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Analyzing the Noise Robustness of
Deep Neural Networks

Kelei Cao, Mengchen Liu, Hang Su, Jing Wu, Jun Zhu, Shixia Liu
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Figure 1: Explanation why an adversarial panda image is not classified as a panda. The root cause is identified as the neurons

in the feature map FA failing to detect the outline of the panda’s ear (E) in the adversarial example, which further leads

to the failure of detecting the panda’s ear (B) in FC1.

Abstract—Adversarial examples, generated by adding small but intentionally imperceptible perturbations to normal examples, can

mislead deep neural networks (DNNs) to make incorrect predictions. Although much work has been done on both adversarial attack and

defense, a fine-grained understanding of adversarial examples is still lacking. To address this issue, we present a visual analysis method to

explain why adversarial examples are misclassified. The key is to compare and analyze the datapaths of both the adversarial and normal

examples. A datapath is a group of critical neurons along with their connections. We formulate the datapath extraction as a subset selection

problem and solve it by constructing and training a neural network. A multi-level visualization consisting of a network-level visualization

of data flows, a layer-level visualization of feature maps, and a neuron-level visualization of learned features, has been designed to help

investigate how datapaths of adversarial and normal examples diverge and merge in the prediction process. A quantitative evaluation

and a case study were conducted to demonstrate the promise of our method to explain the misclassification of adversarial examples.

Index Terms—Robustness, deep neural networks, adversarial examples, explainable machine learning.

✦

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated superior perfor-

mance in many artificial intelligence applications, such as pattern
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recognition and natural language processing [1], [2], [3]. However,

researchers have recently found that even a highly accurate DNN

can be vulnerable to carefully-crafted adversarial examples that

are intentionally designed to mislead a DNN into making incorrect

predictions [4], [5], [6], [7], [8]. For example, an attacker can make

imperceptible modifications to a panda image (from I1 to I2 in

Fig. 1) to mislead a state-of-the-art DNN model [9] to classify it as

a monkey. This phenomenon creates high risk when applying DNNs

to safety- and security-critical applications, such as driverless

cars, face recognition ATMs, and Face ID security on mobile
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phones [10]. For example, researchers have recently shown that

even the state-of-the-art public Face ID system can be fooled by

using a carefully-crafted sticker on a hat [11]. Thus, there is an

urgent need to understand the prediction process of adversarial

examples and identify the root cause of incorrect predictions [10],

[12]. Such an understanding is valuable for developing adversarially

robust solutions [13], [14], [15]. A recent survey identifies two

important questions that require analysis [10]: (1) why similar

images (e.g., adversarial and normal panda images) diverge into

different predictions, and (2) why images from different classes

(e.g., adversarial panda images and normal monkey images) merge

into the same prediction.

To give analytical answers to the questions, we need to solve

two technical challenges. The first is to disclose the prediction pro-

cess of a DNN. To this end, we need to extract the critical neurons

and their connections that are responsible for the predictions of

examples (Fig. 2 (b)). Such neurons and their connections form the

datapaths of examples [12]. However, in a DNN, the neurons have

complex interactions with each other [16]. Thus, it is technically

demanding to disentangle the roles of these neurons within the

entire network and extract the critical neurons to form the datapath.

The second challenge is to effectively illustrate and compare the pre-

diction processes of adversarial and normal examples based on the

extracted datapaths. A state-of-the-art DNN usually contains hun-

dreds of layers, with millions of neurons in each layer [9]. Thus, an

extracted datapath potentially contains millions of neurons and even

more connections. Directly visualizing all the neurons and connec-

tions in the extracted datapath will result in excessive visual clutter.

To tackle these challenges, we have developed a visual analysis

tool, AEVis, to help identify the root cause of misclassification

of adversarial examples. Fig. 1 shows an example of using AEVis

to analyze why an adversarial panda image is misclassified. On the

one hand, we find that the extracted datapaths of the adversarial

and normal panda images start to diverge at layer LA (Fig. 1) and

eventually lead to different predictions. On the other hand, merging

starts at layer LC (Fig. 1) in the datapaths of the adversarial panda

and monkey images. With the use of the developed multi-level

visualization, we identify the root cause of this misclassification

as both a failed detection of the outline of one of the panda’s ears

and a faulty detection of a monkey face in the adversarial panda

image using the target DNN.

Technically, AEVis aims to disclose the prediction process of

a DNN by extracting and visualizing the datapaths for adversarial

and normal examples, especially focusing on illustrating how these

datapaths diverge and merge.

To achieve this aim, we first formulate the datapath extraction

as a subset selection problem, which aims to select a minimum

set of neurons that can maintain the predictions of a set of

examples. As neurons in a DNN sometimes have similar roles,

there is randomness in selecting neurons in the datapath extraction

process. As a result, the uniqueness of an example’s extracted

datapath cannot be guaranteed. Moreover, the randomness hinders

the detection of the diverging and merging patterns in the extracted

datapaths. To reduce the randomness, we introduce the constraint

that it is desirable for the datapaths of adversarial and normal

examples to share common feature maps (a set of neurons that

share the same weights in a DNN). To extract the datapaths

for large DNNs, we approximate the subset selection problem

as a continuous optimization that can be efficiently solved by

constructing and training a neural network [12].

Second, we have developed a multi-level visualization that

illustrates how the extracted datapaths diverge and merge in the

prediction process. In particular, at the network-level, we have

created a river-based visualization to provide an overview of

the diverging and merging patterns of datapaths. At a detected

diverging/merging point (layer level), we employ a treemap-based

set visualization to illustrate the neuron groups at this layer and

their belonging to different datapaths. This helps experts determine

the critical neurons that cause the diverging and merging patterns.

In addition, we have enhanced the multi-level visualization with a

set of rich interactions that enable experts to effectively analyze the

cause of diverging/merging of datapaths. For example, we allow

experts to interactively analyze the contribution of neurons in one

layer to those of another deeper layer in order to disclose the root

cause of a diverging/merging pattern in the compared datapaths.

The paper is an extension of our previous work [17], in which

datapaths of examples are extracted and illustrated. In this paper,

we address the problem of merging patterns that were not detected

in our previous method. We provide a better overview of diverging

and merging between the datapaths of examples. In addition, the

root cause of such patterns is analyzed more deeply with our refined

analysis workflow. To evaluate the usefulness of the new system, we

re-invited one expert in our previous work and conducted a deeper

analysis of the same two adversarial image pairs, panda-monkey

(Sec. 6.2.1) and cannon-racket (Sec. 6.2.2). These improvements

come from the following technical contributions:

• A constrained datapath extraction algorithm to extract

datapaths while preserving their diverging and merging

patterns.

• A river-based visualization to provide an overview of how

datapaths diverge and merge at the network level and a refined

layer-level visualization to reveal the feature maps of interest.

• A contribution analysis method to iteratively investigate the

contribution of neurons between two layers and help experts

analyze the root cause of diverging/merging in certain layers.

In this paper, we focus on analyzing adversarial examples

generated for convolutional neural networks (CNNs), because

CNNs are among the most widely-used networks, and most of

the current adversarial example generation methods focus on

attacking CNNs [10]. Our method can also be used to analyze

adversarial examples for other deep networks that use CNNs as the

key components.

2 RELATED WORK

In the field of visual analytics, a number of methods have been

developed to illustrate the working mechanism of a variety

of DNNs, such as CNN [18], [19], [20], RNN [21], [22],

[23], [24], deep generative models [25], [26], [27], and deep

reinforcement learning models [28]. Hohman et al. [29] presented

a comprehensive survey to summarize the state-of-the-art visual

analysis methods for explainable deep learning. Existing methods

can be categorized into three classes: network-centric [30], [31],

[32], instance-centric [20], [33], [34], [35], and hybrid [36], [37].

Network-centric methods. Network-centric methods help ex-

plore the entire network structure of a DNN, illustrating the

roles of neurons/neuron connections/layers in the training/test

process. In the pioneering work, Tzeng et al. [31] employed a DAG

visualization to illustrate the neurons and their connections. This

method can illustrate the structure of a small neural network but

suffers from severe visual clutter when visualizing state-of-the-art

DNNs. To solve this problem, Liu et al. [30] developed a scalable
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visual analysis tool, CNNVis, based on clustering techniques. It

helps explore the roles of neurons in a deep CNN and diagnose

failed training processes. Wongsuphasawat et al. [32] developed a

tool with a scalable graph visualization to present the dataflow of

a DNN. To produce a legible graph visualization, they applied a

set of graph transformations that converts the low-level graph of

dataflow to the high-level structure of a DNN.

The aforementioned methods help experts better understand

the network structure, but they are less capable of explaining the

predictions of individual examples.

Instance-centric methods. To address the aforementioned issue,

researchers made several recent attempts that focus on instances.

These attempts aim at analyzing the learning behavior of a DNN

revealed by the instances. A widely-used method is feeding a set of

instances into a DNN and visualizing the corresponding log data,

such as the activation or the final predictions.

For example, Rauber et al. [33] designed a compact visual-

ization to reveal how the internal activation of training examples

evolves during a training process. They used t-SNE [38] to project

the high-dimensional activation maps of training examples in each

snapshot onto a 2D plane. The projected points are connected

by 2D trails to provide an overview of the activation during the

whole training process. The method successfully demonstrated how

different classes of instances are gradually distinguished by the

target DNN. In addition to internal activation, the final predictions

of instances can also help experts analyze the instance relationships.

For example, the tool Blocks [20] utilizes a confusion matrix to

visualize the final predictions of a large number of instances. To

reduce the visual clutter caused by a large number of instances and

classes, researchers enhanced the confusion matrix using techniques

such as non-linear color mapping and halo-based visual boosting.

The enhanced confusion matrix was able to disclose the confusion

pattern among different classes of instances and further indicated

the learning behavior of a target CNN.

The above methods can provide an overview of a large number

of instances and help experts analyze their relationships. However,

the prediction process of individual instances is less considered.

Compared with these macro-level methods, our method focuses on

the micro-level and targets the prediction processes of a set of in-

stances (usually a few to dozens). The prediction processes of these

instances are visualized using a multi-level datapath visualization.

Revealing the prediction processes enables experts to analyze the

root cause of the misclassification of adversarial examples.

Hybrid methods. The hybrid methods combine the advantages

of network-centric and instance-centric methods. Like instance-

centric methods, the hybrid methods also feed the target instances

into the network and extract log data such as activation maps. The

extracted log data is often visualized in the context of the network

structure, which provides visual hints to select and explore the

data of interest, e.g., the activation in a specific layer. Visualizing

the log data in the context of network structure also helps experts

explore the data flow from the network input to the output [39].

There are several papers making progress in this direction.

For example, Hartley et al. [36] developed an interactive node-

link visualization to show the activation in a DNN. Although

this method is able to illustrate detailed activation on feature

maps, it suffers from severe visual clutter when dealing with

large CNNs. To solve this problem, Kahng et al. [37] developed

ActiVis to interpret large-scale DNNs and their results. They

employed a multiple coordinated visualization to facilitate experts

in comparing activation among examples. The above works mainly

focus on exploring the prediction process of normal examples.

Recently, there is an emerging need in safety-critical fields to

analyze adversarial examples of DNNs. While machine learning

researchers have developed some holistic views on understanding

the existence of adversarial examples [13], [14], there is still a

lack of visualization tools to analyze the details. In response to

this need, we developed AEVis [17] to analyze the root cause of

misclassifications produced by malicious adversarial examples.

In particular, we developed a datapath extraction method to extract

critical neurons and their connections in the prediction process. To

enable experts to explore the extracted datapaths, we designed a

multi-level visualization that presented datapaths from the high-

level network structure to the detailed neuron activation.

As an extension of our previous work [17], this paper re-

identifies the central analytical task as analyzing the diverging

and merging patterns of normal and adversarial examples. Based

on this task, we developed a constrained datapath extraction

method that better preserves the diverging and merging patterns

of normal and adversarial examples. We also enhanced the whole

analysis workflow by introducing several useful interactions, such

as activation analysis and contribution analysis. These interactions

enable the experts to gradually investigate the major reason for

this diverging/merging pattern and thus help them analyze the

misclassification of adversarial examples.

3 THE DESIGN OF AEVIS

The development of AEVis was in collaboration with the machine

learning team that won first place in the NIPS 2017 non-targeted

adversarial attack and targeted adversarial attack competitions,

which aimed at attacking CNNs [40], [41]. Despite the promising

results they achieved, the experts found the research process

inefficient and inconvenient, especially in terms of the explanation

of the model outputs. In their research process, a key step was to

explain the misclassification introduced by adversarial examples.

Understanding why an error has been made helps the experts

identify the model weakness and further design a more effective

attack/defense method. The experts thus desire a tool that can assist

them in understanding the prediction process of the target CNN.

3.1 Requirement Analysis

We have identified the following high-level requirements based on

previous research and discussions with two experts (E1 and E2)

from the winning team of the NIPS 2017 competition.

R1 - Extracting the datapaths for adversarial and normal

examples. Both experts expressed the need for extracting the

datapaths of adversarial examples, which can disclose the prediction

process of adversarial examples and thus serves as the basis for

analyzing why the adversarial examples were misclassified. In a

CNN, different neurons learn to detect different features [42],

and play different roles for the prediction of an example. E1

said that only analyzing the datapath can greatly reduce their

effort by allowing them to only focus on critical neurons rather

than having to examine all of them. In addition to the datapaths

for adversarial examples, E1 emphasized the need for extracting

datapaths for normal examples simultaneously. He commented

that as an adversarial example is often generated by slightly

perturbing the pixel values of a normal image, there must be

similarities between the two extracted datapaths. Considering the

similarity during the datapath extraction process will help extract

more meaningful datapaths for comparison during the analysis.
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Figure 2: AEVis system overview. (a) Input of the AEVis system; (b) the datapath extraction module; (c) the datapath visualization

module that illustrates the extracted datapaths at the network-, layer-, and neuron-level.

R2 - Comparing the datapaths of adversarial and normal

examples. As mentioned before, an adversarial example is often

generated by adding unperceivable noise to a normal example,

and thus there is little difference from the normal image in the

input space. However, their prediction results are different. The

experts are interested in how they diverge into different predictions.

For example, E2 commented, “I want to know whether there are

some critical ‘diverging points’ for the different predictions or they

accumulate gradually layer by layer through the network.” To this

end, E2 wanted to compare the datapaths of normal source examples

and adversarial examples. Triggered by E2, E1 added that it was

interesting to compare the datapath of an adversarial example (e.g.,

a panda image that is misclassified as a monkey) with that of normal

target examples (e.g., normal monkey images). Such comparisons

help understand how these very different images “merge” into the

same prediction (e.g., the monkey). The need for visual comparison

is consistent with the findings of previous research [43], [44], [45].

R3 - Exploring datapaths at different levels. In a large CNN,

a datapath often contains millions of neurons and connections.

Directly presenting all neurons in a datapath will induce severe

visual clutter. E1 commented, “I cannot examine all the neurons

in a datapath because there are too many of them. Instead, I often

start by selecting an important layer based on my knowledge and

examine the neurons in that layer to analyze the learned features and

the activation of these neurons. The problem is that when dealing

with a new architecture, I may not know which layer to start with.

Thus, I have to examine a bunch of layers, which is very tedious.”

He advocated for the idea of providing an overview of the datapath

with visual guidance to facilitate experts in selecting the layer of

interest. The requirement of providing an overview of a CNN aligns

well with previous research [17], [32], [37]. Although the overview

of a datapath facilitates experts in finding the layer of interest, it

is not enough to diagnose the root cause of the wrong prediction.

The experts said that a link between the overview of a datapath

and the detailed neuron activation is required, which helps them

identify the most important neurons that lead to misclassification.

To summarize, it is desirable to provide a multi-level exploration

mechanism that allows experts to zoom into the neurons of interest

gradually. Previous research also indicates that visual analytics for

deep learning benefits from multi-level visualization [17], [37].

R4 - Examining how neurons contribute to each other in a

datapath. Finding a diverging or merging point is not the end

of the analysis. To develop effective defense methods, we must

disclose how such divergence or merging happens. As the data

flows from previous layers to the current diverging or merging

point, a practical method of finding the root cause is tracing back to

the previous layers and examining how the neurons there contribute

to the neurons at the diverging or merging point. E1 commented,

“When I find a neuron or feature map that performs very differently

for an adversarial and a normal example, I’m interested in the cause

of this difference. For example, it is useful to know whether it was

caused by the neurons in the previous layer or even the neurons in

a far-away layer due to the skip-connections [9] in modern CNNs.”

Therefore, we need to analyze how neurons contribute to each

other in a DNN. Previous research also indicates that presenting

the contributions among neurons is important for understanding

the outputs and roles of neurons [17].

3.2 System Overview

Driven by the requirements suggested by these experts, we have

developed a visual analysis tool, AEVis, to help experts analyze

the root cause of the robustness issues arising from adversarial

examples. It consists of the following two parts.

• A datapath extraction module that extracts the critical

neurons and their connections for the predictions of adversarial

and normal examples (R1).
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• A datapath visualization module that enables a multi-level

(R3) visual comparison (R2) of the extracted datapaths and

provides rich interactions (R4) to analyze the root cause of a

misclassification.

As shown in Fig. 2 (a), AEVis takes a trained CNN and the ex-

amples to be analyzed as its input. The examples usually include the

adversarial examples, normal source examples, and normal target

examples. Given the examples and the CNN, the datapath extraction

module extracts the critical neurons and their connections that are

responsible for the predictions of the examples (Fig. 2 (b)). The ex-

tracted datapaths are then fed into the visualization module (Fig. 2

(c)), which supports the navigation and comparison of the datapaths

from the high-level layers to the detailed neuron activation.

4 DATAPATH EXTRACTION

4.1 Basic Problem Formulation

Extracting datapaths of adversarial and normal examples is the

basis for analyzing why an adversarial example is misclassified

(R1). The key challenge is to identify the critical neurons in the

prediction process. Once the critical neurons have been identified,

selecting the corresponding connections to form the datapath is

straightforward. Critical neurons are those that highly contribute

to the final prediction. In other words, by only combining the

critical neurons and corresponding connections, the prediction

of an example will not be changed. Therefore, we aim to select

a minimized subset of neurons that can maintain the original

prediction. Accordingly, we formulate critical neurons extraction

as a subset selection problem:

Nopt = argmin
Ns⊆N

(p(x)− p(x;Ns))
2 + λ|Ns|. (1)

The first term is to keep the original prediction, and the second term

ensures the selection of a minimized subset of neurons. Specifically,

N is the set of neurons in a CNN, Ns is a subset of N , Nopt

is the optimized subset consisting of critical neurons, p(x) is the

prediction of example x, and p(x;Ns) is the prediction if we only

consider the neuron subset Ns. To measure the difference between

two predictions, we adopt the widely used ℓ2 norm. |Ns| is the

size of Ns and λ is used to balance the two terms. Compared with

our previous work, we change the second term from |Ns|
2 to |Ns|.

With this change, we are able to accelerate the entire optimization

process by obtaining a minimized subset of neurons more easily

according to the Lasso algorithm [46].

The large search space in Eq. (1) hinders a direct solution,

which is mainly due to a large number of neurons in a CNN (usually

millions). To reduce the search space, we utilize the weight-sharing

property in CNNs [1] and group neurons into a set of feature maps.

Specifically, in a CNN, neurons in a feature map share the same

weights, and thus learn to detect the same feature. Making use of

this characteristic, we replace the problem of critical neuron selec-

tion with feature map selection and reformulate the problem as:

Fopt = argmin
Fs⊆F

(p(x)− p(x;Fs))
2 + λ|Fs|, (2)

where F is the set of feature maps in a CNN, and Fs is a subset

of F .

4.2 Constrained Datapath Extraction

The above method is successful in extracting the critical feature

maps for one example but sometimes creates difficulty when com-

paring datapaths of adversarial and normal examples, especially

(b)

(a)

FM1

Activation maps Learned features

Deer

FM2

Datapath1
Datapath2 FM1

FM2

Figure 3: The cause of randomness in datapath extraction. (a) two

feature maps detect the same feature (a deer head); (b) there are

two equivalent candidate datapaths for the deer image.

in the detection of merging patterns [17]. After discussions with the

domain experts (E1 and E2) and conducting several experiments, we

find that the difficulty is mainly due to the randomness in datapath

extraction. Specifically, different feature maps in a CNN may have

very similar roles, i.e., detecting nearly the same features [3]. It

means that the optimized datapath for an individual adversarial or

normal example may not be unique, given the many feature maps

with equivalent roles. Thus, extracting a datapath can be treated as

sampling one from equivalently good candidate datapaths, which

introduces randomness into the datapath extraction. Extracting

datapaths that share common feature maps may lead to two feature

map subsets that lack common feature maps. As a result, we

may over-estimate the difference between two extracted datapaths,

which hinders the detection of the diverging and especially the

merging patterns.

To illustrate the above analysis, we trained a 6-layer CNN on

the CIFAR10 dataset [47]. The network contains 5 convolutional

layers and 1 fully connected layer. After training, two equivalently

good datapaths for a deer image (the difference between values

of Eq. (2) is less than 0.127) were extracted. By examining the

feature maps in the two datapaths, we found two feature maps that

detected the same feature (a deer head, Fig. 3 (a)) but belonged

to different datapaths (Fig. 3 (b)). The above experiment illustrates

that feature maps in a CNN may detect the same feature and

thus perform similar roles. As a result, there is randomness in the

datapath extraction process. This randomness hinders the detection

of diverging and merging patterns when comparing datapaths.

To faithfully disclose the diverging and merging patterns,

we need to reduce the randomness in datapath extraction. The

randomness is mainly caused by the lack of preference among the

feature maps that detect the same features. To tackle this issue,

we introduce additional constraints into the datapath extraction

process, to prioritize the extraction of datapaths that share common

feature maps.

Accordingly, the datapaths F 1
opt, ..., F

i
opt, ..., F

n
opt for exam-

ples x1, ..., xi, ..., xn are extracted by optimizing:

F 1
opt, ..., F

i
opt, ..., F

n
opt = argmin

F i
s⊆F

∑

i

Li + γ
∑

i,j

dis(F i
s , F

j
s ),

(3)

where the first term Li = (p(xi)− p(xi;F i
s))

2 +λ|F i
s | measures

how good the datapath is for the i-th example xi. The second
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Figure 4: The analysis workflow of the diverging pattern. The brown color represents the first step analysis, and the purple color indicates

the subsequent analysis, which is iterative.

term dis(F i
s , F j

s ) is the distance to measure the difference

between the datapaths for the i-th and j-th example, which is

defined in Eq. (5). Adding the constraint helps extract datapaths

that share common feature maps. γ is used to balance the two

terms. Although this method is theoretically sound, in practice, we

find that it is difficult to maintain all the predicted labels of the

examples, a fundamental requirement for explaining the prediction

process. The root cause of the problem is the complexity in jointly

finding optimized datapaths for different examples. To solve this

problem, we instead approximate the joint optimization into a

chain of simpler conditional optimizations. We first obtain the

datapath for one example (e.g., the adversarial example to analyze)

and iteratively obtain others by treating the previously calculated

datapaths as constraints. In particular, for the i-th example, we

solve:

F i
opt = argmin

F i
s⊆F

Li + γ

i−1∑

j=1

dis(F i
s , F

j
opt). (4)

To efficiently solve the above subset selection problem, we

approximate this NP-hard discrete optimization [48] with a

continuous optimization:

z
i
opt = argmin

z
i∈[0,1]n

L(xi, zi) + γ

i−1∑

j=1

dis(zj
opt, z

i),

L(xi, zi)) = (p(xi)− p(xi; zi))2 + λ|zi|,

dis(zj
opt, z

i) = ||zj
opt − z

i||2,

(5)

where zi = [zi1, · · · , z
i
n] and zik ∈ [0, 1] is the contribution of the

k-th feature map in the datapath of the i-th example xi. We apply

the commonly-used ℓ2 norm to measure the difference between

two datapaths (the second term in Eq. (4)). Eq. (5) is further solved

by constructing and training a DNN as in [12]. In particular, we

embed the variable z
i into the target DNN and train the network

on the target adversarial/normal examples by stochastic gradient

descent (SGD).

5 DATAPATH VISUALIZATION

5.1 Overview

An extracted datapath usually contains millions of neurons and

even more connections, which prohibits efficient examination of

the datapath or discovery of the merging-diverging patterns. To

help experts systematically investigate the extracted datapaths, we

have designed a multi-level visualization to facilitate the datapath

analysis from the high-level network structure to the detailed neuron

activation (R3). Accordingly, it consists of three major visualization

components at the network-, layer-, and neuron-levels.

Network-level visualization of data flows. As shown in Fig. 2

(c), the network-level visualization provides an overview of the

extracted datapaths, discloses the potential diverging and merging

points, and further guides experts in selecting a layer of interest for

examination (R2). Compared with our previous work, we replace

the dot-plot-based network-level visualization with a river-based

visual metaphor, which has better scalability and is more effective

in depicting diverging and merging patterns.

Layer-level visualization of feature maps. When an expert

identifies a layer of interest (e.g., a diverging or merging point),

s/he then zooms in to examine the critical feature maps in that

layer (Fig. 2 (c)). For a diverging point, the unique feature maps

of each datapath lie in the center of experts’ analysis. For a

merging point, the shared feature maps between/among datapaths

are critical to the analysis. To help experts more quickly find the

important and informative feature maps, we use two types of filling

styles to encode the activation difference (solid filling , Fig. 2A)

and contribution (dotted filling , Fig. 1FA). The higher filling

represents a larger value.

Neuron-level visualization of learned features. When an expert

finds a feature map of interest, AEVis helps him/her understand

what features the neurons of interest have learned in the prediction

process. Following previous research [3], [20], we employ the

learned features of the neurons (Fig. 1A) and their activation

maps (Fig. 1C) to facilitate the understanding. The activation of
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a neuron in a feature map is encoded by the color. Darker green

indicates a higher value.

Analysis workflows. These three visualizations work together to

support a progressive analysis of adversarial examples, which helps

experts understand the root cause of the divergence between normal

source examples and the corresponding adversarial examples, as

well as the merging between the adversarial examples and the

normal target examples. Fig. 4 shows the typical workflow for

analyzing a diverging pattern. It starts from the network-level

visualization where a diverging pattern (Fig. 4A) with several layer

groups is identified first. Then with the layer-level visualization

and activation analysis, the salient feature map is discovered. Next,

by analyzing the learned features and activation in the neuron-level

visualization, the expert can identify an area of interest in the

focused feature map, which is sent to the contribution analysis

module. This module computes the contribution to the activation

of the selected neurons from corresponding neurons in previous

feature maps. Finally, by examining the contribution of the feature

maps in the diverging pattern, the expert gradually investigates the

major reason for this divergence. In the merging pattern analysis,

instead of using activation analysis, we use contribution analysis as

the first step. This is because the merging point is usually followed

by the prediction. Contribution analysis helps identify the most

important learned feature for the final prediction.

With this exploratory analysis, the potential cause for the wrong

predictions is disclosed to facilitate experts in their task of noise

robustness analysis. In the below sections, we focus on introducing

the network-level visualization, the layer-level visualization, and

contribution analysis.

5.2 Network-level visualization

block2
G

0.0 1.0

Figure 5: Dot plot.

In our previous work [17], we employed a

dot plot to visualize the difference between

two datapaths. As shown in Fig. 5, each

rectangle represents a layer group, where

layers are hierarchically grouped according

to the hierarchical computation graph de-

fined in the widely-used TensorFlow Graph

Visualization [32]. Each dot in the plot

represents the activation similarity between

two datapaths of a layer. As a result, the dot plot is combined with

the layer group to illustrate the similarities between the extracted

datapaths of each layer in each layer group. The position of a

dot on the x-axis denotes the similarity value, from 0 (left) to 1

(right). The method has been demonstrated to be useful in detecting

the diverging/merging point of two datapaths (e.g., the datapaths

of adversarial panda and normal panda images). However, we

have received feedback from the experts that the dot-plot-based

visualization is less intuitive in revealing the overall evolution

pattern of datapath merging and diverging as well as the transition

between them. Moreover, it cannot compare three datapaths, which

is specifically requested by the experts. The experts said that in

analysis, they often needed to examine the adversarial examples in

the context of both normal source examples (e.g., panda) and

normal target examples (e.g., monkey) to identify the critical

diverging/merging points.

To tackle these issues, we have developed a river-based visual

metaphor [49], which is inspired by the natural phenomenon of

a river merging and diverging along a riverbed. The river-based

visualization has been proven effective at depicting diverging and

merging patterns over time [49]. As shown in Fig. 6, we use a curve

to represent a datapath. Considering the complexity of the current

system, we do not use the curve width to encode extra information,

and thus the width is always the same. The distance between the

curves represents the similarity between two datapaths. The smaller

the distance, the more similar the two datapaths. When comparing

three datapaths (adversarial, normal source, and normal target

examples), we employ a rule-based method to highlight diverging

and merging patterns. In particular, the datapath of the adversarial

example stays in the middle with the other two (source and target)

on either side (Fig. 6). The screen distance is proportional to the

datapath distance d1 (source-target). The position of the datapath

of the adversarial example is determined by retaining the ratio of

d2 (adversarial - source) and d3 (adversarial - target). To better

reveal how data flows in the network, we embed the river-based

visualization into the DAG visualization representing the network

structure (Fig. 6). With this combination, the merging (Fig. 6

(a)), diverging (Fig. 6 (b)), and transition between datapaths can

be easily recognized by examining the distance changes. (Fig. 6

(c)). For example, in Fig. 6 (a), the distance between the blue

curve (normal panda) and the orange curve (adversarial example)

increases. This indicates that the critical neurons of these two

datapaths are gradually becoming less similar to each other, creating

a diverging pattern. While in Fig. 6 (b), the distance between the

orange curve (adversarial example) and the purple curve (normal

monkey) decreases. This indicates that the critical neurons of these

two datapaths are gradually becoming more similar to each other,

creating a merging pattern. Fig. 6 (c) shows a transition process

from the diverging between a normal panda and an adversarial

panda to the merging of an adversarial panda and a normal monkey.

Revealing these patterns helps experts quickly locate the layer of

interest for further investigation.

unit_2
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unit_3
G

unit_22
G

unit_23
G

unit_1
G
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Adv

Mon

Datapath
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(c)Transition

(a)Diverging pattern
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Figure 6: Visualization of three datapaths, with the illustration

of (a) the diverging pattern, (b) the merging pattern, and (c) the

transition from diverging to merging.

5.3 Layer-Level Visualization

When examining a layer of interest, such as a layer with a diverging

or merging pattern, the critical feature maps of that layer (Fig. 2

(c)) are important for understanding the key features learned in

that layer. These feature maps and corresponding learned features

are generally useful for understanding why an adversarial example

diverges from its original category and merges into another category.

As a result, the unique and shared feature maps between/among

datapaths are expected to be encoded and visualized clearly. To

this end, we employ a treemap-based visualization to describe the

set relationships among the feature maps of different datapaths.

The basic idea is illustrated in Fig. 7. In the figure, (a) shows three

sets of feature maps belonging to three datapaths (normal panda,

adversarial panda, and normal monkey), and their set relations. We
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first compute the shared (intersection) and unique parts of the three

sets (Fig. 7 (b)). Then a hierarchy is built based on the set inclusion

relationships (Fig. 7 (c)). To have more space for displaying the

shared and unique parts and distinguishing them clearly, we put the

shared parts into the largest set with more feature maps. Finally, the

feature map sets and their intersection relationships are visualized

with a squarified treemap layout [50] (Fig. 7 (d)).

To better reveal the relationships between the shared and unique

parts of different datapaths, the treemap cells of the shared parts

are placed in a position that is as close as possible to every treemap

cell of related feature map sets. For example, the shared part, S,

of feature map sets A, B, and C are placed near the centers of the

three related treemap cells representing A, B, and C (Fig. 7 (d)).

Accordingly, the treemap layout is formulated as an optimization

problem with the goal of placing the treemap cells of shared sets

close to the center of the cells of related sets:

min
∑

si∈{0,1},
∑

i
si≥2

(fe( ∩
i:si=1

Ai)− fm
i:si=1

(fe(Ai)))
2,

(6)

where ∩
i:si=1

Ai is the set that contains all feature maps shared by

Ai, for all si = 1. si is the status variable of Ai. si = 1 indicates

that Ai contains the shared part ∩
i:si=1

Ai, while si = 0 means

that Ai does not contain this set. fe(·) denotes the center of the

treemap cell representing a set, while fm
i:si=1

(·) is the mean of the

centers. Accordingly, the first term represents the center of the

shared feature map set ∩
i:si=1

Ai, and the second term represents

the mean of the centers of the feature map sets that share ∩
i:si=1

Ai.

This optimized treemap-based visualization can clearly reveal

the shared and unique feature maps on the datapaths of interest,

which is useful for investigating the roles of different types of

feature maps (e.g., unique or shared feature maps) in the prediction.

For example, the experts are interested in examining the unique

feature maps on each datapath for a diverging point. While for

a layer with a merging pattern, the shared feature maps among

datapaths are critical for the prediction analysis.

To facilitate the identification of salient feature maps, two

types of encoding are employed for activation and contribution,

respectively.

Encoding the activation difference. We select the maximum

neuron activation in a feature map to represent its activation,

with the aim of emphasizing the most salient feature detected

by the feature map. The solid filling style is used to encode the

activation difference between two datapaths. Taking datapaths A

and B as an example, their activation difference is acti(A)-acti(B).

The larger the value, the higher the filling, which indicates that the

learned feature is more salient in A than in B.

Encoding the contribution. A subset of neurons in a specific

feature map can be selected as an area of interest (Fig. 1D).

Experts can trace how corresponding neurons in previous layers

contribute to the activations of the selected neurons. This is useful

for identifying the key learned features that lead to diverging or

merging of datapaths. In addition, to facilitate the analysis of the

diverging/merging patterns for adversarial examples, it is essential

to understand how feature maps at each layer contribute to the

final prediction. In our visualization, the dotted filling style is

employed to encode the contribution from corresponding neurons

in previous layers to the activation of the neurons in the focused

area or to the final prediction. The higher filling represents a larger

contribution value.
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Figure 7: Illustration on how to create a feature map visualization

for three datapaths. (a) The three sets of feature maps at a selected

layer; (b) The intersection relationships among the sets; (c) A

hierarchy based on the set inclusion relationships; (d) The treemap-

based visualization of feature maps.

5.4 Contribution Analysis

When an expert finds a pattern of interest (e.g., a critical feature

map in a diverging point or merging point), s/he often wants to

analyze the major cause that leads to the pattern. To this end, we

have developed a contribution analysis method to compute the

contribution of the previous feature maps to the neuron activation

of the feature map of interest (target feature map).

Initially, the contribution analysis is performed based on the

whole target feature map. We formulate this problem as a subset

selection problem. It aims to select a minimum number of feature

maps that can maximally preserve the activation of the target

feature map. This formulation is similar to the datapath extraction

discussed in Sec. 4. As a result, we also employ the continuous

optimization method to select the feature maps and compute the

corresponding contribution. In particular, we replace the first term

in Eq. (5) with the preservation of the activation of the target feature

map:

z
i
opt = argmin

z
i
prev∈[0,1]n

(f(xi)− f(xi; zi
prev))

2

+ λ|zi
prev|+ γ

∑

j∈[1,m],j 6=i

||zj
prev − z

i
prev||2,

(7)

where f(xi) is the neuron activation of the target feature map on

example xi and f(xi; zj
prev) is the corresponding neuron activation

in consideration of the previous feature map contributions zj
prev .

m is the number of datapaths being analyzed. This optimization

problem can be solved similarly with our proposed algorithm in

Sec. 4.

When using this contribution analysis method to analyze the

adversarial noise, we discover an issue. As shown in Fig. 8 (a),

if all the neurons of the target feature map are considered, some

irrelevant feature maps, such as FM1 and FM2, are ranked highest,

while the relevant one, FM3, is ranked third. This is because, in
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addition to the feature that is misled by the adversarial noise, other

irrelevant features with high neuron activation, are also considered.

These irrelevant features may trigger several irrelevant feature maps

and rank them higher.

To tackle this issue, we allow experts to only select neurons

(Fig.8A) that are highly activated on the adversarial noise and

examine the influence of other feature maps on these selected

neurons. For example, when an expert examines a feature map

of interest (e.g., Fig. 1C), s/he finds that a certain area of the

example is identified as a panda’s ear. S/he then checks the previous

layers to investigate the reason why this area is activated by the

neurons. Therefore, it is useful for the expert to focus on the

neurons in this area and check the contribution of the previous

feature maps to these selected neurons in the prediction. The key

challenge of this problem is to calculate the contribution of the

corresponding neurons in each of the previous feature maps. Here

the corresponding neurons correspond to the selected neurons in

the target feature map. Similarly, we also aim to select a minimum

number of feature maps that can maximally preserve the activation

of the selected neurons in the target feature map. Accordingly, we

change the optimization variable zs in Eq. (7) from the whole

feature map to the corresponding neurons:

z
i
opt,p = argmin

z
i
prev,p∈[0,1]n

(f(xi)− f(xi; zi
prev,p))

2 + λ|zi
prev,p|

+ γ
∑

j∈[1,m],j 6=i

||zj
prev,p − z

i
prev,p||2, (8)

where zprev,p = [z1prev,p, · · · , z
n
prev,p]. z

k
prev,p ∈ [0, 1] approxi-

mates the contribution of the neurons in the focused area of k-th

feature map to the activation of the selected neurons in the target

feature map.

The top 3 most contributed feature maps identified by the new

method are shown in (Fig.8 (b), where the most relevant one, FM3,

ranks first.

(a) Select the whole feature map

FM1, cntr=1.0 FM2, cntr=0.9 FM3, cntr=0.6

FM3, cntr=1.0 FM1, cntr=0.5 FM2, cntr=0.0

Learned features of the top 3 feature maps

Learned features of the top 3 feature maps

A

(b) Select  partial neurons with high activation

Figure 8: The top 3 most contributed feature maps identified by

considering a) the whole feature map of interest; b) part of the

feature map of interest.

6 EVALUATION

We first quantitatively evaluated the effectiveness of the proposed

constrained datapath extraction method in comparison with a

previous state-of-the-art method, the DGR method [12]. We then

demonstrated through a case study how AEVis helped the analysis

of the root cause for misclassification of adversarial examples.

Expert E1, one of the two experts who participated in the evaluation

of the previous version of AEVis [17], was invited again to evaluate

the usefulness of the new system. The CNN used for evaluation is

a pretrained ResNet-101 [9], which contains 101 layers and is a

state-of-the-art CNN for image classification.

6.1 Quantitative Analysis

As there is no ground-truth for datapaths, the effectiveness of the

datapath extraction method is measured by the ability to detect the

diverging-merging patterns between the extracted datapaths. Two

datasets with different scales were used for this evaluation. One

dataset contains all the images of 10 randomly selected classes

(shown at the top of Table 1) from ImageNet ILSVRC 2012 [51].

The other contains 100 classes, with 10 randomly selected images

in each class. We used a state-of-the-art attacking method, namely,

the momentum iterative fast gradient sign method [40], [52], to

generate an adversarial example for each image in the datasets.

From the classification results of these adversarial images, for each

class that was mistakenly classified into, we further sampled 20
target images from the original ImageNet ILSVRC 2012 dataset.

Then for each misclassified adversarial image, we constructed

20 triplets of normal source/adversarial/normal target images and

extracted datapaths for each triplet.

As shown in Fig. 6, there is a diverging point (LA) where the

datapath of the misclassified adversarial image gradually deviates

from the datapath of the normal source image, and gets closer to

that of the normal target image and merges with it at a point (LE),

resulting in the misclassification. Such a diverging followed by

a merging pattern (simplified as a diverging-merging pattern)

is an important characteristic indicating the misclassification of

adversarial images. The ability of the extracted datapaths to reflect

such patterns is thus used to evaluate the effectiveness of the

datapath extraction method.

To determine the occurrence of a diverging-merging pattern, we

calculated the difference in the distances between 1) the datapaths

of the adversarial and normal source images and 2) the datapaths

of the adversarial and normal target images. The difference at layer

i is calculated as:

diff(i) = ||zadv
opt (i)−z

src
opt(i))||2−||zadv

opt (i)−z
tar
opt(i)||2 (9)

where zadv
opt , zsrc

opt , and z
tar
opt denote datapaths of the adversarial ex-

ample, the normal source image that corresponds to the adversarial,

and the normal target image, respectively.

If the distance difference of the last r layers continues to

increase towards the end of the model, a diverging-merging

pattern is detected. Thus, we count the number of layers (nl)

that continuously increasing in the last r layers:

nl =

m∑

i=m−r+1

I(diff(i) > diff(i− 1)) (10)

where I(·) is an indicator function. It equals 1 if the predicate is

true, and 0 otherwise. m is the number of layers in the model, and

r is a number recommended by experts to set the minimum length

of the diverging-merging pattern (r = 8 in our experiments). Then

such a pattern is detected when nl = r and diff(m) reaches the

maximum.

To evaluate the effectiveness of the datapath extraction method,

we then defined the following score:
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Dataset 1 Dataset 2

jeep schooner banana pizza panda goldfish rosehip snake tusker sunglass 100 class (average)

Top-1 Score DGR 0.000 0.038 0.039 0.059 0.051 0.006 0.000 0.025 0.000 0.029 0.011
Ours 0.017 0.076 0.058 0.078 0.061 0.029 0.045 0.025 0.021 0.057 0.042

Top-3 Score DGR 0.033 0.114 0.107 0.176 0.111 0.041 0.061 0.101 0.042 0.095 0.064
Ours 0.083 0.253 0.165 0.333 0.222 0.110 0.091 0.139 0.104 0.152 0.123

Top-5 Score DGR 0.067 0.177 0.117 0.275 0.172 0.076 0.091 0.215 0.083 0.162 0.123
Ours 0.133 0.468 0.204 0.647 0.404 0.174 0.136 0.291 0.167 0.248 0.209

Table 1: The top -1, -3, -5 scores on the 10-class and the 100-class datasets using DGR [12] and our method for datapath extraction.

Top-K score. For each misclassified adversarial example, we

sorted the corresponding target images in descending order ac-

cording to their datapath similarity (based on the distance defined

in Eq. (5), 1/dis) with the adversarial image. The top-K score is

calculated as the average number of diverging-merging patterns in

the top-K target-images of each adversarial example. The higher

the score, the better detection of the diverging-merging pattern

in the extracted datapaths, and thus more effective the datapath

extraction method.

We computed the top-1, top-3, and top-5 scores of our datapath

extraction method. For comparison, we also computed the scores

for the DGR method [12]. Table 1 shows the computed scores on

the 10 randomly selected classes in the first dataset. It can be seen

that our method performs better than the DGR method on all the

classes. We further computed the scores on the 100 classes in the

second dataset, and the average result shown in the last column of

Table 1 further verified the effectiveness of our method.

6.2 Case Study

We invited expert E1, to evaluate the usefulness of AEVis. As E1

participated in the aforementioned NIPS 2017 adversarial attack

competition, he was interested in using the same DEV dataset from

the competition [41]. He would like to see whether AEVis could

help him gain a better understanding of the misclassification of

adversarial examples. The DEV dataset contains 1000 images of

different classes, and for each image, we generated an adversarial

image using the non-targeted attacking method developed by the

winning team [40], [52].

To facilitate the analysis, we calculated an adversarial score for

each adversarial image using the method in [15]. A higher score

means a more obvious adversarial example. These scores, together

with the classification results, were presented to E1 for him to

select suitable adversarial examples for analysis. E1 was interested

in misclassified adversarial examples with medium scores, as he

commented, ‘Less obvious examples often contain subtle changes

with big influence’. After examining these uncertain adversarial

examples, E1 selected two images for further investigation: an

image of a panda head that had been misclassified as a guenon

monkey (I2 in Fig. 1), and an image of a cannon misclassified as a

racket (Fig. 12).

6.2.1 Panda image

To find and understand the root cause of this misclassification,

E1 selected the adversarial panda image (I2 in Fig. 1), the normal

panda image (I1 in Fig. 1), and 10 normal guenon monkey images

(I3 in Fig. 1) in the AEVis system. The datapaths of normal and

adversarial panda images and a representative monkey image were

then automatically extracted for further analysis. In particular,

the representative monkey image was selected from 10 randomly

sampled monkey images, among which it had the highest datapath

similarity with the adversarial panda image (Eq. 5).

Overview. The system first displayed the datapaths at the network-

level (Fig. 1 (b)). The distances among the three datapaths disclose

the diverging-merging patterns through the layers. Following the

dataflow in the overview, E1 found that the datapath of the

adversarial panda image began to deviate from the datapath of

the normal panda image at layer LA (Fig. 6), gradually got closer

to the datapath of the monkey image, and finally merged into it

at LE (Fig. 6). From LA to LE are the layers where the predictive

behaviors of neurons were misled by the adversarial noise. To better

understand the working mechanism of adversarial noise, he then

analyzed the misclassification from two aspects: the diverging

process of the adversarial image from the normal source image

(panda), and the merging process of the adversarial image into

the normal target images (monkey).

Diverging analysis. To analyze which feature maps in the datapath

of the adversarial example were critical for the divergence, E1

first expanded layer LC where the divergence became noticeably

large. The encoded value of each feature map was set as the

activation difference between the normal source and adversarial

images. A large difference indicates that the feature map has

detected its learned features in the normal source image but not

in the adversarial example. With this understanding, E1 directly

checked the feature map FC1, which had the largest activation

difference in LC. By examining the learned features (Fig. 1A) of

this feature map, he discovered that the neurons in this feature

map were trained to detect a black circle pattern that resembled

an ear or an eye of a panda (Fig. 1B and C). Such a pattern is

one of the unique characteristics of a panda and is thus critical for

its classification. Then looking at the activation maps (Fig. 1C),

E1 noticed that the neurons covering the ear area were correctly

activated for the normal panda image, indicating a successful

detection of this critical pattern. However, the same neurons were

not activated for the adversarial example. E1 considered this was

an important reason for the misclassification.

To analyze the root cause for this failed detection, E1 selected

the neurons covering the ear area to form an area of interest

(Fig. 1D) for a closer examination. He suspected the failed detection

Pan
Adv

(a) (b) (c)

Figure 9: Activation of feature maps in (a) LA, (b) LD and (c) LE.
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Figure 10: E1’s analysis process from the deep layer LE to the shallow layer LB in order to find the major cause of merging.

was influenced by the feature maps from previous layers. He then

set the value encoded in each feature map as the ‘contribution’

to the selected one, i.e. the area of interest in FC1, and expanded

LA, the layer at the beginning of the diverging process. In the

treemap-based visualization at LA, E1 found that feature map FA

(Fig. 1 (b)) which had the largest contribution to the activation

difference in FC1. By examining its learned features (Fig. 1E),

E1 confirmed that it was trained for low-level detection of black-

white boundaries. The activation maps (Fig. 9 (a)) showed that

this feature was detected in the normal panda image but not in the

adversarial example. E1 speculated that this failed detection led to

the failed detection of the panda’s ear in FC1, and finally led to the

failed classification of the adversarial example as a panda.

To confirm his speculation, E1 repeated the analysis on LD and

LE. In these two layers, he selected several feature maps with a big

activation difference between the normal and adversarial images.

From the activation maps, he found more significant misses in the

detection of critical patterns in the adversarial example (Fig. 9 (b),

and (c)). Selecting the area of interest and tracing the contribution

back to LA, E1 identified the same feature map FA as the biggest

contributor to the failed detection in LD and LE. At this point,

E1 was convinced that the missing detection of the black-white

boundary in FA was the root cause for the failed detection of critical

patterns in higher levels that finally led to the failed classification

of the adversarial example as a panda.

Merging analysis. After analyzing the reason why the adversarial

example was not classified as a panda, E1 turned his attention

to why it was classified as a monkey. He suspected that the

same region that led to the failed classification of panda actually

contributed to its classification as a monkey. Therefore, he retained

the same area of interest and expanded layer LE (Fig. 6), the

merging point for the datapaths of the adversarial and the monkey

images. To find the feature maps that had the main contribution

to the misclassification, he set the encoded value of each feature

map as the ‘contribution’ to the prediction of the adversarial panda

image and identified the feature map (FE in Fig. 10 (c)) with the

largest contribution. After examining its learned features (Fig. 10

(c)(ii)), E1 discovered that it was trained to detect monkeys in

various situations. Comparing the activation maps of the adversarial

example and normal monkey image (Fig. 10 (c)(iii)), he found that

the monkey face was activated in the monkey image as expected.

However, it was hard to explain the activation at the top part of

the adversarial example. Intuitively, there were no indications of a

monkey in that part. Thus, E1 decided to trace back to the lower

levels to seek more clues.

Guided by the larger activation on the activation map of the

adversarial example, E1 first adjusted the area of interest to include

the most activated neurons at this layer (Fig. 1D), and then analyzed

the contributions to FE from the feature maps in previous layers.

In layer LC, he found feature map FC2 (Fig. 10 (b)), which had the

highest contribution to FE. After a closer look, the neurons in FC2

seemed to detect the face of a monkey (Fig. 10 (b)(ii)). Activation

on the monkey image was correctly located in the middle of the

monkey face, but in the adversarial panda image, it was again

located on the top right part as was the case in FE (Fig. 10(c)).

‘Are there patterns of a monkey face?’ With this question in mind,

E1 carefully compared the adversarial example and the monkey

image (Fig. 10 (b)(iii)). He found that for the adversarial example,

in the activated region, the dark strip with two lighter patches on

either side did resemble the look of a monkey’s nose with lighter

cheeks next to it.

However, the same pattern was present in the normal panda
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image, but it was not detected by the neurons in FC2. E1 thus

wanted to investigate the more fundamental cause for the detection.

Again, he adjusted the area of interest according to the activation

map and expanded the previous layer LB (Fig. 6). He identified

that feature map FB (Fig. 10 (a)) was in the datapath intersection

for both the adversarial and monkey images and had the largest

contribution to FC2. Examining the learned features of this feature

map (Fig. 10 (a)(ii)), E1 found that the neurons inside were trained

to identify the eyes of different animals. Further inspecting the

activation of the three images, he found that a small region with

the appearance of an eye was detected at the top right corner of the

adversarial panda image. (Fig. 11). And compared with the normal

image, this seemed attributed to the added adversarial noise. In

addition, the position of the ‘eye’ combined with the position of

the ‘nose’ detected in FE resembled the layout of a real monkey

face. At this point, E1 figured out the effect of the adversarial noise.

The top right corner of the adversarial panda image had some

similarities with a monkey’s face. In particular, the imperceptible

adversarial noise misled the model to detect a monkey’s eye first,

then the subtle changes in image layout misled the model to detect

a monkey’s face. It was like a domino effect and finally led to the

misclassification of the adversarial example as a monkey.

Figure 11: A small region with the appearance of an eye was

detected at the top right corner of the adversarial panda image.

Summary. From the above analysis, E1 summarized two effects

of the adversarial noise. The first one was that the outline of the

panda’s ear was affected by the noise, which led to the failed

detection of the ear and resulted in the large decrease of the

predicted probability of the panda class. The second one is that

the adversarial noise misled the model to detect a monkey’s eye in

the same region, which further led to the detection of a monkey’s

face. Then the probability of monkey class largely increased and

resulted in the final misclassification.

Normal cannon Adversarial cannon Normal racket

LA LB LC

Learned 

feature Activation maps
Learned 

feature Activation maps
FA FB1

12

unit3_22 unit3_23 unit4_1 unit4_2 unit4_3

Figure 12: Diverging analysis for an adversarial cannon image.

6.2.2 Cannon image

E1 carried out a similar examination on the adversarial cannon

image. Examining the datapaths of the normal and adversarial

cannon images and a representative racket image (Fig. 12), E1

first identified the diverging and merging points (LB and LC in

Fig. 12). To analyze the root cause for divergence, E1 followed the

same process as above. He first discovered the activation difference

between the normal and adversarial images on feature map FB1

that was trained to detect the wheel of a cannon (Fig. 12). He then

traced the failed detection to feature map FA in LA, where the

wheel shafts were not detected in the adversarial example (Fig. 12).

E1 speculated the added noise blurred the edges of the shafts

which resulted in the failed detection, and further led to the failed

detection of the wheel, and finally the misclassification.

A

B

Activation map of 

adversarial cannon

C

D

Activation map of 

normal cannon

Learned 

feature Activation maps

Learned 

feature Activation mapsLB

LC

Figure 13: Merging analysis for adversarial cannon image.

To understand why the adversarial example was misclassified

as a racket, E1 turned his attention to the merging point LC, and

identified the feature map FC which had the largest contribution

to the misclassification (Fig. 13). Comparing the activation maps

(Fig. 13LC), he found two regions (Fig. 13A and B) that were

wrongly activated in the adversarial cannon image. Selecting each

region and tracing back to layer LB, E1 noticed the feature maps

that contributed the most to each of the regions were trained to

detect ‘net’ and ‘racket throat’ respectively (Fig. 13C and D). There

are similarities between the streaks on the ground and a racket

net, and between the gun mount and a racket throat. However, the

added noise in the adversarial image creates a stronger activation

in the two feature maps (Fig. 13LB). E1 thus speculated that the

stronger activation together with the failed detection of the wheel

misled the model to detect the net and the throat of a racket in

adjacent regions, which finally led to the misclassification of the

adversarial image.

7 DISCUSSION

AEVis can effectively illustrate the prediction mechanism of

adversarial examples and help discover the root cause that leads

to incorrect predictions. However, it still has several limitations,

which may shed light on future research directions.

Time complexity. The datapath extraction usually takes a few

minutes and is computed offline. The contribution analysis is the

only part that cannot be pre-computed because the contribution is

calculated based on the selected neurons. It usually takes about 5
seconds to calculate the contribution using SGD to solve Eq. (8).

To accelerate the process, we can use the quadratic approximation

from our previous work [17], which is faster (computation time

< 1s) but less accurate. Since our target users (machine learning

experts) focus more on analysis accuracy, the SGD-based solution
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is set as default. Users can switch to the approximated contribution

analysis in the interface.

Visual scalability. We have demonstrated that AEVis is able to

analyze a state-of-the-art CNN (ResNet101), which has 101 layers

and is much deeper than traditional CNNs (e.g., VGG-Net). More

recently, deeper CNNs with thousands of layers [9] have been

developed. When handling such deep neural networks, the layers

of interest at low levels of the hierarchy are difficult to fit in one

screen, even with the help of our segmented DAG. A possible

solution to alleviate this issue is to employ a mini-map to help the

expert track the current viewpoint, which has proven effective in

TensorFlow [32].

Currently, we utilize a river-based visual metaphor to illustrate

the diverging and merging patterns. The layout of the datapaths

is calculated using a rule-based method (Sec. 5.2). Such a design

echoes the most common analytical task when three datapaths

need to be compared (adversarial examples, the normal source

examples, and the normal target examples). If more datapaths

are to be analyzed, an optimization-based layout method can be

applied. For example, we can minimize the mean-square-error

between the vector of real datapath distances and their screen

distances with a constraint so that the order of real datapath

distances is maintained. The above optimization problem is convex

(convex functions over convex sets) and guaranteed to achieve

a global minimum. As we have not observed such needs, we

leave this method in the discussion here. Apart from the river-

based visualization, the treemap-based visualization in the layer

level is the other factor that limits the ability to analyze a lot

of datapaths. The intuitive treemap-based design is suitable for

comparing several datapaths [53] and has been proven effective in

the case studies. We can further improve its scalability by adopting

a less intuitive but more scalable set of visualization techniques,

such as PowerSet [54].

Generalization. AEVis aims to analyze the adversarial examples

for CNNs because most research on adversarial attacks focuses on

generating adversarial images for CNNs.

In addition to attacking CNNs, there are several initial attempts

to attack other types of DNNs [10], such as recurrent neural

networks (RNNs), autoencoders (AEs), and deep generative models

(DGMs). In these types of DNNs, there are also neurons that are

critical for predictions. For example, Ming et al. [21] demonstrated

that some neurons in an RNN were critical for predicting the

sentiment of a sentence, such as the neurons for detecting

positive/negative words. Such neurons and their connections form

a datapath for an RNN. Thus, AEVis can be extended to help

understand the root cause of adversarial examples for these DNNs.

The main extension required is the development of suitable datapath

extraction and visualization methods for different types of DNNs.

For example, to visualize the datapath of RNNs, we can first unfold

the architecture of an RNN to a DAG [55], and then employ a DAG

layout algorithm to calculate the position of each unfolded layer.

In addition to images, there are adversarial attacks on other

types of data [10], such as adversarial documents and adversarial

videos. To generalize AEVis to different types of data, we need to

change the visual hint for neurons (learned features and activation

maps) according to the target data type. For example, when

analyzing adversarial documents, we can use a word cloud to

represent the ‘learned feature’ of a neuron [21], and select the

keywords that strongly activate the neuron.

8 CONCLUSION

We have presented a robustness-motivated visual analysis tool,

AEVis, to help machine learning experts investigate the prediction

process and understand the root cause of incorrect predictions of

adversarial examples. The visualization at multiple levels, together

with the constrained datapath extraction, allows efficient identifica-

tion of critical layers from datapaths’ diverging-merging patterns

and critical neurons from the activation maps. The contribution

analysis and the rich interactions further enable users to trace

the root cause of the misclassification of adversarial examples.

We conducted a quantitative experiment to evaluate the datapath

extraction method and a representative case study with an expert

to demonstrate the usefulness of AEVis in explaining the reasons

behind the misclassification of adversarial examples.

There are several directions we could follow in our future

research. First, based on the discovered root cause for misclassi-

fication, an interesting and important step forward is to develop

targeted defense solutions. We will continue working with machine

learning experts to explore an effective route from discovered cause

to targeted solutions for developing more adversarial robust DNN

models. Second, complementary to developing defense solutions,

another avenue is to detect potential adversarial examples online

and remove them from further processing. A set of streaming

visualizations that can incrementally integrate the incoming log

data with existing data is the key to online monitoring. Third, as

discussed in Sec. 7, an interesting direction is to generalize AEVis

to analyze the noise robustness of other types of DNNs, and to

tackle other types of data. Improving the scalability to deeper

DNNs and the visualization of more datapaths is also an area of

future interest. Different datapath extraction algorithms and suitable

visualization designs would be interesting research topics.
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