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Active Colorization for Cartoon Line Drawings
Shu-Yu Chen†, Jia-Qi Zhang†, Lin Gao∗, Yue He, Shihong Xia, Min Shi, Fang-Lue Zhang

Abstract—In the animation industry, the colorization of raw sketch images is a vitally important but very time-consuming task. This
paper focuses on providing a novel solution that semiautomatically colorizes a set of images using a single colorized reference image.
Our method is able to provide coherent colors for regions that have similar semantics to those in the reference image. An
active-learning-based framework is used to match local regions, followed by mixed-integer quadratic programming (MIQP) which
considers the spatial contexts to further refine the matching results. We efficiently utilize user interactions to achieve high accuracy in
the final colorized images. Experiments show that our method outperforms the current state-of-the-art deep learning based colorization
method in terms of color coherency with the reference image. The region matching framework could potentially be applied to other
applications, such as color transfer.

Index Terms—active learning, line drawing colorization, region matching
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1 INTRODUCTION

W ITH the advent of digital media technology, there have been
constant improvements in the cartoon industry. Currently,

the demand for cartoon entertainment has expanded with the pop-
ularity of the internet, making the related industries grow rapidly.
In popular cartoon media such as comics, color is particularly
important. Coloring line drawings requires a tremendous amount
of manual effort. Although there are some popular commercial
animation software designed for animation production [1], the
colorization step still requires manual effort to produce high-
quality animations. If this process could be finished automatically,
it would greatly benefit the related cartoon industry.

Inspired by the recent progress made in terms of image
synthesis methods and deep generative models, researchers have
investigated how to colorize black-and-white pictures and line
drawings efficiently. Early research works focused on brush-based
interactions [2], [3], [4] to propagate specified colors to similar
regions in a single image. The number of interactions will increase
linearly with the number of pictures that need to be colorized.
Recent cartoon colorization works have focused on using deep
learning methods to colorize sketch images automatically [5], [6],
[7]. However, artifacts appear along the edges in these research
works. Furthermore, the same character in a comic often has the
same colors for the same semantic regions across different frames.
The above methods fail to obtain satisfactorily coherent results for
an image set. Hence, it is essential to develop methods to colorize
the same character with consistent colors on the same semantic
regions across different frames.

In this paper, we propose a novel method to colorize a given
set of cartoon line drawings of a single character. This method
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is able to provide consistent colors for regions with the same
semantics as in the reference image. To achieve this goal, we
use an active-learning-based framework to match local regions
between target images and the reference image. Then a mixed-
integer quadratic programming method (MIQP) is used to refine
the matching results by considering the contextual structure. This
method could produce highly accurate results while significantly
reducing the required user interaction. This method is also able
to colorize multiple cartoon characters simultaneously when the
individual reference image is given for each character. The final
frames of 2D cartoons are normally produced by compositing
foreground characters onto a static background, and this method
can be easily integrated into the cartoon generation pipeline.

2 RELATED WORK

In this section, we will briefly review related research works on
image colorization and machine learning.

Colorization without references: Previous colorization meth-
ods [2], [3], [4] allow users to use brushes to apply the desired
colors. Qu et. al. [2] propagated a user’s scribbles throughout
relevant regions in the image by using the level-set method.
Recently, deep learning based methods have been proposed for
colorization in either automatic or interactive manners [8], [9],
[10], [11]. However, these methods may generate color strings
along the border and tend to color the image differently from
what the user specified. Many interactions are usually needed to
refine the color results. Furthermore, when there are many images
to be colorized, much manual effort is needed to perform these
operations for each image to achieve consistency for the same
character.

Colorization with reference images: In an animated scene,
the character often wears the same clothes across many frames.
One important problem is to colorize the character in the ani-
mation consistently with the colored reference image. Sato et al.
[12] developed a graph-based method to encode each superpixel
as one node. The pairwise similarity between these nodes is
computed based on their area and relevant centroid vector. The
superpixel-based segmentation needs to specify the number of
regions. Moreover, their node representation framework ignores
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Fig. 1: This figure demonstrates the overview of our approach. We first automatically segment the sketched image, before extracting
each segment’s IDSC feature. Taking these features as input, we then apply the active colorization algorithm (Algorithm.1). Many more
results are shown in Sec.4.2.

the shape information of regions it represents, and they are not
entirely sure why the shape information leads to this failure. Thus,
their methods fail when the character has large scale deformations
and the number of nodes differs greatly between images. Sýkora
et al. [13] proposed a method by using path-pasting to colorize
continuously animated black and white cartoons. In a continuous
sequence, where the cartoon has minimal deformations between
frames, their method performs very well. However, when applied
to discontinuous sketch images, their method struggles to find
accurate correspondences. Researchers have applied deep learning
models [5], [6], [7] to colorize cartoon images using reference
images. Furusawa et al. [5] first described reference images using
color histograms, before using this expression to determine how
cartoon characters should be colored in subsequent frames. This
method produces results with less detail than those depicted in
the reference image while also reducing the amount of shading
present in the image. Zhang et al. [6] used deep VGG features as
a descriptor for the reference images, but their method produced
unclear object boundaries and mixed colors. Hensman et al. [7]
used a conditional GAN to colorize grayscale images. They took
grayscale images as input and trained neural networks to learn
the relationships between region colors and their gray values.
However, these methods, which are based on DNNs, perform
poorly when applied to cartoon styles that rely on pure color
results, and tend to produce color mixing artifacts.

Active Learning: The active learning framework helps users
select the data, and the data need to be tagged by learning from a
few labeled samples. In this way, the accuracy of data labeling
can be quickly improved by active learning. There have been
many works on active learning for image classification. Guo et
al. [14] explored the application of active learning in multilabel
classification. They argue that a simplified feature labeling method
can be used, as the missing information can be inferred from
correlations between multiple features. Joshi et al. [15] provided
a method that generalizes the application of the margin-based
uncertainty to multiple classes. Li et al. [16] approached the prob-
lem differently by proposing an adaptive method that combines
both the information density and a measurement of points with

maximum uncertainty to determine critical instances to classify.
Then, Gal et al. [17] developed an active learning framework for
high dimensional data by combining Bayesian deep learning into
the active learning framework.

3 ACTIVE COLORIZATION

Given a reference colored image, we aim to colorize line drawings
of the same object for the whole image set. The core problem
to solve is how to match regions between the target image set
and the reference image. We can only rely on the edge/shape
similarity among regions of the line drawing image and regions
of the reference image, instead of textural features as in other
region/object matching tasks.

To address this problem, we build an active learning based
framework. We label the regions in the reference image according
to the semantic information and painted colors. Then, for all the
target regions of the image set, we attempt to assign the corre-
sponding reference label using the active learning method. We first
perform superpixel segmentation before matching our regions with
the inner-distance shape context (IDSC) (Sec.3.2). A limitation
of this approach is that regions with the same semantic features
vary significantly as an object deforms or when the object is
occluded. Thus, we introduce the active learning method (Sec. 3.3)
to find the region that minimizes risk effectively, and this region
will be sent to the user for labeling. This significantly improves
labeling accuracy without significantly impacting usability. For
the remaining matching conflicts in label estimation by active
learning, we supplement MIQP with label-adjacent constraints to
further rectify ambiguities (Sec.3.4).

3.1 Data Collection
Currently, there is no public database focusing on sketches of
animated characters. We manually screened the same characters
from comic books and cartoons. For our application, we are only
concerned about the cartoon characters in the images. Therefore,
we segment our database of color images, separating the fore-
ground from the background. We extracted the sketch from the
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(a) (b) (c) (d) (e)

Fig. 2: (a) Line drawing images, (b-e) are the segmentation results
of different methods, where each region is marked in a different
color. (b) SEEDS [18], (c) Superpixel method of Liu et al. [19],
(d) connected component analysis, (e) trapped-ball segmentation
[20].

foreground using Photoshop. This produces a dataset of twelve
animated characters taken from seven animated media.

We prepare a labeled sketch image for each character in
advance, which specifies a semantic label ID for each region.
Then, a list is maintained to store all label IDs for the different
semantic parts. We ask the user to mark regions within the same
semantic part of the character with the same label. For example,
the left and right foot of the character in Fig. 1 will have the
same label. By performing this step, we will enable our method
to learn the diversity of shapes with the same semantic label and
the overall structural information in a better way. However, some
regions with the same color in the reference image, such as the
pocket and the belly band, will be labeled differently due to their
differing semantics.

The labeled reference images provide spatial relationships
between the parts represented by labels. The first step in our
process is to build anm bym adjacency matrix of labels (wherem
is the total number of labels) for each image. The contents of the
adjacency matrix, M , are defined by the relation between image
labels, where if the a-th and b-th labels are connected, the (a,b)
and (b,a) values of M are set to 1; otherwise, they are set to 0.
This adjacency matrix will be used in Equ.6 in Section 3.4. When
matching regions, our current framework considers neighborhood
relationships between regions and their corresponding labels. An
issue we faced is that the labeled reference image may not include
all neighborhood relationships. To address this issue, we optimize
the neighborhood matrix dynamically in our active interaction
step. If the user labels one region and the neighboring regions have
been labeled, we will add this spatial relationship to the adjacency
matrix M .

3.2 Segmentation and Region Matching
Our method takes line-drawing images as input, making it difficult
to search for matching relationships between the local contents of
images using patch-based methods [21] such as PatchMatch [22]
or PatchTable [23]. To solve this problem, we segment the image
into several small regions according to curvature features, which
are then used to extract a descriptor of region features based on
the shape.

To segment line drawing sketches properly, we also need to
tackle the problem of discontinuous boundaries that occurs in
some regions. Thus, we choose trapped-ball segmentation [20]

(a) (b) (c) (d) (e)

Fig. 3: Comparisons of different feature descriptors. (a) labeled
images where the same color indicates the same label; (b) Patch-
Match with a patch size of 7×7; (c) SIFT [24]; (d) shape context;
(e) IDSC.

to split target and reference images into small regions. To validate
this segmentation method, we also compare it with other common
segmentation approaches. As shown in Fig. 2(b)(c), we set 100
segments in SEEDS [18] and [19]. It is obvious that the results
in (b) do not preserve the region shape; (c) may combine small
parts and sketch lines into the same segment and cannot deal
with leaking or connect the region segments. We also perform
a simple connected component analysis, as shown in Fig. 2(d),
where each connected region is marked with a different color. In
Fig. 2(c)(d) we can see that regions with different semantics are
merged because of leaking at the boundaries.

Algorithm 1: Framework of active colorization and MIQP.

1 W ← CalculateWeightMatrix(S)
2 (ActiveLearning)
3 for each step do
4 for each image Ii in Itar do
5 (MIQP )
6 y ← max{E = Ematch + λElocal};
7 Icolor ← Colorize(Lcolor);
8 end
9 Schose ← FindMinimalRiskSegment(S, y)

10 Label Schose with semantic label;
11 Update neighbor relation M ;
12 Update label dataset Dref

13 end

Each segmentation may have a complex structure and internal
holes, so we use IDSC [25] to match regions according to their
shape information. The shape descriptor in IDSC can represent
both the local features of sampling points and the global charac-
teristics. The global feature information of local points is robust
to occlusion and nonlinear distortion.

In IDSC [25], we uniformly sampleN points P = {pi} on the
contour of a given region. The shape context of each sample point
pi is represented by a histogram hi of the remaining N −1 points
in the relative coordinate system. Given two regions and their
contour point sets P = {pi} and Q = {qi}, their matching cost



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2020 4

50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1  

Random Label
Active Learning
Active LearningL+MIQP

The interaction numbers

The percentage of label accuracy

Fig. 4: Accuracy of three different labeling strategies are shown:
the red curve is for the strategy using risk estimation, and the blue
curve is for the random labeling method. The orange curve is the
result from MIQP after active learning.

(a)

(b) (c) (d) (e) (f)

Fig. 5: Labeling results. (a) reference image and its labels. (b)
input sketch image. (c) and (e) are the results without MIQP, (d)
and (f) are results with MIQP. (c) and (d) are using colors to show
the labels. (e) and (f) show the colorization results.

is calculated by the χ2 statistic. We use dynamic programming to
find a matching κ from P to Q. We use κ(i) to represent whether
pi matches qκ(i). The total matching error between two shapes is
computed as E(κ):

E(κ) =
∑

1≤i≤N
e(i, κ(i)) (1)

3.3 Active Learning
We reformulate the task of region matching to a labeling problem,
which can be solved using active learning in an interactive way.
As an initialization step, the reference image will be labeled
manually, according to the semantic information and colors that
have been introduced above. We define a real-valued function

f : L ∪ U → R to denote labels on every region, where U and
L denote the unlabeled and labeled sets, respectively. In general,
we suggest that similar unlabeled regions have the same label. In
active learning, each region to be manually marked is returned to
improve the classification accuracy of each segment. We use the
method introduced in [26] to build our active learning framework.
The Gaussian fields and harmonic functions are combined with
semisupervised learning and active learning and are used to select
the best candidate region to be manually labeled in each iteration
to improve the labeling results.

We assume a connected graphG = (V,E) is given with nodes
V corresponding to all n regions after image segmentation. The
edges E are represented by an n × n weight matrix W . In the
previous section, we introduced how to calculate the matching
error for two regions, and we use that to build an n × n weight
matrix W for active learning. In each matching operation, we can
obtain the matching loss Ei,j(κ) and the number of matched point
features Ci,j . The weight matrix W used in our active learning
method is expressed by

W (i, j) =
Ei,j(κ)

Ci,j
(2)

Since we want similar nodes to have similar labels on the
graph, we choose a quadratic energy function to represent the
smoothness on the graph:

E(f) =
1

2

∑
i,j

wi,j(f(i)− f(j))2 (3)

According to [26], the energy minimization function f =
argminy|L=yLE(y) of the Gaussian random field is harmonic.
The harmonic property means that the function value of each
labeled region equals yL, and is equal to the mean of the
graph neighbor’s values in each unlabeled region. Moreover, the
harmonic energy minimization function f can be computed with
matrix methods by assigning the Laplacian matrix 4 = D −W
to blocks for labeled and unlabeled nodes.

To select the best region to be marked in each iteration, we
refer to [26], where they apply active learning with a Gaussian
random field model by greedily selecting queries from unlabeled
regions. The selected region minimizes the risk of the Bayesian
classifier based on the harmonic energy minimization function,
and the risk can be computed with matrix methods. In the official
code provided by the authors of [26], the multiclass labeling
method is supported. It is suitable to our needs, where yi can be
represented by a one-hot vector.

To determine the impact our method has on accuracy, we
compare it to a random labeling strategy (as shown in Fig. 4).
The comparison clearly shows that our method converged to a
more accurate state at a significantly faster rate than the random
case.

3.4 Mixed-Integer Quadratic Programming
Using active learning, we can obtain the best correspondences
between regions, but they are only based on the pairwise shape
matching results. Thus, we further utilize the contextual rela-
tionship between semantic labels by the mixed-integer quadratic
programming (MIQP) method. Our optimization objective is to
maximize the following energy:

E = Ematch + λElocal (4)
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Fig. 6: Optimization results with MIQP. (a)∼(d) and (f)∼(i) show the results for 0, 50, 150, and 450 iterations, respectively; (e) and (j)
show the ground-truth images. (a)∼(d) show the colorized images with different label colors, and (f)∼(i) show the re-colorized images
with the actual color palette. This experiment uses 50 images with 1164 regions in total.

where

Ematch =
N∑
i

cTi yi (5)

Elocal =
N∑
i

∑
j∈Near(i)

yTi Myj (6)

Here, Ematch is an energy term for shape-based label match-
ing, and Elocal is a local constraint that rewards regions maintain-
ing the same neighbors between frames. λ is used to adjust the
impact of Elocal. ci(j) is the probability of labeling Sitar with
Ljref . yi is the label of Sitar , which is represented by a one-hot
vector. M is the adjacency matrix of Lref and is computed by
checking the spatial connectivity of the labeled regions in the
reference image. Near(i) represents the set of segments that
neighbor Sitar . As shown in Fig. 4, an integer programming
method can improve the accuracy based on the results labeled
by active learning. The red line is the labeling accuracy using
integer programming after each step in active learning. Integer
programming is quite helpful to improve the accuracy. In Fig.5,
we can see the final labeling results with and without MIQP. Some
incorrectly labeled regions are fixed after integrating the spatial

contextual information by MIQP, especially for regions with large
deformations, but a coherent neighborhood relationship.

4 EXPERIMENTAL RESULTS

We perform both a qualitative and quantitative evaluation of our
method, before comparing it against the current state-of-the-art
methods.

4.1 Qualitative Evaluation
Matching results using different numbers of iterations are shown
in Fig. 6. The labeled ground-truth images are shown in Fig. 6(e).
Fig. 6(a)∼(d) are the results with increasing numbers of manual
labeling iterations; 0 iterations can be regarded as the results
without active learning. As is clearly shown, the error is reduced
as the number of iterations increases.

We also compare against existing methods using the same
reference image as the input, as shown in Fig. 7. For the sake
of a fair comparison, we do not use any user interaction, which
means we run the MIQP without active learning after the initial
IDSC matching results. Here, (a) and (f) are the reference images,
and (b∼d) and (g∼i) are results from different methods. (b) and
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Fig. 7: Comparison with existing methods [6], [7], [12]. (a) and (f) are the reference images; (b) and (g) are the results of [6]; (c) and
(h) are the results of [7]; (d) and (i) are the result of [12]; (e) and (j) are our results.

(g) are colorized by method [6] with reference images (a) and (f),
respectively; (c) and (h) show the results of method [7], which
are obtained by postprocessing; (d) and (i) are the results of
method [12]. It can be seen that method [12] cannot handle cases
when the character has large deformations or when the numbers
of nodes between images differ greatly. Last, (e) and (j) are our
results. Our colorization results correlate with the reference image
far better than the other approaches.

Since our method is actually generating matching relationships
between target regions and the reference region, if we want to re-
colorize the whole image set with a new color theme, we just need
to change the reference image. This method is far more convenient
than other exsiting approaches. For example, method [7] requires
a model to be retrained to specify color style. As shown in Fig. 8,
we use two different color variants for each reference image to

show how the colorization is impacted. It is clear that our method
handles changing color much better than the other approaches.

4.2 Quantitative Evaluation

In Sec. 3.4, we test a parameter λ on ten images to weight the
neighbor relation energy impact. As shown in Fig. 9, the accuracy
is tested for different λ values, where the horizontal axis represents
the number of interactions, and the vertical axis indicates the label
accuracy percentage. We choose λ = 0.1 in the experiments, as
this value performed best in this preliminary test.

To verify the stability of our method, we randomly
select 50/75/100/125/150 images and segment them into
1100/1603/2180/2660/3200 regions to assess the performance.
The total number of segmented regions is also the maximum
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Fig. 8: Comparison against existing methods [6], [7] and [12]
using the recolored reference images. (a) sketch images; (b)
reference images in different color styles; (c) results of [6] (d)
results of [7]; (e) results of [12]; (f) our results.

number of user interactions. Table 1 shows the percentage of
user labeled regions needed to achieve colorization accuracies
of 70%/80%/90%/99% for different numbers of images. It
is clear that the colorization accuracy and required number of
user interactions maintain a similar relationship regardless of the
number of input images. For example, if a user labels 30% of
the regions, the accuracy is approximately 90%, which means that
this approach could substantially reduce the labeling workload.

We also calculate the arithmetic mean of the MSE and PSNR
over images in the test set from Fig. 7, as shown in Table 2.
Our quantitative comparison results show that our method obtains
better results without interaction than the other approaches and
achieves significantly better results when interactions are used.
The colorization result of method [6] can be improved semiauto-
matically by introducing user interactions. Unlike our method, it
could not control the generated colorization results accurately. We
conducted a user experiment to quantitatively compare our method
with method [6]. We invite 20 participants to interactively color
the same images within 6 minutes, and we quantitatively analyze
the coloring results. For each animation, we randomly select 15
images. To test the method of [6] in a semiautomatic way, we first
use automatic coloring to obtain the initial results, then we allow

50 100 150 200
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Fig. 9: The accuracy for different values of the balance parameter
λ. By changing the value of parameter, we can adjust the strength
of an adjacency relationship between segments, which in turn
affects the MIQP optimization results.

Image
number

Segment
number(±10%)

Accuracy
70% 80% 90% 99%

50 1100 5.15 19.6 32.2 56.8
75 1603 6.8 20.0 30.9 52.6
100 2180 7.3 18.6 30.6 54.0
125 2660 6.6 17.5 29.9 52.8
150 3200 6.3 17.4 29.2 50.7

TABLE 1: Stability experiment with MIQP. We randomly choose
different numbers of images to colorize and record the percentage
of iterations with different coloring accuracies. As the number
of images increases, the proportion of the number of interactions
required to achieve certain accuracy levels remains the same.

participants to interactively refine the results using method [6].
We count the numbers of images that can be interactively refined
within 6 minutes in Table 3. The interaction in [6] is complicated
and it is not easy for users to complete an interactive refinement
for a large number of images. As shown in Table 3, our method
can improve the colorization results faster and more accurately
than method [6].

4.3 Experiments on Scalability
4.3.1 User Study
As shown in Fig.10, a user interface is developed for users to
perform an interaction required by this method. The label map

mMSE mPSNR
[6] [7] [12] our [6] [7] [12] our

Anime 1 0.053 0.042 0.045 0.042 13.09 14.04 15.39 15.69
Anime 2 0.029 0.039 0.023 0.018 16.18 14.98 17.29 20.73
Anime 3 0.016 0.025 0.005 0.008 17.98 16.13 24.83 22.24
Anime 4 0.046 0.059 0.031 0.019 14.06 12.81 15.95 19.39
Anime 5 0.010 0.031 0.012 0.009 20.06 15.34 20.18 20.66
Anime 6 0.020 0.015 0.015 0.006 17.13 18.71 20.68 24.23
Anime 7 0.017 0.024 0.015 0.013 17.95 16.30 20.07 19.39
Anime 8 0.015 0.023 0.004 0.008 18.51 16.99 26.61 22.02
Anime 9 0.049 0.026 0.033 0.009 13.68 15.95 18.23 23.15
Anime 10 0.010 0.009 0.011 0.002 19.90 20.64 24.23 28.58
Anime 11 0.024 0.025 0.017 0.013 16.38 16.78 20.51 21.26
Anime 12 0.017 0.016 0.012 0.003 18.26 18.25 20.43 24.77

TABLE 2: Performance validation in Fig.7. We perform a quanti-
tative evaluation of [6], [7], and [12] using the arithmetic mean
of the MSE and PSNR. The results for the remaining animated
characters are shown in the supplementary materials.
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Image Nums mMSE mPSNR
[6] our [6] our [6] our

Anime 1 5 15 0.0399 0.0015 16.16 29.69
Anime 2 4 15 0.0322 0.0144 17.31 36.40
Anime 3 5 15 0.0124 0.0020 19.61 29.55
Anime 4 6 15 0.0268 0.0065 17.97 24.73
Anime 5 4 15 0.0154 0.0096 18.34 21.03
Anime 6 6 15 0.0096 0.0028 20.94 38.61
Anime 7 5 15 0.0106 0.0105 20.68 22.15
Anime 8 6 15 0.0089 0.0006 21.04 56.00
Anime 9 8 15 0.0216 0.0003 18.57 37.48
Anime 10 9 15 0.0053 0.0001 23.46 42.09
Anime 11 4 15 0.0188 0.0032 18.03 33.24
Anime 12 5 15 0.0121 0.0023 19.94 27.11

TABLE 3: Comparison of the effectiveness and accuracy of
our method against semiautomatic method [6]. We evaluate the
accuracy using the arithmetic mean of the MSE and PSNR, and
we evaluate the effectiveness using the number of images refined
by user interactions within the allowed time.

and true colors of the regions are shown on the upper-right corner.
Users can click different buttons to switch between adding new
labels, labeling regions and other operations. We conducted a 2-
phase user study to verify its validity. Twenty participants were
invited to colorize the sketch images manually, and using our
method separately within two six-minute periods. Ten sketches are
randomly selected for each user. To facilitate manual colorization,
images are segmented into regions in advance, and users only need
to specify the color of each segment. We compare the region-level
colorization accuracy of two different methods by the percentage
of correctly colored segments. As shown in Fig. 12, this method
produces a more accurate result than the other method. To evaluate
the required time to reach a given accuracy, we design a second
phase of our user study.We invited another group of 20 participants
and randomly selected 20 sketches for each participant. Fig. 13(a)
shows the resulting pixel-level accuracy, and Fig. 13(b) shows the
region-level accuracy. From these two images, our method obtains
much more accurate results within the same amount of time.

4.3.2 Multiple Characters
This active-learning-based colorization method for scenes could
also be applied to scenes with multiple characters. Given indi-
vidual reference images for each character, our method can find
correspondences between regions in the target image and the refer-
ence image set. The results shown in Fig. 14 are generated without
active learning iterations. It demonstrates that our colorization
framework is still robust and can find correspondences effectively
even in complex scenarios with multiple characters.

4.3.3 Colorization with Gradients
In the previous sections, this method is mainly focused on pro-
viding coherent region-matching results across all cartoon frames.
While this approach is not restricted to coloring regions with color,
it could also be applied to color gradients. We refer to the nonrigid
body registration method [27] to convert the gradient color of the
reference region to that of the target.

More specifically, we first obtain region correspondences by
our proposed region-matching method. Then, we use method
[27] to register the source and target shapes. The registration
is optimized by minimizing the corresponding point distance.
The boundary correspondence from our region-matching step is
used as a constraint condition to improve the accuracy of the
registration distance calculated by the shape registration method.
Then, the positions of grid control points are determined according

Fig. 10: User interface for colorizing cartoon line images with the
proposed methods.

(a) (b) (c) (d)

Fig. 11: (a) Reference color image, (b-d) are the results of
converting the reference image color to the target image.

to the registration method. Finally, we transform the reference to
the target region by using these values. Fig. 11 shows one sequence
of gradient coloring results.

4.3.4 Application of Region Matching

To test the capability of our proposed region matching framework,
we apply it to natural scenes. We extract regions in natural images
with similar semantic configurations, and use the region matching
method to calculate region correspondences by using segment
maps. Then, we perform color transfer with the matching results
only. The color transfer operations are performed in Lab color
space. We transfer the average values of channels a and b of the
reference region to all the pixels of the target region while keeping
the value of the L channel to maintain the textural information.
Some of the final results are shown in Fig.15. This figure demon-
strates that this approach is also able to obtain reasonable and
meaningful color transfer results for natural images.
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Fig. 12: The accuracy of the results for two different colorization
approaches: (a) manual and (b) our method. The users perform
better using our method over the fully manual approach.
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(a) (b)

Fig. 13: The relationship between user time and accuracy for
different approaches: (a) the pixel-level and the (b) region-level
accuracy.

Fig. 14: Optimization results without active learning. Each image
has multiple cartoon characters, and the reference images are
shown on the left side of each subfigure.

4.4 Limitations
Our system is designed for the colorization of line drawings of
cartoon characters, not for dealing with the background of scenes
specifically. The large variety of region shapes in the backgrounds
of cartoon sequences is too difficult to address with the current
approach. Our method has another limitation when addressing
multiple characters. Because our method do not have a character
localization and identification module, this method sometimes
failed at the initial region matching stage if the characters occlude
each other. Solving this problem will require many more user
interactions to obtain correct coloring results.

5 CONCLUSION

In this paper, we propose a novel colorization algorithm for line
drawing images. Our method is built upon an active learning
framework designed to match the target region to regions from
the colored reference image. We build a weight matrix for the
active learning algorithm using the similarity in terms of the
shape features. By providing the best region to users for labeling,
this approach could achieve a high region-matching accuracy. In
addition, we introduce an integer programming method to further
refine the labeling results. In future work, we will enlarge the
image dataset and research the application of deep learning to

Reference image Original image Color transfer

Fig. 15: Application of region correspondences. Changing the
colors of objects in the original image using the colors of the
reference image.

the active learning method to improve the algorithm performance
further.
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