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Extensible Spherical Fibonacci Grids
Ricardo Marques, Christian Bouville, Kadi Bouatouch and Josep Blat

Abstract—Spherical Fibonacci grids (SFG) yield extremely uniform point set distributions on the sphere. This feature makes SFGs
particularly well-suited to a wide range of computer graphics applications, from numerical integration, to vector quantization, among
others. However, the application of SFGs to problems in which further refinement of an initial point set is required is currently not
possible. This is because there is currently no solution to the problem of adding new points to an existing SFG while maintaining the
point set properties. In this work, we fill this gap by proposing the extensible spherical Fibonacci grids (E-SFG). We start by carrying
out a formal analysis of SFGs to identify the properties which make these point sets exhibit a nearly-optimal uniform spherical
distribution. Then, we propose an algorithm (E-SFG) to extend the original point set while preserving these properties. Finally, we
compare the E-SFG with a other extensible spherical point sets. Our results show that the E-SFG outperforms spherical point sets
based on a low discrepancy sequence both in terms of spherical cap discrepancy and in terms of root mean squared error for
evaluating the rendering integral.

Index Terms—Spherical Quasi-Monte Carlo, Low Discrepancy Spherical Point Sets, Adaptive Sampling, Rendering Equation
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1 INTRODUCTION

S EVERAL works have shown the benefits of Fibonacci-
based spherical distributions of points for various ap-

plications [2], [4], [10], [17], [19], [29]. The main strength
of these point sets is an extremely uniform distribution
which is near-optimal in terms of spherical cap discrepancy
[5]. There are two families of such point sets: (i) spherical
Fibonacci point sets based on planar Fibonacci integration
lattices [24] (which, from here on, we will call spherical
Fibonacci integration lattices, SFIL); (ii) and spherical Fi-
bonacci point sets based on planar Fibonacci grids [28]
(which, from here on, we will call spherical Fibonacci grids,
SFG). SFILs constraint point set sizes to be Fibonacci num-
bers. An SFG, on the other hand, allows generating point
sets with an arbitrary number of points. This freedom to
choose the number of points justifies our interest in SFGs
over SFILs.

In the particular case of computer graphics, SFGs have
been successfully used for Quasi-Monte Carlo (QMC) spher-
ical integration [19], vector quantization, texture filtering
and procedural modeling [17], and, more recently, cone
sampling for computation of the Shape Diameter Function
[4]. In all these applications, the SFGs are shown to be more
effective than alternative methods. However, despite their
advantages, SFGs have an important limitation: they have
a fixed size. Indeed there is currently no solution to the
problem of adding more points to an existing spherical grid
while keeping the characteristics of the SFG. This feature
prevents the application of SFGs to adaptive sampling schemes
in which the sampling rate might be increased on the
fly according to some quality criterion to refine the QMC
estimate. In fact, a direct application of SFGs to an adaptive
sampling scheme would imply discarding all previous sam-
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ples when increasing the sampling rate, which is unpractical
when the cost of obtaining a sample is extremely high as,
for example, in photo-realistic rendering. In this article we
fill this gap by proposing a method for generating extensible
spherical Fibonacci grids (E-SFG), which allows adding new
points to the original point set in a sequential manner.
Moreover, we show that the resulting point set maintains
the uniformity properties of the original point set. Our work
brings three main contributions which we list below:

1) A thorough analysis of SFGs where we provide a new
set of formal proofs demonstrating the SFG point set
properties.

2) An algorithm for producing extensible spherical Fi-
bonacci grids (E-SFG) which leverages the properties
previously demonstrated. We prove that the resulting
E-SFGs preserve the properties of the SFG point sets.

3) An analysis of the efficiency of the resulting E-SFG
point set for computer graphics applications, both
through theoretical metrics, as well as through a set of
numerical experiments.

This article is structured as follows: in the next section we
review the related work. In Sec. 3, we provide a set of
interesting properties of SFGs which have been stated in
previous works. Our contribution starts in Sec. 4 where
we perform an in-depth analysis of SFGs and derive new
properties. These properties are then used in Sec. 5 for the
E-SFG point set construction and to verify that the extended
point set maintains the good properties of the original SFG.
Finally, we present and discuss our results in Secs. 6 and 7,
respectively, followed by the conclusions in Sec. 8.

2 RELATED WORK

Our goal in this paper is to address the specific problem of
extensibility for spherical Fibonacci grids and not the much
more general problem of sampling on the sphere which has
been extensively covered in the literature. For a detailed
analysis of point systems on the sphere, refer to [15] which
is, to our knowledge, the latest review on this topic.
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(a) Initial spherical grid (b) Extension to 256 points (c) Extension to 1024 points (d) Classic spherical Fibonacci
with 64 points grid with 1024 points

Fig. 1. Example of our extensible spherical Fibonacci grid (E-SFG). The initial spherical grid in (a) contains 64 points shown in blue. In (b) the initial
grid is extended to 256 points, by adding 192 new points (marked in red). The resulting point set is further extended in (c), yielding a total of 1024
points. Finally, (d) shows an example of a classical (not extensible) spherical Fibonacci grid (SFG). The figures show that our E-SFG algorithm can
generate extensible spherical point sets with a distribution visually similar to those of classical SFG. Quantitative results shown later in the paper
confirm this observation. They show that our approach yields extensible point sets with similar properties in terms of spherical discrepancy and root
mean square integration error, overcoming the fixed-size constraint of classic spherical Fibonacci grids without impairing their properties.

We start by briefly defining key concepts for understand-
ing the remainder of this work. An integration lattice for
functions over R2 is a lattice containing Z2 as a subset [8],
[24]. Let us now call PN the subset of points of a lattice L
contained in [0, 1)2 and projected onto the surface of the
unit sphere. If L is an integration lattice then PN is said to
form a spherical integration lattice. If L is not an integration
lattice, then PN forms a spherical grid.

Spherical Fibonacci integration lattices (SFIL), used for
numerical integration on the sphere, were first introduced
by Hannay and Nye [14]. In their paper the authors show
that, by projecting a unit square Fibonacci integration lattice
(as defined by Niederreiter and Sloan [21]) onto a sphere
through a Lambert cylindrical equal-area transform, par-
ticularly efficient point sets for numerical integration over
the sphere can be found. Furthermore, they highlight the
topological properties that make the SFIL so efficient for
numerical integration on the sphere. These good properties
for numerical integration have been analyzed in details
by Aistleitner et al. [1]. Swinbank and Purser [28] further
improve the point set properties by shifting the z-coordinate
of the projected points so as to obtain a better distribution
at the poles. Additionaly, they introduce the spherical Fi-
bonacci grids (SFG), a point set whose size is not restricted
to Fibonacci numbers as opposed to SFIL. Swinbank and
Purser also derive interesting properties of the SFG which
we use in this paper. González [12] applies SFGs to the
measurement of areas on a sphere. SFGs are also appropriate
for numerical integration of the shading integral as shown
by Marques et al. [19]. They show that SFGs outperform all
familiar QMC point sets for diffuse and glossy reflections
when evaluating shading integrals.

However, compared with standard Monte Carlo impor-
tance sampling methods such as [3] or digital net sequences,
such as Halton or Sobol sequences, SFGs have the dis-
advantage of not being extensible. This means that if the
integration error is deemed too significant, requiring a larger
point set, none of the points of the previous point set will
be included in the new larger point set, thus wasting all
previously-drawn samples. To solve this problem in the case
of planar integration lattices, Hickernell et al. [16] introduce

the concept of extensible integration lattice sequences. They
are able to extend unit square rank-1 integration lattices
[8] (i.e., integration lattices which can be obtained by the
rule pk = k

N v mod (1), where v is the generating vector
with coordinates in N and N the point set size), hence
generating infinite sequences of points similar to digital net
sequences. A similar approach has been applied in [9] to
anti-aliasing and texture representation. In [18], the author
proposes a shifted replication method in order to extend a
rank-1 integration lattice for generating stratified samples
set. However, all these methods cannot be applied to our
problem since SFGs projected onto the unit square are not
integration lattices as we explain in this paper. Cools and
Nuyens [7] analyze the specific case of extensions of Fi-
bonacci integration lattices but again, their solution does not
apply to SFGs for the same reason as above. Furthermore,
when lifted onto the sphere, the extended point sets no
longer exhibit the nice topological properties of the original
SFIL. Our goal in this paper is thus to propose a solution for
extending SFGs which preserves the properties that make
the SFG point set efficient for spherical integration. An
example of the resulting point set, named E-SFG (extended
spherical Fibonacci grid), is shown in Fig. 1.

3 BACKGROUND

Spherical Fibonacci grids and some of their properties have
been studied in previous works. In this section, we state
the most relevant properties for our goal. Some of them,
such as the basis vectors of an SFG, have not been formally
demonstrated in the related work. In this case, we state these
properties in this section and provide a formal derivation as
part of our contribution in the following sections.

SFGs are directly defined on the unit sphere. Given the
desired number of points N , the spherical coordinates (θ, φ)
of the jth point of the SFG are given by [19], [28]:

θj = arccos(1− 2j/N)

φj = 2jπΦ−1 mod 2π

}
0 ≤ j < N (1)

where θj is the elevation angle, φj is the azimuth angle,
and Φ = (1 +

√
5)/2 is the golden ratio. An example of
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(a) Spherical Fibonacci grid (SFG) (b) Planar Fibonacci grid (FG)

Fig. 2. (a) Example of a spherical Fibonacci grid (SFG) with 20 points,
as defined in Eq. (1). (b) Planar Fibonacci grid (FG, Eq. (3)) resulting
from projecting (a) to the unit square through Eq. (2).

the resulting point set for N = 20 is given in Fig. 2 (a). In
an SFG, all points are evenly distributed along the vertical
axis z = cos θ. The difference between the z components
of two successive points is constant: zj − zj+1 = 2/N
(c.f. Eq (1)). This guarantees that there is a single point
within each zone defined by the two parallels at zj and zj+1,
as shown in Fig. 2 (a). Similarly, the difference between the
azimuth angles of two successive points has a constant value
2πΦ−1. Such an angular spacing leverages the fact that the
golden ratio is the most irrational number, hence avoiding
periodicities in the φ angle distribution while providing a
regular distribution. Finally, note that the SFG of Eq. (1)
(and Fig. 2 (a)) is sometimes expressed with a shift of
1/2N in the z-axis [19], [28]. This shift symmetrizes the z-
coordinate distribution so that the first and last points are
at equal distances from their closest pole, which improves
the spherical discrepancy of the point set (more details on
this metrics are given below). For the sake of simplicity, and
without loss of generality, this shift is ignored in this section
but it is reintroduced in Sec. 5 for the specific case of E-SFG.

In order to make a detailed analysis of the SFG, it is
convenient to project it onto the unit square through the
Lambert cylindrical equal area projection [28]:

x = (1− cos θ) /2

y = φ (2π)−1 .
(2)

In this case, the point set resulting from the application of
Eq. (2) to the SFG point set defined by Eq. (1) generates
a planar Fibonacci grid (FG). The Cartesian coordinates
(xj , yj) of the jth point of a planar FG are given by:

xj = j/N

yj = frac
(
j
Φ

) }
0 ≤ j ≤ N (3)

An example of such a planar Fibonacci grid FG is shown
in Fig. 2(b). To each of the zones shown on the sphere in
Fig. 2(a) corresponds a vertical equal-area slice on the unit
square in Fig. 2(b), with each zone (and slice) containing a
single point.

A planar Fibonacci grid FG can be alternatively defined
as the subset FG = FL ∩ [0, 1[2 of a planar Fibonacci lattice
FL defined by:

FL =
{
p = z0 bk + z1 bk+1 : (z0, z1) ∈ Z2

}
. (4)

0 1
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y
Fig. 3. Basis vectors of a planar Fibonacci lattice FL generated with
N = 20. Only the lattice points within the [0, 1] × [−1, 1] rectangle are
shown. The pink area denotes the area of the unit cell formed by the
basis vectors b3 and b4. The red vector (b4) indicates the shortest basis
vector.

Each point p in FL can be expressed as an integer combina-
tion of the basis vectors bk and bk+1 defined below. Note
that the points in FL are no longer restricted to the unit
square as opposed to those belonging to a planar Fibonacci
grid FG. As we show below, the notion of planar Fibonacci
lattice FL, as defined by Eq. (4), is particularly interesting,
since its formulation allows deriving certain properties of
the point set which can then be transposed to the SFG. Based
on this representation, Swinbank and Purser [28] observe
that the basis vectors of a planar Fibonacci lattice FL are the
pairs (bk,bk+1) with:

bk =

(
Fk
N
,

(−1)k−1

Φk

)
, k = 0, 1, . . . , km , (5)

and km such that:

Fkm ≤ N < Fkm+1 ,

N being the number of points on the grid, and Fkm being the
largest Fibonacci number smaller or equal to N . However,
in their paper, Swinbank and Purser give no mathematical
proof of this observation. In subsubsection 4.3, we provide a
formal derivation of the basis vectors of the planar Fibonacci
lattice FL. Fig. 3 shows the set of basis vectors for a planar
Fibonacci lattice FL with N = 20 points. In this case, and
according to Eq. (5), the number of basis vectors is km +
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(b) Stretched lat-
tice

(c) After projection onto the unit sphere

Fig. 4. (a) Voronoi cells of a planar Fibonacci lattice FL. (b) Voronoi cells
of the same lattice scaled to the [0, 2] × [0, 2π] rectangle. Observe that
the Voronoi cells are not elongated after stretching. (c) Voronoi diagram
of a SFG.

1 = 8. The basis vectors bk satisfy a recurrence relationship
similar to that of Fibonacci numbers:

bk+1 = bk + bk−1 , (6)

as pointed out by Swinbank and Purser [28]. As explained
below, these vectors will be our basic tool for extending the
spherical Fibonacci grid. Associated with any lattice basis
given by (bk,bk+1) is the notion of unit cell. A unit cell, or
fundamental paralelogram, is the area associated with any
pair of vectors forming a basis of the lattice [23]. It can be
seen as the smallest group of lattice points which constitute
a repeating pattern in the lattice. In general, the unit cell
is illustrated using a pair of short, nearly orthogonal basis
vectors as shown in Fig. 3. However, since the basis is not
unique, there is not a single unit cell in the Fibonacci lattice,
and we can use any pair of basis vectors (bk,bk+1) to form
unit cells of the Fibonacci lattice. Note that, by definition,
the unit cell does not contain any point in its interior.

Another relevant property of planar Fibonacci grids FG
is illustrated in Fig. 4. As observed by Hannay and Nye [14],
the shape of the Voronoi cells of a planar Fibonacci grid
FG (as defined in Sec. 4.5) is not modified when the grid
is streched with different scaling factors along the x and y

Fig. 5. Periodicity properties of a planar Fibonacci grid FG. This figure
has been obtained by shifting the (unit square) planar Fibonacci grid,
shown over a gray background. The periodicity along the green edges,
and the non-periodicity along the red edges becomes evident.

axis, although the cells orientation and size change. More
specifically, the Voronoi cells are not elongated as opposed,
for example, to the case of regular axes-aligned square unit
cell lattice [14]. This remarkable property explains why the
uniformity of planar Fibonacci grid is well preserved when
lifted to the sphere, despite the non-uniform scale factor
introduced by the Lambert cylindrical projection. In Sec. 4.5,
we provide a mathematical proof of this invariance property
which, as shown below, is also preserved by our proposed
E-SFG (extended SFG) algorithm.

Finally, as shown in Sec. 4.3 and illustrated in Fig. 5, the
planar Fibonacci lattice FL is not periodic in the x-direction,
which means that FL does not contain Z2 as a subset. The
non-periodicity in the x-direction prevents the application
of point set extension techniques developed for integration
lattices (i.e., fully periodic unit hypercube grids) such as
those proposed by Hickernell et al. [16] and by Cools and
Nuyens [7]. Moreover, these approaches do not target the
unit sphere, and thus do not maintain the beneficial non-
elongation property of the Voronoi cell.

Summary and overview: The properties mentioned
above make the spherical Fibonacci grid (SFG) particularly
well-suited to applications relying on a high quality uniform
distribution of points on the sphere. However, a broader use
of SFGs is currently hindered by the absence of extensibility
as explained in Sec. 1. We fill this gap by proposing an
efficient algorithm for extensible spherical Fibonacci grids
(E-SFG). Our contribution starts in the following section
(Sec. 4) with an in-depth formal analysis of SFG properties.
With this analysis, we identify the characteristics of the
planar Fibonacci grids which enable us to preserve their
uniformity properties when projected onto the sphere. Then,
in Sec. 5, we propose our E-SFG algorithm. The point set
extension is performed in the projected unit square domain,
and is designed to maintain the properties identified in
Sec. 4. Therefore, when the resulting point set is projected
back onto the unit sphere, the uniformity of the original
distribution is preserved.
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4 GEOMETRY OF SPHERICAL FIBONACCI GRIDS

4.1 Useful identities
The mathematical developments presented in this section
use the following equations related to the golden ratio Φ
and Fibonacci numbers Fk (see e.g. [13]):

1 = Φ− Φ−1 (7)
√

5 = Φ + Φ−1 (8)

Fk =
Φk − (−Φ)−k√

5
(9)

From Eq. (8) and (9), it is easy to derive the following
equation:

FkΦ−1 = Fk−1 − (−Φ)−k . (10)

Another useful identity is [13]:

F4m = F2m (F2m+1 + F2m−1) , (11)

from which we can show using Eq. (9):

Φ2m + Φ−2m = F2m+1 + F2m−1 . (12)

4.2 Unit cell area of an SFG
Suitable lattices for QMC numerical integration must have
unit cell area of 1/N . In the case of integration lattices, the
unit cell has always an area of 1/N [20], [24]. However, as
mentioned above, the SFG is not an integration lattice and
thus this property is yet to be proven in the SFG case. In the
following we prove that SFGs also have a unit cell area of
1/N .

The proof we propose is performed in two steps. First,
we show that the unit cell area of a planar Fibonacci lattice
FL (i.e., the area of the parallelogram spanned by a given
pair of basis vectors (bk,bk+1)) is 1/N whatever the con-
sidered pair of basis vectors (bk,bk+1). Then, we explain
how this proof can be transposed to an SFG (i.e., to the unit
sphere, our space of interest).

Let us consider the general equation of the planar Fi-
bonacci lattice FL as given by Eq. (4). Assuming that the
basis vectors are provided by Eq. (5), Eq. (4) can be rewritten
in matrix form as:

FL =

{
p = (x, y) :

[
x
y

]
= M

[
z0

z1

]
, (z0, z1) ∈ Z2

}
(13)

with:

M =


Fk
N

Fk+1

N

(−1)k−1

Φk
(−1)k

Φ(k+1)

 . (14)

M is thus a matrix where each column represents a basis
vector, i.e., bk and bk+1, respectively. Following the ter-
minology of lattice theory, let us call a unit cell the area
enclosed by two basis vectors. Then the area of the unit cell
defined by the parallelogram spanned by any basis vector
pair (bk,bk+1) can be simply retrieved by computing the
determinant ∆M of the matrix M , yielding:

∆M =
Fk
N

(−1)k

Φ(k+1)
− Fk+1

N

(−1)k−1

Φk
=

1

N
(15)

by application of Eq. (10).

The result presented in Eq. (15) is obtained for planar
Fibonacci lattices FL (Eq. (4)), i.e., a planar Fibonacci lattice
not restricted to the unit square. However, the unit cell
generated by the basis vectors b0,b1 is of a special interest.
Indeed, this is the sole basis vector pair generating unit cells
that do not exceed the unit square boundaries in the non-
periodic direction of the planar Fibonacci grid FG (i.e., the x
direction). This periodicity property makes planar Fibonacci
grids apt for numerical integration of functions f(x, y) in R2

that are periodic for the y variable only. Finally, extending
the proof to SFGs is straightforward since the spherical
projection considered (Eq. (2)) is equal area, and thus the
area corresponding to each grid point remains equal.

4.3 Formal proof of the basis vectors of an SFG

We want to demonstrate that any pair of vectors (bk,bk+1)
given by Eq. (5) are basis vectors of the planar Fibonacci
lattice FL defined by Eq. (4). We show in the following that
any point in FL can be expressed through an integer linear
combination of (bk,bk+1). Formally, this can be proved by
inverting Eq. (13) such that:[

z0

z1

]
= M−1

[
x
y

]
(16)

and showing that z0 and z1 are integers for every point
(x, y) in the planar Fibonacci grid. Using Eq. (14) and
Eq. (15), we have:

M−1 = N


−(−Φ)−k−1 −Fk+1

N

(−Φ)−k
Fk
N

 . (17)

Then, using the (x, y) coordinates of the jth Fibonacci grid
point as expressed by Eq. (3), we obtain for the z0 coordi-
nate:

z0 = −j(−Φ)−k−1 − Fk+1 frac

(
j

φ

)
. (18)

Using Eq. (10), Eq. (18) can be transformed as follows:

z0 =− jFk + Fk+1

(
j

Φ
− frac

(
j

Φ

))
(19)

=− jFk + Fk+1 floor

(
j

Φ

)
, (20)

which shows that the z0 coordinate value is an integer for
all points of the Fibonacci grid. Proceeding similarly for the
z1 coordinate, we get:

z1 = jFk−1 − Fk floor

(
j

Φ

)
, (21)

which is also an integer value, which proves that the pair
of vectors (bk,bk+1) are basis vectors of the lattice. The
recurrence Eq. (6) is easily derived from the basic recurrence
equation of Fibonacci numbers and Eq. (7).

Eq. (16) can also be used to make a compact proof of
the periodicity in the y-direction (and the non-periodicity
in the x-direction) of a planar Fibonacci grid FG. Let us
consider a point pj = [xj , yj ]

t of the planar Fibonacci grid
FG (cf. Eq. (3)), and a vector vm = [0,m]t with m ∈ Z.
Our goal is to show that p + vm ∈ FL, with FL being
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the full planar Fibonacci lattice as defined by Eq. (4). Using
Eq. (16), the translation of point p by vm results in adding
[−mFk+1,mFk]t to the [zo, z1] coordinates with respect to
the (bk,bk+1) basis vectors. As the coordinates of this
translation vector are in Z, the translated point is also a
point of the lattice FL, hence the periodicity. It can be easily
verified that this condition is not satisfied for a translation
in the x direction. This is due to the fact that the first column
of M−1 has irrational coefficients whereas the last column
has coefficients in Z.

4.4 Minimum distance between points
The uniformity of a point set distribution is directly re-
lated to the minimum distance between the points [15],
[19]. Intuitively, one can see that the larger the minimum
distance between points, the more uniform the distribution.
Therefore, having an analytic expression for the minimum
distance is a valuable tool to assess the quality of the point
set. As shown by Brauchart and Dick [5], such properties
are well-preserved when lifting a point set from the plane
to the sphere using an equal area transform, except near the
poles. Therefore, to facilitate obtaining analytical results, in
the following we show how to derive such an expression
for the planar Fibonacci grid. Moreover, as explained in
Sec. 5, this expression allows us to show that the minimum
distance property is preserved with our point set extension
algorithm, E-SFG.

Let us thus express the square of the length of the basis
vector bk as follows:

l2(k) =
F 2
k

N2
+ Φ−2k . (22)

Then, solving for k satisfying the equation dl2

dk = 0, yields
the index kopt of the smallest basis vector, given by:

kopt = nint

(
ln(5N2 + 1)

4 ln(Φ)

)
, (23)

where nint() denotes the nearest integer function. For the
interested reader, a detailed derivation of Eq. (23) is given
in subsubsection 4.4.1.

A fundamental property of a lattice unit cell is that it
does not contain any point of the lattice in its interior [6]. As
bkopt is the shortest basis vector, the vectors bkopt , bkopt+1

and bkopt−1 necessarily give the nearest neighbors of any
lattice point as shown in Fig. 4(a). This is because the unit
cells defined by (bkopt ,bkopt+1) and (bkopt ,bkopt−1) cannot
contain any other point of the lattice. Moreover, from the
recursion property bk+1 = bk + bk−1 (Eq. (6)), it follows
that any triangle formed with two successive basis vectors
bk and bk+1 has bk−1 as third edge. If bk has been selected
as the shortest basis vector, all edges of the triangle formed
with bk and bk+1 are necessarily longer than bk. Please
refer to the supplemental material for further details on
the relationship between nearest neighbors and the shortest
basis vectors.

The minimum distance between points in a planar Fi-
bonacci grid FG of size N is thus given by dmin = l(kopt).
As shown in subsubsection 4.4.2, dmin can be bounded by:√

2√
5

1√
N

< dmin <
1√
N
, (24)

where the constant
√

2√
5
≈ 0.946. Eq. (24) shows that

the minimum distance dmin between points on a planar
Fibonacci grid FG is in O(N−1/2), and provides a good
characterization of the uniformity of the point distribution
for planar Fibonacci grids. Moreover, Eq. (24) is also used
in the remainder of this article to show that our proposed
E-SFG generator provides point sets which have the same
dmin property.

4.4.1 Deriving kopt
The square of the length of the basis vector bk is:

l2(k) =
F 2
k

N2
+ Φ−2k (25)

which can be rewritten as follows using Eq. (9):

l2(k) =

(
Φk − (−Φ)−k

)2
5N2

+ Φ−2k (26)

As dl2/dk = 2ldl/dk and l 6= 0, dl2/dk and dl/dk are zero
for the same value of k, so the minimum vector length is
reached when dl2/dk = 0, that is:

dl2

dk
= 2 ln(Φ)

(
Φ2k − Φ−2k

5N2
− Φ−2k

)
= 0 . (27)

Finally, solving the above equation, and noting that l2(k)
is convex and symmetric with respect to the minimum (as
shown in the supplemental material), yields:

kopt = nint

(
ln(5N2 + 1)

4 ln(Φ)

)
as stated in Eq. (23), where ’nint’ denotes the nearest integer
function. Note that, from the convexity and symmetry of
l2(k), we can also infer that bkopt , bkopt+1 and bkopt−1 are
the three shortest basis vectors. This property will be used
in Sec. 4.5.

4.4.2 Bounding the length of kopt
In practice, 5N2 � 1 so we can use the following approxi-
mation:

kopt ≈ k̃opt = nint(r) , with r =

(
ln(N

√
5)

2 ln(Φ)

)
, (28)

and proceeding similarly for l2(k), we have from Eq. (26):

l2(k) ≈ l̃2(k) =
Φ2k

5N2
+ Φ−2k. (29)

These approximations are perfectly acceptable given the
point set sizes currently used in applications (please refer
to the supplemental material for more details). Moreover,
we can drop the nint() function in Eq. (28), yielding:

k̃opt = r + α with − 0.5 ≤ α ≤ 0.5, (30)

The minimum for dmin ≈ l̃(k̃opt) is reached when r is close
to an integer (i.e., α = 0). In this case, and recalling that
eln(y) = y, we have from Eqs. (29) and (30):

d−min ≈ l̃(r) =

√
2√
5

1√
N
, (31)
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and the maximum when r is as far as possible from an
integer (i.e., α = ±0.5), that is:

d+
min ≈ l̃(r +− 0.5) =

1√
N

(32)

and thus we have:√
2√
5

1√
N

< dmin <
1√
N
, (33)

which proves Eq. (24).

4.5 The Voronoi cell shape
We start our analysis with the commonly-accepted obser-
vation that the Voronoi cells in a planar Fibonacci lattice
are always hexagonal and that their shape is determined by
the six nearest neighbors of any point p of the lattice. As
mentioned in Sec. 3, the Voronoi cells of planar Fibonacci
grids are not elongated under grid stretching (see Fig. 4).
This feature results from the layout of the three particular
basis vectors bkopt−1, bkopt , bkopt+1, which are the shortest
among the {bk} set (as shown before in Sec. 4.4.1). Thanks
to the pointwise symmetry property of lattices, ±bkopt−1,
±bkopt and ±bkopt+1 determine the location of the six
neighboring points (see Fig. 4(a)), and thus the shape of the
typical six-sided Voronoi cell of a planar Fibonacci grid. The
shape of Voronoi cells can be characterized by the elongation
parameter rs = ‖bl‖/‖bs‖, which is the ratio between the
longest and the shortest basis vectors among bkopt−1, bkopt
and bkopt+1. Note that rs does not aim at fully defining
the Voronoi cell shape, but instead it is used to capture
the uniformity of the point set distribution: if the cell is
elongated in one direction, then this indicates anisotropy
in the Voronoi cell shape which implies a less uniform
point set distribution. As we show in subsubsection 4.5.1,
the elongation parameter rs of a planar Fibonacci grid FG
is bounded by

√
3/2 < rs <

√
2, which denotes a quite

compact Voronoi cell shape. Moreover, we demonstrate in
subsubsection 4.5.2 that when the planar Fibonacci grid
is streched by some factors sx and sy (in the x- and y-
coordinates, respectively), the resulting elongation factor r′s
of the new Voronoi cells lies within the same bounds as
for the original Fibonacci grid (i.e.,

√
3/2 < r′s <

√
2).

This particularly interesting result explains why the shape
of Voronoi cells of a planar Fibonacci grid is practically
invariant under grid scaling.

As the mapping of the planar Fibonacci grid FG to the
sphere can be locally approximated by a stretching transfor-
mation (i.e., a scaling by sx and sy) except near the poles,
this explains why the Voronoi cells of an SFG as shown
in Fig. 4(c) still exhibit a relatively regular shape after the
spherical projection. This also motivates the interest in the
analysis of the planar FG when considering the projection
onto the sphere. Note however that, due to the distortion
introduced by the mapping from the plane to the sphere,
this approximation does not hold near the poles because of
the particular topology of the Voronoi cells in these regions,
but this concerns a very small proportion of Voronoi cells
(cf. Keinert et al. [17] and Swinbank and Purser [28]). As the
Voronoi cells invariance property is fundamental to explain
the uniformity of an SFG, it is thus very important that our

proposed extension method preserves this particular basis
vector layout.

4.5.1 The bounds of rs
We want to prove that the ratio rs between the largest and
the smallest basis vectors among bkopt−1, bkopt and bkopt+1

is bounded by
√

3/2 < rs <
√

2. Plugging Eq. (30) into
Eq. (29) yields the length of the smallest of the three vectors,
bkopt :

l̃2(k̃opt) =
1

N
√

5
f(α) , −0.5 ≤ α ≤ 0.5 , (34)

with
f(α) = Φ2α + Φ−2α , (35)

which proves that l̃2(k̃opt) is convex and symmetric about
its minimum. Proceeding similarly for the basis vectors with
index kopt − 1 and kopt + 1, we get:

l̃2(k̃opt +m) =
1

N
√

5
f(α+m),m ∈ {−1, 1} . (36)

Noting that kopt is the smallest of the three vectors, and
using Eqs. (34) and (36), we can write the ratio rs as:

rs =
l̃2(k̃opt +m)

l̃2(k̃opt)
=

(
f(α+m)

f(α)

)−1/2

. (37)

It can be shown that rs has a minimum at α = 0 irrespective
of the value ofm. It can also be shown that rs has two equal-
valued maxima at (α = 0.5,m = 1) and at (α = −0.5,m =
−1), and thus:(

f(1)

f(0)

)−1/2

≤ rs ≤
(
f(1.5)

f(0.5)

)−1/2

=

(
f(−1.5)

f(−0.5)

)−1/2

.

(38)
Developing Eq. (38) with Eq. (35) yields:(

Φ2 + Φ−2

2

)−1/2

≤ rs ≤
(

Φ3 + Φ−3

Φ + Φ−1

)−1/2

. (39)

Then, using Eq. (12) for the inequality at the left, and Eqs. (9)
followed by (8) for the right side, we have:(

F3 + F1

2

)−1/2

≤ rs ≤
(
F3

√
5√

5

)−1/2

, (40)

and from Eq. (40) we can easily show that
√

3/2 < rs <
√

2.

4.5.2 Proof of non-elongation of Voronoi cells
We want to show that the shape of the Voronoi cells of
an SFG (characterized by the ratio rs) remains unchanged
when the SFG is scaled using different factors sx and sy in
each dimension, such that:{

x′ = sx x

y′ = sy y
. (41)

Under this scaling transform, the resulting basis vectors b′k
have the form:

b′k =

(
sx Fk
N

,
sy (−1)(k−1)

Φk

)
. (42)
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Fig. 6. An extended planar Fibonacci grid. Blue dots show the original
grid points. Green and red points show the points resulting from ex-
tending the original grid. The pink area corresponds to a unit cell of the
original grid formed by the basis vectors bk and bk+1. Note how this cell
is divided by 4 in the new point set. Note also the red points resulting
from halving the basis vectors bk, bk+1 and bk+2.

By proceeding similarly to the derivation of section 4.4.1,
the index k′opt of the smallest basis vector b′k is given by:

k′opt = nint

(
log(5N2Φ−4β + 1)

4 log Φ

)
, (43)

with

β =
log
(
sx
sy

)
2 log Φ

, such that
sx
sy

= Φ2β . (44)

Then, similarly to section 4.4.2 (see Eqs. (28) to (30)), k′opt
can be closely approximated by:

k′opt ≈ k̃′opt = r − β + α′ with − 0.5 ≤ α′ ≤ 0.5 , (45)

and the length l′2(k) can also be approximated by:

l′2(k) ≈ l̃′2(k) = sx sy

(
Φ2(k+β)

5N2
+ Φ−2(k+β)

)
(46)

Using Eqs. (35), (45) and (46), we can write:

l̃′2(k̃′opt) =
sx sy

N
√

5
f(α′) (47)

and

l̃′2(k̃′opt +m) =
sx sy

N
√

5
f(α′ +m) , m ∈ {−1, 1} . (48)

The ratio r′s is then given by:

r′s =

(
f(α′ +m)

f(α′)

)−1/2

with − 0.5 ≤ α′ ≤ 0.5 , (49)

which is equal to rs, and thus it is also bounded by
√

3/2 <
r′s <

√
2. This shows that the Voronoi cell shape in a planar

Fibonacci grid is invariant to stretching transforms.

5 EXTENSIBLE SPHERICAL FIBONACCI GRIDS

In the following, we propose a new method, called extensi-
ble spherical Fibonacci grids (E-SFG), for extending spherical
Fibonacci grids. In Sec. 5.1, we present our strategy to
develop such a method, as well as an algorithm to generate
the extended point set. Then, in Sec. 5.2, we present the
properties of the extended point set and show that they are
in line with those of the original SFG.

Algorithm 1 Extensible Spherical Fibonacci Grid
1: Inputs:

N ← number of points in the initial SF point
set
L← number of iteration levels

2:
3: FG ← fibonacciGrid(N) . Initial point set

4: b0 ← basisVector(0, N) . Compute the basis vectors
5: b1 ← basisVector(1, N)
6: b2 ← b0 + b1

7: for l = 1 to L do
8: d← 2l . Scaling factor

9: subGrid0 ← shiftFibonacciGrid(FG, b0/d)
10: subGrid1 ← shiftFibonacciGrid(FG, b1/d)
11: subGrid2 ← shiftFibonacciGrid(FG, b2/d)

12: FG ← FG ++ subGrid0 ++ subGrid1 ++ subGrid2

13: end for

14: ∆x ← (2L+1N)−1

15: finalShift← V ector2D(∆x, 0)
16: FG ← shiftFibonacciGrid(FG, finalShift)

17: ESFG← lambertProjection(FG)

18: return ESFG

5.1 Approach

Our goal is to develop an algorithm which allows adding
more points to an existing SFG, while maintaining the prop-
erties of the original distribution. To this end, we proceed
by subdividing the unit cell of the planar Fibonacci grid
FG. Let us thus consider the unit cell corresponding to a
particular point p of a planar Fibonacci grid FG. Such a unit
cell is a parallelogram formed by the pair of consecutive
basis vectors (bk,bk+1) with p as origin as shown in Fig. 6.
Note that, due to the Fibonacci recurrence relation (Eq. (6)),
the vertex diagonally opposed to p is given by p + bk+2.
The unit cell can be easily divided in four equal sub-cells by
halving the basis vectors (bk,bk+1). Then, three new points
can be placed at exactly half-way between p and p + bk,
p + bk+1 and p + bk+2, respectively, as shown in Fig. 6.

The above strategy provides an effective way of extend-
ing the original point set with N points, yielding a new
point set with 4N points. The final point set can then be seen
as the result of adding 3 shifted replications of the original
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New points for l = 1︷ ︸︸ ︷
0 . . . N − 1 N . . . 2N − 1 2N . . . 3N − 1 3N . . . 4N − 1 . . . 4LN − 1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Original FG subGrid0 subGrid1 subGrid2︸ ︷︷ ︸
New FG for the second subdivision level l = 2

Fig. 7. Representation, as an array of 2D points, of an E-SFG generated using N initial points and L subdivision levels. The numbers in each cell
represent the indexes of the points (starting at 0). The first N points correspond to the original FG grid. The next N points (with indexes N to
2N − 1) correspond to the points generated by shifting the original grid using b0/2 (line 9 of Alg. 1). The points with index 2N to 3N − 1, and 3N
to 4N − 1 correspond to the points generated by shifting the original grid using b1/2 and b2/2, respectively.

point set to get a new extended point set which encompasses
the initial point set. However, due to the lack of periodicity
of the planar Fibonacci grid along the x-direction, the pair of
basis vectors (bk,bk+1) must be carefully chosen so as not
to exceed the unit square in the non-periodic dimension.
As mentioned in Sec. 4.2, such a configuration is obtained
with k = 0, in which case the basis vectors involved are
b0 = (0,−1), b1 = (1/N, 1/Φ) and b2 = (1/N,−1/Φ2).
Each (x′, y′) coordinates of the shifted point set are then
simply obtained by:

x′ = x+ xb/2 (50)
y′ = (y + yb/2) mod 1 (51)

where (x, y) are the coordinates of a point p of the original
point set and (xb, yb) are the coordinates of any vector of the
{b0,b1,b2} set. We show in Sec. 5.2 that this simple unit cell
subdivision method leads to spherical Fibonacci grids with
the same properties as those of the orginal SFG.

Alg. 1 shows the procedure to generate the extensible
SFG. The algorithm takes as input arguments the number of
points N in the initial point set and the number of iteration
levels L. It starts by generating an initial planar Fibonacci
grid FG with N points using the classic algorithm. This
grid is then extended in the planar domain by repeating
L times the process mentioned above, thus multiplying by
4 the point set size at each iteration. The E-SFG is finally
produced by projecting the extended planar grid from the
unit square to the unit sphere through the Lambert cylindri-
cal projection. In this way, the 4LN points of the resulting
E-SFG contain the N points of the initial SFG.

In line 3 of Alg. 1 an initial planar Fibonacci grid with
N points is generated and stored in FG. In lines 4 to 6,
the basis vectors b0, b1 and b2 are computed. Then, a
loop with as many cycles as the number of subdivision
levels L starts (line 7). At each iteration, the scalar d used
to scale down the basis vectors is updated. This instruc-
tion is followed by three separate calls to the function
shiftFibonacciGrid(), with different arguments (lines 9 to
11). This function, receives an initial grid (in this case
through the variable named FG), and a vector indicating
the direction and magnitude of a shifting operation to apply
to the initial grid. The shifted grid is then returned as
result. This operation is repeated for the three used basis
vectors. Note that the size of the basis vector depends on
the extension level considered. The planar FG is updated
in line 12 by concatenating the original points with the
new points resulting in the extended planar Fibonacci grid

(where ++ is the concatenation operator). Once the grid has
been extended L times, it is shifted (lines 14 to 16). Similarly
to Swinbank et al. [28], we apply a final shift ∆x to the x-
coordinates of the planar grid, which further reduces the
spherical discrepancy by symmetrizing the distribution of
the points with respect to the poles. The value of the shift is
∆x =

(
2L+1N

)−1
, i.e., a value equal to (xmax− 1/2), where

xmax is the distance between the grid point with the larger
x-coordinate and the unit square edge x = 1. Note that this
shift is not optimal for the lower levels l < L, since these
levels are not symmetrically shifted using ∆x. However, this
non-optimality has no discernible impact in the final results
as we show later. Finally, the extended planar Fibonacci
grid is projected onto the sphere in line 17. An example of
an E-SFG with N = 64 generated with initial points and
L = 2 subdivision levels is shown in Fig. 1. A general
schematic representation of the final E-SFG generated by
Alg. 1 is shown in Fig. 7. In practice, the E-SFG is intended
to be used as follows: (i) first pre-compute the complete E-
SFG with L subdivision levels; (ii) during rendering, the
rendering application progressively extracts the new points
corresponding to the current desired sampling level l from
the pre-computed sequence.

5.2 Properties of E-SFGs

As shown in Fig. 1, the new points generated by E-SFG
look seamlessly embedded in the original point set thanks
to the unit cell subdivision strategy described in Sec. 5.1.
Moreover, as shown in the following, the properties of SFGs
described in Sec. 4 are preserved. Let us start by analyzing
the minimum distance between samples. Since the length
of the basis vectors of the E-SFG is equal to that of the
basis vectors of the original planar FG up to a factor of
1/2l, Eq. (24) still holds. Therefore, the minimum distance
between neighboring points dmin stays in the same bounds
as for an SFG set of the same size. Furthermore, the non-
elongation property of the Voronoi cells is also preserved
since their shape is left unchanged in the subdivision pro-
cess. However, note that for equal point set sizes, E-SFGs
and SFGs have Voronoi cells which are always different.
Indeed, the basis vectors of SFGs change both in size and
direction with the point set size, whereas their direction
remains unchanged for E-SFGs spawned from the same SFG
initial set. Finally, it is straightforward to see that SFG and E-
SFG point sets of the same size have the same unit cell area.
Consequently, the important geometric properties of planar
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Fibonacci grids are preserved in the extended grids and, by
examining Fig 1, we can see the great similarity between the
resulting SFG and E-SFG point distributions.

5.3 Progressivity
At each iteration level, the point set size is multiplied
by 4, as opposed to the ×2 increasing rate of the typical
(0, 2)-sequences utilized in computer graphics. This could
be considered a drawback due to a lack of progressivity.
However, recall that the rate of decrease of integration error
seldom exceeds O(N−0.75) in rendering (cf. [19]), which
means that a ×4 set size increase entails an error decrease
in a reasonable 4−0.75 = 2.8 ratio at best. Moreover, the
practical application to adaptive rendering shown later in
Fig. 12 confirms that this feature does not hinder adaptive
sampling. Such an approach is thus appropriate for render-
ing applications.

For applications requiring more progressivity, Alg. 1
can be slightly modified to ensure a ×2 progressivity with
interesting properties. The basic idea is to use a single
shifted replication of the current point set using a translation
vector bs/2 chosen among b0/2, b1/2, b2/2, so as to create
an intermediate point set with of double size. Then, the
following step will use the remaining two translation vec-
tors to retrieve the original ×4 refinement step. As a result,
the shifted point set is one among subGrid0, subGrid1

or subGrid2, depending on the chosen bs, and it can be
reused afterwards in the ×4 step. To keep the uniformity
of the duplicated point distribution as good as possible, bs
is chosen so as to keep the shape of the Voronoi cell as
compact as possible. Considering the Voronoi cell shown
in Fig. 4(a), this best translation vector is logically bg/2
where bg is the longest vector among the three vectors that
define the Voronoi cell. However recall that the periodicity
property of the planar Fibonacci grids FG imposes a choice
of translation vector among b0/2, b1/2 and b2/2, and the
best translation vector bg does not fulfill this requirement
in general. This problem is easily solved because, as shown
below, a shifted replication with a bg/2 translation vector is
equally obtained with a vector bs/2 such that s = g mod 3.

In what follows, we provide a proof of s = g mod 3.
Let us first observe that a Fibonacci number Fk is even if
k mod 3 = 0 and odd otherwise. We start by showing
that any basis vectors bk can be expressed as a linear
combination of b0 and b1. To this end, we rewrite the basis
vector equation given by Eq. (5) as:

bk = Fk

(
1

N
,

1

Φ

)
−
(

0,
Fk
Φ

)
+

(
0,

(−1)k−1

Φk

)
. (52)

From Eq. (5), we have that b0 = (0,−1) and
b1 = (N−1,Φ−1). Then, using Eq. (10), Eq. (52) can be
re-written as:

bk = Fk b1 + Fk−1 b0 , (53)

which completes the first step of the proof. Using Eq. (53),
we can now write bg/2 as:

bg
2

=
Fg−1 b0

2
+
Fg b1

2
. (54)

Eq. (54) shows the shift of the lattice along bg/2 as a
composition of two independent translations. When Fg−1

is even, then Fg is surely odd, and the coefficient Fg−1/2
of b0 is an integer. Consequently, the translation along
(Fg−1 b0)/2 yields exactly the same lattice. In this case, the
generation of new points by shifting the lattice along bg/2 is
thus due to the translation by Fg (b1/2). As Fg is an integer,
the translation by Fg (b1/2) amounts to a translation along
b1/2. A similar argument can be made when Fg is even: in
this case, Fg−1 is surely odd, and shifting the lattice along
bg/2 can thus be reduced to a translation along b0/2. When
both Fg and Fg−1 are odd, then we have Fg = 2m + 1 and
Fg−1 = 2n+ 1, and Eq. (54) can be rewritten as:

bg
2

= nb0 +mb1 +
b2

2
. (55)

In this case, since both m and n are integers, shifting the
lattice along bg/2 amounts to a translation by b2/2.

Given that the parity of the Fibonacci numbers follows a
ternary cycle (even-odd-odd, even-odd-odd, ...), the index s
is simply given by:

s = g mod 3 . (56)

Since s is the index of the larger basis vector among bkopt−1

and bkopt+1, and since kopt only depends on N (i.e., the
original point set size, c.f. Eq. (23)), s can be easily computed
at the beginning of Alg. 1. Indeed, once kopt is known,
Eq. (5) can be used to calculate bkopt−1 and bkopt+1, compute
their norm, and hence determine s. Then, by replacing the
concatenation in line 12 of Alg. 1 by a reordered concate-
nation, we ensure that the subGrid resulting from the shift
using bs/2 is the first in the concatenation. This allows for a
smoother progressivity of the E-SFG point set. To this end,
line 12 of Alg. 1 is thus replaced by:

1: if s = 0 then
2: FG ← FG ++ subGrid0 ++ subGrid1 ++ subGrid2

3: else if s = 1 then
4: FG ← FG ++ subGrid1 ++ subGrid2 ++ subGrid0

5: else if s = 2 then
6: FG ← FG ++ subGrid2 ++ subGrid0 ++ subGrid1

7: end if

At each iteration level l, the resulting point set FG is
thus a concatenation of the initial point set FG, at the
current iteration level, with the three new shifted point
sets subGrid0, subGrid1 and subGrid2. Recall that these
new shifted point sets are computed by applying the basis
vectors b0/d, b1/d and b2/d, respectively, with d = 2l as in
line 9 of Alg. 1. To allow for a ×2 progressivity, the order of
the concatenation is chosen such that the first subset among
subGrid0, subGrid1 and subGrid2 concatenated with FG
is the one computed using the basis vector bs. Henceforth
we will refer to this chosen subset as subGrids. During
rendering, the application can simply take the first new set
of points (i.e., subGrids) at each iteration level in order to
double the number of points used for sampling. An example
of this intermediate subdivision step, corresponding to the
×2 subdivision between Fig. 1(a) and (b), is shown in
Fig. 8. To double again the number of points, the other
two remaining sub-grids should be used. This process is
repeated for each iteration level until the maximum number
of levels (L is Alg. 1) is reached.
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0 1

1

Fig. 8. Intermediate ×2 subdivision step between 64 and 256 points
corresponding to Fig.1(a) and (b), respectively. The resulting point set
contains 128 points. The blue dots represent the points in the initial grid.
The red dots represent the new points obtained by shifting the initial grid
using the basis vector bs (where s is given by Eq. (56)). Left: planar grid.
Right: after spherical projection. Note that the point distribution is slightly
less uniform than than in the ×4 point set c.f. Fig. 1.

6 RESULTS

In this section, we assess the quality of E-SFG point sets.
First we evaluate the E-SFG by resorting to a spherical
metric of the point set uniformity, i.e., the spherical cap
discrepancy (Sec. 6.1). Then, we evaluate the performance of
the E-SFG in rendering application cases (i.e., Quasi-Monte
Carlo estimates of the illumination integral in Sec. 6.2).
In both evaluations, the obtained E-SFGs are compared
to the original SFG (not extensible), and to two familiar
hierarchical low discrepancy sequences: the Sobol sequence
[25], and the Faure sequence [11].

6.1 Spherical Cap Discrepancy of E-SFGs

To assess the quality of the proposed E-SFG, we have
evaluated the resulting point sets using the spherical cap
discrepancy (SCD) [5], [19], [26], [27]. Informally speaking,
the SCD can be thought of as the unit sphere equivalent
of the unit square star discrepancy [20]. It characterizes the
equidistribution of a spherical point set [15], and measures
the efficiency of a point set for QMC integration over the
sphere. Smaller SCD values imply a more uniform point set
distribution and result in a smaller QMC estimation error.
Ideally, for any spherical cap, the ratio between the point
set size and the number of points lying in the spherical
cap should be equal to the proportion between the area
of the sphere and the area of the spherical cap. The SCD
measures the average difference between the two ratios.
Thanks to Stolarsky’s invariance principle [26], [27], the SCD
of a spherical point set can be related to the sum of distances
between the samples, yielding a simple closed-form analytic
expression. Given a spherical point set PN with N points,
its SCD is given by [5], [19]:

SCD(PN ) :=
1√
2

4

3
− 1

N2

N∑
j=1

N∑
i=1

‖pi − pj‖

1/2

, (57)

where the pk are sample points on the sphere, and the
operator ‖pi − pj‖ denotes the euclidean distance between
the points pi and pj .

Fig. 9 shows the value of the SCD as a function of the
number of samples on a logarithmic scale for the basic
SFG, our proposed E-SFG, a Sobol sequence and a Faure
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Fig. 9. Spherical cap discrepancy (SCD) as a function of the number
of samples, on a logarithmic scale. The figure shows the SCD and its
convergence rate (in-between parenthesis) for an E-SFG (green line),
the original spherical Fibonacci grid (SFG, red), and the Sobol and the
Faure sequences projected onto the sphere with the Lambert cylindrical
projection (in blue and magenta, respectively). The tested point set sizes
correspond to a 3-level E-SFG applied to an initial 64-point SFG set,
yielding 64, 256, 1024 and 4096 points. The black ‘x’ markers show
the SCD of E-SFG point sets generated through the intermediate ×2
subdivision method proposed in Sec. 5.3.

sequence projected onto the sphere. The results show that
the original SFG and the E-SFG exhibit a very similar SCD,
independent of the point set size considered. Moreover,
the SCD rate of decrease with N approaches the optimal
rate of spherical low-discrepancy sequences O(N−0.75) [1]
for both methods. As regards the comparison with existing
hierarchical sampling methods, we can observe that E-SFG
achieves significantly better results than point sets produced
with Sobol or Faure sequences. Indeed, the discrepancy
of E-SFG is consistently less than that of the Sobol and
Faure sequences, and the rate of decrease of the E-SFG is
also slightly better. Finally, note that the SCD of the point
sets obtained with the intermediate subdivision step, as
suggested in Sec. 5.3, is in line with the SCD of the ×4 E-
SFGs point sets proposed in Sec. 5.1, which validates our×2
progressivity solution.

6.2 A Practical Application to Rendering
The application of the E-SFG point sets to rendering is
straightforward. We follow a similar approach to that of
Marques et al. [19], where an original hemispherical point
set is warped taking into account the BRDF shape. This
approach is the Quasi-Monte Carlo equivalent to the impor-
tance sampling technique broadly used in stochastic Monte
Carlo. In the following we present two test cases. The first
one, illustrated through the Happy Buddha scene (Figs. 10
and 11), shows that E-SFGs have similar performance to
that of the original (non-extensible) SFG point sets, and
outperform the other considered point sets, whatever the
sampling level considered. The second test case, illustrated
through the Cornell Box scene (Fig. 12), shows that the E-
SFG can be efficiently applied to a real adaptive sampling
rendering case.

Fig. 10 shows a set of rendering results for the Happy
Buddha scene. The material of the Happy Buddha is modeled
through a modified Phong BRDF with a shininess exponent
of 20. To reduce the rendering time and without loss of
generality, the incident light is given by an environment
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Reference Reference SFG E-SFG Sobol Faure
RMSE: 0.063 RMSE: -0.4% RMSE: +11.7% RMSE: +12.0%

Fig. 10. Rendering results for the Happy Buddha scene. The used BRDF is a modified Phong BRDF with a shininess exponent of 20. The close-up
views show a comparison between an image rendered using the original spherical Fibonacci point sets, our E-SFG point set, a Sobol sequence
and a Faure sequence. The used E-SFG was generated using 2 iteration levels and an initial number of points N = 8, resulting in a 128-point set.
During rendering, to sample the glossy component, the first 32 samples resulting from the first iteration level of the E-SFG have been used. To
sample the diffuse component, the full E-SFG with 128 points has been used. The displayed RMSE figures of the images generated with E-SFG,
Sobol and Faure are computed relatively to that of the image generated with SFG.
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(a) Diffuse
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(b) Glossy 20

Fig. 11. RMSE for the Happy Buddha scene, considering a pure diffuse
BRDF (a) and a pure glossy modified Phong BRDF with shininess
exponent 20. The black ‘x’ markers show the RMSE of E-SFG point sets
generated through the intermediate ×2 subdivision method proposed in
Sec. 5.3. The convergence rate for each method is given in the legend,
in-between parenthesis.

map. The results show that the performance of the original
SFG and that of our proposed E-SFG are similar, and also
that both methods outperform the tested low discrepancy
sequences (Sobol and Faure). Indeed, the close-up views
show that the noise is clearly lower for the E-SFG and SFG.
This observation is confirmed by the root mean squared
error (RMSE) analysis. The image generated with E-SFG
has a roughly similar RMSE to that of the SFG-based image
(−0.4%), while the images generated with Sobol and Faure
point sets exhibit a RMSE that is 11.7% and 12.0% larger
than that of the SFG, respectively.

Fig. 11 depicts the RMSE as a function of the number
of samples for the Happy Buddha scene, considering a pure
diffuse and a pure glossy Phong BRDF (with shininess
factor 20). The results show that, for the same number of
samples, and for any point set size, an E-SFG has a similar
performance to that of an SFG, and consistently outperforms
the Sobol and Faure low discrepancy sequences projected
onto the sphere using the Lambert cylindrical transform.
Moreover, the intermediate subdivision step (noted by E-
SFG ×2) yields RMSE values which are approximately in
line with the RMSE values obtained for the×4 E-SFG. These
results confirm the SCD results of Fig. 9.

Finally, Fig. 12 shows a set of results for the Cornell
Box scene. This scene has BRDFs with different shininess
values, and the incident illumination is computed by the
gathering step of photon mapping. The rendered images
have been generated using a single ray per pixel traced
from the viewpoint. This ray intersects the scene at a point
(shading point) for which the illumination integral is esti-
mated. The number of samples is chosen adaptively, during
rendering, according to three sampling levels. The number
of samples per sampling level is one among [20, 80, 320]
and [40, 160, 640] for the glossy and diffuse components,
respectivelly. The sampling level is selected by evaluating
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Fig. 12. Rendering results for the Cornell Box scene using our extended spherical Fibonacci grid (E-SFG) in an adaptive sampling setting, where
the number of samples is adaptively chosen for each shading point. The number of samples per sampling level is of [20, 80, 320] and [40, 160, 640]
for the glossy and diffuse components, respectively. The three sampling levels are represented in blue (level-1), green (level-2) and red (level-3)
in the respective sampling map. The resulting number of pixels per level for the diffuse case is: 128580 for level-1, 326726 for level-2 and 63094
for level-3. For the glossy case we have: 130863 for level-1, 206817 for level-2 and 180720 for level-3. The total number of used samples for the
adaptive sampling-based image is thus 9.78× 107 for the diffuse case and 7.70× 107 for the glossy case.

the samples’ color entropy [22] at the current sampling level.
If the entropy is above a user given threshold, then we
move on to the next sampling level. The results show that
a reasonable number of pixels is selected at each sampling
level. Moreover, the final adaptive sampling-based image is
of comparable quality to the reference image, and it clearly
improves over the basic level-1 sampling image, while
bringing a significant saving in computing cost compared
with a uniform point set size solution (due to the reduction
in the number of used samples). This shows that the ESFG
is well-suited to adaptive rendering.

7 DISCUSSION

In the following, we discuss specific limitations of our
proposed E-SFGs. Generally speaking, E-SFGs should not be
seen as a substitute to SFGs. Indeed, as discussed below, the
constraint of maintaining the previous points from one iter-
ation to another has side effects at the poles when l is large
as discussed below. Instead, E-SFGs should be regarded as
solution which enables adaptive sampling in typical render-
ing settings, where a number of samples ranging from N to
43N = 64N , that is three ×4 sampling levels (or 6 levels
if the ×2 progressivity is implemented), is sufficient. In this
context, E-SFGs provide a similar rendering quality to that
obtained with SFGs, hence clearly outperforming alternative
hierarchical point sets such as Sobol and Faure.

Finite sequence: The proposed E-SFG algorithm
generates a finite number of points, as opposed to the low
discrepancy sequences which are able to generate infinite
sequences of points and thus do not require the maximum

number of points to be known beforehand. In our opinion,
this is not too constraining, since in most CG applications
a maximum number of points can be assumed without
compromising the final result.

Distribution around the poles: At each subdivision
level l, the E-SFG doubles the number of points with the
same polar angle θ, yielding 2l points sharing the same polar
angle. These 2l points are thus aligned on a circle at a close
distance to the pole, which is not the case of the original
SFG for which each point has a different polar angle. This is
not a problem in practice as the concerned subset size (2l) is
small compared to the whole set size (e.g. 23 = 8 compared
to 1280 for a 3-level E-SFG starting at 20 points). Moreover,
it can be seen from Figs. 9 and 11 that both the spherical cap
discrepancy and the root mean squared error of E-SFG point
sets are almost identical to the one of SFG sets of the same
size, which confirms our analysis.

8 CONCLUSIONS

In this article we have proposed a method that generates
extensible spherical Fibonacci grids (E-SFG). We have based
our point set extension strategy on an in-depth analysis
of the properties of classic SFGs, which demonstrates why
classic SFGs generate highly uniform spherical distributions
of points. Thanks to a point set extension algorithm which
preserves such properties, our experiments showed that the
performance of our proposed E-SFGs is very close to those
of SFGs of the same size. Furthermore, we have shown
that the same ×2 progressivity rate as the one achieved by
familiar low-discrepancy sequences can be obtained with
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E-SFGs. We have successfully reached the goal of extend-
ing an original point set without impairing its properties.
Moreover, we have also shown that an E-SFG performs
better than familiar extensible low discrepancy sequences
projected onto the sphere. In particular, our rendering ex-
periments have shown that E-SFG point sets perform as
well as SFG and significantly better than Sobol and Faure
sequences. Finally, we have shown that E-SFGs are well-
suited to adaptive sampling and provide significant savings
in computing load when applied to rendering problems.
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