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Top-Down Shape Abstraction Based on Greedy
Pole Selection
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Abstract—Motivated by the fact that the medial axis transform is able to encode the shape completely, we propose to use as few medial
balls as possible to approximate the original enclosed volume by the boundary surface. We progressively select new medial balls, in a
top-down style, to enlarge the region spanned by the existing medial balls. The key spirit of the selection strategy is to encourage large
medial balls while imposing given geometric constraints. We further propose a speedup technique based on a provable observation that
the intersection of medial balls implies the adjacency of power cells (in the sense of the power crust).
We further elaborate the selection rules in combination with two closely related applications. One application is to develop an easy-to-
use ball-stick modeling system that helps non-professional users to quickly build a shape with only balls and wires, but any penetration
between two medial balls must be suppressed. The other application is to generate porous structures with convex, compact (with a high
isoperimetric quotient) and shape-aware pores where two adjacent spherical pores may have penetration as long as the mechanical
rigidity can be well preserved.

Index Terms—Shape abstraction, medial surface, power crust, porous structure, ball-stick toy, power diagram.
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1 INTRODUCTION

S HAPE abstraction draws much attention in computer vision
and pattern recognition since it is closely related to shape

recognition and shape understanding. One of the key motivations
of shape abstraction is parsimony of description, i.e., an object
could be described by relatively few primitives, each of which in
turn requiring only a few parameters [1]. It is a hard yet fascinating
problem [2].

Different from explaining objects with volumetric primitives
based on learning techniques [1], in this paper, we study the
problem of approximating the original enclosed volume using as
few medial balls as possible motivated by the fact that the medial
axis transform is able to encode nearly the complete shape, which
approaches this problem motivated by the geometry.

It’s well known that the full set of medial balls defines the
enclosed volume Ω, and thus we intend to use a subset of
representative medial balls to generate the shape abstraction of
Ω. In the discrete setting, the medial surface can be approximated
by the Voronoi diagram w.r.t. a set of samples extracted from
the boundary surface, while the medial balls can be replaced by
polar balls centered at a subset of Voronoi vertices (also named
as poles) [3], [4], [5]. We propose to progressively select new
polar balls, in a top-down style, to enlarge the region occupied
by the existing polar balls. The key point of selecting poles is to
encourage large polar balls subject to given geometric constraints.

In implementation, we require an efficient proximity query
technique to determine how a given polar ball intersects with a
set of existing polar balls. Interestingly, we observe that there is a
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provably effective speedup technique that the intersection of polar
balls implies the adjacency of power cells (in the sense of the
power crust [4], [5], [6], [7], [8], [9]). Therefore, we maintain a
dynamic power diagram w.r.t. a set of poles to support efficient
proximity query rather than detect the intersection between polar
balls in a brute-force manner. We further put forward two closely
related applications including ball-stick modeling and porous
structure generation.

Our contributions are three-fold:

1) We propose a greedy selection strategy that approximates
the enclosed volume with as few as possible polar balls.

2) We prove that the intersection of polar balls implies the
adjacency of power cells, which leads to an effective
speedup technique; See Theorem 3.3 in Section 3.

3) We elaborate the selection rules in combination with two
closely related applications and validate the uses and
effectiveness of our algorithm, See Figure 1.

2 RELATED WORK

Medial surface. The medial axis transform (MAT), as a complete
shape descriptor [10], is central to various applications such as
shape recognition/manipulation and surface approximation [11].
Given a closed, oriented and bounded 2-manifold surface S in
R3, a ball B inside the volume Ω enclosed by S is said to be
maximal if no other ball in Ω contains B. In fact, the medial surface
is formed by the locii of the centers of maximal balls inside Ω.
Furthermore, the union of maximal balls defines Ω.

Generally the MAT problem doesn’t have a closed-form so-
lution, and one has to seek for a numerical solution instead. The
most popular technique is to initialize the medial surface using
the Voronoi diagrams w.r.t. a set of sufficiently dense boundary
samples and then prune spikes or optimize mesh tessellations
based on various rules. There are many existing approaches on
this side, such as λ -medial axis [12], quadratic error metric (QEM)
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Fig. 1. Medial ball based shape abstraction. (a) Ball-stick toy design where the Teddy-Bear model is abstractly represented by a set of balls (with
four customized sizes) and wires so as to be reshaped to various poses. (b) Cost-effective porous structure generation where adjacent spherical
pores may have penetration but every pore has a compact shape for purpose of preserving rigidity.

based MAT [13], delta medial axis (DMA) [14], bending potential
ratio (BPR) pruning [15], erosion thickness (ET) measure [16] and
voxelization based λ pruning [17]. The simplified MAT, without
doubt, cannot exactly recover the original boundary surface, and
thus one has to control the error metric by computing the Haus-
dorff distance [18] or adaptively classifying geometric features [6].

The power crust [4], [5], [6], [7], [8], [9] also begins with
Voronoi diagrams w.r.t. boundary samples, but uses a subset of
Voronoi vertices as poles to generate MAT approximation by
computing a power diagram w.r.t. poles. In fact, it builds an inverse
transform from the MAT to the surface representation, and thus
facilitates many applications such as surface reconstruction and
surface offsetting. The theme of this paper, i.e. greedily selecting
some poles for shape abstraction, is closely related to the power
crust theory. We shall give the theoretical foundation in the next
section.
Shape abstraction. Shape abstraction is an important research
topic in computer vision and pattern recognition and central to
shape recognition and shape understanding [1]. On some occa-
sions it is also called shape averaging or shape simplification.
Abstract shape representations may vary with different contexts.
Curves [19], contours [19], [20], skeletons [21] and even black-
and-white images [22] are all commonly used abstract shape
representation forms. There is a large body of literature on how to
approximate the given surface/volume using a set of shape prim-
itives that include planar faces [23], [24], cylinders, spheres [25],
tori [26], or even superquadrics [27], hyperquadrics [28] and
blobby models [29]. An important application of shape abstraction
is to help understand the 3D structure/layout of a given scene, as
well as the spatial, functional, and semantic relationships between
objects in the scene [30], [31]. Beside the above mentioned
geometry based approaches, Gestalt principles can also serve as a
guide to shape simplification and abstraction [32], [33], especially
useful for automatically simplifying line drawings of architectural
buildings [34], [35].

In this paper, we select as few medial balls as possible to
approximate the original enclosed volume by the boundary sur-
face, which is from a geometric perspective, rather than based on
learning techniques [1]. We define a priority measure to encourage
large medial balls while suppressing serious penetration between
medial balls.
Easy modeling. Simple modeling tools are becoming popular
nowadays - nonprofessional users can build their own favorite
toys/products with a 3D printer. For example, Igarashi et al. [36]
proposed an interactive system that supports constructing a 3D
polygonal surface from the 2D silhouette. Mori et al. [37] intro-

duced the physical simulation technique to help design original
plush toys. They also introduced simple physical simulation to
improve digital fabrication. Nealen et al. [38] proposed to design
freeform surfaces with a collection of 3D curves. Users can not
only use strokes as handles to control the geometry, but also
add, remove, and deform these control curves easily. Igarashi et
al. [39] introduced an interactive system named “Beady” to assist
the design and construction of customized 3D beadwork. Attene et
al. [40] proposed to approximate a 3D model with a set of planes,
spheres and cylinders based on hierarchical face clustering, but
they allow intersection between shape primitives. Besides, various
easy modeling approaches are applied in education, art production,
products design, and pattern recognition. Generally speaking, the
convenience of easy modeling comes from at least two aspects:
(1) an image, or a point cloud, or a 3D digital model as the
hint and (2) intelligent/fast computation to facilitate real-time user
interaction.

In fact, easy modeling with a set of penetration-free shape
primitives of prescribed types is our main interest. One of our
applications in this paper is to develop an easy-to-use ball-stick
modeling system that helps children to quickly build a shape
with only balls and wires. The key lies in how to approximately
represent the enclosed volume by a set of penetration-free medial
balls with various sizes (typically customized in advance).
Porous structure. Porous structures are ubiquitous in nature
and widely used in our daily life because of nice physical
properties. For example, porous solids have been proved to be
good candidates as the carbon dioxide recycling sorbents [41],
[42]. Porous structure design has drawn much attention in recent
years especially with the innovation of the additive manufacturing
technology. An important research topic is to reduce the material
cost, as well as the weight, of a given object while providing
a durable printed model that is resistant to impact and external
forces [43]. Wang et al. [44] discussed cost-effective 3D printing
by reinforcing a thin shell with skin-frame structures. Lu et al. [43]
proposed a hollowing optimization algorithm based on the concept
of honeycomb structure. Recently, Mao et al. [45] used hybrid
structures for designing the support structure.

In fact, finite element analysis of stress is central to fabri-
cation oriented design. For example, Stava et al. [46] suggested
strengthening printed objects by hollowing, local thickening, and
adding extra struts. There is a trend of addressing these issues
based on topology optimization [47], [48], [49], [50]. Wu et
al. [51] proposed a method to generate application-specific infill
structures on rhombic cells so that the resultant structures can
automatically satisfy manufacturing requirements on overhang-
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angle and wall-thickness. Groen et al. [52] introduced an efficient
homogenization based approach to perform topology optimization
of coated structures with orthotropic infill material. We refer
to [47] for a survey.

Inspired by the structure of the spherical inverse opal, we
notice that the convexity and compactness (high isoperimetric
quotient) of pores are central to preserving mechanical rigidity.
Therefore, in this paper, we proposed to use medial balls as prim-
itives to generate pores but allow moderate penetration between
neighboring pores (we add an additional partition board to separate
neighboring pores). In implementation, our algorithm is based on a
greedy selection strategy that gives a higher priority to those large
medial balls but suppresses serious penetration between medial
balls.

3 THEORETICAL BACKGROUND

3.1 Voronoi diagram & power diagram

Voronoi diagram Power diagram

Fig. 2. Voronoi diagram and power diagram in 2D.

Voronoi diagrams are used to partition a given domain Ω ⊂
Rd into regions based on the straight-line distance to a set of
generators {xi ∈Ω}n

i=1 such that xi dominates the subregion (also
called a cell):

Ω
vor
i : {x ∈Ω

∣∣ ‖x−xi‖ ≤ ‖x−x j‖, j 6= i}. (1)

Power diagrams can be viewed as an extension of Voronoi dia-
grams, where each generator xi is equipped with a weight wi to
adjust the influence range. That is to say, by assuming the power
distance dpow(x,xi) between x and the weighted generator xi to be
‖x−xi‖2−wi, the cell dominated by xi becomes

Ω
pow
i : {x ∈Ω

∣∣ dpow(x,xi)≤ dpow(x,x j), j 6= i}. (2)

A generator with a larger weight is more dominant, and when all
the weights are equal, the power diagram reduces to a Voronoi
diagram. Different from the Voronoi diagram, there may be some
generators hidden from the power diagram, which means these
generators have no corresponding dominant regions. In Figure 2,
we show a Voronoi diagram and a power diagram respectively.

3.2 Medial surface

Suppose that S is a closed, oriented and
bounded 2-manifold surface in R3. By the term
medial surface, we mean the loci given by the
center of a moveable sphere inside S that
has at least two touching points with S . The
medial surface M of S , combined with the
medial radius function R, is called medial-axis transform (MAT),
denoted by a pair

(
M ,R

)
.

3.3 Feature-preserving sampling

Definition 3.1. Given a surface S and a point s ∈S , the local
feature size (LFS) of s, denoted by LFS(s), is defined to be the
distance between s and the medial surface M .

Definition 3.2. Let {si}n
i=1 be a set of samples extracted from

S . If ∀s ∈S , there exists a sample si such that ‖s− si‖ ≤ ε , then
{si}n

i=1 is an ε-dense sample set. If ∀s∈S , there exists a sample si
such that ‖s− si‖ ≤ α×LFS(s), then {si}n

i=1 is an α-LFS sample
set.

3.4 Inside/outside poles

In the discrete setting, the Voronoi diagrams
V w.r.t. a set of sufficiently dense boundary
samples in S are commonly used to initialize
the medial surface. Given an α-LFS sample set,
each sample s ∈S dominates a cell across S
(generally a sufficiently large box is used to
make s’s cell to be closed). On either side of the surface, there
is a cell vertex farthest from s, respectively named an inside pole
and an outside pole; See the inset figure. Each pole p defines a
polar ball B(p,‖p− s‖), where s is the sample point closest to p.

Definition 3.3. The power crust is the boundary between the
power diagram cells belonging to inside poles and power diagram
cells belonging to outside poles.

The power crust is able to approximate the original boundary
surface under the condition that the samples are sufficiently
dense [5].

Lemma 3.1. Let P = {pi} and Q = {qi} be respectively the inside
and outside poles w.r.t. an α-LFS sample set. When α approaches
0, the power crust given by P and Q approximates the surface S .

It can be shown that the following observation naturally holds
based on Lemma 3.1. (More theoretical results are available in [5],
[53], [54], and we organize them in Appendix A.)

Corollary 3.1.1. Let P = {pi} be the inside pole set w.r.t. an α-
LFS sample set. When α approaches 0, the union of the polar
balls

{B(pi,ri) | pi is an inside pole}

approximates the volume enclosed by S .

Remark. Due to the approximation ability of polar balls, we
make no distinction between polar balls and medial balls in later
sections.

3.5 Proximity query between polar balls

Corollary 3.1.1 motivates us to use a subset of representative
inside poles {pi}K

i=1, or alternatively their corresponding polar
balls {B(pi,ri)}K

i=1, to generate the shape abstraction of the whole
enclosed volume. For this purpose, we adopt a top-down pole se-
lection strategy that encourages large polar balls while suppressing
serious intersection between polar balls.

In implementation, we require an efficient proximity query
technique to determine how a given polar ball intersects with a set
of existing polar balls. In fact, there is a fundamental relationship
between the proximity of polar balls and the proximity of power
cells.
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Lemma 3.2. Suppose that B(p1,r1) and B(p2,r2) are two balls
in R3. If B(p1,r1) intersects the ball B(p2,r2) at a disk, for every
point q in the plane π of the disk, q has equal weighted distances
to p1 and p2, i.e. dpow(q, p1) = dpow(q, p2), where the weight is
set to be the squared radius.

In other words, under the condition that the polar ball B(p1,r1)
intersects the ball B(p2,r2) at a disk, the disk must be coplanar
with the equal-power plane w.r.t. p1 and p2 (each pole is equipped
with a weight of the squared medial radius). We further observe
that the power diagram is able to serve as an effective tool for
polar-ball based dynamic proximity query, which is the following
theorem.

Theorem 3.3. Let P = {pi} and Q = {qi} be respectively the
inside poles and the outside poles w.r.t. a sufficiently dense α-LFS
sample set on the surface S . Suppose that we have a subset of
inside polar balls centered at P+ ⊂ P. For another inside pole
pnew ∈ P \P+, the statement that the polar ball centered at pnew

intersects with one of the existing polar balls {B(pi,ri) : pi ∈ P+}
implies that there exists p j ∈ P+ such that pnew’s cell is neighbor-
ing to p j’s cell in the power diagram w.r.t. P+⋃Q

⋃
pnew.

(a) (b)

Fig. 3. Proof to Theorem 3.3. (a) If pnew’s cell is not neighboring to any
cell given by P+⋃Q, then the polar ball centered at pnew is totally inside
pnew’s cell. (b) If pnew’s medial ball intersects p j ’s medial ball, then the
equal-power plane between them passes through pnew’s cell.

Proof. We consider the power diagram w.r.t. P+⋃Q
⋃

pnew,
where each pole is weighed by the square of the radius of its
polar ball.

Suppose that the pole pnew is defined based on some boundary
sample point s, which implies that pnew is closer, or at least equally
distant, to s than any other poles belonging to P+⋃Q. It is easy
to verify that dpow(s, pnew) = 0. Considering that s is located
outside/on the polar balls given by P+⋃Q, the power distance
between s and any pole in P+⋃Q is non-negative. Therefore,
pnew’s cell is not empty (since the cell contains at least s). It can
be further concluded that pnew’s cell is convex.

Now we assume that pnew’s cell is not neighboring to any cell
given by P+⋃Q, which implies that the boundary of pnew’s cell is
formed by pnew and the poles in Q. On one hand, we can see that
dpow(t, pnew) ≥ 0 for any point t on the boundary of pnew’s cell
(since t has equal power distances to pnew and some outside pole
qi in Q; but the power distance between t and any outside pole in
Q is non-negative), which implies that the polar ball centered at
pnew is totally inside pnew’s cell (note that dpow(t, pnew) = 0 for
any point t on the surface of the polar ball centered at pnew); See
Figure 3(a). On the other hand, the equal-power plane between
pnew and any pole in P+ cannot pass through pnew’s cell since P+

doesn’t contribute to the boundary of pnew’s cell at all.
According to the given condition that pnew’s polar ball inter-

sects with one of the polar balls given by P+, without loss of

generality, we assume that pnew’s polar ball intersects with p j’s
polar ball, where p j ∈ P+. The two polar balls intersects at a disk
and any point in this disk is located inside pnew’s polar ball and
thus also inside pnew’s cell. However, the disk is coplanar with the
equal-power plane between pnew and p j, which shows that this
equal-power plane is given by pnew and a pole in P+ but passes
through pnew’s cell (see Figure 3(b)), which contradicts to the
above assumption.

Corollary 3.3.1. Let P = {pi} and Q = {qi} be respectively the
inside poles and the outside poles w.r.t. a sufficiently dense α-
LFS sample set on the surface S . Suppose that we have two
inside polar ball sets centered at P1,P2 ⊂ P with P1

⋂
P2 6= /0.

The statement that P1’s polar balls intersect with P2’s polar balls
implies that there exists two inside poles p1 ∈ P1 and p2 ∈ P2 such
that p1’s cell is neighboring to p2’s cell in the power diagram
w.r.t. P1

⋃
P2
⋃

Q.

4 PROBLEM FORMULATION

Suppose that we have obtained a full set of inside poles, i.e.
P = {pi}n

i=1, which define a set of medial-axis balls {B(pi,ri)}n
i=1

inside the volume enclosed by the surface S . Our task is to
develop a strategy on how to incrementally select some repre-
sentative poles, generally just a few, to approximate the volume as
far as possible under some specified geometric constraints.

In particular, we shall discuss the pole selection in detail
in combination with two separate applications: (1) ball-stick toy
design where we need to use a set of separate medial balls with
various sizes, connected by wires, to convey the abstracted shape,
and (2) porous structure generation where two spherical pores
may have penetration but every pore must have a compact shape
(with a high isoperimetric quotient). See Section 5 and Section 6
respectively.

5 BALL-STICK TOY BUILDING

Fig. 4. A real-life ball-stick toy provided courtesy of Jinchang Toy Factory,
Shenzhen City, China.

We first discuss the shape approximation application in ball-
stick toy building. Many experts in teaching children found that
modeling various shapes with some basic components, e.g., clay
or magnetic sheets, have a very positive influence on intelligence
development and can make children become more creative. Ball-
stick toy design (see Figure 4), i.e. assembling balls and sticks (or
wires) into a target shape, is one of the most popular educational
games. We find that the technical principles behind the ball-stick
toy design have a close relationship to the theme of this paper, i.e.
medial ball based shape abstraction.
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5.1 Selection strategy

Fig. 5. Suppose that the medial ball colored in light green is already
selected in P+. Considering that No. 1 medial ball has intersection with
the existing medial ball whereas No. 3 medial ball is not large enough,
we select No. 2 medial ball as the next candidate and append it to P+.

Let P be the full set of inside poles. Technically speaking, we
have to select a subset of polar balls, generally not many, centered
at a pole set P+ ⊂ P such that the union of balls

⋃
{B(pi,ri) : pi ∈

P+} roughly represents the enclosed volume of the input shape.
Note that any penetration is not allowed between selected polar
balls.

Initially, P+ is an empty set. We have to select the largest
polar ball and add the corresponding pole into P+. After that, we
enlarge the set P+ by repeatedly selecting a new inside pole pnew ∈
P\P+ , P−. A natural idea is to use the following greedy strategy
to incrementally enlarge P+ until the selected medial balls, after
connected, sufficiently resemble the entire shape; See Figure 5 for
illustration.

pnew = argmax
p j∈P−

{r j : |p j− pi|− ri− r j ≥ 0,∀pi ∈ P+}. (3)

We denote di j = |p j − pi| − ri − r j, and then Eq. (3) can be
rewritten as

pnew = argmax
p j∈P−

{r j : di j ≥ 0,∀pi ∈ P+}. (4)

It’s easy to verify the following observation.

Theorem 5.1. Eq. (4) reports a non-increasing medial-radius
sequence.

Based on Theorem 5.1, we can stop the selection process until
the medial radius is less than a prescribed tolerance δ . The pseudo-
code of a naı̈ve implementation is described in Algorithm 1.
Remark. Algorithm 1 is not efficient because we have to check
the intersection, one by one, between pnew’s medial ball and the
existing medial balls given by P+. We shall discuss the speedup
strategy int the following subsection.

5.2 Algorithm speedup
Recall that during each iteration of Algorithm 1, we have to test
if the top-priority pole popped from the priority queue is able
to define a medial ball that doesn’t have penetration with those
medial balls given by P+. The key of speeding up Algorithm 1
lies in how to quickly report those candidate poles in P+ that are
“sufficiently close” to pnew such that penetration between medial
balls may occur, rather than in a brute-force manner.

Theorem 3.3 states that the intersection between medial balls
implies the adjacency between power cells. Suppose that we main-
tain a dynamic power diagram PD throughout the algorithm. Now
we update the power diagram PD(P+⋃Q) to PD(P+⋃Q

⋃
pnew)

(Q is the set of outside poles), which requires only a little cost

Input: The set of inside poles P, each associated with a
medial radius, and the tolerance of the minimum
medial radius δ as the termination condition.

Input: Initialization:
1 An empty set P+ and an empty priority queue Q. Push all

the poles in P to Q where the medial radius serves as the
priority;

2 repeat
3 Take the top pole pnew in Q;
4 for every pole p in P+ do
5 Check the intersection between pnew’s medial ball

and p’s medial ball;
6 end
7 if there is no intersection then
8 Add pnew into P+;
9 end

10 until pnew’s medial radius is less than δ .;
Algorithm 1: Naı̈ve algorithm for generating penetration-free
medial balls.

Fig. 6. Algorithm speedup based on Theorem 3.3.

due to the incremental change of partition configuration. As
Figure 6 shows, the medial balls colored in yellow are defined
by P+ while the medial ball colored in green is given by pnew

that has a medial radius rnew. We can see that pnew’s cell is
neighboring to 3 existing poles, i.e. p1, p2, p3 in P+. Theorem 3.3
tells us pnew’s medial ball cannot intersect with those medial
balls given by P+ \ {p1, p2, p3}. Therefore, it suffices to check
the assertions |pnew− pi|− rnew− ri ≥ 0, i = 1,2,3, one by one. If
all the assertions are true, we accept pnew as the next candidate and
add it into P+; Otherwise, we consider the next top-priority pole
popped from the priority queue. Detailed performance contrast
between the brute-force method and the accelerated version will
be given in Section 5.5.

5.3 Connection between poles
We have to connect the balls with wires to consolidate the structure
of the toy. Recall that each surface sampling point dominates a
separate Voronoi cell restricted in the volume, and the union of the
restricted Voronoi cells is said to be restricted Voronoi diagram
(RVD). The RVD naturally induces a graph G = (V,E) whose
vertex set comprises the selected poles. The key idea of bridging
the selected poles is to find a Steiner tree belonging to G by
taking each selected pole as a terminal. For this purpose, we have
to define a weighting scheme such that the tree with the highest
centredness can be found. In this paper, we define the weight of a
pair of adjacent MA points pi, p j ∈V as follows:

Wi j =
|pi− p j|+µ|ri− r j|

min(ri,r j)
. (5)
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Fig. 7. Connecting selected poles based on Steiner tree.

The parameter µ serves as a penalty to balance the two terms.
The term |ri− r j| is to select a path along which the medial radius
changes slowly, the denominator min(ri,r j) is to keep the path
away from the boundary surface, and the term |pi− p j| is to select
an as-short-as-possible path. After P+ is fixed, we take the Steiner
tree [55] of the graph G as the final connection structure between
poles, where the selected poles P+ ⊂ P⊂V are taken as terminals;
See Figure 7.
Remark. In fact, a Steiner tree is cycle free and thus can only
be used to represent the skeleton of a genus-0 model. For a high-
genus model, however, the skeleton is not a tree any more. We
need to detect topology-aware loops first [56], and then with all
the poles in P+, together with the topologically characteristic
loops, as terminals, we compute a connection structure that is
structurally conformal to the boundary shape. Details are available
in Appendix B.

5.4 Feature preserving

Fig. 8. Connecting selected poles and selected feature points.

Generally speaking, it is hard to use a sequence of balls to
approximate the sharp features that are important hints to under-
stand shapes. To enable the ball-stick toy resemble the original
input model as far as possible, we propose two strategies in the
following.
Separation gaps. In Eq. (4), di j ≥ 0 is a hard constraint to guar-
antee the separation between medial balls. In fact, we can further
force the selected medial balls to be separated in a prescribed gap
to facilitate the placement of wires.

pnew = argmax
p j∈P−

{r j : di j ≥ ε,∀pi ∈ P+}. (6)

A side effect is to push the medial balls to around the sharp
features. In spite of the difference between Eq. (4) and Eq. (6),
the speedup technique mentioned in Section 5.2 still works with
only a slight modification (we just change the medial radius of p j
temporarily from r j to r j+ε before updating PD(P+⋃Q

⋃
pnew)).

Feature points. We further suggest adding significant feature
points p f

i , i = 1,2, · · · ,k, into the RVD-induced graph G . Suppose

that p f
i is located on the surface of the Voronoi cell of a certain

sample point s. We connect p f
i to any Voronoi vertex of s’s cell. In

this way, we augment G to G ′. Similarly, we take the Steiner tree
of G ′ to generate the final connection structure between selected
poles and feature points; See Figure 8 for illustration.

5.5 Evaluation

Fig. 9. More examples for building ball-stick toys. Teddy: 12 balls;
Baby Camel: 15 balls; Gorilla: 13 balls; Kitten: 7 balls. Note that we
customized four ball sizes, respectively 1.5cm, 2cm, 4.5cm, 5.5cm in
diameter.

We implemented and experimented with our algorithm on a
computer with a 64-bit version of macOS Mojave system, a 2.7
GHz Intel(R) Core(TM) i5 CPU and 16 GB memory. The coding
language is C++. We employ the adaptive blue noise sampling
approach [57] in the sampling step. For simplicity, we remesh the
Teddy model, the Baby-Camel model and the Gorilla model into
60K triangles and set the number of samples to be 4K. Besides, the
program terminates when the radius of the top-priority ball popped
from the priority queue is less than 5% of the bounding box size.
The parameter ε in Eq. (6) is set to be 0.8% of the bounding box
size while the parameter µ in Eq. (5) is set to 3.

Our algorithm consists of four main operations. We use T1,
T2, T3, T4 to respectively denote the four time costs:

T1: Compute Voronoi diagram w.r.t. boundary samples;
T2: Label inside and outside poles;
T3: Extract RVD w.r.t. boundary samples;
T4: Connect poles in P+.
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The timing statistics (in seconds) for the models shown in
Figure 7,8,9 are available in Table 1, where the # Vertice denotes
the number of boundary samples. In particular, we define 4
customized ball sizes, respectively 1.5cm, 2cm, 4.5cm, 5.5cm in
diameter. Users can not only build their favorite ball-stick toys by
reference to our generated results (see Figure 9), but also transform
it into various poses (see the teaser figure).

TABLE 1
Running time statistics for ball-stick toy design. (#V denotes number of

boundary samples)

Models Running Time (s)
Name #V T1 T2 T3 T4

Ostrich (2D) 500 0.004 0.007 0.002 0.139
Dinosaur (2D) 500 0.005 0.007 0.003 0.127

Teddy 4000 6.12 3.34 1.72 0.42
Baby Camel 4000 6.19 2.86 2.99 0.525

Kitten 4000 6.33 3.25 0.98 0.24
Gorilla 4000 5.74 3.51 1.02 0.39

Fig. 10. Total running time v.s. the number of selected poles.

In the following, we use Figure 10 to show the performance
contrast between the brute-force ball penetration detection strategy
(Algorithm 1) and the accelerated strategy (Section 5.2). The test
is conducted on the Kitten model with 4K points being sampled.

Without doubt, when just a few poles are selected, the brute-
force ball penetration detection strategy may be faster. But with
the increasing of the number of selected poles, the accelerated
strategy outperforms the naiv̈e one. As shown in Figure 10, when
the number of selected poles exceeds 35, our accelerated method
exhibits a conspicuous advantage.

6 POROUS STRUCTURE GENERATION

In the following, we shall discuss the other ap-
plication, i.e., how to generate porous structures.
Porous structures are ubiquitous in nature due to
their nice physical properties. Porous structure
design is a fascinating yet challenging research
topic in recent years, especially with the innovation of the additive
manufacturing technology. As the inset figure shows, the spherical
inverse opal is the most common processed and studied self-
assembly structure [58]. Compared with other pore structures
such as ellipsoids, plates and rods, the spherical inverse opal
has better structural mechanical behavior. This motivates us to
generate shape-aware spherical porous structures.

6.1 Requirements

We intend to select a set of medial balls to generate porous
structures. Before we figure out detailed selection strategies, we
made the following two experiments to make clear (1) whether
spherical pores are better than pores of other types, and (2) to
what degree the penetration between pores reduces the entire
mechanical rigidity.
Convexity/compactness. As Figure 12 shows, we generate a
spherical-pore structure and an ellipsoidal-pore structure respec-
tively for the input cube model, and the pores in both configura-
tions are of the same volume size. From the stress nephograms in
ABAQUS, we can clearly see that spherical pores are able to better
preserve the original mechanical rigidity, which is in line with our
initial guess. Therefore we intend to select some representative
medial-axis balls as basic primitives to compose the final pore
structure.
Penetration between medial balls. Different from the ball-stick
toy design, penetration between two medial balls should be
allowed as long as the convexity/compactness of each pore is
not seriously destroyed. In Figure 13, we show three configu-
rations of pores, i.e. no penetration, moderate penetration and
serious penetration. The stress nephograms show that the pore
configuration shown in Figure 13(b) saves more material but can
well preserve the entire mechanical rigidity. Therefore, we allow
moderate intersection between medial balls, rather than enforce a
hard constraint of being penetration-free.

6.2 Selection strategy

Based on the above experiments, we consider the selection strategy
from two aspects. On one hand, we intend to encourage those large
medial balls to be selected into P+, and on the other hand, we have
to enforce a penalty on serious penetration, i.e.,

pnew = argmax
p j∈P−

{r j +λ ×min
(
0, min

pi∈P+
di j
)
}, (7)

where 0 < λ < 1 is used to balance the two considerations.
Similarly, we stop the selection process if the medial radius of
pnew is sufficiently small.
Remark. If λ is small, then there may be many thin pores
generated due to lack of penalty on penetration; See Figure 11.

If λ = 1, the to-be-selected pole must be located outside the
existing balls. W.l.o.g, we take each surface sample point as a
pole whose medial radius is 0. Obviously, all the sample points
are located outside the existing medial balls. Therefore, it is easy
to infer that

r j +min
(
0, min

pi∈P+
di j
)
≥ 0

for any boundary sample point. This implies that under the
selection criterion

pnew = argmax
p j∈P−

{r j +min
(
0, min

pi∈P+
di j
)
},

the to-be-selected pole p j must meet r j+min
(
0,minpi∈P+ di j

)
≥ 0

or at least |p j − pi| − ri ≥ 0. So p j must be located outside the
existing balls. In our experiments, we set λ = 0.8 without any
specification.
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(a) λ = 0.5 (b) λ = 0.6 (c) λ = 0.7 (d) λ = 0.8 (e) λ = 0.95

Fig. 11. The influence of the parameter λ - a larger value of λ tends to suppress penetration between medial balls. The differences between two
successive results are highlighted. We choose λ to be 0.8 in our experiments.

3×3×3 3×3×3
spherical pores ellipsoidal pores

Fig. 12. The stress nephograms in ABAQUS show that under condition
that equal-volume material is removed from a cube, spherical pores
own better mechanical rigidity than ellipsoidal pores since the maximum
stress for the spherical-pore structure is 214MPa while the maximum
stress for the ellipsoidal-pore structure is 253.1MPa.

6.3 Implementation

In the following, we give a couple of key technical details of
algorithm implementation.
Dynamic power diagram. Throughout the algorithm, we need
to maintain two data structures. One is the priority queue where a
pole p j ∈ P− has a priority of r j +λ ×min

(
0,minpi∈P+ di j

)
, and

the other is a dynamic power diagram w.r.t. P−.
Imagine that pnew ∈ P− is the newly selected pole that is ready

to be added to P+. According to Eq. (7), the selection of pnew

possibly changes the priority of those poles in P− that are very
close to pnew (i.e., penetration occurs between pnew’s medial ball
and p j’s medial ball). We need to quickly identify these poles and
update their priorities.

Once again, we employ Theorem 3.3 to achieve this purpose.
Let PD(Q

⋃
P−) be the power diagram at this moment, where Q

is the outside pole set. Let P̂− be a copy of P−. We repeatedly
label and then remove a pole p j ∈ P̂− as long as p j’s cell is
neighboring to pnew’s cell in the up-to-date power diagram. We
stop the process until pnew’s cell becomes isolated from those
remaining poles in P̂− (i.e. the boundary of pnew’s cell is given
by pnew and the outside poles). So far, we have identified a set

(a) (b) (c)

Fig. 13. By enforcing top-down pressure, we find that the stress distri-
bution for the model in (b), with moderate penetration, is rather uniform
while the weight saving rate amounts to 20%, which is higher than (a)
and (c). Note that we tune the wall thickness of (a-c) to the same size to
facilitate observing the effect of pore penetration.

of poles in P− whose medial balls possibly intersect with pnew’s
medial ball. We then update the priority of these identified poles.
Finally we compute PD(Q

⋃
P− \ pnew) based on a light-weight

update of PD(Q
⋃

P−) and continue the next iteration.
Thickness control. We need to keep the pores away from the
boundary surface in a proper gap. At the same time, a planar
separator between neighboring pores is used to preserve rigidity.
We introduce a parameter τ to achieve this purpose.

First, we filter out those inside poles whose medial radius is
less than τ . We then reduce the medial radii of other inside poles
by τ . In fact, the pore belonging to pi ∈ P+ can be obtained by
subtracting the medial ball B(pi,ri− τ) by a sequence of equal-
power planes, each of which is given by pi and a neighboring
site p j ∈ P+ (here “neighboring” means that penetration occurs
between pi’s medial ball and p j’s medial ball). In order to
guarantee the separator being of a τ-thickness, we move each
equal-power plane in a distance of τ

2 toward both sides upon
penetration between medial balls occurs.

6.4 Evaluation
Performance. Our algorithm involves three main operations and
we use T1, T2, T3 to respectively represent their time costs. T1:



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 9

Fig. 14. Section views of spherical-pore structures. Bunny: 17 pores; Horse: 30 pores; Fertility: 66 pores; Armadillo: 42 pores; Kitten: 23 pores.

the time cost for computing Voronoi Diagram w.r.t. boundary
samples; T2: the time cost for labeling inside and outside poles;
T3: the time cost for computing the power diagram w.r.t. P+. We
use totally five models for test; See section views of spherical-pore
structures in Figure 14. From the timing statistics in Table 2 we
can see that our algorithm runs in only tens of seconds for 4K
samples. Note that generally T3 is related to the number of poles
in P+, which accounts for why T3 is larger for the Fertility model
than other models.

TABLE 2
Running time statistics for porous structure generation. (#V denotes

number of boundary samples)

Models Running Time (s) Weight Sav-
ing RatioName #V T1 T2 T3

Kitten 4000 5.91 2.11 6.62 62.85%
Fertility 4000 6.09 3.23 20.67 57.71%
Horse 4000 6.29 2.82 7.79 51.86%
Bunny 4000 5.44 3.09 4.65 54.82%

Armodillo 4000 5.95 2.65 12.43 46.95%

TABLE 3
Pressure test statistics.

Item Spherical-pore Honeycomb
Solid Vol (cm3) 540.88 540.88

Actual Material Vol (cm3) 213.08 226.79
Max Load (kN) 0.64 0.49

Max Load / Material
Vol Ratio (N/cm3)

3.00 2.16

In the following, we discuss how effective our priority update
strategy is. Let p be a newly selected pole. In fact, a naı̈ve strategy
of updating the priorities of the remaining poles is to detect
the penetration between p and all the poles in P−. By contrast,
our accelerated strategy is to update the priorities of just a few
surrounding inside poles, instead of detecting every unselected
poles in a brute-force manner. We conducted a test on the Kitten
model with 4K samples. The performance statistics are given in
Figure 15.
Finite element analysis. In order to compare with the
honeycomb-structure hollowing method [43], we generate two
versions of the Kitten model to perform finite element analysis

Fig. 15. Total running time v.s. the number of selected poles.

by enforcing a gravity load. The paramter configurations are
as follows: Young’s modulus, Poisson’s ratio, mass density are
respectively set to 2100, 0.31, 3×10−9. The resulting stress
nephogram in ABAQUS shows that our spherical-pore Kitten
model, in spite of larger weight saving ratio, owns a more uniform
distribution of stress. See Figure 16. Note that red means that the
stress is high, while blue stands for low stress. It can be seen that
the maximum stress of the honeycomb structure occurs around the
neck, amounting to 9.736Mpa, which is due to two facts: (a) the
honeycomb cells’ surfaces have varying curvatures, and are much
different from curvature-uniform spherical pores, and (b) the neck
is the weakest part and thus should not be reduced too much in
weight.
Physical tests. We used a hydraulic testing machine to report
the maximum pressure the model can withstand. We downloaded
the honeycomb-structured Trophy model from the project page
of [43]. Their theoretical weight saving rate is 58.1%. For the
comparison purpose, we generated a spherical-pore structure with
a theoretical weight saving rate of 60.6% by controlling the
number of pores. With PLA+ as the 3D printing material (ten-
sile strength: 60Mpa, bending strength: 87Mpa, bending modu-
lus: 3642Pa), we used an FDM prototyping machine to print the
two kinds of porous structures for pressure test. Detailed pressure
statistics are available in Table 3. Figure 17 captured the moments
when the model breaks, and the values of compaction force at
the breaking point are 0.64kN (ours) and 0.49kN (honeycomb-
structured) respectively. Note that the significant difference in
structure is that the honeycomb-structured model was hollowed
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(a) Spherical pores (b) Honeycomb structure

Fig. 16. Finite element analysis for the spherical-pore Kitten model and
the honeycomb-structure Kitten model [43]. (a) By enforcing a gravity
load, the FEA result shows that the spherical-pore Kitten model (this
paper) owns a more uniform distribution of stress with a weight saving
rate of 63%. (b) The honeycomb-structure Kitten model has a weight
saving rate of 58% but its press distribution is non-uniform.

even around the thin-neck parts, but our algorithm didn’t produce
any spherical pores around the neck. Therefore we believe that our
proposed algorithm has a big potential in the light-weight product
design.

(a) Honeycomb structure (b) Spherical pores

Fig. 17. The values of compaction force at the breaking point are 0.49kN
(a) and 0.64kN (b) respectively, which shows that our resulting model
has a better mechanical rigidity.

7 CONCLUSION

In this paper, we studied the medial ball based shape abstraction
problem, i.e., how to use as few medial balls as possible to
approximate the original enclosed volume while imposing given
geometric constraints. Our technical contribution is to propose
a top-down selection strategy to encourage large medial balls
while taking into account specific requirements. We develop an
effective speedup technique based on a provable observation that
the intersection of medial balls implies the adjacency of power
cells (in the sense of the power crust).

We further explore the uses of our algorithm in combination
with two closely related applications. In the ball-stick design
application, our algorithm is able to help non-professional users
to quickly build a shape with only balls and wires, where any
penetration between two medial balls must be suppressed. In
the porous structure generation application, however, moderate
penetration between two adjacent spherical pores are allowed to
maximize the ratio of material saving while preserving structural

rigidity. We use both FEA and real physical tests to validate the
effectiveness.
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improving structural strength of 3D printable objects,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 48, 2012.

[47] J. Liu, A. T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa,
L. Li, J. Kato, J. Tang, C. C. Wang et al., “Current and future trends
in topology optimization for additive manufacturing,” Structural and
Multidisciplinary Optimization, pp. 1–27, 2018.

[48] M. P. Bendsøe, “Topology optimization,” in Encyclopedia of Optimiza-
tion. Springer, 2001, pp. 2636–2638.

[49] M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural
topology optimization,” Computer Methods in Applied Mechanics and
Engineering, vol. 192, no. 1-2, pp. 227–246, 2003.

[50] G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using
sensitivity analysis and a level-set method,” Journal of Computational
Physics, vol. 194, no. 1, pp. 363–393, 2004.

[51] J. Wu, C. C. Wang, X. Zhang, and R. Westermann, “Self-supporting
rhombic infill structures for additive manufacturing,” Computer-Aided
Design, vol. 80, pp. 32–42, 2016.

[52] J. Groen, J. Wu, and O. Sigmund, “Optimization and projection of coated
structures with orthotropic infill material,” arXiv:1808.04740, 2018.

[53] H. I. Choi, S. W. Choi, and H. P. Moon, “Mathematical theory of medial
axis transform,” Pacific Journal of Mathematics, vol. 181, no. 1, pp. 57–
88, 1997.

[54] S. W. Choi and H.-P. Seidel, “Hyperbolic hausdorff distance for medial
axis transform,” Graphical Models, vol. 63, no. 5, pp. 369–384, 2001.

[55] M. R. Garey and D. S. Johnson, “The rectilinear steiner tree problem is
np-complete,” SIAM Journal on Applied Mathematics, vol. 32, no. 4, pp.
826–834, 1977.

[56] J. Erickson and K. Whittlesey, “Greedy optimal homotopy and homology
generators,” in Proceedings of the sixteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2005, pp. 1038–1046.

[57] S. Zhang, J. Guo, H. Zhang, X. Jia, D.-M. Yan, J. Yong, and P. Wonka,
“Capacity constrained blue-noise sampling on surfaces,” Computers &
Graphics, vol. 55, pp. 44–54, 2016.

[58] D. Ma, Z. Cao, and A. Hu, “Si-Based anode materials for Li-Ion batteries:
A mini review,” Nano-Micro Letters, vol. 6, no. 4, pp. 347–358, 2014.

Zhiyang Dou is a 4th-year student in the School
of Computer Science and Technology, Shan-
dong University, China. His current research in-
terests include geometric processing and com-
putational geometry.

Authors/Shiqing Xin is an associate profes-
sor within the school of computer science at
Shandong University. He got Ph.D. at Zhejiang
University(China)in 2009. After that,he worked
as a research fellow at Nangyang Technolog-
ical University(Singapore) for three years. His
research interests include various geometry pro-
cessing algorithms,especially geodesic compu-
tation approaches and Voronoi/power tessel-
lation methods. During the past ten years,he
published over 60 papers on famous jour-

nals/conferences,including IEEE TVCG,ACM TOG,etc. He got three
Best Paper awards and many other academic awards.

Authors/Rui Xu isa 3rd-year student in the
School of Computer Science and Technology,
Shandong University, China. His research inter-
ests includegeometric processing and computa-
tional geometry.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 12

Jian Xu received bachelor’s, master’s and Ph.D.
degrees in Ocean University of China, Tu-
Braunschweig (Germany) and Catholic Univer-
sity of Leuven (Belgium) respectively. He is now
a senior researcher of Ningbo Institute of Ma-
terials Technology and Engineering (Chinese
Academy of Sciences), and professor of Dalian
University of technology. Prof. Xu has been fo-
cusing on composite equipment development,
composite process simulation, full-scale com-
posite simulation and composite process devel-

opment. Totally 35 papers were published.

Yuanfeng Zhou received the master’s and Ph.D.
degrees from the School of Computer Science
and Technology, Shandong University, Jinan,
China, in 2005 and 2009, respectively. He held a
post-doctoral position with the Graphics Group,
Department of Computer Science, The Univer-
sity of Hong Kong, Hong Kong, from 2009 to
2011. He is currently a professor with the School
of Software, Shandong University, where he is
also a member of the GDIV Laboratory. His cur-
rent research interests include geometric model-

ing, information visualization, and image processing.

Shuangmin Chen is a lecturer within School
of Information and Technology at Qingdao Uni-
versity of Science and Technology. She got her
Ph.D. degree at Ningbo University in 2018, and
worked as a research associate in 2009-2012 at
Nangyang Technological University(Singapore).
Her research interests focus on computer graph-
ics and computational geometry. She got the
Best Paper award of SPM 2017. During the past
ten years, she published over 20 research pa-
pers on famous journals/conferences.

Wenping Wang obtained his Ph.D. in Computer
Science from University of Alberta in 1992. He is
Chair Professor of Computer Science at Univer-
sity of Hong Kong. His research interests include
computer graphics, computer visualization, com-
puter vision, robotics, medical image processing,
and geometric computing. He is associate edi-
tor of several premium journals, including Com-
puter Aided Geometric Design (CAGD), Com-
puter Graphics Forum (CGF), IEEE Transactions
on Computers, and IEEE Computer Graphics

and Applications, and has chaired over 20 international conferences,
including Pacific Graphics 2012, ACM Symposium on Physical and Solid
Modeling (SPM) 2013, SIGGRAPH Asia 2013, and Geometry Submit
2019. Prof. Wang received the John Gregory Memorial Award for his
contributions in geometric modeling. He is an IEEE Fellow.

Xiuyang Zhao is currently a professor in School
of Information Science and Engineering, Uni-
versity of Jinan, China. He received Ph.D. in
computational material science from Shandong
University, China, in 2006. From 2008 to 2010,
he held a postdoctoral position in School of Soft-
ware, Shandong University. His research inter-
ests include computer vision, computer graphics
and CAGD. He is a member of several academic
organizations and a reviewer for many famous
international journals.

Changhe Tu received the BSc, MEng, and Ph.D.
degrees from Shandong University, China, in
1990, 1993, and 2003, respectively. He is a
professor in School of Computer Science and
Technology, Shandong University, China. His re-
search interests are in the areas of computer
graphics, 3D vision and computer aided geomet-
ric design. He has published over 100 papers
in international journals and conferences. Cur-
rently he leads a CG-VIS group at Shandong
University.


	1 Introduction
	2 Related Work
	3 Theoretical Background
	3.1 Voronoi diagram & power diagram
	3.2 Medial surface
	3.3 Feature-preserving sampling
	3.4 Inside/outside poles
	3.5 Proximity query between polar balls

	4 Problem formulation
	5 Ball-Stick Toy Building
	5.1 Selection strategy
	5.2 Algorithm speedup
	5.3 Connection between poles
	5.4 Feature preserving
	5.5 Evaluation

	6 Porous Structure Generation
	6.1 Requirements
	6.2 Selection strategy
	6.3 Implementation
	6.4 Evaluation

	7 Conclusion
	References
	Biographies
	Zhiyang Dou
	Authors/Shiqing Xin
	Authors/Rui Xu
	Jian Xu
	Yuanfeng Zhou
	Shuangmin Chen
	Wenping Wang
	Xiuyang Zhao
	Changhe Tu


