dot in the scatterplot (text–vis), and black background in embedded detail visualizations
(text–emvis). Similarly, a non-persistent highlighting (hover on UTF8Reader ) marks the corresponding elements in yellow. The details panel shows
the class-specific description and source code of the persistently selected class, TraverseSchema.

Fig. 4. Methodological explanation of classifying complexity in terms of
low, regular, or good.

software metrics and their thresholds used to classify low, regular, or
good complexity. We argue that highlighting different quality issues
with methodological explanations can assist users in making decisions
to improve the quality.

Educational explanations are related to the domain of code quality.
The names of the quality attributes and the software metrics carry a
thick colored border at the bottom. Clicking on these terms brings
up background information in the details view. The description also
includes project-specific examples to better communicate the concept.
For instance, Figure 1 D© shows the educational explanation for the
quality attribute cohesion; WhitespaceAnalyzer is provided as an exam-
ple of a class having the highest value of lack of cohesion of methods.
In a similar way, explanations on code smells can be accessed. Clicking
on a class anywhere in the system opens the source code of that class

in the details view preceded by a class-specific explanation providing a
short summary of problems in the class, if any.

5.2 Natural Language Generation

To automatically produce textual descriptions, we need to generate text
from data. We aim at a self-explanatory and understandable text that
has a natural flow and appears almost as if written by a human. To this
end, we employ template-based natural language generation [19], a
simple, but effective and easy-to-use generation method.

Our text generation process is based on previous work [11, Section
IIIA] [27, Section 4.2] and can be modeled as directed decision graphs—
one for each subsection of the report. The decision graph consists of
start, stop, decision, and text nodes. Any traversal of the graph from
start to stop node results in a report section. Decision nodes control the
flow of the graph based on the values of decision variables. Text nodes
consist of predefined templates with variables in them filled with the
information coming from data. Traversing a text node adds a phrase or
sentence to the report section. Even in the text nodes, we make extensive
use of conditions, not just to account for different grammatical cases
such as plural or singular but also to describe different cases and provide
reasons for an analysis result. For instance, we not only list the number
of classes that have low quality with respect to any of the four quality
attributes but explain reasons for the rating. The same rating can even
have different reasons (Figure 3: “The code complexity is okay as 79
classes are rated as having low quality, still fewer than the ones rated
as good (153) or regular (61).” and “The usage of class inheritance is
okay. Although not a high number of classes (13) is rated as having
low quality, many are just classified as regular (148) and fewer as good
(132).” We leave out sentences if no results are available and handle
special cases. For instance, a special case for this paragraph is when no
code smells were found: “We have not detected any class-level code
smells in the project—congratulations.”
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text–emvis

emvis–text

Textual Explanations
Embedded Detail 

Visualizations

Overview Visualizations

text–text emvis–emvis

vis–vis

Fig. 5. Abstract representation of the interaction model. We have bi-
directional interactions among text, embedded visualizations (emvis),
and overview visualizations (vis).

5.3 Visualizations
For data exploration and context of the textual descriptions, we provide
two overview visualizations: a parallel coordinates plot and a scatter-
plot. These visualizations are useful in discerning important patterns
and relationships between metrics [45]. We argue that users can find
these visualizations useful in understanding the code quality and com-
paring the properties of different classes. To obtain an overview of
all the metrics, the parallel coordinates plot is helpful, whereas the
scatterplot supports the identification of relationships between two
metrics.

In addition to these visualizations, the embedded detail visualizations
complement the text generated in the document. We employ small bar
charts to represent the metric values of one category for all classes,
structuring the classes with respect to the packages in which they are
contained. Furthermore, we use word-sized bar charts to indicate
percentage values. The values always refer to problematic cases (e.g.,
low quality or bug-prone classes) and are given relative to the overall
number of classes. Small star icons and warning symbols provide a
quick hint of the respective rating for each quality attribute.

We use consistent color coding to couple the visualized metrics. For
instance, in Figure 3, the colors of complexity metrics in the caption of
the parallel coordinates plot match the color coding of the complexity
bar chart in the quality attributes section. The metrics are grouped
in terms of the quality attributes—two metrics of the same group are
associated with the same hue but a different brightness.

5.4 Interaction Model
To connect textual and visual descriptions, consistent interactive linking
is important (see also Section 3). We build on the concept of vis–text
interaction introduced by Beck and Weiskopf [12]. In addition to the
local interactions discussed above (i.e., interactions that only locally
impact the interface, such as details blended in on demand), a global
interaction model is intended to link the various visual representations.
In slight adaption to the model of Beck and Weiskopf, we discern the
textual explanations (text), overview visualizations (vis), and embedded
visualizations (emvis). As shown in Figure 5, these representations are
interactively linked to each other in a bi-directional way.

As these components contain different representations of the same
class-level multivariate data, an essential interaction is the brushing
and linking of data points across all representations. Hovering over
a class name anywhere in the text triggers a transient selection (a
non-persistent selection). It highlights the corresponding poly-line
in the parallel coordinates plot (text–vis), the dot in the scatterplot
(text–vis), the bars in the embedded visualizations (text–emvis), and
other occurrences of the class name in the text (text–text). Figure 3
shows the effect of hovering over the class name ; the linked
parts are highlighted with yellow color. Apart from the other instances
of the hovered class in text, we also mark the corresponding code

smells. The Large Class and Spaghetti Code are highlighted since
UTF8Reader contains both of these code smells (Figure 3). Hovering
over a bar in the embedded visualization and a dot in the scatterplot has
a similar effect and triggers emvis–vis/vis–vis, emvis–text/vis–text, and
emvis–emvis/vis–emvis interactions.

The transient selection shows as long as the interactive element is
hovered and provides a quick way of cross-referencing different repre-
sentations. To make the highlighting persistent, the interactive elements
can be clicked; the parts related to the clicked element are highlighted
with black color in the visualizations and with bold font in the text.
For instance, Figure 3 shows the persistent selection corresponding to
the class . This helps in getting a comparative overview
of two different classes with respect to various aspects; one glance at
Figure 3 is sufficient to tell that UTF8Reader and TraverseSchema have
one code smell (Large Class) in common. In addition, we can quickly
observe that UTF8Reader has less complexity (embedded visualiza-
tion for complexity), fewer lines of code (scatterplot), and fewer bugs
(parallel coordinates plot) than TraverseSchema.

Clicking on a code smell, aside from showing an educational ex-
planation in the details view, highlights the set of classes that contain
that code smell in the parallel coordinates plot and scatterplot (text–
vis)—Figure 6 shows the result of clicking Functional Decomposition.
This helps in understanding the pattern of metric values for the classes
having different code smells. Since the scatterplot illustrates the rela-
tionship between any two software metrics, we update the dimensions
of the scatterplot on persistent interactions according to the context.
For example, clicking on Functional Decomposition will update the
scatterplot dimensions to weighted methods per class and number of
public methods as these metrics are used to identify the smell (see
Figure 6). Moreover, users can explore the relationships between other
metrics. Since lines are hard to select in a parallel coordinates plots
(they are thin and often occlude each other), we provide a persistent
range selection on the axes (brushing interaction with mouse press and
hold). On every persistent selection, the caption of the figures adapts
accordingly to describe the selected elements (see Figure 6). In contrast
to legends, the textual captions allow for the inclusion of contextual
and methodological information (e.g., data filtering criterion), which
helps in making the interactive visualizations more self-explanatory.

6 DESIGN PROCESS AND EVALUATION

We followed a design process in which the authors of this paper worked
in close collaboration as a team. Initially, the team was composed of
three members, but later another member was included because of a
specific skill-set. The fourth member was included in the fourth quarter
of the design process. The team has a blend of different backgrounds
and expertise. One member has expertise in software engineering; one
member works in the domain of software visualization; the third has
experience in visual analytics and visualization in general; the fourth
member (included later) has skills in automated text generation and
interactive documents. The team members were located at different
institutes, therefore, frequent visits were arranged. One member spent
a week at a lab where other members usually collaborate. In addition,
we organized regular meetings to share ideas and discuss the outcomes
of the design decisions for our system. Some of the implementation
work was completed in a pair programming setting. The process went
through a period of approximately 9 months with a focus on designing
a visual analytics system for a domain-specific problem.

Along the design process, we conducted a formative evaluation
(i.e., an evaluation that focuses on testing and improving intermediate
prototypes)—in the fourth quarter of the design process—to validate the
problem analysis and our visual analytics solution. We invited partici-
pants who were not part of the design process team and are not authors
of this paper. From our formative study, we obtained user feedback
and observed usage strategies. We performed a qualitative analysis of
the participants’ feedback—received through a questionnaire—where
they expressed their views (positive and negative) about our system.
In the questionnaire, we formulated tasks to analyze the usability and
usefulness of our system. In particular, through our formative study, we
assessed how different views coordinate with each other; how vis–text
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Fig. 6. A selection of the classes in Xerces 1.2 that have a Functional Decomposition smell; they are highlighted in the parallel coordinates plot and
the scatterplot. The caption of the visualizations adapts to describe the selection.

interaction support the exploration process; how text, visualizations
(embedded and non-embedded), and their interactive linking help in
the code quality analysis process. The results helped us refine and
improve our system. We conducted two iterations within the formative
study. The data from the user study is provided in the supplemental
material [38].

First Iteration – In terms of textual explanations, the first tested
version of the system had data-driven explanations, some educational
explanations, but no methodological explanations. From the interaction
perspective, the system had a few one-way text–vis interactions and
a few emvis–emvis interactions. Consistent linking was implemented
minimally. The first iteration of the formative study was organized with
four participants (3 PhD students and a postdoc), two with a software
engineering background and the other two working in visualization.
We decided for this mix of experts to receive educated feedback both
on the content of the documents as well as the data presentation. The
study included three phases and took approximately 45 minutes per
participant. In the first phase, participants were asked to use the system,
identify different aspects of code quality discussed in the document,
and summarize them. The second phase involved reviewing different
features of the system and providing detailed feedback on each. As the
third phase, we interviewed the participants, asked general questions,
and concluded the session. We performed a qualitative analysis of the
participants’ feedback. Although we received quantitative feedback
(through Likert scale) as well, we were more interested in textual
responses because they helped us identify areas for improvement. We
summarize the results as follows, also discussing our improvements
that we implemented as a reaction to the feedback.

All participants found the data-driven explanations helpful and com-
plementing the visualizations (“It is nice to see discussion on some
quality aspects of code. The tool analyzes the data well; interactions
and details of code are useful.”). However, due to the lack of educa-
tional and methodological explanations, they were unclear about certain
descriptions (“I have [had] a hard time trying to figure out the meanings
of the acronyms [metrics] in parallel coordinates plot and scatter plot
[...]”); two participants disagreed that the document is self-explanatory
due to lack of educational and methodological explanations (reaction:
we consistently added educational and methodological explanations).
One participant argued to exclude details about the project from the
main text because it distracted the focus from the aspects discussed in
the document (reaction: we moved this text to the header to clarify that
it is meta information and not a regular part of the document).

The participants suggested to have more interactions to make the
system more intuitive. The missing interactions were vis–text and
emvis–text (“I did not find a link from the visualization to the text. But
the other way round [it] works nicely.”). Although we had some text–
vis interactions present in the system, it was interesting that participants
were expecting to click on visual representations of classes. The scarcity
of interactions was hindering the exploration process. They also pointed

out the lack of emvis–vis linking (reaction: we systematically added
interactive linkage between all representations of the same data). The
participants emphasized that the overview visualization should not
scroll out but be visible at all times (“The placing (initially 60% off-
screen, scrolling is needed) is bad [...]”; reaction: we moved the
overview visualizations to a separate panel).

We received mixed responses on the parallel coordinates plot and
scatterplot, but the participants did not use the visualizations for ex-
ploration yet (“Maybe they [parallel coordinates plot and scatterplot]
would be useful to assess some hypotheses, but for exploratory analysis
it is not clear how to use them [...]”). We assume the main reason was
a lack of interactive linking, especially between the two visualizations
and with the textual explanations (reaction: we consistently added such
interactive links). The participants also suggested to include legends
and captions in the visualizations to make them self-explanatory be-
cause sometimes they were unable to understand the changes happening
in the visualizations (reaction: we added captions and provide legends
as part of the captions and in the details panel).

Second Iteration – In the second iteration of our formative evalua-
tion, the system incorporated all types of textual explanations, however,
still missing a few explanations. Furthermore, most of the transient
interactions through consistent linking of text and visualizations were
provided, without the full implementation of the persistent interactions
yet. We invited three participants (two PhD students and one postdoc)
who participated in the first phase to identify improvements in the
system and, for a fresh perspective, one new participant (PhD student)
to evaluate the system. The new participant has a background in soft-
ware engineering and is currently conducting information visualization
research. We followed a similar procedure as in the first iteration, how-
ever, removing the first phase because we did not expect new insights if
repeating it; the duration of the study was reduced to about 30 minutes
per participant. We also updated the interview questions to focus on the
specific improvements and the general applicability of our approach.

All participants agreed that the system was improved overall. We
received positive feedback on the layout, textual descriptions, coordi-
nated views, interactions, and linking (“The layout is more compact.
I can see all the information without having to scroll, which bene-
fits the analysis when highlighting elements of the coordinated views.
The interface looks clean, which facilitates to concentrate on the vi-
sualizations.”). The participants confirmed that the system supports
exploration well and textual explanations are useful and well connected.
However, one of the participants suggested to include more information
about bugs (reaction: none—we do not have access to more details;
retrieving these and extending the description accordingly remains fu-
ture work). All participants, except one, expressed that the document
is self-explanatory. He wanted more methodological and educational
explanations on metrics (“[...] more information why certain metrics
are grouped together and what are the background of those [metrics].”;
reaction: we added more detailed explanations on metrics). It was also
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Fig. 7. Low quality in HTMLElementImpl found through active exploration of the embedded detail visualizations of coupling, cohesion, and inheritance.

unclear to him that labels under the small bar charts are package names
(reaction: we now provide an explanation of the bar chart in the respec-
tive methodological explanation, see Figure 4). One participant did not
find horizontal embedded bars (that show percentages) useful because
they do not add much to the text (reaction: we reduced the number of
shown bars and improved their consistency; they now always refer to
problematic classes as a fraction of the total number of classes). The
majority of the participants accentuated that the system can be useful
for educational purposes (e.g., teaching students about code-related
issues).

Despite incrementally improving, some limitations remain in our
visual analytics system. Currently, the system analyzes the software
quality but does not explicitly guide the users in correcting measures.
For instance, it discusses different code smells in a project without
suggesting suitable refactorings. We also could not include more infor-
mation about bugs besides number of bugs because finding access to
relevant information (e.g., bug appearance timeline, active duration, res-
olution) is difficult. Although we have optimized for self-explanation,
misinterpretation of textual descriptions and visualizations is still possi-
ble. However, through the interactive linking of text and visualizations,
we hope potential misunderstanding can be mitigated. In terms of eval-
uation, the participants had appropriate knowledge of visualization and
code quality to provide substantial feedback on visualization design,
usability, and code quality analysis. Additional valuable insights could
be obtained through a larger-scale user study with an appropriate blend
of targeted users having industrial experience.

7 APPLICATION EXAMPLES

With two application examples, we demonstrate how our explorana-
tive documents can assist in analyzing code quality. This section also
implicitly reflects on how users can work with our interactive docu-
ment and the support they receive from it to achieve various analysis
tasks. We demonstrate the working of our exploranative code quality
documents using two software projects: Xerces 1.2 (an XML handling
framework) [1,24] and Lucene 2.0 (a search library) [3,31]. We demon-
strate how textual explanations point to a specific issue in the code, and
how exploration helps in analyzing problems.

In the Xerces 1.2 project, our system identifies 18 code smells (Fig-
ure 3). From the textual explanation, we read that UTF8Reader has
Large Class and Spaghetti Code. UTF8Reader becomes more inter-
esting when we realize that this class has had a large number of bugs
as well. Looking into the code of the class, we find a confirmation of
these issues self-admitted by the developers in the class description
comment, also providing a reason: “Some blatant v[io]lation of good
object oriented programming rules, ignoring boundaries of modularity,
etc., in the name of good performance.” This is an example that shows
that our approach helps the users focus on most problematic classes.

Another class highlighted in Figure 3 is TraverseSchema because it
also carries two code smells (Large Class and Functional Decomposi-
tion) and has a history of bugs. In the class description, we read that
TraverseSchema is the largest class in the system and its quality is low
with respect to complexity, coupling, and cohesion (see Figure 3, details
panel). Exploration through consistent linking helps locate this class
in the parallel coordinates plot and the scatterplot (see Figure 3, black
line and dot); it shows a similar pattern as UTF8Reader (see Figure 3,
yellow line and dot). Investigating the source code of TraverseSchema,
we confirm the existence of a Functional Decomposition smell because
it has several private but few public methods.

During an exploration of the bar charts in the quality attributes
section, we find that HTMLElementImpl has a complex inheritance
structure indicated by an extremely high number of children (Figure 7;
52 children, while the threshold of low quality is only more than three
children). The extending classes are also part of the dom package
and can be investigated through the bar chart. We head on to explore
the quality of HTMLElementImpl from other quality attributes as well.
We notice that the related metrics of coupling and cohesion are also
high, meaning low quality in these attributes, however, the complexity
metrics are in acceptable range (see Figure 7). Similar information is
also mentioned in the summary presented with the source code.

We use the parallel coordinates plot and the scatterplot to learn more
about outliers and the interplay of metrics. For instance, in Figure 6,
a positive correlation can be observed between weighted method per
class (wmc) and number of public methods (npm) in the scatterplot,
however, a few classes form interesting outliers with high wmc values
but low npm values. These unusual characteristics correspond with
the Functional Decomposition smell (highlighted as black dots in the
scatterplot in Figure 6, right). As the other metric values for this set of
classes are shown accordingly in the parallel coordinates plot (Figure 6,
left), we also observe that one of the classes is associated with large
file size (loc) and a high number of bugs.

In the Lucene 2.0 project (Figure 1), we observe good quality for
coupling and inheritance, whereas quality is lower for complexity and
cohesion. We see an outlier (StandardTokenizerTokenManager) in the
complexity bar chart, and when clicking it (see Figure 1), we observe it
highlighted also in the explanations of code smells and the bug history
section. The class that has three code smells (Large Class, Functional
Decomposition, and Spaghetti Code) and has been associated with
bugs. StandardTokenizerTokenManager also turns out to be a prominent
outlier in the parallel coordinates plot and scatterplot.

We then switch to code smell analysis and notice that Functional
Decomposition is the most occurring code smell, while we only see
single instances of Large Class and Spaghetti Code. We further inves-
tigate the classes that carry Functional Decomposition by exploring
the overview visualizations and source codes to discern the common
reason for the code smell. We recognize that the majority of the classes
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that have Functional Decomposition share a problem: more private
methods and fewer public methods; moreover, they have large class
sizes.

8 LESSONS LEARNED

Finally, we summarize our experience gained in designing the system
as lessons learned. We focus on aspects that generalize beyond the
specific application in software engineering to interfaces producing
interactive documents that consist of generated textual and visual data
descriptions.

Overview always! – While, in traditional text documents, text and
graphics are arranged in a fixed layout, we observed that loosening
this tight coupling is beneficial for interactive documents like ours.
Especially, overview visualizations should always stay in view and not
scroll out with the text (like tested in the first iteration of our formative
evaluation). Also, texts that provide a high-level summary might act
as anchors for the users to return to and should stay visible. We used
the section describing code smells in this way. Such overview elements
are important for interactive highlighting as well: hovering an element
anywhere in the interface, related items in the overview representations
get highlighted. For instance, with such highlighting in the code smell
section, we can easily indicate by which code smells a highlighted class
is affected. The always visible overview representations, together with
a stable layout, provide a reliable skeleton for the user and allows other
content to change dynamically without confusing the user’s mental map.
This lesson relates to Shneiderman’s information-seeking mantra [47],
which emphasizes on overview first and details later.

Consider brushing text, really. – From a visualization perspective,
texts in an interface might appear being dead—they are not part of a vi-
sualization and cannot be interacted with. However, we have shown that
text can be integrated into interactions almost like any other element
of a visualization. Brushing a marked text element, the related visual
representations get highlighted across all visualizations, and vice versa.
Opportunities where such interactions make sense appear naturally
whenever describing a data-related entity (in our case: a class, a soft-
ware metric, a code smell, etc.). Also, methodological and educational
explanations as well as further data-driven details can be interactively
linked with a text. For the text we generate, we tried to identify all
elements the users might want to explore further and decided what
would be an appropriate interactive linking. This lesson links to the
interaction model proposed by Beck and Weiskopf [12].

Captions! And make them dynamic. – Although not difficult to
implement, many visual analytics systems even lack basic captions
for the visualizations shown in different views. We decided to add
captions to make the interface more self-explanatory. And it quickly
turned out that these captions should to be adaptive: When something
changes in the visualization based on an interaction, the caption needs
to change accordingly as it should always accurately describe what is
currently shown. Template-based natural language generation provides
the means for implementing such adaptive captions.

Pointers, everywhere. – Although we defined them as separate
categories in Section 3, data-driven, educational, and methodologi-
cal explanations should somewhat blend in practice. A purely data-
driven explanation might read cryptically, but with a few educational
or methodological hints, the text would provide the necessary pointers
to understand it more easily. Also, for instance, an educational explana-
tion can profit from examples from the data, like we have integrated in
the respective background text. These hints can be used as hyperlinks to
the more detailed explanations. Still, we recommend, when authoring
the texts, strictly discerning between the categories of text and also
reflecting this categorization in the user interface by a consistent lay-
out. For instance, we presented methodological explanations only in
tooltips of info icons and educational explanations, marked with the
term background, in the details view on the right. This consistency
allows users to learn where to look for certain information.

You just learn on the side. – Like most visual analytics systems, our
approach is also built to support users in understanding the specific
data shown. With every data analysis, the users gain experience and
might also have general insights with respect to the overall analysis

procedure or domain. In contrast to other interfaces, we actively sup-
port this learning on the side through methodological and educational
explanations. Through activating these explanations, the interface is
adapting—not automatically but with only little extra effort—to the
individual information needs of the user.

9 CONCLUSION AND FUTURE WORK

We have introduced an approach that automatically generates interactive
documents to describe multivariate data and tailored the approach in a
design study for reporting the code quality of a software project. The
approach is exploranative as it explains the data and background in a
textual way as well as it supports the exploration of the data through
interactive visualizations. The textual and visual representations are
consistently linked with each other. While our design process and
formative evaluation have already provided insights into usability and
aspects of visual design, a next step is to conduct a larger-scale user
study with representatives of our targeted users (see Section 4.1). A
goal of the study will be to test in a realistic setting whether actionable
results can be derived from our documents across participants with
different levels of expertise in code quality analysis.

We have introduced the general concept of exploranative documents
for multivariate data (Section 3) and have demonstrated this concept in
detail with one example from software engineering. Still, future work is
to show the applicability of the concept for other data analysis scenarios.
For instance, in the context of Industry 4.0, comparable documents
could summarize multivariate performance and maintenance indicators
of the machines of a modular production line. Besides visualizing
multivariate raw data, textual descriptions of analysis results could
directly hint at potential issues before the issues manifest themselves
in an expensive halt of the production line. A comparable interactive
document could be the result of another design study process, then
involving manufacturing researchers and professionals.

We consider our contributions in extending interactive textual doc-
uments with respect to explorative analysis as a step toward blurring
the borderline between textual and visual data representations. The
interaction model introduced to connect visual and textual elements
goes beyond previous work and showcases how text generation and
brushing-and-linking techniques can play together in a multi-view sys-
tem. We believe that texts, well-integrated with visualizations, can
make data analysis more accessible and easier to understand for a wide
audience. With further integration, eventually, text and visualization
will become only two points in a continuum (with any point in between
possible) instead of being treated as two separate modalities.

As part of future work, we are interested in investigating the edu-
cational aspects of visual analytics in more detail. For instance, learn-
ing research literature [60] discusses worked examples—step-by-step
demonstrations—and instructional explanations that both share sim-
ilarities to the textual explanations used in our approach. Although
learning is usually not the primary goal of a visual analytics system, it
still would be highly relevant to study how such systems educate their
users. Follow-up research questions are whether adding educational
and methodological explanations to an interactive visualization has
positive educational effects and how users like and deal with textual
descriptions when they have already become familiar with the text.
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