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Fig. 1: The three major stages in constructing our network of arguments on why visualization works. First, (A) we come up 
with the idea to Jook into relations between theoretic arguments, and conceptualize the basic network structure (Sections 2 
& 4). Secondly, (B) we collect additional arguments from literature and iteratively align our initial ideas with current 
research (Section 5). Finally, (C) we implement an interactive system for keeping track of the growing network, make it 
accessible online for further research, and continue iterative refinement. 

Abstract- Visualization has been deemed a useful technique by researchers and practitioners, alike, leaving a trail of arguments behind 
that reason why visualization works. In addition, examples of misleading1 usages of visualizations in information communication have 
occasionally been pointed out. Thus, to contribute to the fundamental l.mderstanding of our discipline, we require a comprehensive 
collection of arguments on ·why visualize?" (or ''why not?"), untangling the rationale behind positive and negative viewpoints. In this 
paper, we report a theoretical study to understand the underlying reasons of various arguments; their relationships (e.g. , built-on, and 
conflict); and their respective dependencies on tasks, users, and data. We curated an argumentative network based on a collection 
of arguments from various fields, including information visualization, cognitive science, psychology, statistics, philosophy, and others. 
Our work proposes several categorizations for the arguments, and makes their relations explicit. We contribute the first comprehensive 
and systematic theoretical study of the arguments on visualization. Thereby, we provide a roadmap towards building a foundation for 
visualization theory and empirical research as weil as for practical application in the critique and design of visualizations. In addition, we 
provide our argumentation network and argument collection online at httpsJ/whyvis.dbvis.de, supported by an interactive visualization. 

Index Terms-Visualization, Theory, Argument Network, Cognition, Design. 

1 INTRODUCTION 

V TSUALIZ ATION researchers and practitioners have 
made attempts to explain to others why visualiza

tion works and why it is useful. Benefits of displaying a 
visualization-e.g., a scatter plot-instead of a table of nu
meric values may seem obvious to visualization researchers. 
Articulating precisely which property of the visualization 
backs up the vaguely-defined benefüs is more difficult. The 
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wide range of positive and negative arguments, such as 
visual patterns, extemalization of memory, and ambigui ty 
of visualizations, poses a fundamental challenge to the field 
of visualization. Most of us have also heard suggestions 
thatt human-centric processes such as visualization have 
many shortcomings. In the past decades there have been 
repeated calls for more theoretical advances in the field of 
visualization, both, by individuals [1], [2] as weil as several 
panels at IEEE VIS conferences [3], [4], [5], [6]. Most recently 
Chen e t al. advocated that "(m]aking significant theoreti
cal advances will lead to signHicant advances in practical 
visuaJization applications." (6, p. 111] This echoes Thomas' 
assertion that "without fundamental knowledge of what 
makes certain representations effective, it is not possible to 
efficiently construct new representations for new classes of 
information or to know that the new representations will 
work as designed." (7, p. 70] 

While these calls for action have been followed by many 
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attempts to establish a set of principal arguments, most 
are of qualitative discourses and a few are mathematical 
(see Section 3 for details). lnvestigating aspects one by 
one increased the comprehension of specific arguments for 
visualization-most prominently visual patterns. However, 
connections between individual arguments usually remain 
implicit. There is no explication of the broad argumentation 
network. Still, it is necessary to get an overview perspec
tive. lncluding arguments' relationships is key to gaining 
a better understanding of why visualization works. For 
instance, the opportunities that visual pattems offer can 
only be explained by referring to additional arguments on 
perception, accessibility of data, and interaction of the user 
with the visualization (see also Figure 5 on page 9). These 
relationships that are only implicit in the s tate-of-the art 
motivated us to begin with building a network of arguments 
that entails arguments' dependencies as weil as needs for 
trade-off. 

Further, we see a Jack of research at a medium level of 
abstraction. On the one hand highly abstract work looks 
at information visualization from formal or mathematical 
perspectives; regularly treating visualizations themselves as 
black boxes. On the other band a lot of work is particuJarly 
focused on detailed aspects, and often backed up by psycho
logical theories and empirical investigations. Meanwhile, 
these perspectives are difficuJt to put into practice. While 
highly abstract resuJts need to be translated to applicable 
instructions or guidelines, detailed theoretical and empirical 
outcomes often lack advice for mitigating conflicts or mak
ing trade-offs when conflicts emerge in practical application. 

In our network, we connect findings that offer more 
details than black-box approaches. At the same time, the 
network abstracts from particular application scenarios, 
which is, for exarnple, relevant for generalizable empirical 
research. As a result, the network constitutes a theoratical 
roadmap allowing for diverse applications (see Sections 7 
& 8). While it offers an overview on the conceptual Jevel, 
it does not entail details on how particuJar visualizations 
work or how to exploit the potentials of visualization most 
effectively. We consider the extraction of guidance on how 
to design and optimize visualizations for specific demands 
to be future work. Pictorially speaking, with the network 
we initiate the mapping of the terrain of visualization the
ory. Constructing comrnon pathways and routing travelers 
through the complex landscape is at least one step ahead. 

In this paper, we report our theoretical investigations on 
why visualization works, and present the resultant findings: 

• a network of theoretic arguments on why visualization 
works. We derived the network from theoretical con
siderations based on the individual arguments' con
tents. The network connects arguments explicitly and 
provides a roadmap that aids in structuring discourse 
(Section 4). 

• the detailed coJJection of arguments underlying the 
network (see supplementary material). Specifically, we 
introduce several categorization schemes-based on ar
gumentative standpoint, focal pathway of in.formation 
flow, as well as dependency on task, user(s) and data
whkh provide additional structure to the set of argu
ments (Section 5). 
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• the presentation of theoretical results on an interactive 
website. At https:/ /whyvis.dbvis.de/ we feature the 
argument network in an interactive visualization. We 
provide relevant references, and quotes facilitate the in
terpretation of our formulations of arguments. Both, the 
network and the set of arguments, can be downloaded. 

• an outlook on how the network approach and our ini
tial findings (Section 6) open up new opportunities for 
future research. Moreover, we sketch how theory can be 
put into practice of critique, automatic recomrnendation 
and design of visualizations (Sections 7 & 8). 

The remainder of the paper is organized as foUows: 
After defining relevant concepts-like visualization and ar
gument-in Section 2, we present abrief overview of related 
work in Section 3. Then, we describe the construction of the 
argument network based on various relationships among 
arguments about why visualization works in Section 4. In 
Section 5, we describe the set of arguments, which form the 
nod es of our argument network. Right after that, we intro
duce three categorization schemes that provide additional 
theoretic structure. First, we categorize arguments along 
the argumentative standpoint of expression (Section 5.1). 
Secondly, we look at the focal pathways of information flow 
through the visualization pipeline that arguments empha
size (Section 5.2). Finally, we consider the dependency of 
arguments on the visualization task, user(s) and the data at 
hand (Section 5.3). Having concluded the theoretical parts 
in Sections 4 and 5, we point out how our work can be 
used in Section 6. In Section 7, we show in detail how 
the network may be part in the progress of visualization 
theory. Additionally, we highlight more potential applica
tions in Section 8. For example, we sketch implications 
for empirical research (Section 8.1), Jook at the application 
of o ur approach to qualitative and quantitative evaluation 
of visualization designs (8.2), and finally outline how the 
network may help at designing visualizations and provide 
theoretical foundations for design guidelines (8.3). In the 
end, we sum up in Section 9. 

2 TERMINOLOGY AND S COPE 

Before going into details on the argument network, we need 
to explain two central definitions. These are the interpreta
tions of the terrns visulization (Section 2.1) and argument (2.2). 
To complete this section we briefly discuss a parallel with an 
example from biology to show the appropriateness of our 
definitions within the scope of this paper (2.3). 

2.1 What is Visualization? 
Of the many distinct interpretations of the term "visualiza
tion" two are potential objects to a theory of information 
visualization: i) the process of visualization, often described 
by the lnfoVis pipeline (8), and ii) the physical object, which 
is the output of the lnfoVis pipeline. While these two in
terpretations often are considered in combination, we focus 
solely on the latter. We do not consider other meanings, like 
mental imagery as quasi-perceptual experience (9). 

We focus on visualizations as objects as we try to un
derstand these objects better. While process-driven theo
retic work often includes some restrictions on which vi
suall objects are desirable, e.g., by introducing soundness 



criteria, they generally lack detail on whkh of the many 
sound outputs are preferable, and for what reasons. Detailed 
inspection of the properties of sound visualizations can 
provide arguments for the preference of one visualization 
over another in a given situation. Although the pipeline 
view has attracted much attention and its outcomes have 
reached the conunercial sector, scientific attention to the 
output of the pipeline has been comparably low-with the 
exception of highlighting bad examples. 

In this paper, we consider an indusive definition of 
visuaUzation. A first working definition might be that any 
physicaJ-cHgital or analog-visual object that has been 
created purposefully for some kind of analysis of data is 
a visualization. Yet, this definition is too loose in the sense 
that it also indudes printed text, whlch we explicitly want to 
exclude. Hence, we demand that some visual feature needs 
to be meaningful beyond type of sign, and order of objects. 
For exarnple, a table is a visualization as the position of 
a cell is meaningful in the sense that it assigns the cell to 
a column and a row. However, in general text is not, as 
line breaks are arbitrary, and lines need not be bound to 
exact horizontal positions as long as the order of symbols 
is weil defined-consider rotated text, text along the border 
of round logos, and also top-to-bottom systems as in tra
ditional Japanese. For our purpose such loose definition is 
sufficient as we do not expect to compile a set of properties 
that all visuaUzations share. lnstead, we collect a network 
of arguments of which only subsets are put forward for 
individual visualizations. In fact, several of the arguments 
could be plausibly put forward for non-visualizations such 
as printed text. Depending on the task a visualization is 
intended for, only some of these arguments are relevant. 

2.2 What are Arguments? 

Arguments are a general and common form of expression 
used across disciplines involved in the study of visualiza
tion, for instance: The fact that X contributes to / reduces 
the benefit of visualization; in context of Task T, User(s) U 
and Data D. Practically, we take the conclusion, that visu
alization works, for granted and put the premises X at the 
center of our investigations. 

As these arguments often lack complete context, we 
group utterances of similar semantic content. While thls 
procedure may lead to grouping utterances that do not 
match perfectly, we argue that arguments are rarely put 
forward with such rigor that it would be possible to read 
off all details without adding subjective interpretation. Our 
(grouped) arguments preserve the essence of individual 
arguments, and abstract from often vague or implicit details. 
Figure 2 gives an example of how we present the arguments 
in this paper. A complete list of the arguments we consid
ered can be found in the supplementary material. 

2.3 Why investigate Arguments? 

As starting with the loose defin.ition of visualization pre
sented in Section 2.1 and the focus on arguments described 
in Section 2.2 may not be self-explaining, Jet us argue why 
it is suitable and productive by look.ing at a counterpart 
example from biology. "Why do species suruive?" may be a 
question a biologist is interested in. In a sense it is similar to 

Abbreviation Short description 

\ \ 
VisualPatterns Visualizations show visua/ patterns Cl@@) 

Visual.ization unveils structures. Usually very fuzzy con
cept that describes how viewers see structures emerging 
from the compilation of objects in a visual.ization. Often 
Gestalt-psychology is used as a low level theory to 
explain the perception of visual patterns. [10], [11], (12] 

Detailed description with selected reterences 
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Fig. 2: Argument on VisualPatterns as an example for how 
we present the arguments in this paper. 

our question of "Why do visua/izations work?". Visualizations 
are comparable to species and the overaU goal of gaining 
insight is anaJogous to suruival. While we expect everyone 
to agree that describing how one particular species survives 
requires detailed knowledge of that species, more general 
findings can be made at a conceptual level (Why?). For 
example, whales, sharks and penguins survive, in part due 
to the fact that they are good at swimming. Details on tl1e 
exact movements they make are not relevant for making 
this argument. Similarly, bar charts and Une charts are 
reasonable choices when it comes to displaying the change 
of a numeric dimension over time. Only if more detailed 
tasks are considered-like comparing values at points in 
time, or estimating trends; respectively feeding on plankton, 
squid or fish-low-level properties make a difference. 

Very abstract points of view on the other hand 
make it difficult to distinguish between individual 
species/visual.izations. Stating that living species have 
some kind of metabolism may be correct and surely is 
relevant, but at the same time does not provide the 
means to distingu.ish between species. Comparably, an 
information-theoretic view as presented by Chen, Floridi 
andl Borgo (13] can easily distinguish human-centered visu
alization from machine-centered processes, but it can hardly 
distinguish between visualizations that represent equivalent 
information-such as a bar chart and a line chart. 

Thus, we choose a medium level of abstraction (i.e., 
arguments) for investigating why visual.ization works. Some 
level of abstraction from Task, User(s) and Data is key to 
gain general izable theoretical results. Not abstracting too 
much is key to distinguish individual visualizations. At the 
same time, we are weil aware that thls level of abstraction 
a lso provides drawbacks. For instance, it requires a more 
complex representation and m.isses distinction on low-level 
details. Thus, we link our level of abstraction to higher and 
lower Jevels. In Section 5.2 we connect arguments to higher 
level pathways of information flow, and in Section 5.3 we 
categorize them based on their likelihood to be affected by 
lower level considerations, namely Task, User(s) and Data. 

3 RELATED WORK 

Based on the distinctions introduced in Section 2, we .in
troduce related work grouped in four categories: highly 



abstract, low-level-focus, pipeline focus, and works with a 
focus similar to ours. 

Highly abstract: A substantial amount of related 
work is highly abstract. For example, van Wijk [14] looks 
at visualization as a black box in his process model. More 
recently Vickers, Faith and Rossiter (15] conceptualized vis
ualization from a semiotic point of view using category the
ory. Chen, Floridi and Borgo [13) focus on the economic side 
of visualizations as time saving tools. Chen and Jänicke (16) 
as weil as Chen and Golan [17] take an information-theoretic 
perspective and abstract visualizations to information trans
port channels. For visual analytics Sacha et al. [18] present 
an abstract knowledge generation model that includes the 
information visualization pipeline [8] next to an abstraction 
of human interaction. 

Low-level focus: Low-level research on single argu
ments is diverse and spread across disciplines. We highlight 
few examples that bring out the interdisciplinary nature of 
visualization research: The fundamentals of color percep
tion are weil researched [19], (20]. The InfoVis community 
focuses on effects of color scales and compositions (21], 
(22], (23]. Other researchers take their intuitions to the test 
and, for instance, focus on the effects of different levels of 
iconicity of symbols (24], (25], [26]. Although some effects 
of iconicity seem to be intuitive, often researchers were 
not able to find these effects in their experiments. This 
clearly shows the need for low-level experimental research 
on visualization. More practically, effects of visualizations 
in the context of Bayesian reasoning problems gained in· 
terest in the InfoVis community in recent years [27], [28]. 
Traditionally, mainly psychologists and cognitive scientists 
investigated this topic (29], (30], (31]. 

Pipeline focus: lnvestigating the process how to map 
data to visual representations has gained repeated attention. 
The information visualization pipeline by Card, Mackinlay 
and Shneiderman [8] is well known. Wilkinson published 
investigations on possible operations in his "The grarnmar 
of graphics" (32], on top of which not only Wickham (33] 
builds. Derniralp et aJ. (34] present similar theoretic ideas of 
embedding structures within data in visual representations. 
In contrast to this paper, the focus of these works is on 
how to create sound visualizations from data, but not on 
why the value of some sound visual representation varies 
between different application contexts. In our network we 
expect most arguments put forward from this perspective 
to add detail to the Basic standpoint (see Section 5.1) as well 
as the second pathway of information flow (5.2). However, 
our work does not focus on this part of the visualization 
process, and detailed indusion of all such arguments would 
distract from the main points discussed in this paper. 

Sirnilar focus: To the best of our knowledge recent 
investigations on why visualization provides benefits can 
be dated back to Anscombe (10] in the context of statistics. 
Larkin and Simon [35] investigate structural diagrams. More 
recently, Fekete et aJ. (36] discuss the value of information 
visualization. Another approach has been taken by Parsons 
and Sedig (37] who compiled a list of ten properties of 
visual representations that, at different levels, may explain 
the appropriateness of a visual representation for a given 
task. Kindlmann and Scheidegger (38] add three property 
requirements tobe satisfied by effective data visualizations. 
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WhiJe these works present interesting arguments for why 
visualization is useful in many applications, they largely 
emtmerate arguments independently, and miss to point out 
the connections in the !arger argumentative structure. 

4 TOWARDS A NETWORK OF ARGUMENTS 

Our main contribution is the argumentation network con
structed from arguments we collected across disciplines. 
As a short disclaimer, we do not consider the network 
complete. We introduce it as a new way of looking at the ar
gurnents from an integrated network perspective, instead of 
as s ingle entities stand ing for themselves (see Figure 1 (A)). 
Further, we hope that the point of view presented in this 
paper can serve as a common grow1d for discussing and 
promoting theoretic approaches within- and maybe even 
beyond-the information visualization community. Having 
said that, we want to encourage researchers to contribute 
to the network. An interactive version of the network, 
including quotes from and references to those publications 
presenting the arguments is available online. 

4.1 Network Construction & Methodology 

We collect arguments by manually extracting them from 
literature. At first, we consider highly influential publica
tions (A) such as those by Larkin and Simon [35] and Card, 
Mackinlay and Shneiderman [8]. In the following we con
tinue with papers citing these highly influentiaJ papers (B). 
We then include relevant papers (C) referenced by (B) next 
to the highly influential ones (A). In this manner we select 
papers by following references in both directions. We also 
seairch for additional works on specific arguments using 
relevant keywords. Thereby, we focus on aspects of Design 
andl Cognition (see Section 5.1 and Table 1). 

While we use a small set of arguments as a starting point 
(see Figure 1 (A)), we soon begin to collect argurnents in a 
spreadsheet (Figure 1 (B)). Each publication can mention 
severaJ arguments, and each mentioning can be of one 
affinmation: ++ Central positive (24 mentions), + Posi
tive (726), +- Ambivalent (44), = Neutral (22), - Nega
tive (28), -- Limiting negative (0), * Mentioned without 
valuation (25), ? Questioned (7). Though, one has to notice 
thatt quite some negative arguments you might have heard 
about specific visualizations-not visualization in general
are the result of a lack of some positive aspects. Still, many 
arguments are far from being unanimously seen positive, 
for example, Animation. Therefore, it can be the case that an 
argument is described negatively by some publications. 

Then, we construct the network in an iterative process. 
The whiteboard in Figure 1 (B) shows one temporary state of 
the network. We introduce most of the relationships based 
on our semantic understanding of the arguments. Only after 
we established large parts of the network, we begin collect
ing relationships in parallel to arguments (Figure 1 (C)). 
Obviously, this procedure leaves us with less mentioned 
relationships, 49 compared to 933 argument mentions. Tak
ing into account that the latter publications contained about 
42% (396) of the node mentions next to mentioning these 
relationships, we feel rather safe in stating that the connec
tions between arguments have not been as prominent in 



the literature in general. This aligns with our impressions 
gained from reading the first set of publications, and is 
also reflected in our claimed contribution to provide the 
first work with a strong focus on the relationships among 
arguments about why visualization works. We pursue this 
two-step exploratory approach for three reasons. To begin 
with, the initial open coding phase allowed us to align our 
theoretical efforts with previous work. Secondly, we want to 
derive the network from theoretical considerations based on 
the arguments' contents, and not as a result of a survey-like 
effort. Finally, we include relations mentioned in literature 
for further refinement of the network. 

4.2 Argument Relations 

Currently, the network is built upon six types of relations 
between arguments A and 8. The most important relation is 
the builds on relation. This builds on relation is asymmetric 
and, if a ll argumentation is sound, leads to an acyclic 
network graph. From a logical point of view the relation is 
weak in the sense that X builds on Y does neither imply that 
Y is sufficient for X nor that Xis necessary for Y-nor the 
opposite directions. We neither make any claims about the 
sufficiency or necessity of combinations of propositions for 
others, e.g., X builds on Y and Z. Instead, our goal is to com
pose the loose network in order to lay the groundwork for 
future discussions. To date, we take the following relations 
into account: 

lmilds 011 A can be expressed in a way such that B is a 
premise of A. This relation is logically weak in the sense 
that it does not imply necessity nor sufficiency. 

conflicts with A and 8 cannot be the case at the same time, 
i.e., they are contrary. 

is limited by 8 puts a limit on the benefits of A. 
is more specific than A makes a more detailed point than 8. 
is similar to A and B make points that are close, but include 

a meaningful difference. 
needs to be traded oft against A and B can not be the case 

to full extent at once, but both can apply partially. 
For example, there are people who argue that Animation 

can make visualizations work. Others put forward that an 
important aspect of visualizations is that they are globally 
stable (i.e., GlobalStability). Clearly, a visualization cannot 
be entirely stable and animated at the same time. Hence, 
Animation needs tobe traded-off against GlobalStability. 

Conflicts and needs for trade-off do not necessarily ma
terialize in practice as we do not expect any visualization to 
have all properties mentioned as beneficial in any argument. 
Distinct visualizations may have different properties. The 
relevance of each single argument for the usefulness of a 
particular visualization depends on the application scenario. 

When inserting relationships, we refrained from adding 
those implied by the transitivity of the builds on relation 
in most cases (i.e., if A builds on B and B builds on C, we 
do not add A builds an C). Two exceptions to this general 
guideline were: i) A relationship was mentioned explicitly 
in a publication, and ii) we reasoned that the direct relation 
highlights a central com1ection. With relations other than 
builds an we did not encounter such cases. In the following 
section we present some details on the set of arguments we 
considered when constructing the network. 

5 

D (Cognitive) Psychology 
0 Information Visualization 
D Other 

4142 43 44 45 46 47 48 49 50 8 5140 52 53 54 55 56 57 

Fig. 3: Nineteen publications mentioning the most argu
ments. Bars represent publications and are Jabeled with their 
identifying numbers according to the !ist of references of 
this paper. Notably, many highly diverse publications are 
not from the InfoVis community. 

5 ARGUMENT COLLECTION AND CLASSIFICATION 

After coding arguments from an initial set of 57 publications 
in a spreadsheet in the first phase, we migrated to an 
onliine tool, which we specifically developed for the task 
of constructing an argumentative network. With the help of 
this tool we were additionally able to track mentioned rela
tionships between arguments. In total, we did 112 codings 
of 108 publications featuring 933 mentions of arguments and 
49 mentions of relationships between arguments. 

Overall, we do not claim that our sample is complete. 
We did not try to provide an exhaustive survey of past 
work. In fact we prioritized recent work as we expect recent 
publications to pick up important arguments that have been 
brought up earlier. Also, we did not undertake any effort 
to gather a representative sample regarding the positive or 
negative mentioning of arguments as only the single first 
mentioning of an argument is of high importance for our 
goal of building a network featuring as many arguments 
as possible within reason. Every additional mentioning of 
an argument can only contribute to the refinment of the 
formulation of the argument. Our goal is to collect a diverse 
set of arguments. 

We agree with the views that investigating visualiza
tion is an integrated and interdisciplinary matter [39], (40]. 
Therefore, we considerd publications from several scientific 
domains. Figure 3 shows those publications that mentioned 
a djverse set of many arguments. lt is easy to see that 
looking beyond the InfoVis community can broaden our 
view. In our pursuit to create a network relating arguments 
these diverse publications are crucial. 

Having collected arguments as described above, it soon 
became clear to us that we need to provide more structure. 
We propose several categorizations of the arguments. First, 
we introduce a scheme based on argumentative standpoints 
in Section 5.1. Secondly, we offer a structuring dependent 
on the focal pathways of information flow through the 
InfoVis pipeline an argument focuses on in Section 5.2. 
Both schemes should be considered as navigational aids 
in the space of arguments. They do not provide clear cut 
distinctions in all cases, and arguments regularly span mul
tiple categories. FinaJly, we categorize arguments by their 
dependency on Task, User(s) and Data in Section 5.3. 



TABLE 1: Overview of the standpoints. n is the number 
of arguments per argumentative standpoint. Our focus on 
Cognition and Design becomes obvious. 

Standpoint Short description n 

Teamwork Arguments about more than one viewer 8 
Cognition Arguments involving a viewer with higher 31 

cogni tive abilities 
lnterplay Arguments emerging from the interplay of 19 

viewers and visualizations (including per-
ception and interaction) 

Design Arguments depending on design choices 32 
Semiotics Arguments on meaningfulness of symbols 19 

Basic 
and space 
General mathematical and physica l argu- 10 
ments mostly independent of visua lization 

5.1 Argumentative Standpoints 

Looking through the collected arguments, we figured that 
they focus on several aspects of visualization. Overall we 
found six argumentative standpoints: Basic, Semiotics, De
sign, Interplay, Cognition, and Teamwork. Especially the 
borderllne between the Cognition and the Interplay stand
points is fluid [1), (58), [59). Nonetheless, the s tandpoints 
can help organize numerous arguments. The structure be
comes practically relevant as standpoints hint whid1 options 
for improvement of visualizations users-designers as weil 
as viewers-might have. Next, we describe the standpoints 
in more detail (see also Table 1), provide exemplar argu
ments, and point out how visualizations might be improved. 

Basic: The most general standpoint groups mathe
matical and physical arguments. The distinctive criterion 
for this standpoint is that arguments are not focused on 
visualization as such. Instead, their main focus is on general 
mathematical or logical laws, or on the properties of the 
physical world. Exarnples for such arguments are: 

TopologyPreservation Visualizations preserve topology (!@@) 

Visualizations can preserve the topological (or geometric) 
relations of a two-dimensional space that wouJd need to 
be broken by a one dimensional representation. (35), [38) 

Storagelnvariance Visualizations are invariant to data storage 
formats (!@@)Same storage formats of data do not represent 
all features of the abstract structure faithfully. For example, 
a set stored as a list implies an order that is not present in 
the abstract set structure. Good visual representations do 
not reproduce these misrepresentations of underlying data 
storage formats. (38] 

Given the generality of arguments options for improve
ment are limited. Laws of mathematics and nature can be 
considered immutable. Technological progress is the main 
angle for improvement, and can lead to higher quality 
media and better visualizations. A serious caveat to keep 
in consideration is that logical and mathematical demands 
on faithful mappings, in contrast to physical limitations, 
are not self-enforcing. For example, theoretically there is no 
addition operation on ordinal scales. Nonetheless, designers 
are free to add ordinal values represented as numbers, 
creating visualizations that are not mathematically sound. 

S emiotics: Having set the logical and physical pre
cond itions, the Semiotic standpoint pools arguments that 
build on how meaning is assigned to objects. The main 
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arguments relevant to visualization are that, both, symbols 
andl space are assigned meaning, others include: 

FlexibleNotation Visualizations al/ow flexible notation <!lli@ 

Meaning of symbols and space can be changed on de
mand, it does not need tobe defined globally unique. For 
example, vertical position can have a different meaning 
at each axis of an parallel coordinate plot, while having no 
meaning in between the axes. There even can be no explicit 
definition of the meaning of space. For example, in inter
active environments users can sort objects by positioning 
them in space. With each new object they can refine or 
ch.ange the meaning of positions, while never having an 
explicit mapping. (41], [60], [61), (62], (63] 

Homogeniety Vis11al entities are homogeneous <!lli@ Visualiza
tions map entities of different types to visual representa
tions, which are of the same kind and thus easier to put in 
relation to each other. For example, a bar chart on the speed 
of light, sound in air, a plane, a horse, and the growth of 
bamboo shows distinct objects like electromagnetic waves, 
pressure waves, human artifacts, animals, and size change 
of a plant as representations of the same kind, i.e., rectan
gles. [53), [54) 

The Semiotic standpoint, much Jike the Basic standpoint, 
includes many unchangeable preconditions. However, there 
still are some options for intervention. For exarnple, cultural 
communities such as electrical engineers can introduce new 
conventions for meanings of symbols or colors. 

Design: Arguments from the Design standpoint are 
most interesting for visualization designers as they provide 
mos t leverage for improvement in practical application. 
Properties of visualizations themselves are of central interest 
from this point of view: 

Abstraction Visualizations abstract structures (!@@) VisuaJiza
tions abstract from (irrelevant) details. (42], (64], (65), (66] 

Animation Visualizations are animated <!IQ@ An animated vis
ualization can show processes with a natural representa
tion of time. (2), (37), [42), (67) 

GlobalStability Visualizations are globally stable (!@@) The 
overall appearance of a visualization does not change 
wi thout explicit action undertaken by a viewer. Thereby, 
viewers can on the one hand stay in sync with the external 
representation and on the other hand have the time to 
follow their flow of thoughts. (8), (37], [47] 

Design decisions provide many options for improving vis
ualii.zations. However, some of the properties conflict or 
need to be traded-off agai.nst each other. Considering the 
last two examples, it becomes clear that Animation and 
GlobalStability are contrary. One option to trade these off 
would be to offer two views, one animated and one static, 
side by side. The cost of this trade-off is that each view needs 
to be smaller and looses detail. The major limiting factor is 
the task the visualization is designed for. Designers need 
to decide which properties should be part of the design in 
order to effectively pursue the objective. Further, interaction 
capabilities and cognitive abilities of viewers limit the free
dom of designers. 

lnterplay: The h1terplay standpoint combines two 
aspects that are traditionally separated in the InfoVis com
munity: on the one hand arguments on the perception of 
visualizations, and on the other hand arguments dealing 



with actively changing them. Tue latter aspect becomes 
more relevant with digital "interactive visualizations" that, 
for example, a!Jow linking and brushing. Still, most tra
ditional printed or drawn visualizations are interactive to 
some degree, too [68]. A visualization printed on paper 
can be folded or annotated with a pen. We combine the 
two aspects to one standpoint of lnterplay as with modern 
provenance tracking, which may track every move of the 
eye and cause changes in the visualization, the borderline 
between the two becomes more and more washed out. 
Furthermore, for example, Liu, Nersessian and Stasko [58, 
sec. 6] provide theoretical reasons for assessing interaction 
bidirectionally. Tue standpoint of lnterplay groups alJ argu
ments that directly involve the visualization and the viewer, 
who does not necessarily employ higher cognitive skills. 
Examples of arguments are: 

AttentionDriving Visualizations drive attention <IN@ A visu
alization guides the attention of viewers to specific parts 
without the need for conscious search or understand
ing. [35), [69), [70) 

Perceptuallnference Perception infers abstract structures ~ 
Viewers can assimilate information given in a visuali
zation w ithout a need for heavy conscious processing. 
Perception substitutes intentional reasoning about abstract 
structures. (11), (42], (64), (70), (71] 

lnteraction Visualizations are open for interaction ~ Vis
ualization enables interactive manipulation. Subjects can 
physically modify a visualization. This can be a1m otation, 
folding the piece of paper the visualization is printed on, 
or any kind of interaction with a digital visualization on a 
computer screen. [14], [17], [49], (62], [67], (72], [73], [74] 

lmproving interplay most likely can come about by training 
on the human s ide. Especially with computer-aided interac
tive visualizations, interaction design can be improved on 
the side of visualizations. While visual perception can be 
specifically trained to see certain patterns, manual interac
tion might be improved by training skills in using input 
devices such as computer rnice. 

Cognition: The distinction between the Cognition 
and lnterplay standpoint is the least crisp. There also have 
been arguments for the non-separability of cognition and 
interaction (58). While the Interplay standpoint, as described 
above, groups arguments that directly involve the visualiza
tion and the viewer, this standpoint collects arguments that 
are main ly on the (complex) cognitive features of viewers. 
Almost all arguments from the Cognition standpoint are in
dependent of the perceptual chaim el being vision, audition 
or some combination. Another distinctive criterion might 
be that the Cognition standpoint puts a stronger focus on 
arguments that involve conscious reasoning. Although this 
cri terion is not sufficient, as some parts of perception, and 
clearly most manual inleraction, is conscious. ArgLLinents 
from the Cognition standpoint include: 

ExternalMemory Visualization s11pports external rnemorization 
<!@:@ Visualizations extend memory. Visualizations can 
provide storage space for information viewers are not able 
to or do not want to remember by themselves. [8], (13], 
(35], [36) 

Forgiveness Visualizations are forgiving <!NIW Visualizations 
are not designed to be etemal, but known to be imperfect 
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and intended tobe improved over time. (44], (61], (68], (75) 
Rerepresentation Visualizations re-represent structures <IN@ 

Consulting visualizations viewers find other representa
tions of a problem which might make its solution more 
obvious or accessible. Replacing mental models is facili
tated by interacting with alternative external representa
tions. [1], (25), (47], [58], (76) 

ldeasByAmbiguity Ambiguity/inconsistenct; catalyses ideas 
<L@@> A visualization does not provide a single complete 
and unambiguous interpretation. Inconsistencies within 
an interpretation or between possible interpretations can 
push viewers to generate new ideas. [47], (51], (68] 

Similar to the lnterplay standpoint, with Cognition im
provements may primarily come about by training. Edu
cating viewers in analytical reasoning or practicing suitable 
decision heuristics are two options. 

Teamwork: Finally, the Teamwork standpoint groups 
a ll arguments that involve more than one viewer. Like
wise, the distinction to other standpoints is rather crisp 
andl arguments from this standpoint can be ignored when 
desiigning visualizations for exclusively personal use. Tue 
main arguments here are on presenting information to oth
ers and organizing collective effort. Hence "Collaboration" 
would have been the most sui table name for this category. 
In order to have highly distinctive names-<ompared to 
"Cognition"- we opted for "Teamwork". Some arguments 
from this standpoint are: 

Referencabil ity Visualizations are objects to reference ~ Be
ing physical objects visualizations can be used by viewers 
to reference parts of the structure explicitly. (40], (41], (47), 
[61) 

Knowledgelntegration Visualizations support know/edge in
tegration ~ Visualizations can help several viewers 
to combine their knowledge and draw new conclu
sions/insights from their combined knowledge. [61] 

lmprovements can be made by changing the way viewers 
interact with each other and the visualization. Especially 
interactive visualizations can enable-or even enforce-
interaction protocols that promote positive outcomes. 

5.2 Focal Pathways of Information Flow 

We also noticed that some arguments focus on the transfor
mation of data to visual representations without mentioning 
human viewers. Others focus on cognitive processes during 
und erstanding visualizations without mentioning data. We 
conjectured that different arguments rnight emphasize dif
ferent pathways in a visualization workflow. This leads to 
our second categorization scheme based on focal pathways. 
Chen and Golan (17] reviewed many pipelines that have 
been proposed to describe visualization workflows (e.g., (8), 
(14], (78]). In this work, we use the pipeline by Chen and 
Floridi [77) because it encompasses most commonly-seen 
illustrations of pipelines as weil as the seldom-seen aspect 
of human-human communication. Figure 4 shows six major 
path ways superimposed on that pipeline: 

<D Arguments focused on information transformation in 
individual steps as well as their compositions. Unlike 
the remaining pathways, @-®, it is more generic but less 
specific about visualization. 
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arguments may have been focused. Pathway <D is an ab
straction of single steps. The figu re is adapted from Chen 
and Floridi (77, fig. 1). 

® Arguments on transformations from data to visual im
ages. This category also includes arguments about visual 
mapping, a smaller section in the pathway (e.g., Card 
et aL's pipeline (8)). Many arguments from standpoint 
categories Semiotic and Design fall into pathway ®. 

@ Arguments focusing on the transformation of visual im
ages to knowledge. This pathway is emphasized by most 
arguments in the Cognition standpoint category. 

© This pathway is the combination of ® and @, focusing 
on the transformation of data to knowledge via visu
alization. Arguments in this category typically mention 
someth ing about data, visualization, and mind. The vi
sual exploration path in the pipeline by Keim et aL (78) is 
such a pathway. 

® Arguments on the values of interaction in visualization. 
The loop in the pipeline by van Wijk (14) is such a 
pathway. 

® Arguments focusing on uses of visualization involving 
multiple viewers, such as discriminative visualization 
and collaborative visualization. 

As this work revolves around arguments about visuali
zation rather than analytical statistics or algorithrns, we do 
not include the data mining path from Keim e t aL (78). Nev
ertheless, if necessary we can associate such an argument 
with pathway <D. 

5.3 Dependencies on Task, User(s) and Data 

Last but not least, we categorize arguments by their depen
dencies on Task, User(s) and Data. Here we chose a three 
point ordinal scale for each dimension, including the values 
Likely, Maybe, and Unlikely as with most arguments a definite 
decision is not possible. While the existence of edge cases 
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prevents binary yes/no decisions, the content of arguments 
usually allows for getting a general impression. 

Task <I@@: Obviously, the task being pursued 
strongly influences the demands pul on visualizations. Con
sequently, the majority of arguments (79) is likely dependent 
on the task. Nonetheless, there are several aspects, such 
as the preconditions set by physics and the biology of the 
human visual system, that are unlikely to be dependent on 
tasks (33); maybe (7). 

User C!N@: While the role of viewers in using vis
ualizations is widely acknowledged, much effort is pul 
into automatizing !arge parts of the visualization process. 
Categorizing arguments by user-dependency allows to sep
arate those aspects largely independent of viewers, and to 
consider these for automatic generation and testing. We clas
sified 68 arguments as likely user-dependent, 49 unlikely, 
andl 2 maybe. 

Data <I@@: For information visualization existing 
da ta and its structure are central driving forces to the de
sign of visual representations. However, visualizations have 
properties that are independent of existing data. In total, 
we consider 63 arguments as likely data-dependent, 39 as 
unlikely, and 17 maybe. 

6 OBSERVATIONS AND PRELIMINARY FINDINGS 

To give some examples for considerations that can be under
taken using the argumentation network, first, have a Jook at 
Figme 5. There, we present the argument that visualizations 
show visual pattems (VisualPatterns), which is the most 
prominent in our collection, next to its supporting back
ground. The partial network is induced by the arguments 
from the lnterplay standpoint (see Section 5.1) and the builds 
on relation. lt clearly shows that VisualPatterns is based on 
several arguments about perception (shown in red). More 
interestingly, the argument also draws from arguments on 
the accessibility of data (blue), and the possibility to interact 
andl Jearn (green). Whereas the importance of a connection 
between visual pattems and data is obvious for informa
tion visualization once stated, interaction and leaming only 
recently gain increasing interest. 

One focus of our investigations are the arguments ut
tered on cognitive aspects (see also "Cognition" in Sec
tion 5.1). As expected, many arguments from this stand
point are about thinking (purple in Fig. 6) or related to 
memory (blue). Also not unexpected are arguments on 
evaluating data errors and false assumptions (green). TI1e 
set of arguments building on the forgiving nature of visual
izations (red) is larger than we expected. These arguments 
incl ude some benefits of Ambiguity as weil as the possibiJity 
to change views and engage in counterfactual reasoning. 

O ur second focus is on design options (see also "Design" 
in Section 5.1). Figure 7 depicts the induced graph of argu
ments based on the builds on relation and the arguments 
from a Design standpoint. Many arguments are on the gen
eral composition (green) of visualizations and composition 
in the context of Task and Data (purple). Another central 
part of argumentation is on Abstraction and the-often 
und esired-induced Ambiguity (blue). Recently, anticipating 
viewers' perception and thinking (red) has gained interest, 
especially in pursuit of counteracting against presumed [79] 
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Fig. 5: Induced subgraph of the depends an relation for all arguments from the Interplay standpoint. The argument on 
VisualPatterns builds on aspects from perception, accessibility of data, and interaction; denoted by color. Arguments on 
which no other arguments from this standpoint build upon are shown with solid borderlines. 

Fig. 6: lnduced subgraph of the depends an relation for all arguments from the Cognition standpoint. Arguments are 
grouped by the broader theme they relate to. Purple arguments are on thinking, green ones on evaluation, red arguments 
build on the forgiving nature of visualizations, the blue ones deal w ith memory, and gray arguments are on different topics. 
Arguments on which no other arguments from this standpoint build upon are shown with solid borderlines. 

cognitive biases (OvercomeBiases). While many arguments 
on the design of visualizations are general and independent 
of viewers, this new trend of designing visualizations for 
individual viewers puts high demands on designers and 
their knowledge about future viewers. 

As pointed out above, several pairs of arguments go in 
different directions. In practice, the properties underlying 
these arguments need to be traded-off. For example, the 
value of Animation (orange part of Figure 7) continuouesly 
raised attention. Clearly, Animation needs to be traded-off 
against GlobalStability. The argument network allows us to 
see both arguments in context, and to estimate some poten
tial effects trade-offs will have by looking at the arguments 
that biiild an either one. Other examples of relevant trade
offs are between Discreteness and Precision, and between 
Specificity and Flexibility. We expect that predicting effects of 
trade-offs in a structured way can inform and guide design 
decisions in the future. 

With regard to dependencies on Task, User(s), and Data, 
we expected dependencies to accumulate. Figure 8 provides 
an overview on the dependencies of all arguments. As 
expected, most general arguments from the Basic standpoint 
are unlikely user-dependent. 

Overall, the current state of the arguments is diverse. 
There are very prominent arguments as shown in Figure 9. 
Despite their prominence, arguments usually are not laid 
out rigorously such that detailed aspects often remain un
clear. With our network, we provide a basis for a more 
precise investigation of arguments, and especially allow to 
disentangle the dependencies between them. At the same 
time, there are quite some arguments which are only ex
pressed rarely. For example, Stapleton, Jamnik, and Shimo
jima [80) are the only ones in our sample who point out that 
parts of visualizations can be meaningful for themselves 
(i.e., MeaningfulParts). Kindlmann and Scheidegger (38] 
argue that visualization works as it does not repeat mis
representations accepted in data storage formats (i.e., Stor-

agelnvariance). In addition, Patterson [70) highlights that 
the visual context influences how individual objects are 
perceived (i.e., ContextPerception). These aspects-like also 
most relationships-appear to be sparsely researched. 

Nonetheless, the network can help progress theoretical 
research already in its current state. We provide an initial 
attempt in the following section. More obviously, the gaps 
we can point out in the network open questions and chal
lenges for future research. In Section 8 we discuss research 
opportunities. 

7 PROGRESSING THEORETICAL RESEARCH 

Given a !arge collection of arguments, many positive and 
some negative, one cannot help wonder i) if these arguments 
can be summed up by one or a few more fundamental 
arguments, and ü) if the conflicts and contradictions can 
also be explained by these fundamental arguments. In the 
visualization literature, there are several candidates for such 
a theoretic investigation, including the data-ink ratio (53], 
the three algebra ic principles (38], and the cost-benefit 
metric (17]. None of these theoretic propositions has been 
proved using mathematical means. Like many theoretical 
propositions in history, the most straightforward way to test 
thern is trying to falsify them by finding counter-examples. 

The arguments about "why visualize?" and "why not" 
represent some wisdorns extracted from positive and nega
tive experience in practice. We can thus assume that each 
argument is correct at least in some specific conditions. 
lf a theoretic proposition can provide the argument with 
a fundamental rationale, this is a small contribution to 
showing its qualities. If the theoretic proposition fails to do 
so, the argument can serve as a significant counter-example, 
suggesting that the proposition is likely to be incomplete 
or subject to unspecified conditions. The !arge collection of 
arguments discussed in the previous sections thus offers 
a valuable opportunity to test theoretic propositions in 
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visualization through falsification. In this section, we first 
briefly discuss the data-ink ratio (53] and the three algebraic 
principles [38]. We then focus on the cost-benefit metric [17]. 

Tufte proposed that visual designs can be optimized 
by improving the ratio between the amount of data being 
depicted and the amount of ink used [53]. This theoretic 
proposition can explain a number of arguments such as 
MultipleMeanings, Minimallabeling, Compactness, and Spa
tialConstraints, but has difficulties in supporting many ar
guments that are User-dependent or Task-dependent and 
focus on pathways @ or © in Figure 4. If this theoretic 
proposition was complete, it would suggest that the better 
data-ink ratio the better a visualization enables vi.ewers' 
cognitive capabilities. One can find counter-examples where 
redundant ink reduces cognitive load. 

For example, PartialRedundance includes both positive 
and negative views on redundancy. Rheingans and Lan
dreth first detected the benefits of redundancy in visual
ization using an empirical study [81). Chen and Jänicke 
Jater explain such benefits using the information-theoretic 
concept of error detection and correction [16]. Arguments 
VisualPatterns, EnableComplexStructures, and Rerepresen
tation center around the merit that visualizations reveal 
structures in data. Many structures are depicted explicitly, 
such as connections and spatial partitions. In practice visual 
representations are often not econornic in using inks. For 
example, typically a connection li ne in graph or tree visu
alizations uses a fair amount of ink for 1 bit of information. 
This leads to the mixed argument of LimitedAbstraction. 

Kindlmann and Scheidegger proposed three algebraic 
principles to ensure good visualization designs, namely rep
resentation invariance, 1mambig11ous data depiction, and vis11al-

data correspondence [38]. The theoretic proposition suggests 
thatt a visualization process is usefuJ if it follows the 
three principles, and it is corroborated by several argu
ments such as Storagelnvariance, GlobalStability, and Pre
scribeDiscourse. However, this proposition inadvertently 
supports negative arguments such as lnformationloss since 
many visual representations used in practice would feature 
down-sampling from higher-resolution data (e.g., overview 
visualization) and projection from higher-dimensional space 
(e.g., volume visualization) making ambiguity inevitable. 

Meanwhile, with Misleading many examples of decep
tive visualizations [82) do follow the three principles. Hence, 
some arguments for or against visualization cannot be ex
plained by whether or not the visual designs follow the 
three principles. In general, data-ink ratio [53] and the three 
algebraic principles [38] are meaningful abstractions, espe
cia lly of arguments less sensitive to variations of Users and 
Tasks. However, both are incomplete as counter-examples 
can be identified by following some arguments that are 
Task-dependent (e.g., lnformationloss) or User-dependent 
(e.g., Misleading). 

Chen and Golan proposed an information-theoretic met
ric for analyzing the cost-benefit ratio of visualization pro
cesses [17]. lt considers a visualization process as a sequence 
of transformations, P1 , P2, ... , Pi, ... , P,„ where Pi may be 
running an algorithm for visual-mapping, viewing a visuali
zation image, performing an interaction, and so on. Iterative 
processes are accommodated through sequentialization. The 
metric consists of three measures: 

Alphabet Compression measures the entropy reduction 
(E IR, in bits) of a transformation by comparing the input al
phabet with the output alphabet. Most transformations in 
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a visualization process, such as filtering, visual mapping, 
projecting, selecting, navigating, decision-making, etc., re
sult in positive measurements of Alphabet Compression. 

Potential Distortion measures the potential distortion (E 
R;::o, in bits) if one attempts to reconstruct the input 
alphabet based on the output alphabet. A viewer's soft 
knowledge is implicitly featured here as the viewer can 
exploit extra knowledge to infer the input alphabet. Poten
tial distortion is mostly positive. 

Cost measures the cost (E R>o) for the transformation and 
reconstruction. ldeally, it is measured in an energy unit, 
but may be approximated by time or monetary cost. 

Tue trade-off among the three measures is expressed as: 

Benefit 
Cost 

Alphabet Compression - Potential Distortion 
Cost 

(1) 

For its detailed mathematical definition, we refer you to 
Chen and Golan [17]. Tue metric can be applied to in
dividual transformations, a series of transformations, and 
the whole process. lt suggests that visualization is useful 
whenever it offers more cost-benefit than viewing data 
directly or applying statistical algorithmic anaJysis, and that 
a visual design is better than another if the former offers a 
better cost-benefit ratio than the Jatter. The metric gives rise 
to several assertions concerning visualization processes: 

• Losing information (i.e., alphabet compression) is a 
ubiquitous phenomenon in data intelligence processes, 
and has a positive impact on Benefit. Hence, losing 
information (e.g., lnformationl oss) should not lead to 
a conclusion "not to visualize". 

• A viewer's soft knowledge can be used to reduce the 
potential distortion. For example, when a time series 
is displayed in conjunction with a y-axis shifted away 
from the zero base, it may cause less potential distortion 
to an expert than a novice. So argument Misleading is 
User-dependent and Task-dependent. For some viewers 
and with some tasks, a so-called "vislie" may not lead 
to distortion. 

• Visualization tasks are implicitly encoded in the output 
alphabets of some transformations, usually towards the 
end of the sequence P1 , P2 , ... , Pn_ 1 , Pn. For example, 
if P„ is a transformation from observation to decision, 
the output alphabet consists of a set of possible choices. 
Tue task of P„ is typically to choose from a decision 
alphabet, i.e., making a decision. 

• Modifying a transformation Pi may change its alphabet 
compression, potential distortion and cost, and may 
also change the three measures in subsequent transfor
mations P;,+1 ... , Pn.. Hence, optimizing a visualization 
process must be done holistically. 

In general, the metric in Equation 1 exhibits a trade
off among three measures. This suggests that ambivalent 
argu ments are likely derived from cost-beneficial trade-offs 
andl negative arguments from less successful trade-offs. The 
need to consider the three measures holistically in optimiz
ing a visuali;cation aligru; with the cumplexity in dt:!Signing 
visual representations and visualization systems. 

BroadJy, the positive impact of alphabet compression can 
explain many positive arguments related to abstraction, 
highlighting and interaction, and can counter the negative 
arguments related to information loss. The role of knowl
edge in reducing potential distortion can explain the condi
tional dependence on Users or Tasks of many arguments 
since different users may have, and different tasks may 
req1L1ire, different levels of knowledge. lt also supports many 
positive arguments in comparison with analytical statistics 
andl algorithms, since these usually offer more alphabet 
compression but much less help to the reconstruction of 
input alphabets. The need to consider cost as part of the 
metric supports many positive arguments related to time 
saving, extemal memorization, and the utilization of cogni
tive capabilities such as visual search, pattern recognition, 
andl knowledge acquisition and deployment. In the follow
ing subsections, we discuss several arguments in detail. 



7.1 Arguments about Representation and Meanings 

Arguments Hornogeniety and Storagelnvariance state that 
the same visual representation can be used for different 
data objects or the same data in different formats, while 
FlexibleNotation, DifferentMappings, and the failure of Con
sistentNotation point out that the same data object can be 
depicted using different visualizations. In addition, when 
considering the meanings conveyed by visualizations, Mul
tipleMeanings, ldeasByArnbiguity, and Arnbiguity assert that 
visual representations can carry multiple meanings, in some 
cases independently and in other cases ambiguously. 

Information-theoretically, we can consider visual map
pings from data to visualizations as transformations from 
data alphabets to visualization alphabets, and the semantic 
mapping from visualization objects to meaning as transfor
mations from visualization alphabets to alphabets of seman
tic meanings. Let us denote the two types of transformations 
as Pn2v and Pv2M respectively. Transformation from differ
ent data objects to the same visual representation suggests 
the presence of many-to-one mapping in Po2v, which is a 
form of alphabet compression in Equation l. The alphabet 
compression in Po2v is one of the causes of the ambiguity 
in Pv2M, i.e„ the potential distortion. 

Some may suggest that mapping different data objects 
to the same visual representation is an improper way to 
conduct visualization. In fact, this is ubiquitous in visuali
zation. For example, given data objects, 1.99, 2.00, and 2.01, 
the chance of them being mapped to the same visual repre
senta tion is very high. When a visualization process works, 
alphabet compression in P02v results in more beneficial 
consequences, as for example suggested by MultipleMean
ings, than causing adverse problems such as ambiguous 
meaning (Arnbiguity). 

We can juxtapose P02v and Pv2M with the transforma
tion from objects and events to some entities of languages 
(e.g„ words, phrases, and sentences), and from languages to 
meanings. In the context of languages, the role of human 
knowledge is absolutely critical in delivering the many
to-one mappings in the first transformation and untangle 
the one-to-many mappings in the second transformation. 
lt is not difficult to extrapolate from languages back to 
visualization to realize the critical role of viewers in visu
alization. With some a priori knowledge about the data and 
the knowledge of visual representations, a better trade-off 
between alphabet compression and potential distortion can 
be achieved than in situations without such knowledge. 

Some arguments agree with the major role of human 
knowledge in visualization. MeaningfulSpace suggests that 
visualizations convey information with empty space. Sim
ilarly, speech can convey information via intonation, and 
even silence. Without context and spoken parts of the con
versation, silence would hardly be understandable. Natu
ralMeaning expostulates that visuaJ representations convey 
meaning "naturally" using metaphors of real world objects. 
In comparison to languages, which are costly to leam, this 
naturaJness makes knowledge of visualization easier to ac· 
quire and more readily available. Without such knowledge, 
the trade-off between alphabet compression and potential 
distortion in Equation 1 will unlikely favor visualization. 
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7.2 Arguments about Information Loss and Distortion 

Undeniabl y, visualizations---intentionall y or unintention
all y-may cause information loss and distortion as sug
gested by negative argun1ents, such as lnforrnationloss and 
Misleading. Even many positive arguments imply that vis
ualllzations may not work, if some information is lost or 
distorted, e.g., losing topological information in TopologyP
reservation, fail ing to follow mathematical laws in Logic
Mathernatic, using inconsistent notations in ConsistentNo
tation, and failing to maintain global stability in Global
Stability. The central assumption of these arguments is that 
information is useful. So, it should not be lost or distorted. 

There are numerous definitions of "information" 
(e.g., (83]). Although "useful information" is a commonJy
used phrase, the definition of usefulness depends on view
ers, tasks, and contexts. In information theory definitions 
of information [84) mostly are semantically neutral. Some 
have a slightly negative implication. For example, one well
kno\\rn definition of information is Shannon entropy (85). 
lt measures the average uncertainty of an alphabet, hinting 
less may be better in many situations. Another definition 
of information is KuJlback-Leibler Divergence [86), which 
measures the difference between two alphabets, hinting that 
the difference may be bad when measuring distortion and 
may be good when measuring leaming. 

IEquation 1 uses these information-theoretic measures to 
define two different types of information. lt defines alphabet 
compression as the reduction of Shannon entropy after 
a transformation, hinting losing information in terms of 
uncertainty may be beneficial. lt defines potential distortion 
as the difference between the original input alphabet and the 
reconstructed alphabet, hinting the original information in 
the input alphabet is beneficial. Thus, benefit is expressed by 
subtracting potential distortion from alphabet compression, 
which is the trade-off between redudng one measure of 
information and maintaining another. 

IRecall our discussion about languages in Section 7.1. 
ln comparison to the aJphabet of all possible real world 
objects and events, the alphabet of language entities is much 
smaller. So, the transformation from objects and events 
to language enlities exhibils a huge amowH of alphabel 
compression. Potential distortion is thus inevitable from 
time to time depending on the complexity of objects and 
events, the purposes of describing them, and the people who 
speak (write) and listen (read). lt would be insane to suggest 
thatt spoken or written words must capture every piece of 
information about an object or an event. AJthough it might 
not be helpfuJ, losing some topological information about 
an object or an event, failing to follow mathematical laws, 
andl having a bit of inconsistency would usually be tolerated 
by the listeners and readers. Even distortion is allowed in 
languages. For example, irony and sarcasm are forms of 
distortion; successful deployment depends on listeners. 

This trade-off between alphabet compression and poten
tial distortion ca.n explain why it is not difficult to find visu
a liza tions that break the preconditions of TopologyPreserva
tion, LogicMathernatic, ConsistentNotation, and GlobalSta· 
bility but still are very usefuJ. Often visualizations regarded 
as "vislies" by Misleading are widely used in practice. For 
exam ple, most finance sites (e.g., Yahoo Finance) display 



time series of stocks and exchange rates without following 
the guideline of showing the zero baseline [53], [82]. Likely, 
most of their users have adequate financial knowledge 
to alleviate the potential distortion due to the misleading 
visualizations. Most metro maps distort the geographical 
locations of stations (i.e„ geometry) in order to enable better 
presentation of topological connections. Most city maps 
show the accurate location of train stations without their 
topological connections in order to reduce cluttering. 

Nevertheless, arguments TopologyPreservation, Logic
Mathematic, ConsistentNotation, and GlobalStability express 
desirable properties of visualizations in many applications, 
where omitting such preconditions may lead to distortions 
with grave consequences. Here the third element of Equa
tion 1 comes into play. Visualizations need to balance the 
benefits and the costs of displaying different aspects of da ta, 
and the costs of not displaying them. 

7.3 Arguments about Patterns and Structures 

Many arguments articulate that a major reason for using 
visualizations is that they reveal patterns and structures. 
Some attribute this capability to visual representations (e.g., 
Rerepresentation, Abstraction, VisualPatterns, EnableCom
plexStructures), while others attribute it to human cognitive 
capabilities (e.g., Perceptuallnference, EnhancedStructures, 
ContextPerception). The two groups of arguments focus on 
different transformations, PD2v and Pv2M, in Section 7.1. 

In fact, these arguments are mostly made against sce
narios of viewing data without visualization. For the first 
group of a rguments, there are obvious merits over viewing 
data when Po2v can correctly extract patterns and struc
tures and explicitly depict (e.g., co1mection lines between 
dots) or highlight them (e.g., showing clusters of dots in 
different colors). The second group of arguments focuses on 
phenomena where patterns and structures are unknown to 
the first transformation Po2v and it is the viewers' cognitive 
capabilities that enable the identification of patterns and 
structures in the second transformation Pv2M. 

Although we are yet to have a full understanding about 
such cognitive capabilities, it is generally believed that this 
is due to a combination of human capabilities such as 
visual search, selective attention, Gestalt-grouping, heuris
tics, memory, knowledge, reasoning, hypothesizing, and so 
on [87]. In the literature, there also is evidence suggesting 
shortcomings of these capabilities, such as inattentional 
blindness, illusion, biases, forgetting, and so on [88], (89]. 

This leads to the question, what if visualization is com
pared against automated techniques for spotting patterns 
and structures using techniques such as classification, clus
tering, association analysis, principle component analysis, 
dimensionality reduction, neural networks, decision trees, 
etc. Would such comparison lead to arguments against using 
visualizations, or for automated techniques to teil us what 
to see? Hence, with the shortcomings of human cognitive 
capabilities and the improvement of machine intelligence, 
the arguments at the beginning of this subsection could 
potentially be used as counter-arguments. 

The cost-benefit metric (17) can be applied to machine
centric as well as human-centric transformations in any data 
intelligence workflow. One major shortcoming of a machine
centric process is the potential distortion during the reverse 
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mapping from an output alphabet to an input alphabet. 
As discussed earlier, humans' knowledge can alleviate the 
potential d istortion by taking into account some additional 
variables that are not in the data and using additional 
heuristics to reason about the data. Recently Tarn et al. [90] 
reported two observational studies, each of which compared 
a fully-automated workflow with a visual analytics work
flow. In both cases they found that the visual analytics pro
cesses achieved better resuJts. They quantitatively estimated 
the amount of knowledge of human analysts that can be 
useful to the visual analytics workflow, and foun d that there 
was more information in the knowledge than in the data 
used in these two case studies. Both, the data space and 
the knowledge space are measured using Shannon entropy. 
The use of human knowledge in the reverse mapping from 
visualization to data was confirmed in a recent empirical 
study by Kijmongkolchai, Abdul-Rahman and Chen (91]. 

While automated processes can achieve higher rates of 
a lphabet compression and lower running cost, they wiJI cer
tainly be less competitive in alleviating potential distortion. 
When human analysts are in a workflow, P1 , P2, ... , P„, 
using visualizations to observe different processes, visual
izations facilitate external memorization and provide the 
workflow as well as the human minds with provenance of 
transformations within the workflow, as suggested by Ex
ternalMemory and Provenance. The externalized knowledge 
further helps in reducing potential distortion. 

Stasko (92] made a related argument that visualization 
helps the confidence of analysts (i.e., Confidence). Imagine a 
machine-centric workflow P1 , P2 , ... , P„. Further, imagine 
a hruman-centric secondary workflow C1 , C2 , ... , Cn run
ning parallel to P1 , P2 , ... , Pn· Let us define confidence as 
an a lphabet with five levels (1, 2, 3, 4, 5] from very doubtful 
to very confident. Assume that the analyst initially does not 
know which va lue of the 5-scale should be, so the confi
dence alphabet has the maximum entropy (about 2.3 bits) 
for each Pi. At every stage Ci, the analyst observes some 
visualizations related to Pi, pondering confidence. If the 
analyst is certain about a particular confidence value (e.g., 
2) due to some errors of Pi, the entropy of the confidence 
a lphabet becomes Obits. At the end of the process, this 
secondary workflow can achieve alphabet compression of 
up to 2.3n bits. Hence, using visualization to determine if 
one is confident or not about a machine-centric workflow 
brings about benefit. 

Summary: Due to space limitations, we can only 
discuss a small number of arguments here. We considered 
all arguments in our collection. Formostarguments, we find 
thatt individually each typically focuses on one of the three 
inforrnation-theoretic measures. When we consider several 
related or confücting arguments together, the notion of some 
trade-off reveals itself. In general, the cost-benefit metric 
presents an abstract argument about the trade-off among 
three information-theoretic measures. In the literature, the 
optimization of this trade-off is often phrased as an argu
ment that visualization facilitates effective and efficient cog
nitive processes in performing tasks involving data (13], [55] 
(i.e., TaskEfficiency). Here, the word "effective" captures 
the sense of high alphabet compression and low potential 
distortion, "efficient" captures the sense of high aJphabet 
compression (for subsequent processes) and low cost. 



8 RESEARCH OPPORTUNITIES AND APPLICATIONS 

Having presented an example of how to use the network 
in visualization theory, in this section we present more 
potential applications of our network approacl1 to empiric 
visualization research (Section 8.1) as weil as the practice of 
qualitative and quantitative evaluation (8.2), and the design 
of visualizations (8.3). 

8.1 lmplications for Emplrlcal Research 

The theoretical discourse in the previous section uses the 
network for putting an existing theory to the test. In empir
ical research the network may reveal potential hypotheses 
about aspects that have not been investigated empirically in 
a rigorous manner, thus pointing out new research oppor
tunities. For example, empirical research on Activelearning 
and FlexibleUsage of visualizations is lirnited. Especia lly 
when it comes to Heuristiclnteraction there remain plenty 
research opportunities. For example, what heuristics do vis
ualization experts, domain experts, and novices apply? How 
effective are these? And, why do they differ in efficiency? 
Given the network we further expect that some visual
izations are usable w ithout knowledge about their rules 
of construction (lrrespectiveOfConstruction). In which cases 
this theoretical assertion holds needs to be investigated. 

Secondly, the network aids in formulating hypotheses as 
it wltangles argurnents, and hence properties of visualiza
tions. As an example, please reconsider the VisualPatterns 
argument in Figure 5. The subgraph clearly depicts factors 
argued to be the foundation of visual pattems, namely 
AttentionDriving, Perceptuallnference, Precision, and lmplic
itlearning. While aspects of visual patterns, in general, 
have been investigated extensively, future research may look 
more closely at (implicit) learning. 

Furthermore, the current state of the network is far 
from being complete. Likely there are missing cmmections, 
and relationships lacking empirical support. Relationships 
including at least one argument from the Cognition stand
point are good starting points for potentially interesting 
research questions. For instance, how ambiguity in a rep
resentation or different representations of the same problem 
can help in solving problems (i.e., ldeasByAmbiguity, and 
Rerepresentation) is only partially understood, and not in 
the focus of the lnfoVis community today. Clarifying the 
relation between not only these arguments, but also their 
prerequisites is a next step towards better understanding. 
Establishing the network structure in this area will con
nect argun1ents expressed as early as by Feynman (93], 
and Larkin and Simon [35), with those by Krish [47), and 
Tversky [51). Additionally, new arguments focused on these 
particular aspects may be added. 

Another way to use the network is to research dis
agreements. These can be conflicts between arguments en
coded in the network, or different affirmations of single 
argurnents and relationships. For example, Animation is 
discussed broadly with diverg:ing affirmations. Categorizing 
empirical research on the topic by connecting the findings of 
experirnents with related arguments in the network can ex
plicate clifferences between experirnents and help integrate 
findings. Subsequently, the provided structure faci litates re
tracing lines of thought, and uncovering needs for targeted 
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replication. Last but not least, the references embodied in 
the network provide a source of relevant publications. 

Taken together, the network can provide empiric re
seairchers with a model at a useful level of abstraction. lt of
fers enough detail to relate individual effects, and sufficient 
abstraction to embed them in a bigger picture. Resulting 
research designs aJiow for generalizable empiric research 
thatt may lead to widely applicable insights. 

8.2 Qualitative and Quantitative Evaluation 
Next to inspiring novel empiric investigations, the network 
may also be used in the critique of existing visualizations. 
As a practica l example we consider the network graph on 
the whiteboard used during the construction of our network 
(see Figure 1 (B)) and the interactive adjacency matrix view 
in the online tool we developed (Figure 1 (C)) used for 
la ter refinement. The network helps us to define demands 
as a set of arguments. For the case of constructing an 
argument network such set could consist of the need to 
repeatedly interrupt and resume working on the network 
(AiciResuming), and setting the expectation that the current 
network is only an intermediate result (Forgiveness). 

In order to engage in a solid critique, we must ensure 
thatt we do not miss related or otherwise relevant aspects. 
For example, in the network we find that AidResuming 
builds on GlobalStability. The whiteboard diagram is an ex
ample of a visualization that is very stable. Any change is a 
result of a viewer's active engagement as long as some very 
basic preconditions are met. For instance, there is no wind 
blowing away sticky notes. The matrix view, on the other 
hand, is not necessarily stable from a global perspective 
when adding a new relationship. As arguments are sorted 
such that au builds on relationships lay in the Jower triangle 
the sorting is automatically updated once a new relationship 
is added. Arguments with sort order undetermined by the 
builds on relation may flip when a new order is calculated. 
Such flips undermine the demand for GlobalStability. 

One has to note though that our network is not intended 
to entail all relevant aspects tobe considered when deciding 
which of the two to use. Being theory-driven and focused on 
the properties of visualization objects, for example, it does 
not include the effort needed to implement visualizations. 
In our case, you can clean a whiteboard, and pick some 
sticky notes and pens in a minute, but you may need days 
or weeks to implement an interactive visualization. Apply
ing the network to critique visualizations should be done 
mindfully and non-mechanically. Knowing demands and 
considering criteria external to the argument network is key 
to making high-quality choices. Nonetheless, the network 
can add structure to a !arge part of the evaluation process. 

Another research opportwlity is the collection and de
velopment of quantitative evaluation techniques / quality 
measures. There are several measures available, many more 
than we can feature here (94]. To give only one prominent 
example, Tufte's data-ink ratio [53) can be used to measure 
Discreteness. Nonetheless, there are arguments for which 
to the best of our knowledge no measures exist. One such 
example is measuring how weil two or more views are 
integrated with each other (lntegrationOfViews). 

The network may be used to bridge the gap between 
visualization theory, quantitative measures and to date often 



implicit or vague demands. At the same time the network 
offers lines of thought why a single quality measure, such as 
Tufte's data-ink ratio, o~en is not enough to capture visual
ization quality In practice, providing automated assistance 
by proposing suitable visualizations is limited by the quality 
of this measure-to-demand link. 

8.3 Design of Visualizations 

Finally, the network may also be applied in the design 
of novel visualizations. As with traditional visualization 
design, the first step is to specify initial demands. To date 
designers continue with finding a design that meets these 
ini tia l demands. Using the network introduces an interme
diate step. Before entering the design phase, further implicit 
demands can be inferred from the network. Picking up 
the VisualPatte rns example again (see Figure 5), one can 
infer that VisualPa tterns builds on driving viewer's a ttention 
to relevant parts (AttentionDriving), but also enabling the 
viewer to learn how to interact with a visualization effec
tively (lmplicitl earning). Quite obviously, Jearning can only 
happen efficiently if the attention driving effect is not too 
strong. Otherwise, viewers need to put constant effort in 
overriding exaggerated distracting forces. Driving a ttention 
to visual patterns is a good start for visual analysis of data. 
However, once analysts proceed beyond spotting a pattem 
to investigating its origin, reliability and context, they must 
be able to free themselves from being permanently attracted 
to the pattern. Applying the network in the design of novel 
visualizations leads to a richer picture of requirements, even 
before the first prototype has been sketched. 

Besides being directly applied in the design of visu
alizations, the network can be used to underpin design 
guidelines with theory. In Une with its application in em
piric research (Section 8.1) the network provides a theo
retic structure, which matches the level of abstraction of 
many guidelines. One comrnon example is to avoid visual 
decorations unrelated to the data / chartjunk [53). Why to 
avoid decorations rnight be founded on several theoretic 
arguments. First, decorations change the visual context and 
hence perception (ContextPerception). Secondly, decorations 
likely drive attention (Atte ntionDriving) away from the rele
vant visual patterns. Thirdly, decorations may add Ambigu
ity in cases calling for clarity. A detailed investigation could 
continue from here, but exceeds the scope of this paper. 

9 CONCLUSION 

In this work, we curate a network of arguments based on 
a sizeable collection of mostly positive and some negative 
argurnents as to "why visualization works". With the net
work we offer a first roadmap of theoretical arguments on 
the aspects underlying benefits provided by visualization. 
We categorize these arguments based on several schemes, 
aJ lowing the examination of arguments in groups. The 
categorizations aid in navigating within the network and 
offer connections to coarser and more detailed levels of 
abstraction. Perhaps most interestingly, we observe a num
ber of needs for trade-off among arguments, and present 
numerous opportunities for future research and practical 
application. Finally, we make the network and the collection 
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of arguments available online as an open dataset about 
visualization research, resulting from manual coding of 108 
p ub lications. 

Our work suggests a new scope in developing a the
orettical foundation of visualization (6). Arguments about 
"why visualization works" are usually related to "how 
does visualization work", and "how to make visualizations 
work", especially at a more detailed level regarding indi
vidual visual representations and visualization systems. lt 
will require a huge effort to examine conflicts and needs for 
trade-offs as weil as to bridge between the abstract concepts 
discussed in this work and concrete mechanisms. Without 
doubt, these efforts will lead to profound impact on practice. 
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