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A Comparison of Rendering Techniques
for 3D Line Sets with Transparency

Michael Kern, Christoph Neuhauser, Torben Maack, Mengjiao Han, Will Usher, Ridiger Westermann

Abstract—This paper presents a comprehensive study of rendering techniques for 3D line sets with transparency. The rendering of
transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines
deemed unimportant, based on, for instance, geometric properties or attributes defined along with them. Accurate blending of
transparent lines requires rendering the lines in back-to-front or front-to-back order, yet enforcing this order for space-filling 3D line sets
with extremely high-depth complexity becomes challenging. In this paper, we study CPU and GPU rendering techniques for transparent
3D line sets. We compare accurate and approximate techniques using optimized implementations and several benchmark data sets.
We discuss the effects of data size and transparency on quality, performance, and memory consumption. Based on our study, we
propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an
improved GPU sorting operation, and the second improves rendering quality via transparency-based bucketing.

Index Terms—Scientific visualization, line rendering, order-independent transparency.

1 INTRODUCTION

In many visualization tasks, the need to efficiently dis-
play sets of 3D lines is paramount. Applications range
from the visualization of pathways of particle tracers in
flow fields or over moving vehicles for smart transportation
and urban planning, to exploring neural connections in
the brain or relations encoded in large graphs and net-
work structures. Prior work such as [3], [12], [19], [27]
has shown that transparency, when used carefully to avoid
overblurring, can be used effectively to relieve occlusions
and to accent important structures while maintaining less
important context information. It is particularly useful for
exploratory visualization tasks, where users interactively
select the strength of transparency and the mapping of data
values to transparency.

Rendering transparency, however, introduces a perfor-
mance penalty. When using transparency, the per-pixel color
and opacity contributions need to be blended in correct
visibility order, i.e., by using a-blending (where « represents
a point’s opacity) in either front-to-back or back-to-front
order. Rendering techniques can be distinguished as to
whether they compute the visibility order exactly or approx-
imately, and how this order is established. Especially for line
sets, which have a significantly higher depth complexity
than surface or point models, maintaining the visibility
order during rendering can become a severe performance
bottleneck.
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In this study, we evaluate exact and approximate object-
and image-order transparency rendering techniques, with
intending to analyze the performance of such techniques
when used to render line sets with an extremely high
depth complexity. Our evaluation includes an in-depth eval-
uation of model-specific acceleration schemes. We further
demonstrate the use of approximate transparency rendering
techniques for surface and point models with high depth
complexity, though refrain from a detailed performance
evaluation on these cases. The latter would require consider-
ing specific acceleration structures for such surface or point
models, which is beyond the scope of a single paper.

Object-order techniques make use of GPU rasterization.
We consider Depth Peeling (DP) [10] and Per-Pixel Linked
Lists (LL) [43], both of which can render transparency ac-
curately at the cost of computing or memory. Other object-
order techniques use (stochastic) transmittance approxima-
tions, where transmittance refers to the multiplicative ac-
cumulation of per-fragment transparencies. Of the many
different variants of approximate techniques, we selected
Multi-Layer Alpha Blending (MLAB) [32] and the most re-
cent Moment-Based Blending Technique (MBOIT) [25] (see
Fig. 1 for example images). Both approximate techniques
use only small and constant additional buffer resources.

We also evaluate four image-order techniques based on
ray tracing. We consider the Generalized Tubes method [13]
as well as Embree’s built-in Bezier curve primitives [40]
implemented in Intel’s OSPRay CPU ray tracing framework
(OSP) [38], a GPU ray-tracer using NVIDIA’s RTX ray
tracing interface [26] through the Vulkan API (RTX), and
voxel-based GPU line ray tracing (VRC) [15]. All techniques
utilize dedicated data structures to facilitate efficient ray
traversal as well as empty space skipping and thus provide
effective means to evaluate the capabilities of image-order
line rendering.

OSP, RTX, VRC, DP, and LL, despite their algorithmic
differences, are all accurate methods and yield the same



(a) PSNR = 33.41, SSIM = 0.907 (b) PSNR = 31.98, SSIM = 0.901 (c) PSNR = 34.42, SSIM = 0.913 (d) PSNR = 31.10, SSIM = 0.842

Fig. 1: Strengths and weaknesses of transparent line rendering techniques. For each pair, the left image shows the ground
truth (GT). Right images show (a) approximate blending using MLABDB, (b) opacity over-estimation of MBOIT, (c) reverse
blending order of MLABDB, (d) blur effect of MBOIT. Speed-ups to GT rendering technique: (a) 7, (b) 2, (c) 3.5, (d) 4.5.

rendering result. Performance-wise, on the other hand, these
techniques differ substantially, and for large data sets some
of them even turn out to be impractical. The main goal of our
evaluation study is to shed light on the differences between
these techniques and to provide guidelines for selecting a
suitable rendering technique for a given application.

Contribution

We provide a qualitative and quantitative comparison of
techniques for rendering 3D line sets with transparency.
For our evaluation, we have systematically selected a set
of techniques that we believe are representative for the
different principal approaches that are available today. Even
though our evaluation study has been performed solely
on 3D line sets, the results are also applicable to other
application scenarios where transparency is used to reveal
otherwise hidden structures.

Through our study, users and practitioners can gain
an understanding of the principal implications of using a
certain technique and become aware of their major strengths
and limitations with respect to quality, memory require-
ments, and performance. Since we use a range of different
sized data sets with vastly different internal structures, our
evaluation hints to specific data-dependencies of certain
rendering concepts. We tried to individually select a trans-
parency setting for each data set that reveals important
features in a meaningful way. Thus, we consider our results
representative of typical use cases of transparent line ren-
dering. For each technique, we also analyze the pre-process
that is required to build the data representations needed for
rendering and perform a thorough evaluation of rendering
performance.

Moreover, we have modified LL to improve scalability
with the number of fragments, and MLAB to make it less
dependent on the order of fragments per pixel. For LL, we
developed GPU-friendly variants of shell-sort and priority-
queues through the min-heap data structure, resulting in
a performance increase of a factor of 2-3. Our implemen-
tation of MLAB uses a discrete set of depth intervals and

can considerably reduce the number of incorrectly merged
fragments.

We have made our implementations publicly avail-
able [17], the test environment using NVIDIA’s RTX [20],
all data sets [16], and all benchmark results for image
quality and performance evaluation. We have also included
additional descriptions of how to use the implementations
and apply them to other data sets.

2 RELATED WORK

Prior work [22], [42] has compared some of the many dif-
ferent rendering techniques for transparent geometry. These
evaluations, however, have mainly focused on the use of
techniques for real-time graphics effects in scenes comprised
of a few spatially extended and homogeneous transparent
objects with rather low depth complexity. Thus, the suitabil-
ity of techniques for visualization tasks as outlined in our
work is difficult to infer from available evaluations. To the
best of our knowledge, an evaluation and comparison of
techniques for rendering large 3D line sets, including ray-
based approaches and scenes with extremely high depth
complexity and high-frequency transmittance functions, has
not been performed.

2.1 Object-order techniques

Several approaches have been proposed to blend the frag-
ments falling into the same pixel in correct visibility order
without having to resort to an explicit sorting of geometry.
Everitt et al. [10] presented depth peeling, which renders for
each pixel in the i-th rendering pass the i-th closest surface
point using a second depth buffer test against the values
from the previous pass. In early work by Carpenter [6], the
A-buffer was introduced as a data structure that stores the
unordered set of fragments falling into each pixel. These
fragments are then sorted explicitly based on the stored
depth information. Yang et al. [43] used per-pixel linked
lists to store a variable number of fragments per pixel on
the GPU, after which they are sorted to blend the fragments



in correct order. Contrary to the linked lists, the k-Buffer [4]
stores only the k nearest fragments, and merges fragments
heuristically if more than k fall into the same pixel.

In scenarios where the k-Buffer is not applicable, frag-
ments have to be blended heuristically. Adaptive Trans-
parency [31] operates on k fragments and aims to store
an approximation of the transmittance function per pixel.
Alpha blending is then performed in a second pass us-
ing this approximation. Maule et al. [21] proposed Hybrid
Transparency, which aggregates fragments using a k-Buffer
and merges them heuristically with respect to depth and
opacity. Even though this approach is order-independent,
it is not able to cope with scenes containing many layers.
Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique that uses a fixed number of per-pixel transmit-
tance layers to approximate the transmittance along a view
ray. When all layers are occupied and the current fragment
creates a new layer, the two most appropriate adjacent layers
are merged in turn. Stochastic Transparency [9] uses weights
to blend or discard fragments based on opacity. Weighted-
Blended Order-Independent Transparency [23] proposed to
use weights based on occlusion and distance to the camera
to merge fragments.

Recently, Miinstermann et al. [25] introduced Moment-
Based Order-Independent Transparency (MBOIT). Rojo et
al. [3] demonstrated the embedding of importance-based
transparency control into MBOIT. MBOIT approximates the
transmittance function pixel-wise by power moments or
trigonometric moments, and applies logarithmic scaling
to the absorbance to enforce order-independency and fa-
cilitate additive compositing. Moment-Based transparency
builds upon Fourier opacity mapping [14], which represents
transmittance as a low-frequency distribution dependant on
depth, and approximates these distributions using trigono-
metric moments, i.e., Fourier coefficients.

Another category of techniques render transparent lay-
ers using multiple samples per pixel, for example, Stochastic
Layered Alpha Blending [42] and Phenomenological Trans-
parency [24]. The latter technique also incorporates physical
processes to create realistic effects of translucent phenom-
ena. However, these techniques significantly increase the
number of generated fragments, which is problematic in
scenarios where the depth complexity is extremely high. As
such, we do not consider them in our study.

We do also not consider particle-based [30] and voxel-
based [8], [18] rendering techniques for transparent ge-
ometry. Especially when used to render space-filling line
sets, these techniques significantly increase the number of
rendered primitives or the resolution of the used voxel grid
and require substantial modifications to render geometric
shapes with fine geometric details and sharp outlines.

2.2

Image-order techniques for rendering line primitives make
use of ray tracing. Advances in hardware and software
technology have shown the potential of ray tracing as an
alternative to rasterization, especially for high-resolution
models with many inherent occlusions. Developments in
this field include advanced space partitioning and traversal
schemes [35], [37], [41], and optimized GPU implementa-
tions [1], [18], [29], to name just a few. Wald et al. [39]

Image-order techniques
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proposed the use of ray tracing in combination with a tree-
based search structure for particle locations to efficiently
find those particles a ray has to be intersected with. Kanzler
et al. [15] built upon voxel ray tracing and proposed a GPU
rendering technique for large 3D line sets with transparency.
They use an approximate voxel model for 3D lines, using
quantization of line-voxel intersection points to a discrete
set of locations on voxel faces. Ray tracing is then performed
using the regular grid as an acceleration structure.

Ray tracing of line sets can be performed on analytic
or polygonal tube models by using common acceleration
structures like kD-trees or bounding volume hierarchies
to accelerated ray-object intersections. CPU and GPU ray
tracing frameworks like OSPRay [38] and OptiX [29] can
be used for this purpose. OSPRay builds on Intel’s Em-
bree ray tracing kernels [40] and has built-in support for
rendering fixed-radius opaque streamlines and Bézier curve
primitives. Han et al. [13] further extended OSPRay with a
module for rendering Generalized Tube Primitives, support-
ing varying radii, bifurcations, and transparency. NVIDIA’s
RTX ray tracing through the OptiX interface [26] uses RT
cores on current GPUs to perform hardware-accelerated ray-
primitive intersection tests. OptiX also provides an interface
to implement custom shaders, which, in our current sce-
nario, can also be used to analytically intersect rays with
tubes.

3 LINE RENDERING

We classify line rendering algorithms into two major groups:
object-order and image-order. Object-order techniques use
rasterization of geometric primitives to let the GPU com-
pute the fragments falling into each pixel in an arbitrary
order. Although the order is first given by the order in
which rendering calls are issued for each primitive, this
order is not given when processing each fragment in the
fragment shader stage. For transparency, these techniques
use either fragment merge heuristics or 2-pass approaches
to ensure (correct) transmittance and visibility. In contrast,
image-order techniques use ray tracing to find the surface
points seen through the pixels. The correct visibility order
of the points along a ray is established by using a space-
partitioning scheme to traverse a ray in front-to-back order
through space.

3.1 Object-Order

Object-order techniques can be classified into accurate and
approximate techniques. Accurate techniques guarantee the
exact visibility order of rendered fragments. Approximate
techniques violate this order by blending a fragment’s color
over a color that already contains the color of a fragment
that is closer to the camera. Although approximate tech-
niques typically have bounded memory and rendering con-
straints, accurate approaches come with either unbounded
rasterization load or unbounded memory requirements.

Depth Peeling

Depth Peeling (DP) [10] generates pixel-accurate renderings
of transparent geometry by rendering the scene multiple
times and using the depth buffer to achieve ordered blend-
ing, each transparent layer at a time. DP utilizes the depth



buffer hardware test to successively obtain the next closest
layer and performs standard front-to-back blending into the
current framebulffer.

A unique property of DP is that it does not require any
additional memory besides a second depth buffer. On the
other hand, DP needs to “peel” layers, i.e., render the scene
as many times as the depth complexity of the scene. In
our application scenario, where the scenes are comprised
of many thousands of thin and often space-filling objects,
a huge number of rendering passes typically has to be
performed. As indicated in Fig. 2, terminating the blend
passes after a fixed number of times is dangerous, because
deep layers with high opacity can contribute significantly to
the final pixel color.

Due to the high rendering cost of DP, its performance
is typically about 1-2 orders of magnitude below that of all
other alternatives we consider. Therefore, we decided to use
DP solely for generating ground truth images of transparent
lines, against which the results of other techniques are
compared.

il

Fig. 2: Intermediate results of depth peeling for layers 1, 10,
and 50 of a semi-transparent line set. Note that even at layer
50 notable differences appear in the final result.

Per-Pixel Linked Lists

While DP has bounded memory constraints and unbounded
rasterization load, Per-Pixel Linked Lists (LL) [43] come
with bounded rasterization load yet unbounded memory
requirements. LL renders the scene only once, and stores all
generated fragments in linked lists over all pixels. Then, for
every pixel, a pixel shader is invoked which traverses the list
and stores all fragments belonging to that pixel in a GPU
buffer resource. The fragments are then sorted wrt. their
depth. Finally, the fragments are blended in sorted order to
produce the final pixel color. Besides the global fragment
buffer, LL requires a head buffer that stores, for every pixel,
the offsets to the first fragment in the linked list, and an
atomic counter that tracks the number of inserted fragments
to enable concurrent gathering of new fragments into the
fragment buffer. LL assumes that the GPU buffer resource
is large enough to store all rendered fragments; otherwise,
it fails to correctly render the scene. To reduce the memory
requirements, one commonly stores fragment colors in 32-
bit unsigned integers, with 8 bits per color and « channel.
Even if the available GPU memory is large enough,
which is often the case on high-end GPUs, sorting the many
hundreds or even thousands of fragments per pixel can
become a performance bottleneck. Although simple sorting
algorithms such as bubble sort or insertion sort are suitable
for small numbers of fragments, they do not scale well
to large numbers of fragments. To address this limitation,
we have incorporated alternative sorting algorithms that
achieve better scalability and can be implemented on top of
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GPU-friendly data structures, i.e., GPU versions of shell-sort
and priority-queue through the min-heap data structure.

Shell-sort [33] is an in-place sorting algorithm based
on insertion-sort. It is specifically designed to achieve im-
proved sorting performance for large arrays by exchanging
elements that are far apart from each other. Shell-sort subdi-
vides the array into k subarrays by sorting each k-th element
of the array via insertion sort. k in this context defines the
offset between elements and is hence called the gap. The gap
is iteratively decremented in [ iterations using a pre-defined
sequence (k1, k2, ..., k;) of [ numbers. The a;-th element is
then sorted in the ¢-th iteration. Note that k; is always 1
since every element needs to be sorted in the last iteration. In
our work, we used | = 4 and a gap sequence of (24,9, 4,1)
(based on Table 1 in [7]) to efficiently order elements with
an average depth complexity of 124 elements per node.

Priority-queues are implemented with the min-heap data
structure. A min-heap is a full binary tree where each node
contains a key defining the priority (or order) of the element.
For each parent node, the key of its children is either
equal or smaller than its own key. Heap data structures
are commonly implemented as binary trees. In our case,
the depth value of each fragment represents the key. That
is, after each insert operation, the root node is the currently
closest element in the min-heap.

Upon insertion of all fragments in the heap, the next
closest fragment is iteratively obtained by removing the root
node from the heap until the heap is empty. Root removal is
implemented by setting the element with the least priority
as the new root and sinking it down until it is correctly
sorted. This process takes O(logn) time for a heap with
n elements. Since the root has to be obtained n times, the
total time complexity is O(n - (logn)), which is faster than
the depth complexity of the previously mentioned sorting
algorithms.

Both sorting algorithms have been embedded into LL to
improve its performance. Fig. 3 shows performance graphs
for renderings of the aneurysm data set from many differ-
ent views. As can be seen, shell-sort and priority-queues
significantly improve the sorting performance by a factor of
2 to 3 on average and keep the sorting time almost constant
over all frames. Due to the slightly better performance of
priority-queues for other data sets, we decided to use this
version of LL in our evaluations.
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Fig. 3: Rendering times for a flight around the ANEURYSM
data set using LL and different sorting algorithms.

Multi-Layer Alpha Blending

Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique. It belongs to the class of transparency rendering



techniques that are bounded in both memory consump-
tion and rendering load. This class of techniques does not
perform exact visibility sorting of fragments but strives to
approximate the transmittance and color. MLAB does this
by heuristically merging fragments into a small number of
layers, a so-called blending array, that are finally merged
into the pixel color.

The blending array consists of k buffers, into which
incoming fragments are merged. Each of the k buffers stores
the blended colors and transmittances of the fragments
merged into it, as well as a depth value. Each fragment is
placed into a corresponding buffer based on its depth. When
all layers are occupied and the current fragment creates
a new layer, the two most appropriate adjacent layers are
merged in turn.

We chose MLAB because of its simplicity, performance,
and low memory consumption. On the other hand, it is clear
that with only k layers—eight by default in our current
implementation—MLAB is not always able to accurately
reconstruct the colors and transmittances for scenes with
high depth complexity. In particular, the quality of MLAB
is highly dependent on the order in which fragments are
generated, as the outcome of the heuristic merge operation
depends highly on this order. Some of the inaccuracies
shown in Fig. 1 are due to this dependency.

Additionally, MLAB is not frame-to-frame-coherent if
the order in which fragments are rendered to the inter-
mediate buffers is not guaranteed over time, resulting in
flickering artifacts during animation. We prevent this error
by explicitly enabling order-preserving pixel synchroniza-
tion (see [11]) so that fragments are processed in the order
primitives were issued. Note that with pixel synchronization
enabled, we did not experience any loss or increase in
performance.

Multi Layer Alpha Blending with Depth Bucketing

To make MLAB less dependent on the order in which frag-
ments are generated, we propose a variant that considers a
discrete set of depth intervals. We call this approach MLAB
with depth bucketing (MLABDB). The general idea underly-
ing MLABDB is to discretize the scene into £ disjoint buckets
that perform MLAB independently for the corresponding
depth interval. Each fragment is thus assigned to a bucket
by means of its depth value and merged heuristically into
the local corresponding color and transmittance buffer. Since
the buckets are already sorted wrt. depth, blending can
finally be performed by blending the buckets” values in
front-to-back order.

However, only discretizing the scene into buckets of
equal intervals produced images with less quality and vis-
ible artifacts. MLAB itself is not order-independent and
yields different results per pixel depending on the order of
fragments for each bucket and pixel, resulting in artifacts.
To avoid these artifacts, in MLABDB we segment the scene
into two buckets and set the boundaries of the buckets
heuristically with respect to opacity (compare Fig. 4).

MLABDB requires two rendering passes to obtain the
final color. In the first pass, the boundaries of the two
buckets are determined. For each gathered fragment, the
first fragment with opacity o greater or equal a user-defined
threshold 7, is maintained. The depth value z,;, of this
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Fig. 4: Fragments with opacity, ordered by depth. MLABDB
searches for the first fragment with o > 7, to obtain depth
boundary z,,, of the front bucket. Back bucket bounds are
Zmin and z,, with z, the depth of the first opaque fragment.
Fragments with z > z, are discarded.

fragment represents the upper depth boundary for the first
bucket, called front bucket. Since fragments behind opaque
lines should not be merged the first opaque fragment with
a > 7, is preserved. Its depth values z, and z,;, define
the upper and lower boundary of the second bucket, called
the back bucket. In the second pass, all incoming fragments
are assigned to the corresponding bucket by using their
depths, and heuristic merges are performed independently
for each bucket. Fragments with a depth value greater than
z, are discarded. For the front bucket, we found that n = 1
or n = 2 layers were suitable to gather the fragments
and avoid order-dependent problems of MLAB, under the
assumptions that all fragments of low opacity contribute
equally to the image. The back bucket uses a blending array
with four or five layers. As demonstrated in Fig. 1c and
further evaluated in Sec. 4, MLABDB can, in many cases,
considerably improve the quality of MLAB (compare Fig. 5).
On the other hand, since it requires more operations, it is
slightly less efficient than MLAB. Note that thresholds need
to be set carefully, as visual artifacts can occur as seen in
Fig. 11(a) and discussed in Sec. 4.5.

b7 4

Fig. 5: Difference between MLAB (left) and our modified
variant MLABDB (right). MLAB reveals interior lines er-
roneously due to wrong blending order. MLABDB renders
correctly in this scenario.

Moment-Based Order Independent Transparency

Moment-Based Order Independent Transparency (MBOIT)
[25] is another variant of transparency rendering techniques
with bounded memory and rendering constraints. It builds
upon either power moments or trigonometric moments
to approximate the transmittance function per pixel in a
stochastic way. Power moments are used in statistics to
reconstruct or approximate functions such as the mean and
standard deviation of arbitrarily sampled random distribu-
tions. In addition, MBOIT operates on the logarithm of the



transmittances per fragment to enable order-independent
additive blending. The transmittance of the n-th fragment
at depth 2z and opacity ay is given by

n—1

T(zf) = H(l —ap), 2 < zf 1)

1=0
The absorbance can then be defined in the logarithmic
domain as
n—1
A(zp) = —=InT(zp) = > —In(1 — o) 2
1=0
The absorbance can be interpreted as a cumulative distribu-
tion function of the transmittance at each layer, given that
for all | translucent fragments it holds that z; < z;. The
distribution can be described as
n—1
Z = Z —In(l —ap) - 0y, 3)
1=0
where 6, is the Dirac-6 function. Using a power mo-
ments generating function b: [—1,1] — R™T! p(z) =
(1,2,22,23, - b™)T, for m power moments the transmit-
tance is given by

n—1
bi=E.(b) =) —In(l—a;)-b(z). (4)

1=0
MBOIT requires two passes to compute the final color. In
the first pass, the m power moments are computed that are
required to reconstruct the transmittance function. The first
pass requires storing m floating point values per pixel, we
use four in our experiments. In the second rendering pass,
the transmittance of each fragment is reconstructed using

the pre-computed power moments via

T(27,b) = exp(~A(z;,b)). ©)

The real absorbance of the fragment is estimated by com-
puting its lower and upper bounds and interpolating in-
between these bounds with an interpolating factor 5 = 0.1.
This factor was determined by testing multiple values and
settling for the one giving the best results. As the quality
of reconstruction further degrades with large depth value
ranges, the depth values are transformed to logarithmic
scale [25]. The final color can then be computed using the
total absorbance, stored in the first power moment by, and
the reconstructed transmittance 7'(z¢, b) (cf. eq. 2 in [25]).

Miinstermann et al. [25] pointed out that this is problem-
atic for scenes with intersecting geometry and large depth
ranges, and this turns out to be especially problematic in the
situation where many changes in the transparencies along
one single view ray occur (see discussion in Sec. 4.5).

3.2

Image-order techniques guarantee exact visibility order of
the surface points along the view rays. They utilize a search
structure to efficiently find the objects that need to be tested.
Therefore, they often come with increased, yet per-frame
constant memory requirements. On the other hand, they
have unbounded rendering constraints, since the number of
ray-object intersection tests depends on the view direction.

Image-Order

Voxel-Based Ray-Casting

VRC is an image-order line rendering technique. It builds
upon the voxelization of a line set into a regular voxel grid
and performs ray-casting in this grid with analytical ray-
tube intersections to correctly blend all intersection points.
For discretizing the lines into the voxel grid (i.e., curve vox-
elization), each line is subdivided into a set of line segments
by clipping the line at the voxel boundaries (see Fig. 6).
To obtain a compact representation of these segments, their
endpoints are quantized based on a uniform subdivision of
the voxel faces (i.e., line discretization).
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Fig. 6: The original curve (red dotted line) is discretized
into a voxel grid of 1, 4, and 16 voxels, respectively, from
left to right. Per voxel lines are clipped against the voxel
faces and linearly connected. The blue curve represents the
approximated original curve at the given grid resolution.

For every pixel, a ray is cast through the voxel grid, go-
ing from voxel face to voxel face using a digital differential
analyzer algorithm. Whenever a voxel is hit, it is determined
how many lines are stored in that voxel. If a voxel is empty,
it is skipped; otherwise, the ray is intersected against the
tubes corresponding to each line. If multiple intersections
with the tubes are found, they are computed and then
sorted in place in the correct visibility order. Since tubes can
overlap into adjacent voxels, neighboring voxels also need
to be taken into account for intersection testing.

A potential weakness of VRC is the approximation
quality. Curve voxelization and line quantization introduce
an approximation error, which increases with decreasing
grid resolution and coarser discretization of voxel faces.
Conversely, higher grid resolutions and finer discretizations
yield better approximations, but can significantly increase
the memory required to store the voxel representation.

OSPRay CPU Ray Tracing

OSPRay is used to evaluate the performance of CPU ray-
tracing for transparent line rendering. Within OSPRay, there
are three options for representing line primitives. OSPRay’s
built-in streamlines represent the lines as a combination
of analytic cylinder and sphere primitives, suitable for
rendering opaque streamlines with a constant radius. For
smoother higher-order curves or transparency, OSPRay can
also use Embree’s built-in Bézier curve primitive directly.
Finally, the Generalized Tube Primitive module [13] extends
OSPRay’s original streamline approach to support varying
radii, bifurcations, and correct transparency. The General-
ized Tubes module represents the streamlines as a combina-
tion of spheres, cylinders and cone stumps, and employs
a constructive solid geometry intersection test to ensure
correct transparency. Although this CSG-based intersection
comes at some cost, it is required to avoid showing interior
surfaces from intersections with the constituent primitives.



To render the primitives, we use OSPRay’s built-in scientific
visualization renderer, which supports illumination effects
such as shadows and ambient occlusion.

It is of course also possible to tessellate the tube prim-
itives and render them in OSPRay as a triangle mesh. In
our testing, we found that when using a very low-quality
tessellation, the triangle mesh outperformed the General-
ized Tubes for transparent geometry, due to the removal
of the CSG traversal. However, even with a low-quality
tessellation, the memory consumed by the triangle mesh
is of concern, moreover, tessellating to a level of detail
that matches the quality of the Generalized Tubes or Bézier
curves will require significantly more primitives, impacting
performance. For small- to medium- sized data sets, trian-
gulation may be a reasonable approach.

RTX Ray Tracing

RTX is used to evaluate the performance of GPU ray-
tracing for line rendering. On the RTX architecture, ded-
icated hardware, the RT cores, are used to accelerate the
traversal of bounding volume hierarchies—utilizing axis-
aligned bounding boxes—and the execution of ray-triangle
intersection tests.

As the maximum recursion depth on current RTX hard-
ware (32) is too low for data sets with high depth complex-
ity, we opted for an iterative approach. We also note that a
recursive approach is likely to be far more expensive than
an iterative one. Our first approach used any hit shaders
to accumulate fragments along the rays. However, this can
provide only an approximate result, as any hit shaders are
not guaranteed to be run in a strict front-to-back order. Thus,
we did not pursue this approach further.

Instead, in our experiments we utilize a closest hit shader
in combination with a loop in the ray generation shader that
blends the fragments returned by it in front-to-back order
(cf. Fig. 7). Intersection sorting is thus done entirely by the
acceleration structure traversal unit.

The closest hit shader also returns its hit distance along
the ray, so that the ray generation shader can start the
next ray right after the last hit using a very small offset
to avoid intersecting the same primitive again. The loop is
terminated by either a sentinel value returned from the miss
shader, run when no primitive is hit, or a zero transmittance
value. Although iterative next-hit traversals could, in theory,
fail to find all intersection hits (see Wald et al. [36]), we have
not experienced this problem in our experiments.

The RTX framework can also trace against custom ge-
ometry using an intersection shader, which we utilize to
perform analytic intersection tests against the tube represen-
tations for each line. A ray is first intersected with an infinite
tube, and the intersection points are then clipped against
the two planes delimiting the tube segment. To correctly
interpolate the vertex attributes in the closest hit shader,
both planes are intersected with a line parallel to the tube
and through the clipped point. The position of the clipped
point on this line segment is then mapped to [0; 1] and used
as interpolation factor in the closest hit shader.

Interestingly, the analytic ray intersection tests are about
a factor of two slower than ray-triangle intersection tests,
even though the lower primitive count leads to a signifi-
cantly smaller memory footprint. The high performance for

Ray Generation
Shader

Blending [4

Dispatch
Rays()

TraceRay()

Fig. 7: Illustration of iterative ray-casting using the RTX
framework. Blue-colored paths represent line primitives of
the data set. At each frame, the ray generation shader
is called once and is responsible for iteratively blending
over all fragments and issuing new rays (TraceRay()) at
intersection point ¢; (green arrows). During ray traversal,
the intersection point with primitive closest to the viewer is
computed. On each hit, color and opacity of line is obtained
and sent back to the ray generation shader (orange arrows).

triangles is likely attributable to the hardware acceleration
of triangle intersection testing on the RTX hardware, and
do not consider analytical tests in the remainder of the
evaluation for RTX.

4 EVALUATION

We evaluate and compare all selected line rendering tech-
niques regarding memory consumption, performance, and
quality. All GPU techniques were run on a standard desktop
PC with Intel Xeon processor, 32 GB RAM, and an NVIDIA
Geforce TITAN RTX with 24 GB VRAM. CPU ray tracing
was performed on a system with 2 Intel Xeon E5-2640
CPUs at 2.4 GHz and 3.4 GHz boost frequency with 40
CPU threads in total. We used the Vulkan SDK 1.1.129
with the extension VK_NV _ray_tracing to implement RTX
ray tracing and conducted the performance tests using the
NVIDIA driver 441.87. Both CPU and GPU architectures
come at roughly the same price, making the comparison fair
in terms of financial investment. Furthermore, all perfor-
mance measurements (using data sets that fit into memory)
were carried out on an NVIDIA Geforce RTX 2060 SUPER
with 8 GB VRAM and a single Intel i7-5930K CPU with
12 threads. The performance scale-down compared to the
measurements in Sec. 4.4 was roughly a factor of 1.6 — 3
and 2, respectively. All images were rendered at a viewport
resolution of 1920x 1080 for performance and 1280 %720 for
image quality. When statistics are given for flights around a
data set, the camera parameters were set so that most of the
viewport is covered by that data set and the entire viewport
is covered in zoom-in scenarios. Ground truth images are
generated via DP, yet we do not consider DP any further
due to the limitations discussed in the introduction.

4.1 Data Sets

Our experiments were performed on data sets with vastly
different numbers of lines and line density. For each data set,
we selected meaningful transparency assignments, e.g., by
mapping physical parameters along the lines or geometric
line curvature to transparency. The following data sets were
used:

o ANEURYSM: 9,200 randomly seeded streamlines in
the interior of an aneurysm [5], and advected up to



Fig. 8: Data sets used in our experiments. Top: Opaque line rendering. Bottom: Transparent line rendering. From left
to right: ANEURYSM, CONVECTION, TURBULENCE, and CLOUDS. Transparency greatly aids the ability to visualize

important features in the data.

the vascular wall. Vorticity in the flow field from
which the lines were extracted is mapped to line
transparency.

¢ CONVECTION: 100,000 short streamlines that were
uniformly seeded in a Rayleigh-Bernard convec-
tion between a heated bottom wall and a cold top
wall [28]. Transparency is assigned according to line
curvature.

o« TURBULENCE: 80,000 long streamlines generated
in a forced turbulence field of resolution 10243 [2].
Transparency is proportional to the maximum A,
vortex measure along a line.

e CLOUDS: 400,000 seeded streamlines in a cloud-
resolving boundary layer simulation (UCLA-LES, see
[34]) using a large eddy simulation (LES). Streamline
integration was conducted on a voxel grid with
resolution 384 X384 x130. The magnitude of vorticity
along each streamline is mapped to transparency.

Fig. 8 shows all data sets, rendered via opaque and
transparent lines. Most data sets are very dense, yet by
mapping the selected parameters linearly to transparency,
important interior structures can be revealed. Table 1 gives
further information on the number of line segments that
need to be rendered as tubes, the memory that is required by
the initial line representation, and the memory requirements
of the internal data representation used by each technique,
as explained in the next subsection.

4.2 Data Preparation and Model Representation

All rasterization-based line rendering techniques and RTX
render the tubes as triangle meshes. Therefore, each con-
nected sequence of lines first needs to be converted into
a set of triangulated tubes that are stitched together to
form a closed mesh. This pre-process is performed on the
GPU. The meshes are stored in a triangle and shared vertex
representation with normal buffer, where each index and
vector component is represented by a 32-bit value. In an
additional attribute buffer, 16-bit per-vertex attribute values
are stored. During rendering, these values are mapped to
transparency and color. To construct the tubes, for every
vertex shared by two lines, the average of the lines’ tangent
vectors is computed. At the first and last vertex, respectively,
the average is just the tangent of the first and last line

segment. Three vertices are generated and placed uniformly
on a circle around the vertex in the plane orthogonal to the
average tangent and containing this vertex. The three ver-
tices from the line start and end points are then connected to
form a closed set of tubes. We use the same circle radius for
all tubes. The vectors from the initial vertex to the new ones
are used as per-vertex normals. From our experiments, we
found that three vertices along a circle radius are sufficient
to achieve good results from each view direction.

The resulting buffers are used directly as input for
LL, MLAB, MBOIT, and RTX. It is worth noting that all
rasterization-based techniques can also generate the poly-
gon models on the fly during rendering in a geometry
shader, or use a pixel shader that takes the line informa-
tion as input and analytically tests for intersections with
the corresponding tube. However, since rendering the pre-
computed geometry is up to a factor of 2 faster, we do not
consider on the fly generation in our evaluation.

RTX requires another pre-process to build an AABB hier-
archy from the given polygon model. For triangle geometry,
the RTX framework supports only a few position formats,
and raw data must be converted if it does not already
match. For custom geometry, the API requires conservative
estimates of the AABB of each primitive. Construction of the
AABB hierarchy is performed on the GPU via the API. RTX
then generates a tree structure, that is traversed by every
ray until reaching the leaf nodes where ray-triangle tests are
performed.

Since VRC cannot handle polygon models but tests ana-
lytically against the tubes during ray-casting, a voxel-based
renderable line representation is first built and uploaded to
the GPU. For ANEURYSM and CONVECTION, we used
an optimized voxel grid resolution of 113x110x128 (x,y,z-
dimension) and 128 x8x128, respectively, and a quantiza-
tion level of 16. For TURBULENCE and CLOUDS, we
increased the resolutions to 2563 and 5123, respectively, and
used a quantization level of 32. Grid resolutions were chosen
to reduce the probability that lines fall onto each other and
become indistinguishable.

OSP constructs a bounding volume hierarchy using Em-
bree [40]. From the input line data, we build the Generalized
Tubes geometry, which consists of a set of analytic spheres,
cylinders, and cone stumps, the union of which forms the
tube. These primitives are passed to Embree as a user



TABLE 1: Data statistics and memory requirements. Num-
ber of line segments in millions (LS), line model size in
MB (LM), size of renderable representation in GB (primitive
buffers, acceleration structures), and build times in seconds
for rasterization-based techniques, OSP, RTX, and

Data Set LS LM Render. Repr. (GB) Build Times (s)
ANEURYSM 2.3 34 039 038 204 08 02 0.6
CONVECTION | 99 | 151 | 167 1.62 527 32 03 28
TURBULENCE | 175 | 267 | 3.01 3.01 9.38 7.7 1.1 5.1

CLOUDS 39.6 | 610 | 463 6.12 145 13.5 45 95

geometry, over which it will construct a BVH. As with
RTX, the user geometry must provide a conservative bounds
estimate to the BVH builder. In our evaluation, we found
that Embree’s Bézier curves provided better performance
for transparent tubes, and in this case, we switch to use
Embree’s Round Bézier curves, available through OSPRay’s
“curves” geometry type. Embree then builds a BVH over the
curve primitives as before. The curve primitive is built into
Embree, and additional optimizations to the BVH quality
may be applied during the build, that are not available for
user geometry such as our Generalized Tubes. During ren-
dering, Embree traverses packets of rays in SIMD through
the BVH until reaching a leaf node, where intersection tests
are performed with Generalized Tubes or Bézier curves.

For all data sets and rendering techniques, Table 1 lists
the number of line segments to be rendered (LS), the mem-
ory requirement to render all line models (LM), the memory
requirement of the used renderable representations (primi-
tive buffers and acceleration structure) on the GPU or CPU,
and the time required to build these representations. Table 1
indicates that VRC performs better than rasterization-based
approaches regarding memory requirement. In general, the
polygon model requires much more memory than the voxel
grid used by VRC, in some cases more than 10 times. The
build times, on the other hand, are about a factor of 4 faster
compared to VRC. We attribute this difference in build times
to the fact that building the voxel representation requires far
more arithmetic and memory scan operations for clipping
lines at voxel boundaries, counting how many line segments
fall into a voxel, and computing indices into per-voxel
memory containers. Rasterization-based approaches, on the
other hand, require only simple index arithmetic once the
number of lines and the vertices per line is known.

We find that RTX consumes significantly more memory
than the other alternatives, partly because of the larger
number of triangles that is finally stored in the BVH ac-
celeration structure. In addition to that, space-partitioning
schemes for dense line sets become increasingly inefficient
and run into the problem of either clipping lines at the
boundaries, thus duplicating vertex information, or using
overlaps, which significantly increases the number of re-
gions to be tested. OSP achieves the best performance for
building the acceleration structures since it considers only
the initial line segments and comes with a highly optimized
multi-threaded BVH build routine provided by Embree.

4.3 Per-Frame Memory Requirements

To analyze the additional memory consumption of each
technique during rendering, we render the models along
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Fig. 9: Memory consumption (in addition to internal
model representation) of techniques for different views of
ANEURYSM and TURBULENCE.

pre-recorded paths around them, including two zoom-ins.
For ANEURYSM and TURBULENCE, the graphs in Fig. 9
show the memory requirements per frame (not including
the internal model representation) by each technique.

OSP, RTX, and VRC do not require any additional mem-
ory beyond the internal renderable model representation.
MLABDB and MBOIT require an additional per-pixel buffer
with k=5 or k=4 layers, respectively. MBOIT stores four
32-bit floating point power moments in these layers. The
memory consumption of this buffer is negligible compared
to that of the renderable representation. LL, on the other
hand, needs to keep a buffer with as many entries as the
maximum number of fragments that can be generated for
any of the possible views. Due to performance issues, this
buffer is usually allocated once in a pre-process, using a
prescribed maximum number of fragments. The memory
consumption of LL can exceed the available GPU memory,
especially when rendering at higher viewport resolutions.

In general, if the data set is too large to fit into avail-
able GPU memory (4 — 8 GB VRAM on recent commodity
graphics cards) rendering the entire line set per frame is not
possible anymore. Here, object-order techniques can simply
split up line sets into chunks and render those separately
at each frame. VRC can split the voxel-based representation
into chunks and proceed the same way. RTX can generate
chunks of the data and creates an AABB hierarchy for each
chunk individually. This requires the traversal of several
AABBs at the same time which can lead to a drop in
performance. For LL, memory requirements can be reduced
by using screen-space partitioning, so that only subsets of
fragment lists have to be stored per pixel at once.

4.4 Rendering Performance

Each data set was rendered three times along the pre-
recorded flight paths, each time with different transparency
settings and zoom levels. In this way, the dependencies
between performance and the amount of transparency can
be analyzed. We investigate the rendering of opaque lines,
semi-transparent lines with an assignment of transparency
that gives meaningful results, and lines with constant low
transparency (e.g. below 0.15). Even though the latter set-
ting, in general, does not produce meaningful results but
mostly blurs out directional information, it is used to
demonstrate how either technique behaves in this worst-
case scenario. Performance measures are given in Fig. 10.
The rendering times of MLABDB and MBOIT are almost
constant for different transparency settings since both tech-
niques always render the entire data set and cannot exploit
early-out strategies to skip fragments that are occluded by
opaque ones. Rendering performance is mainly affected by
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Fig. 10: Rendering performance of all techniques using opaque lines (first row), transparent lines with opaque features of
interest (middle row), and highly transparent lines (last row). The 1st, 2nd, 3rd, and 4th columns are for ANEURYSM,
CONVECTION, TURBULENCE, and CLOUDS, respectively. For OSP, the line is dotted if rendering time exceeds 1500ms.

the number of lines to be rendered and limited by the
polygon throughput of the GPU. Over time, depending
on the orientation of lines, different amounts of fragments
are generated, which results in slightly varying rendering
times along the flight paths. In contrast, the performance
of LL is highly dependent on the number of generated
fragments. Although LL renders the entire line set once,
similar to MLABDB and MBOIT, the generated fragments
need to be stored and sorted. Thus, MLABDB and MBOIT
render significantly faster than LL, especially for larger data
sets. Over time, LL shows performance variations similar to
those of MLABDB and MBOIT.

Since image-order techniques can effectively employ
early-ray termination, their performance depends strongly
on the transparency setting. When highly opaque lines are
rendered (see first column in Fig. 10), the performance of
RTX, OSP, and VRC is similar or even faster than that of the
rasterization-based techniques. The performance of OSP is
usually below that of RTX and VRC, as the CPU does not
provide any hardware acceleration for ray tracing.

For opaque lines, CONVECTION seems to be an outlier
regarding the relative performance differences between OSP
and the other techniques. OSP uses Embree’s BVH builder,
yet since a user geometry is used, Embree is not able to
split the geometry to reduce the amount of overlap between
BVH nodes. Densely overlapping data sets with long line
segments will result in a poorer quality BVH, with more
overlap between the nodes. However, RTX uses a trian-
gulated representation and can still perform these spatial
splits. For the CONVECTION, since the rolls are laid out in
a flat sheet, OSP ends up traversing and intersecting a large
amount of the BVH and most of the primitives in aggregate
over the image. In the remaining data sets, the higher
amount of occlusion helps reduce the amount of traversal
needed. Especially on TURBULENCE and CLOUDS, even
though there are a large number of lines, OSP only sees the
box exterior for opaque lines and traverses very little of the

data. Data sets with transparent lines do not benefit from
the higher level of occlusion, and a large amount of the data
must be traversed.

With increasing transparency, OSP falls behind the
other techniques — rendering required more than 2000ms
and 6000-10000ms to complete for TURBULENCE and
CLOUDS, respectively — as the renderer must now tra-
verse much further into the data. Consequently, more tree-
traversal operations and intersections tests need to be com-
puted. Although the same holds for RTX, its rendering
times can compete with the performance of approximate
techniques for line sets up to 100K, potentially due to the
hardware acceleration provided for ray traversal and trian-
gle intersection. The worst-case scenario for OSP and RTX
is the highly transparent case, where the majority of view
rays have to be traversed until they leave the domain, due
to the level of transparency. Thus, the performance drops
significantly for large data sets.

It is interesting to note that LL, in many scenarios, can
render very efficiently due to the GPU'’s capability to sort the
fragments for many pixels in parallel. The more transpar-
ent the fragments are, and the less effectively image-order
techniques can exploit early-ray termination, the better the
relative performance of LL becomes.

The evaluation shows that, in particular for larger data
sets, VRC renders slower than the approximate techniques.
This performance difference is mainly due to the traversal
of the voxel grid, which is not supported by an acceleration
structure to enable empty space skipping, and sorting of
multiple ray-tube intersections in the same voxel. The rel-
ative performance of VRC, on the other hand, is not much
affected by increasing transparency. Although, in this case,
many more intersection tests need to be performed, GPU-
based voxel traversal can be performed very efficiently and
does not impact performance as severely as BVH traversal.
VRC outperforms LL by about a factor of 4 and higher for
large line sets such as TURBULENCE (cf. last column in



Fig. 10). Again, for ANEURYSM and CONVECTION with
many empty regions that need to be traversed on the finest
voxel level, the relative performance of VRC compared to
the rasterization-based approaches decreases. For CLOUDS,
traversing large voxel grids (5123) greatly reduces VRC’s
performance and leads to rendering times similar to LL
when looking from a diagonal angle into the line set.

4.5 Image Quality

LL, VRC, OSP, and RTX simulate the effect of transparency
accurately. VRC introduces errors due to the voxelization
and quantization of lines into a regular voxel grid; however,
the visibility order of lines in the grid is handled correctly.
In the worst-case, multiple lines can fall on top of each other
in the grid, resulting in an incorrect blending order. In our
experiments, we did not perceive visual artifacts caused by
this effect.

Inaccuracies in MLAB are caused by lines that are not
rendered in correct visibility order, and that are merged
heuristically using a limited number of transmittance layers.
For scenes with high depth complexity, and even when
low transparency is used, the accumulation of errors leads
to visible artifacts. Most prominent are errors caused by
incorrect merging of fragments with high opacity, i.e., when
two such fragments are merged in the wrong order into the
same transmittance layer (Fig. 1(c) and Fig. 5). If lines are
by chance rendered in the correct visibility order, or few
opaque fragments are blended into different transmittance
layers, MLAB can nevertheless generate accurate results
(see Fig. 1(a) for an example). The view-dependent nature
of MLAB, ie., errors can suddenly appear or disappear
depending on whether the rendering order matches the
current visibility order, makes it less time coherent.

MLABDB can avoid the order-induced artifacts intro-
duced by single MLAB when rendering opaque or nearly
opaque lines. However, as mentioned in Sec. 3.1, threshold-
ing has to be done carefully. In Fig. 11(a), bucketing leads to
hard cuts in color, revealing the depth segmentation of the
line set. This artifact occurs primarily when using transfer
functions with sudden opacity changes, which conflicts
with MLABDB’s assumption of many transparent layers
occluding opaque ones. Even though these artifacts can be
avoided by manually adapting the threshold for the front
bucket according to the selected transfer function, this kind
of user intervention is not practical in general.

MBOIT replaces the transmittance function along a line
of sight by a low-frequency approximation. Thus, two major
types of artifacts can occur: First, as shown in Fig. 1(b) and
Fig. 11(b), the accumulated opacity of multiple transpar-
ent lines is either highly overestimated or underestimated.
These over- and under-estimations can lead to misinterpre-
tations of the visualization, as translucent or opaque lines
can appear prominent or be missing in the final image.
These errors are due to sudden changes in opacity when
mapping the importance of features with step-functions,
meaning that MBOIT cannot accurately handle hard transi-
tions in the mapped opacity. Second, since a low-frequency
approximation is used, MBOIT tends to smooth out the
transmittance distribution across the pixel image. As shown
in Fig. 1(d) and in Fig. 11(b), sharp edges between lines with
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higher opacity are not preserved. This effect, in particular,
can hamper a more detailed analysis of the directional
structure of important lines, and it tends to smooth out the
directional information in important regions.

(a) PSNR = 31.15, SSIM = 0.841 (b) PSNR = 29.80, SSIM = 0.82

Fig. 11: (a) Ground truth (left) and MLABDB (right).
MLABDB can produce hard visual “cuts” due to depth
segmentation. (b) Ground truth (left) and MBOIT (right).
MBOIT tends to blur out features and underestimate opac-
ity, erroneously revealing interior lines.

4.6 Quantitative Assessment

To further quantify the error that is introduced by the
different line rendering techniques, all data sets are rendered
along the pre-recorded flight paths using the transparency
settings described before. Lines are illuminated by a head-
light and colored via Blinn-Phong shading. For each image,
the Peak-Signal-To-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) [44] are computed between the ground
truth rendering using DP, and MLABDB, MBOIT, and VRC,
respectively. We do not consider LL, RTX, and OSP, since
they correctly simulate transparency. For each setting, the
accuracy measurements are plotted as line graphs over time.
Renderings using semi-transparent settings are shown in
Fig. 12, all other settings are shown in Fig. A.1. An in-detail
discussion and all results are provided in Appendix A.

4.7 Visual Quality vs. Per-Pixel Error

Interestingly, when looking at images where the SSIM and
PSNR values show a lower quality of VRC and higher
quality of MBOIT and MLABDB, these differences are not
reflected in the visual quality of the results. Since trans-
parency is handled correctly by VRC, even the close-up
views appear similar to the ground truth, and even visi-
ble artifacts introduced by the alternative methods do not
manifest.

In this section, we analyze in further detail the rela-
tions between visual image quality and per-pixel error. For
each data set, we analyze two views: one view where all
techniques come visually close to the ground truth while
producing only a small number of pixel-wise errors (case
A), and one that reveals typical artifacts of MBOIT and
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Fig. 12: Error metrics of all techniques using transparent lines with opaque features of interest. The 1st, 2nd, 3rd, and 4th
columns are for ANEURYSM, CONVECTION, TURBULENCE, and CLOUDS, respectively. The First row shows SSIM for
each technique, the second shows PSNR. A higher value is better.

MLABDB using a most meaningful transparency settings
with sharp transitions and alternating high transparency
and opacity (case B).

Besides an image-to-image comparison, the analysis is
additionally supported by visualizations of the absolute
per-pixel differences to the ground truth. These plots are
grayscale images with black regions highlighting large color
differences. Significant differences in images are marked by
colored rectangles and supported by close-up views. Image
comparisons of all cases (Fig. A.x) are given in Appendix A.

Fig. A.2 depicts a scenario where the viewer is looking
through the entire ANEURYSM data set with alternating
opaque lines (red-colored) and transparent lines (orange-
ocher). For case A (cf. Fig. A.2(a), corresponding to frame
5 of the first column in Fig. 12), we observe that all
techniques are close to the ground truth image with the
best image produced by MLABDB. MBOIT overestimates
the transparency of few transparent fragments occluding
opaque lines highlighted by per-pixel error plots (cf. black
regions in Fig. A.2(a) (MBOIT)). VRC produces high pixel
errors in regions close to the viewer since line inaccuracies
affect larger areas of pixels. However, the quality of VRC
becomes better with larger distance to the camera, leading
to results indistinguishable from the ground truth. Wrt. case
B (cf. Fig. A.2(b)), the quality of both MBOIT and MLABDB
is worse than VRC. MBOIT struggles to approximate sharp
transitions in transparency leading to high over- and under-
estimations, whereas MLABDB is not able to correctly merge
opaque fragments. Bucketing is impossible here, leading to
visual artifacts. However, VRC remains stable and, besides
line inaccuracies, is very close to the ground truth.

Another example is given in Fig. A.3 when looking from
a diagonal angle into the entire CONVECTION line set, with
the number of transparent lines increasing with the distance
to the viewer. For case A (cf. Fig. A.3(a)), all techniques are
visually close to the ground truth with MLABDB working
best. Here, MBOIT exhibits small errors in transmittance
approximation, as many opaque lines are occluded by
transparent ones. These errors propagate towards the back-
ground as the number of fragments increases with distance,
leading to further image quality degradation. With opaque
lines more present in this case, VRC produces a number

of wrong line silhouettes due to curve discretization, em-
phasized in per-pixel error plots along the line edges. For
case B, the quality of both MLABDB and MBOIT decreases
with larger distance (cf. Fig. A.3(b)). In particular, MLABDB
produces more per-pixel color inconsistencies, depicted by
high noise in error plots, toward the background as more
and more fragments are merged incorrectly. On the other
hand, MBOIT has difficulty coping with sharp transitions
between transparent and opaque fragments. Interestingly,
the image quality of VRC is independent of the viewer’s
distance or angle, and line inaccuracies do not accumulate
with increasing distance.

Fig. A.4 demonstrates the differences of image quality for
zoom-out and close-up views. Here, case A (cf. Fig. A.4(a))
represents a zoom-out view that corresponds to frame eight
of the third column in Fig. 12. All techniques are able
to properly render TURBULENCE and are visually indis-
tinguishable from the ground truth, although MLABDB
shows some weaknesses in rendering transparent regions
due to incorrect fragment merges. However, these pixel
errors hardly affect the overall quality of the image. Wrt.
VRC, line inaccuracies are not present here since lines are
highly transparent and line edges are not emphasized. Case
B (cf. Fig. A.4(b)) shows the impact of zoom-ins on the
quality of all techniques. MLABDB properly renders opaque
lines (red-colored tubes), but incorrectly merges fragments
in regions with a large number of highly transparent lines,
leading to a wrong colored region (orange instead of ocher)
after blending. MBOIT is able to approximate transmittance
in transparent regions but fails to display sharp opaque lines
where opaque and transparent lines are close by, leading to
blurred outline structures in the final image. Per-pixel error
plots for VRC reveal some line inaccuracies but demonstrate
that, overall, a good image quality is achieved by VRC even
for this large data set.

The last example demonstrates the impact of large, dense
line data with many layers per pixel (> 10000 at maximum),
using high transparency in Fig. A.5(a) and semi-transparent
opacity settings in Fig. 13 and Fig. A.5(b). In the first
scenario, all techniques are able to properly render the data
set. However, MLABDB produces a few wrongly colored
features due to false fragment merging. MBOIT works prop-
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PSNR = 32.11, SSIM = 0.940 PSNR = 30.27, SSIM = 0.750

Fig. 13: From left to right: CLOUDS rendered with DP, MBOIT, MLABDB, VRC. Images show renderings using sharp
transitions between low and high transparency. Blue and yellow rectangles highlight differences between techniques;

close-up views are shown below each image.

erly for this case, and produces few over- or underestima-
tions. VRC, on the other hand, tends to underestimate the
actual transmittance as some lines fall into the same cell
(disadvantage of VRC explained in Sec. 3.2). Weaknesses of
all techniques are even more pronounced in the second sce-
nario; for example, there are more wrongly colored features
produced by MLABDB. Due to its line approximation, VRC
also struggles to fully reconstruct the actual transmittance.
MBOIT works best for CLOUDS, as there are only a few
overestimates of the actual transmittance.

Since MLABDB and MBOIT do not depend on any
primitive type, we also investigated the image quality of our
proposed approximate techniques when rendering transpar-
ent triangle surfaces and point cloud data. The visualization
of these types of data with transparency can, similar to
line sets, lead to complex rendering scenarios with many
transparent layers and multiple occlusions. However, for
those data types, MLABDB and MBOIT showed similar
characteristics as for line sets during rendering (see Ap-
pendix B).

In summary, although all techniques show weaknesses
some weaknesses in some cases resulting in pixel-errors,
they are able to render transparent data sets with high depth
complexity at high image quality. Moreover, OSP, RTX, and
VRC are temporally stable for all transparency settings and
data sets. VRC, despite line inaccuracies, comes very close
to the ground truth.

5 DiscUssSION

In the following sections, we discuss the major characteris-
tics of all rendering techniques, as given in Tab. 2 and also
present the outcome of an informal user study to shed light
on the perception of the errors that are introduced by object-
order approximate techniques.

5.1 Object-Order

Equipped with dedicated GPU-friendly sorting algorithms
and data structures, LL shows good rendering performance
for all but the largest data sets. LL was never slower than a
factor of 4-5 compared to approximate techniques for small
data sets. For dense data sets with high depth complexity
of more than a thousand layers, however, the required GPU
buffers can easily exceed available GPU memory, especially
for resolutions above 1080p.

Approximate rasterization-based techniques are very
fast, work with rendering constraints, and support render-
ing on hardware with bounded memory. Rendering con-
straints for MLABDB and MBOIT involve, for each pixel,
the maximum number of fragments stored or model param-
eters to approximate the transmittance function. These con-
straints implicitly keep the memory consumption constant
over time.

MLABDB and MBOIT provide good quality in many
real-world scenarios, particularly in scenes where features
of interest are rendered opaque and remaining lines are
mapped to high transparency. Introduced artifacts are often
subtle and local, yet in some views they can cause artifacts
that even give a wrong understanding of the line structures.
Approximate techniques also fail to maintain time coher-
ence, as their per-pixel rendering outcome is dependent on
the transmittance function along each pixel. These errors are
especially frequent if high-frequency transfer functions for
transparency are used, which can lead to distracting render-
ing artifacts. Although approximation errors can be reduced
by, i.e., increasing the number of nodes of MLABDB's blend-
ing arrays (in example to more than 15 layers) or the number
of power moments, such settings considerably reduce ren-
dering performance and increase memory consumption.

Informal User Study

In a simple user study, users were asked to give their
assessment of the quality differences between MLABDB and
MBOIT, to further shed light on the perceptional differences
between these approximate variants. We recruited 24 par-
ticipants, comprised of 19 computer science students and 5
computer science PhD students, all having a background in
computer graphics. The participants were selected to have
no color vision deficiency. The students were exposed to the
application of line rendering for the first time. None of them
knew the visualized vector fields and line sets beforehand.
The study was performed using the desktop PC described
above. We showed the users the tool and let them work with
a data set not included in the study. Then, we performed two
different experiments:

o To each user, we showed a sequence of eight tri-sets
of renderings: the ground truth image first, and then
the same view rendered with MLABDB and MBOIT
(showing their typical artifacts) side by side.
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TABLE 2: Comparison table of all techniques wrt. type of order, render accuracy, performance, render constraints (RenderC),
support of bound memory (BoundM), temporal coherency (Temp), changes in color along each pixel (ChColor), dense
(large) data sets (Dense), semi-transparent transparency settings (STrans), and support of global illumination (GI) effects.
Symbols + and - represent high or low performance/quality, respectively (two repeating symbols indicate very high / very
low performances). / represents ratings for opaque / semi-transparent (left) and highly transparent lines (right).

Technique Order Accuracy | Perform. | RenderC | BoundM Temp ChColor Dense STrans GI
DP Object Exact -— X 4 v ++ -— ++ X
LL Object Exact +/- X b 4 4 + + - ++ X
MLABDB Object Approx. ++ v v X - - + X
MBOIT Object Approx. ++ v v X -/+ + - X
VRC Image Approx. +/- 4 v 4 ++ - ++ v
ospP Image Exact. +/=- b 4 X 4 ++ - +/- %4
RTX Image Exact ++/= X X v ++ +/- ++ v

o Each user carried out three interactive sessions with 5.2 Image-Order

two data sets, one minute each. First, the same data
set was visualized, starting with MLABDB and then
using MBOIT; then the experiment was repeated in
reverse order using a different data set.

Users were then asked to rate the visual quality of the
still images and the animations. For both experiments, users
could select either MBOIT or MLABDB as the best, or
“undecided”. We had three renderings where 70% of the
users selected MBOIT, three renderings where 63% selected
for MLAB, and two renderings where 65% of the users were
undecided. In addition to the comparison of MBOIT and
MLABDB, we asked the users to rate the image quality
of still images as “no difference” (good) to the ground
truth, “acceptable” (acc), or “non-acceptable” (non-acc). For
MBOIT, 41% rated it as good, 46% as acceptable, and 13%
as non-acceptable. For MLABDB, 44% rated it as good, 32%
as acc, and 24% as non-acc. To assess the image quality
over time for each technique, we asked users in a second
experiment to rate the quality of the videos similar to image
quality. For MBOIT, 62% rated it as good quality, 35% as
acceptable quality, and 3% as non-acc. For MLABDB, 45%
of users rated it as good, 47% as acc, and 8% as non-acc.

About why they scored the renderings as good, accept-
able, or non-acceptable, users mentioned that wrong color
outputs and rendering order artifacts (line features falsely
hidden) were the most disturbing, as well as the hard
and abrupt changes produced by MLABDB or suddenly
disappearing features (referred to as “popping” or “flick-
ering”) produced by MBOIT during an animation. Some
users argued that sometimes even a wrong impression was
suggested by both techniques in still images (see Fig. 1 and
Fig. 11). In animations, most users did not consider these
effects as negative, due to the possibility to interact with the
data and, thus, reveal missing information.

To conclude, MLABDB can be recommended for non-
dense data or a small number of different colors per pixel
while using semi-transparent transparency settings. MBOIT
can be suggested for large and dense data with a high
variation of color per pixel and transparency settings with
smooth transitions. Also, both techniques can be applied
to triangular meshes or point cloud data (cf. Fig. B.1 and
Fig. B.2, Appendix B) since rasterization-based approaches
operate on any input geometry.

Image-order techniques should be preferred when rather
opaque structures are rendered since they can effectively
employ early ray termination. If transparency is used too
aggressively, the time required to traverse the acceleration
structures can increase significantly. The run-time perfor-
mance varies strongly depending on the selected view and
does not scale well with an increasing number of transpar-
ent layers.

In general, RTX performs better than OSP for all trans-
parency settings, but OSP required less memory for acceler-
ation structures and less time than RTX to complete builds.
Surprisingly, our RTX solution was able to achieve real-
time rendering performance for all line data sets, including
CLOUDS for semi-transparent settings. For opaque and
semi-transparent settings, its rendering times were superior
to VRC and OSP. In comparison to OSP, best rendering-times
were achieved with VRC and RTX throughout all trans-
parency settings. VRC’s performance was slightly superior
to RTX for large data sets rendered with high transparency.
Results produced by VRC are hardly distinguishable from
the ground truth, especially in scenes where the camera is
far from the data set, or the entire data set is seen at once
through the current viewport (zoomed-out views).

In terms of memory consumption, VRC is recommended
if memory is limited due to rendering constraints, which
includes the finite size of the voxel grid, a constant line
quantization level, and a fixed number of lines covered per
cell. Although OSP is generally limited by the amount of
RAM, RTX requires more than twice as much VRAM as
the memory size of the model’s renderable representation
to build acceleration structures and usually requires 3 times
more memory to render the models. Both OSP and RTX
currently support only 32-bit integer values to address
primitives on the hardware. As such, large data sets must be
chunked beforehand into 4GB or less to be rendered using
these methods.

6 CONCLUSION AND OUTLOOK

In this work, we have discussed and analyzed different ren-
dering techniques for large 3D line sets with transparency
wrt. memory consumption, performance, and quality. The
major findings of our study are that a) approximate tech-
niques can give acceptable quality at high speed and low



memory consumption in many use cases, and b) ray-based
approaches offer high quality and often at speeds similar
to approximate techniques, besides the most extreme cases
with overall low transparency. On the other hand, these
techniques can require huge memory resources and consid-
erable pre-processing time.

However, regardless of the technique used, transparent
line renderings likely fail to communicate spatial relations
when large numbers of transparent lines are rendered. In
these cases, global illumination effects such as soft shadows
and ambient occlusion can help to significantly improve
the user’s perception [15]. Such effects can be integrated
in a straightforward way into image-order approaches by
tracing secondary rays. The integration into object-order
approaches is more difficult, and can be achieved only with
substantial algorithmic changes, and changes to the data
structures used. If high-quality rendering for large line sets
is desired, we believe that image-order approaches should
be favored over object-order approaches.

With the current power of RTX GPU hardware, it will
be interesting in the future to combine both transparency
rendering and global illumination effects to enhance the
visual perception of complex data. Further user studies
have to be conducted to shed light on the question of
whether transparency rendering of large, dense line data
sets is beneficial to the user’s perception, or hampers inter-
pretation of trends in the data, and how this may interact
with global illumination effects. In terms of interpretation
of dense line sets, it would also be interesting to compare
transparency rendering techniques with approaches that
heuristically filter line sets and render features-of-interest
completely opaque.
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APPENDIX A
QUANTITATIVE ASSESSMENT OF IMAGE QUALITY

PSNR measures the ratio between the power of a signal and
the power of noise distorting the signal in decibel (dB). It is
computed on a logarithmic scale as

PSNR(OF, Of) = —10log,o([|Of — OF[13), (1)

where Off and Of are the rendering results and the ground
truth image, respectively. The PSNR for the ground truth is
clamped to a high value of 60dB.

SSIM is a perception-based model to measure the simi-
larity of two images wrt. structural information. In contrast
to PSNR, SSIM highlights regions of structural (dis-) simi-
larity and enables a detailed analysis of rendering stability
and approximation errors wrt. transparency and fragment
depth. SSIM is defined as

(2urpc +c1)(20r,c + c2)

SSIM(OF, 0¢%) =
( t t) (N%{+/~L%;+Cl)(0'}23+0%;+02),

2

where pp and g are the average values of Off and OF,
0% and o2 are the variances of Off and OY, op ¢ is the
covariance between O and Of, and ¢; and ¢y are two
small constants to avoid division by zero. We compute SSIM
pixel-wise using a Gaussian sub-window of 11x11 to weight
surrounding pixels. The SSIM value of an image (1 for the
ground truth) is the mean over all pixel-wise SSIM values.

The SSIM and PSNR plots in Fig. A.l indicate that
MBOIT and MLABDB consistently achieve high image qual-
ity. For the smaller data sets, the quality of both techniques
doesn’t seem to be strongly view dependent, yet during
close-ups (cf. frames 10 — 20 and 40 — 50) the quality
decreases significantly when rendering large line sets like
TURBULENCE and CLOUDS. When zooming into the data,
artifacts along a few pixels are now spread across an ever
larger area in pixel space, resulting in decreasing SSIM and
PSNR values.

For highly opaque lines, MLABDB always comes very
close to the ground truth. This result shows that discarding
all transparent fragments behind opaque fragments, similar
to early ray termination, helps to improve image quality
and stability. Nevertheless, bucketing does not seem to work
well when high transparency is used, since the correspon-
dence between opacity and depth distance is increasingly
lost (see 3rd and 6th rows in Fig. A.1). In this case, MLABDB
operates like MLAB, inheriting the weaknesses mentioned
in Sec. 4.5.

Wrt. SSIM, MBOIT performs slightly worse than
MLABDB for lines with low and medium transparency due
to either transparency over- or underestimation (cf. first
two rows for PSNR and SSIM in Fig. A.1). However, for
highly transparent lines, MBOIT can accurately simulate
the transmittance function for each data set. Furthermore,
it shows low variation in image quality during animations.

Regarding the PSNR values, less noise is introduced
by MLABDB for highly opaque lines due to bucketing,
whereas more noise is produced by MBOIT and VRC with
consistently lower PSNR values for all data sets (cf. first
two rows for PSNR in Fig. A.1). Whereas VRC has low
PSNR values due to line inaccuracies and silhouette errors,
low PSNR values for MBOIT are due to pixel-wise color
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distortions, originating from high variation in the trans-
mittance, making it harder for MBOIT to properly recon-
struct the transmittance. On the other hand, with increasing
transparency and smoother transfer functions, the quality
of MBOIT highly improves, and it is able to outperform
MLABDB for such settings (compare green PSNR curves
for each column in Fig. A.1 with best PSNR values in the
sixth row). For high transparency, PSNR also indicates that
merge heuristics in MLABDB perform worse and produce
high noise in the image due to incorrect blending and color
inconsistencies. These errors are even more pronounced in
close-up views where more pixels are affected by incorrect
blending, yielding worst PSNR values for TURBULENCE
throughout all techniques.

The quality of VRC is consistently below that of MBOIT
and MLABDB, showing even more severe variations when
zooming into the data sets. The reason lies in the line
discretization used by VRC, which introduces inaccuracies
especially along the line silhouettes, i.e.,, a line is either
missed or erroneously hit. In both cases, the pixel value
can be very different from the ground truth, decreasing
the measured image quality. Even though fewer lines are
seen when zooming into the data, the differences now
affect more and more pixels, and thus increasingly affect
the image quality. With higher line transparency, the line
contours are also increasingly blurred out, rendering these
artifacts less pronounced and resulting in higher SSIM and
PSNR. In the following, we show images of all rendering
techniques using high transparency or semi-transparent ren-
dering settings for ANEURYSM (cf. Fig. A.2), CONVEC-
TION (Fig. A.3), TURBULENCE (Fig. A.4), and CLOUDS
(Fig. A.5). The figures are composed of rendering results
from Depth Peeling (ground truth) and each approximate
technique (MLABDB, MBOIT, and VRC).

Per-pixel absolute error images are included to further
highlight differences between each approximate technique
and the ground truth image. Pixel-wise errors are computed
using the absolute difference between the ground truth and
the rendering for each channel and converted to an inverted
gray scale image afterwards. Here, white color means no
difference, and black represents highest possible error in the
image.

Furthermore, we show the depth complexity of each
view to depict the number of layers per pixel for each
scene, where black represents 0 fragments and bright cyan
is the maximum number of layers in the current view.
This is achieved by counting the number of total fragments
per pixel using atomic operations on the GPU. For our
data set and a viewport of 1920x1080, the total number
of fragments varied from 30 million (CONVECTION) to
280 million (CLOUDS) fragments during animation. The
maximum number of layers ranged from 140 (ANEURYSM,
CONVECTION) to 1000 (TURBULENCE) and even 9000
(CLOUDS).

Furthermore, we compute error metrics between the ren-
dered image of each approximate technique and the ground
truth in scenes with opaque, semi-transparent, and highly
transparent render settings for all four data sets used in the
paper. The plots in Fig. A.1 show SSIM (first three rows)
and PSNR (last three rows) values of renderings over time
produced during a pre-recorded flight with two zoom-ins.
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Fig. A.1: Error metrics of all techniques using opaque lines (1st and 4th row), transparent lines with opaque features of
interest (2nd and 5th row), and highly transparent lines (3rd and 6th row). Columns are for ANEURYSM, CONVECTION,
TURBULENCE, and CLOUDS, respectively. First three rows show SSIM for each technique, the last three rows show PSNR.
A higher value is better.
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PSNR = 37.04, SSIM = 0.961 PSNR = 37.39, SSIM = 0.964
Depth Complexity Per-Pixel Errors

PSNR = 32.67, SSIM = 0.936 PSNR = 32.38, SSIM = 0.919 PSNR = 37.78, S5IM = 0.933
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Fig. A.2: From left to right: ANEURYSM rendered with DP, MBOIT, MLABDB, VRC. 1st and 3rd row: Renderings using
overall medium transparency with low-frequency variation and detailed views (a), and with sharp transition between low
and high transparency (b). Blue and yellow rectangles highlight differences between techniques, close-up views are shown
below each image. 2nd and 4th row: show depth complexity per pixel and per-pixel absolute differences to the ground
truth (DP). Depth complexity: 62 — 76 million fragments in total, with max. 156 (a) and 174 (b) layers.
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Fig. A.3: From left to right: CONVECTION rendered with DP, MBOIT, MLABDB, and VRC. Same transparency and
rendering settings are used as in Fig. A.2. Depth complexity: 33 — 38 million fragments in total, with max. 140 (a) and 142

(b) layers.
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Fig. A.4: From left to right: TURBULENCE rendered with DP, MBOIT, MLABDB, and VRC. Same transparency and
rendering settings are used as in Fig. A.2. (a) represents a view rendering the entire line set, whereas a close-up view
is shown in (b). Depth complexity: 91 — 197 million fragments in total, with max. 1310 (a) and 1460 (b) layers.
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Fig. A.5: From left to right: CLOUDS rendered with DP, MBOIT, MLABDB, VRC. Same transparency and rendering settings
are used as in Fig. A.2. Depth complexity: 87 - 135 million fragments in total with max. 7400 (a) and 8650 (b) layers.



APPENDIX B
SURFACE AND POINT DATA

Besides line rendering, we additionally demonstrate the
application of the approximate techniques MLABDB and
MBOIT to render transparent surface and point models.
Fig. B.1 shows an isosurface in a Richtmyer-Meshkov in-
stability! extracted with VTK and comprised of 516 million
triangles. Constant transparency is used for all triangles.
Fig. B.2 shows images of 55 million particles from a coal
particle combustion simulation in Uintah® rendered with
screen-oriented 2D splats. The velocity of each particle is
mapped to transparency and color (from beige to red to
blue, with blue being the highest).

In all figures, we show the rendering outcome of DP
(ground truth), MLABDB, and MBOIT. In addition, we
highlight the differences between the approximation and
ground truth with (a) detailed views below all rendering
algorithms, (b) the number of fragments per pixel (depth
complexity) to relate per-pixel errors to the complexity of
the scene, and (c) per-pixel errors from the ground truth.

For both data sets, MLABDB and MBOIT produce sim-
ilar artifacts as for line sets, discussed in Appendix A and
Sec. 4.7. As seen in Fig. B.1, MBOIT leads to blur effects, es-
pecially transitions between neighboring isosurfaces vanish
with higher transparency. MLABDB, on the other hand, is

1. R. Cohen, W. Dannevik, A. Dimits, D. Eliason, A. Mirin, Y. Zhou,
D. Porter, and P. Woodward, “Three-dimensional simulation of a
richtmyer-meshkov instability with a two-scale initial perturbation,”
Physics of Fluids, vol. 14, no. 10, pp. 3692-3709, 1 2002.

2. M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. A. Wight, and
J. RPeterson, “Uintah: A scalable framework for hazard analysis,” in
Proceedings of the 2010 TeraGrid Conference, ser. TG "10. New York,
NY, USA: ACM, 2010, pp. 3:1-3:8
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better at preserving small geometric details. For instance, it
retains the sharpness of (small) surface contours in regions
of high surface variation with multiple transparent layers.

However, for our point cloud data set with a myriad of
transparent surfaces — in our test more than 1000 transpar-
ent layers — MLABDB is not able to fully reconstruct the
correct color due to accumulated errors caused by incorrect
fragment merges, leading to blurry or wrongly colored
features and misinterpretation of the data. This effect is
even more prominent when mapping attributes with more
than two colors (mapping from beige to red to blue, cf.
Fig. B.2). Note that the depth complexity and per-pixel error
images also clearly demonstrate that approximation errors
of MLABDB increase with more layers. Since MLABDB is
not order-independent, it also fails to preserve the correct
visibility order of fragments, causing hidden features to
suddenly appear in the final image (cf. yellow rectangles
in Fig. B.2).

MBOIT, in contrast, can properly handle transmittance
and color in this scenario and, besides small approximation
errors, is able to preserve the correct visual appearance of
features in the data (compare the detailed views in Fig. B.2).
In both detailed views, MBOIT is able to reconstruct the
sharpness of red colored particles (highlighted in the purple
view) and does not cause hidden interior features to incor-
rectly become visible on the particle combustion data set
(yellow view).

In summary, these findings reflect the results observed
when rendering large line sets such as TURBULENCE and
CLOUDS, which can be taken from green and blue curves in
PSNR and SSIM plots (for all transparent rendering settings)
and per-data image comparisons in Appendix A.

PSNR = 31.95, SSIM = 0.901

Depth Complexity Per-Pixel Errors

PSNR = 40.91, SSIM = 0.994

Fig. B.1: DP, MLABDB, and MBOIT used to render isosurfaces (triangle meshes) from the Richtmyer-Meshkov data set.
Detailed views and error metrics are shown below each of the rendered images. Depth complexity: 31.1 million fragments

in total with max. 90 layers.
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Depth Complexity

Per-Pixel Errors

Fig. B.2: DP, MLABDB, and MBOIT are used to render point clouds (2D view-oriented splats) from a coal combustion
particle simulation. Detailed views and error metrics are shown below each renderings. Depth complexity: 42 million

fragments in total with max. 1720 layers.
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