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A Generic Framework and Library for
Exploration of Small Multiples through Interactive Piling

Fritz Lekschas, Xinyi Zhou, Wei Chen, Nils Gehlenborg, Benjamin Bach, and Hanspeter Pfister

Other Examples of Piles
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Fig. 1. Exploring Small Multiples through Visual Piling. (A) An example of thousands of necklace sketches from Google Quick-
draw [25] displayed as small multiples. The interactive arrangement, grouping, and aggregation of small multiples into piles support the
discovery and comparison of reoccurring patterns. (B) Other types of small multiple visualizations grouped and aggregated into piles,
including (from left to right) natural and immunofluorescence microscopy images, matrices, area charts, and scatterplots.

Abstract— Small multiples are miniature representations of visual information used generically across many domains. Handling large
numbers of small multiples imposes challenges on many analytic tasks like inspection, comparison, navigation, or annotation. To
address these challenges, we developed a framework and implemented a library called PILING.JS for designing interactive piling
interfaces. Based on the piling metaphor, such interfaces afford flexible organization, exploration, and comparison of large numbers of
small multiples by interactively aggregating visual objects into piles. Based on a systematic analysis of previous work, we present a
structured design space to guide the design of visual piling interfaces. To enable designers to efficiently build their own visual piling
interfaces, PILING.JS provides a declarative interface to avoid having to write low-level code and implements common aspects of the
design space. An accompanying GUI additionally supports the dynamic configuration of the piling interface. We demonstrate the
expressiveness of PILING.JS with examples from machine learning, immunofluorescence microscopy, genomics, and public health.

Index Terms—Information visualization, small multiples, interactive piling, visual aggregation, spatial organization.

1 INTRODUCTION

In many disciplines, datasets consist of large numbers of elements,
pattern instances, or dimensions. For instance, in supervised machine
learning, researchers compile sets of photos to train and validate ma-
chine learning models; in genomics, computational biologists study
visual patterns that act as proxies for biological features; in public
health, medical experts try to correlate different measurements to health
conditions of their patient cohort.

Small multiples [46] are a widely used visualization technique to
display such datasets through a series of miniature visualizations that
show different facets or subsets of the data. However, as the number
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of small multiples grows, comparison and exploration can become
inefficient due to the decreasing availability of screen real estate per
visualization and the increasing efforts for sequential scanning. Sub-
sampling or filtering can help to limit the number of small multiples
but might obscure important characteristics of the dataset. Summary
visualizations can alleviate this problem by aggregating subsets of the
data into a single visualization. However, the analyst needs to know
upfront how to organize the dataset into subsets. Without interactive
features, exploration with summary visualizations can be limited when
there are many potentially interesting facets or subsets to explore.

We propose a generic framework for exploring large numbers of
small multiples through interactive visual piling. Inspired by how
physical piles enable casual organization [35] of paper documents,
piling in visualization affords spatial grouping of visual elements into
piles that can be arranged, browsed, and aggregated interactively. By
combining the benefits of small multiples and visual aggregations with
interactive browsing, piling can be an effective technique for exploring
small multiples. For instance, in Fig. 1A, we demonstrate how piling
enables the discovery and comparison of shared concepts of necklace
sketches through interactive arrangements, groupings, aggregation, and
browsing. Currently, piling has been applied to matrix visualizations by
ad-hoc domain-specific methods to explore set typed data [43], dynamic
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networks [3], and matrix patterns [31]. But there are many more
scenarios where interactive visual piling can be useful for exploration,
as shown in Fig. 1. However, developing a new piling system for every
use case would be time-consuming. Moreover, many concepts of piling
are independent of the domain, data type, and visual encoding.

We present the first overview of interactive visual piling as a method
for the exploration of small multiples. Based on a systematic analysis
of previous work, we define a design space according to five analytical
tasks that any piling interface should support: grouping, arrangement,
previewing, browsing, and aggregation. We focus on analytical tasks to
study how different visual encoding and interaction approaches support
the exploration of small multiples. Our design space provides guidance
for the design of future piling interfaces. To streamline the implementa-
tion of piling interfaces, we developed PILING.JS—a JavaScript-based
library that provides solutions for many common aspects of our design
space. PILING.JS is built around a data-type independent rendering
pipeline and a declarative view specification to avoid having to write
low-level code for handling the interactive piling interface. Using
PILING.JS, we demonstrate the generality of interactive piling for ex-
ploring small multiples and the expressiveness of our library with
examples from machine learning, immunofluorescence microscopy,
geography, public health, genomics, and more. The source code of
PILING.JS is freely available under a permissive open source license at
https://github.com/flekschas/piling.js and features exten-
sive documentation and examples at https://piling.js.org.

2 RELATED WORK

Small Multiples. Small multiples [46] are a series of miniature visual-
izations that show different facets or subsets of a dataset or different
instances of a pattern type. Small multiples afford direct visual com-
parison and are, for example, used for multifaceted exploration [7, 21],
analyzing temporal data [10, 40], parameterization [24, 36], or as a
general exploration method for visual analytics [47]. Small multiple
designs are conceptually similar to glyph design [41] as the reduced
availability of screen real estate render glyphs useful. Typically, small
multiples are positioned in a grid or data-driven layout [44, 49] that
the user cannot manipulate directly. With visual piling, the goal is
to enhance small multiples to support interactive grouping and aggre-
gation of large numbers of small multiples for scenarios that require
comparisons across a multitude of facets and subsets of the data.

Piling for Document Organization. Piling is a technique for the
spatiotemporal organization of documents. Based on studying physical
piling, Thomas Malone [34] suggests that piling is cognitively easier
than filing as it only involves loose classification of documents. In
a study conducted by Whittaker and Hirschberg [51], physical piling
resulted in more frequently-browsed data collections compared to a
folder-based exploration approach. Mander et al. [35] introduced pil-
ing as a technique for casual organization of documents in a virtual
desktop environment. To address the scalability issues of piling, they
experimented with automatic piling strategies and different modes of
visually encoding and interacting with piles to aid document retrieval
and browsing. In follow-up work [42], they show how automatic piling-
based grouping and aggregation can enhance content-aware browsing
of virtual document collections. Kim et al. [28] employed visual piling
for browsing photos and found automatic piling to be as efficient for
search as manually sorting and more efficient compared to automati-
cally ordering. In this work, we are expanding the piling approach for
casual document organization into a generic technique for interactive
visual aggregation.

Interacting with Visual Piles. In the human computer interaction
community, several projects explored interaction techniques for interac-
tive browsing of document-based piles. For instance, using a 3D virtual
desktop environment called BumpTop [1], Agarawala et al. studied and
implemented several pen-based interaction techniques for a tabletop
display. BumpTop explores leafing through items like one would leaf
through pages of a book, partially dispersing piles to see individual
items better, or temporarily dispersing piles into a grid of items to
avoid any overlap. Aliakseyeu et al. [2] have further studied pen-based
interaction techniques for browsing piles and found dispersing to be

most effective. Other work explored the space of tangible interactions
with piles in a mixed-reality environment such as digital tabletops [27]
or bendable e-ink displays [19].

Additionally, Bauer et al. [5, 6] have explored spatial arrangement
techniques for piling in Dynapad, where a pile is more loosely defined
as a spatially-constrained set of visual items. Items must not necessarily
overlap, which allows for continual exposure of items but requires more
space and does not support aggregation. Another interaction technique
for spatially organized items, called Bubble Clusters [50], is built on
the implicit formation of groups based on their spatial proximity. Wall-
Top [8] implements a similar approach, where overlapping windows
feature an outline that allows for group-based spatial positioning via
drag-and-drop. We analyzed this work to identify common gestures for
interaction, which we implemented in PILING.JS.

Piling for Information Visualizations. In information visualiza-
tion, visual piling is used for comparison. Tominski et al. [45] de-
veloped a generic interactive technique for pairwise comparison of
information visualizations inspired by how people compare physical
sheets of paper. Their technique is similar to piling for pairwise com-
parisons, but it does not visually or interactively scale to more than two
items. Beyond this work, piling has mainly been applied to matrices for
visual aggregation. For example, the Onset [43] technique implements
a piling interface to interactively aggregate binary matrices for com-
parison. Bach et al. extended this approach to dynamic networks in
Small Multipiles [3] for detecting states over time. Importantly, Bach
et al. introduced the notion of a preview representation for items, which
they implement as one-dimensional aggregates of the 2D matrix to aid
browsing. In HiPiler [31], the idea of piling is further generalized to
support one-, two-, and multi-dimensional arrangements. Vogogias et
al. [48] and Fernandez et al. [17] have applied similar matrix-based
visual piling ideas to other applications in biology and software evo-
lution. Finally, Lekschas et al. [30] use piling to guide navigation in
multiscale visualizations by aggregating overlapping patterns into piles
and displaying them as insets.

In general, visual piling is an approach to reduce clutter [15] through
interactive aggregation. In this paper we demonstrate the usefulness of
piling and generalize the piling approach beyond matrix visualizations.

3 THE VISUAL PILING APPROACH

Visual piling is an interactive approach for organizing, exploring, and
comparing small multiples. Piling is centered around the act of spatially
positioning items on top of each other, which together form a pile, and
arranging these piles meaningfully to support effective comparison.

3.1 Elements and Properties of a Visual Pile

Inspired by physical piles of paper documents, we define a pile as a
group of partially-occluded small multiples that results from piling up
individual items, illustrated in Fig. 2. Given the partial overlap, only
a single item is shown in its entirety, which we call the pile cover.
As the remaining items are only partially visible, we refer to them as
previews. While there are many ways of visually representing a pile, we
distinguish piles from other forms of spatially-arranged small multiples
by the following set of properties, which builds upon the description of
a physical pile from Bauer et al. [6].

Occlusion & Connectedness. Items that comprise a pile should
occlude each other partially to form a single mutually-connected unit.
However, piles can temporarily be dispersed for exploration.

Identity. A pile must differentiate itself visually from a single
item. There are different visual encodings to identify a pile, like a label
indicating the number of items on a pile, superimposed semi-transparent
images, or items that are offset relative to each other.

Cohesion. Items on a pile should act as a single element during the
exploration. Cohesive behavior does not mean that access to individual
items is lost upon grouping items into a pile. However, a pile should
reflect the notion of a group when interacting with the piling interface.

Transience. Piling should be seen as a dynamic process where the
piling state can change frequently. In contrast to other aggregation tech-
niques, the goal of piling is to compose and disperse piles interactively

https://github.com/flekschas/piling.js
https://piling.js.org
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Fig. 2. Elements and Properties of Visual Piles. To illustrate key
properties of piles, we differentiate between individual items and piles.

rather than to just consume a static grouping state. However, this does
not mean that piles cannot persist.

3.2 Goals and Tasks
Even though the application-specific goals differ, we identify two over-
arching goals for interactive visual piling interfaces from related work.
(G1) Visual piling is a tool for organizing data collections into subsets
to reduce complexity. This includes, for example, to sort items into
groups, categorize groups based on their content, or filter out subsets
of items for quality control. (G2) Beyond organization, visual piles are
a means to explore and compare individual items and groups of items
to each other. Specifically, one might want to determine the primary
topic of a group, identify outliers, or discover trends.

To identify the common tasks needed to support organization, ex-
ploration, and comparison, we systematically reviewed related work.
Following an open-coding approach, the first two authors coded all
17 piling-related papers from Sect. 2 according to their application-
specific tasks independently. We focused our coding efforts on the role
of interactive piling to not confuse piling-specific with unrelated tasks.
After coding the papers, the first two authors resolved disagreements.
Subsequently, we generalized the assigned codes into five high-level
analytic tasks that any interactive visual piling interface should support.

T1 Grouping: manually or automatically sort items into piles.

T2 Arrangement: position items and piles relative to each other in
an orderly, randomized, gridded, or unconstrained layout.

T3 Previewing: identify and locate items on a pile using in-place,
gallery, foreshortened, combining, and indicating previews.

T4 Browsing: search, explore, and navigate within and between piles
through in-place, dispersive, layered, and hierarchical browsing.

T5 Aggregation: summarize a pile into a synthesized, representative,
or abstract representation.

To study how different visual encoding and interaction approaches
support the exploration of small multiples, we use these five analytical
tasks to structure the design space exploration (Sect. 4) and to guide
future piling designs.

3.3 Usage Scenario
To exemplify how visual piling enhances the exploration of small
multiples, we describe a typical usage scenario following the example
of necklace sketches from Google Quickdraw [25] (Fig. 1A), which we
also demonstrate in the supplementary video. One goal in analyzing
large collections of visual objects is to identify and compare trends
within the dataset. Inspired by Forma Fluens [37], we are trying to
find reoccurring pattern concepts. Visualizing the sketches as small
multiples (Fig. 1A1 left) allows us to assess and compare individual
sketches, but it does not support the discovery of shared concepts.
A common approach to uncover similarities within large and high-
dimensional data collections is to arrange (T2) the items as a two-
dimensional embedding for cluster analysis (Fig. 1A2). We arranged
the items by a UMAP [38] embedding of image features that were
learned with a convolutional autoencoder. In the resulting cluster plot,
items can be represented as a symbol (e.g., a dot) or a small thumbnail.
While symbol-based cluster plots are highly scalable, they do not reveal
the visual details of a cluster. On the other hand, thumbnail-based

cluster plots do not scale to large datasets due to overplotting issues.
Visual piling provides a trade-off by grouping (T1) spatial clusters,
i.e., clusters formed by items in relative proximity (Fig. 1A3). By
aggregating (T5) all sketches into an average and showing this average
as the pile cover, we can discover and browse overarching concepts
effectively. For instance, after manually refining the grouping and
arrangement of four piles (Supplementary Figure S1), we can see
that people are sketching a necklace as an open beaded necklace, a
necklace worn around a neck, an open pendant necklace, or a closed
pendant necklace (Fig. 1A4). Visual piling also affords the encoding
of additional information beyond the individual items. For instance, in
Fig. 1A4, we visualize the relative distribution of geographic regions
across a pile using small bar charts below each pile.

4 A DESIGN SPACE FOR VISUAL PILING

This is the first design space (Fig. 3) for visual piling. For each of the
five analytical tasks (Sect. 3.2), we derived general approaches and
common solutions from previous work through multiple discussions
among the co-authors. The resulting subcategories cover overarching
approaches of each task. We generalize these approaches to highlight
conceptual differences. Multiple approaches can be combined to offer
different ways of organizing and exploring small multiples. In our
design space, we cover the relevant visual encodings and interactions.
We also describe common gestures for triggering interactions but do
not attempt to provide a complete overview of all possible gestures.

4.1 Grouping
We distinguish between manual and automatic grouping (T1), as ex-
emplified in Fig. 3 Grouping. Manual grouping requires the user to
interactively determine which items should be grouped and, potentially,
in which order. Automatic grouping follows a specific procedure to
group multiple items at once.

Manual. Sequential grouping is the simplest form of manual group-
ing. It requires the user to group items interactively, one at a time. This
is typically achieved with a drag-and-drop gesture [1,3,5,31,35,43,50].
While sequential grouping requires more time, it enables temporal orga-
nization. For instance, the most recently added elements can be located
on top of the pile. For efficiency, one can also form a group from
multiple selected items. While multi-select grouping does not result
in intermediate groupings, the sequence of selected items can still be
reflected, given the order of selected items. In contrast, parallel group-
ing techniques allow two or more items to be piled up at the same time.
For instance, many piling interfaces support region-based grouping via
lasso techniques [1, 31]. Parallel grouping does not afford temporal
organization as the order in which multiple items are grouped together
is not explicitly defined. A special form of grouping, which can be
treated as parallel or sequential, is swiping [31], where the user moves
the mouse cursor or pen over each item to be grouped. Swiping enables
more precise selections in dense arrangements like cluster plots.

Automatic. Many piling interfaces support automatic grouping to
improve scalability. Layout-driven grouping is based on an explicitly-
or implicitly-defined layout. Items that are located within the same
unit of the layout can then be grouped. Such units can, for instance,
be the rows, columns, or grid cells [31]. Proximity-based grouping
uses the Gestalt principle of “proximity,” which states that nearby
items implicitly form groups perceptually. However, implicit grouping
can cause uncertainty in subsequent pile interactions [35] as it is not
always possible to infer the grouping state as perceived by the user [6].
Therefore, most piling interfaces only use proximity to trigger explicit
grouping, e.g., by outlining the pile bounds [5, 50] or merging nearby
items [30]. Finally, in similarity-based grouping, items are merged
automatically based on some notion of similarity. While there are many
different ways of measuring similarity, fundamentally, the similarity
can be derived from the items [3, 28, 31, 42] or related metadata [31].

4.2 Arrangement
For arrangements (T2), we consider the relative positioning of items
on a pile and the absolute positioning of piles (Fig. 3 Arrangement).
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Fig. 3. Dimensions of the Visual Piling Design Space. We structure the design space according to the five analytical tasks into different
approaches for grouping, arrangement, previewing, browsing, and aggregation.

Item arrangement. A random item arrangement is characterized by
non-deterministic offsets and rotations of the items. Such arrangements
make the visual pile closely resemble a physical pile, which can be
useful to distinguish between automatically- and manually-composed
piles [35]. Random item arrangements can also encode access patterns,
such as the frequency of file access [14]. Finally, a pseudo-random
item arrangement can be the result of sequential grouping. Since it
is unlikely that the user will stack items in a pixel-precise manner,
the resulting offset can appear random. Nevertheless, the offset can
provide meaningful cues to the pile creator [34] for browsing (T4).
In contrast, orderly item arrangements are the result of automatic and
deterministic positioning. Such arrangements enable controlling how
much each item is overlapped, which is useful for comparing items [3,
31]. When the item offset follows a single direction, in-place browsing
can be efficient as the cursor movement is minimal. Also, orderly
arrangements typically follow the Gestalt principle of “continuation”
to foster perceptual grouping.

Pile Arrangement. Dividing the canvas into rows and columns of a
specific size leads to a gridded pile arrangement. Gridded arrangements
are useful for comparing piles due to the alignment. Imposing a specific
ordering onto the pile can highlight temporal or sequential patterns.
The simplest form of a gridded pile arrangement is a one-dimensional
timeline [6, 28] but two-dimensional grid layouts are more common
to make use of the entire screen [1, 3, 5, 31]. Finally, as precise pile
arrangements, we summarize manual, layout-driven, or data-driven ar-
rangements that require a pixel-precise positioning on the canvas. In this
regards, automatic arrangements can incorporate one-dimensional [6],
two-dimensional [31], or multidimensional [31] scatterplots. The posi-
tion can also be inherent to the items themselves, which is, for example,
the case for exploring annotated pattern instances [30].

4.3 Previewing
To afford content-awareness, visual piles can implement different layout
types to support previewing items (T3), as shown in Fig. 3, which is
key to support effective exploration and navigation (T4).

Partial. Inspired by physical piling, partial previewing of items
arises naturally and is implemented in many piling interfaces [1, 2, 5,
27, 28]. The effectiveness depends on the data type and the size of the
partial previews.

Gallery. When the partial overlap severely limits the perception of
the item’s content, one can opt for a gallery preview where a small
number of items or aggregates [30] is shown in a regular grid. This
approach can be useful for datasets in combination with a representative
aggregation approach (Sect. 4.5).

Foreshortened. To limit the size of a pile while still providing
item-specific previews, previews can be foreshortened along one axis.

Such previews can be implemented with perspective distortion [1],
compression, or aggregation along one dimension [3, 17, 30, 31, 48].
While the first option can provide cues for search and navigation (T4),
the latter enables more effective comparison between alignable items.

Combining. When working with items that have a sparse visual
representation and shared axes, like scatterplots, line charts, or bar
charts, multiple items can be combined to provide an overview. A
combined preview can be the result of superimposing items with a
transparent background or through dedicated aggregation [43]. While
this approach is space-efficient, the relationship between the overview
and individual items might get lost without employing other means of
previewing items.

Indicating. To maximize space efficiency while still hinting at an
item’s content, one can provide abstract indicators as item previews.
Most common indicators are implemented as tabs [23, 43], but the
indicator can be more abstract, e.g., a small dot. While indicators do
not directly preview the content, they afford browsing (Sect. 4.4) and
can encode metadata like the distribution of items.

4.4 Browsing

In the context of visual piling, we regard browsing (T4) as the act of
inspecting the visual details of piled items (Fig. 3 Browsing). Since
browsing requires interaction, the applicability of different browsing
approaches depends on the type of preview.

In-Place. Inspecting the visual details of an item in-place is a fast
browsing approach as the arrangement of items remains unchanged. To
show an item in its entirety, the ordering of items is altered temporarily
such that the browsed item is shown on top [1, 2, 23]. A variation of in-
place browsing shows the browsed item next to the pile as an inset [35].
Another in-place browsing technique called “leafing” [1, 3, 30, 31]
involves interacting with foreshortened previews. Upon interaction,
foreshortened previews can either be expanded to their full extent or
shown on top of the pile, similar to flipping through the pages of a book.
Typically, in-place browsing is triggered by moving the pointing device
over the preview item to be shown in its full extent [1–3, 23, 30, 31, 35].

Dispersive. Dispersive pile browsing techniques temporarily dis-
perse a pile such that the overlap between items is resolved partially or
entirely, allowing for subsequent comparison of the items. To aid main-
taining a mental map of the items on a pile, many dispersive techniques
use the same type of layout for positioning the dispersed items and
only increase the spacing between items [1, 3, 50]. A more disruptive
approach arranges the dispersed items into a regular grid [1, 2, 6]. Pile
dispersion is often triggered by a double click or tap [2, 3, 31, 50], but
many gestures have been explored too including horizontally moving
a pointer device back and forth [35], hovering over a pile [1], and
context-menu induced dragging gestures [1]. Finally, an indirect way
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Fig. 4. Additional Pile Encoding. The coloring, scale, border, and
labels afford additional encodings that can be useful for exploration.

of dispersive browsing employs a zoom gesture in combination with
automatic proximity-based grouping [5, 30]. Thereby, piles gradually
disperse as the user zooms into a specific region.

Layered. Increasing numbers of small multiples limit the available
space for visual browsing. Layered browsing techniques temporarily
hide other items and, thus, give more space to the browsed piles. Layer-
ing can be combined with dispersive browsing to support flexible pile
exploration and sub-piling [31].

Hierarchical. Finally, for piles of many items, it can be ineffective
to browse all items at once. Instead, hierarchical clustering can be em-
ployed to enable hierarchical browsing such that the pile only disperses
into a subset of piles from the next hierarchical level.

4.5 Aggregation

Aggregation (T5) is the act of summarizing piled items into a concise
form (Fig. 3 Aggregation). The goal of aggregation is to improve the
content awareness when previewing a pile and aid comparison between
groups of items. Therefore, the choice of the aggregation method
depends on the layout type for previewing.

Synthesized. We call aggregation techniques that create a sin-
gle image from a group of items synthesized aggregations. Hereby,
the resolution or granularity of the aggregate is identical to the
items. Summary statistics are commonly used for synthesized ag-
gregations [3, 30, 31, 43, 48] but other methods are possible. When
the aggregate presents new or unseen information, it is useful to pro-
vide some means of previewing individual items [3, 31, 43] to enable
item-specific comparisons.

Representative. For data types where individual items do not align
well, such as natural images, synthesized aggregations are typically
ineffective. Instead, the pile can be summarized by a single or mul-
tiple representative items which are typically visualized as gallery
previews [30]. Through careful sampling, the selection of representa-
tive items can provide enough information to inform the user about a
pile’s primary content.

Abstract. Finally, for non-alignable but well-defined data, one can
employ abstract aggregation techniques. The goal of such techniques is
to provide a simplistic or schematic representation of the pile’s content
where the resolution or granularity is reduced compared to the items.
Simplistic aggregations provide limited content awareness. However,
the aggregation can, nevertheless, hint at the category or type of items
on a pile, which can be useful for navigation (T4).

4.6 Additional Pile Encodings

Several additional style properties (Fig. 4) can be employed to encode
related information such as the pile or item size, item access patterns,
or categorical information.

Coloring. To highlight trends within a group of piled items, one can
adjust the lightness [35] or apply other color filters. While potentially
effective at encoding additional information, extreme color adjustments
can harm content awareness and should be used with caution.

Scaling. Scaling the visual pile size in the x,y [30] or z-direction is
another approach to encode additional information. Z-scaling requires
that items are represented as three-dimensional objects. If applied,
z-scaling can also afford edge browsing, which is an in-place browsing
technique for physical piles [35].

Border. Beyond manipulating the piled items, visual piles can also
utilize a border to encode information through its color, size, texture,
or sharpness [30, 31].

Labeling. When working with categorical data, grouping and com-
parison can be improved by drawing a textual label [3,14,35] or visual-
izing categories as colored badges [31]. These badges can be adjusted to
show the distribution of categories across a pile for improved browsing
and comparison, as shown in Fig. 1A “Browse & Compare”.

5 PILING.JS– A LIBRARY FOR VISUAL PILING

Based on our design space definition, we developed PILING.JS, a
JavaScript library, to streamline the implementation of piling inter-
faces. PILING.JS is built around a data-agnostic rendering pipeline
and a declarative view specification to define complex piling interface
without having to write low-level code (Supplementary Figure S2). The
library manages the view state and implements methods for interactive
grouping, arrangement, browsing, and previewing. The designer’s task
is to specify the data rendering and aggregation (i.e., the elements of a
visual pile), and the visual pile encoding. For interaction, gestures to
manipulate piles are provided automatically by PILING.JS. See Supple-
mentary Table S1 for an overview of PILING.JS’ coverage of the visual
piling design space.

5.1 Data Rendering
As a first step, the designer needs to specify the data rendering pipeline
(Fig. 5) to create the elements of a visual pile. This pipeline involves
the definition of the item data, a renderer, and an aggregator. While all
three aspects play together, their implementations are decoupled so that
each component can be reused, replaced, and extended easily.

[{ src: [1,42,3,4], cat: 'A' },
{ src: [10,0,0,3], cat: 'B' }]

items => Promise.resolve(items.map(
item => Math.max( ...item.src))
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Fig. 5. Rendering Pipeline. Renderers receive as input the src property
of items or the result of an aggregator. The aggregator in turn receives
the items as input including additional properties (blue).

Data. PILING.JS operates on two primary data concepts: items and
piles. The items are determined by the user and treated as immutable
objects, while piles are created dynamically by PILING.JS. Each item
is expected to be a JavaScript object with a src property that is, by
convention, passed to the renderer (Fig. 5). This convention allows
the designer to switch between different renderers without having to
change the item itself. To enable exploration of dynamic datasets,
PILING.JS supports a data matching strategy, using an optional id
property, which works similarly to D3’s [9] data joins. Upon updating
the items, PILING.JS will match items by their id to identify outdated,
updated, and newly-added items. By default, the id is set to the list
index of items. An item object can contain additional properties to
be used for dynamic styling, which enables concise and readable style
specifications (Fig. 8). The piles are a list of objects that hold the
item ids and the pile’s xy position. All other pile encoding aspects
are inferred automatically from the view specification. We chose this
relatively simple data model to make piling more accessible.

Renderers. PILING.JS renders items into textures and subsequently
operates on these textures during gesturing to decouple the state man-
agement and gesture handling from the domain-specific visualizations.
To support a wide range of previewing and aggregation approaches,
PILING.JS offers different rendering regimes for items, previews, and
covers (Fig. 6). A renderer is a function that receives as input the src
property of one or more items and returns a single promise object that
resolves to texture resources once the rendering finishes (Fig. 5). A
promise is a proxy for a future value and commonly used to enable
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Fig. 6. Rendering Regimes. Static renderers are easy to set up but
offer limited support for aggregation. Dynamic renderers can be complex
but support dynamic updates (e.g., color scaling) and aggregation.

asynchronous executions in JavaScript. The texture resources must be
one of the following media types: an image, canvas, or video element.
Since many web-based visualizations render SVGs, PILING.JS pro-
vides a predefined SVG renderer that accepts an SVG string or element
as input. Using the SVG renderer, it is easy to render any static D3
visualization in PILING.JS. PILING.JS also includes a predefined ma-
trix renderer and supports PixiJS [20] WebGL programs as a renderer
for dynamic re-rendering (Fig. 6 right). To support gallery previews,
PILING.JS implements meta renderers, which compose multiple images
into a single image. These renderers rely on a representative aggrega-
tion approach. For convenience, PILING.JS provides a built-in renderer
that composes multiple items into a gallery ( Fig. 7). In general, each
built-in renderer can be replaced or configured for customization.

Aggregators. To support foreshortened item previewing or pile
aggregations, the designer needs to specify an aggregator function for
items or piles. The aggregator either receives as input a single item
or multiple items and returns a single data source that is subsequently
passed to the related renderer. By decoupling renderers and aggregators,
both can be reused without having to adjust them. Also, not all types
of item previews require aggregation. For synthesizing aggregation,
PILING.JS provides a set of predefined matrix aggregators that supports
common summary statistics (mean, variance, and standard deviation).
For representative aggregation, PILING.JS implements a generic cluster-
based approach that employs k-means clustering as the computation is
fast enough to not cause noticeable delays. We pick the k items that are
closest to the k centroids from k-means as the representative images.

5.2 Pile Encoding via View Properties
PILING.JS offers many view properties to specify the arrangement,
previewing, and visual encoding of piles (Supplementary Figure
S2). For a complete overview of all view properties, please refer
to https://piling.js.org. View properties are set via PILING.JS’s
set method, which receives as input the property name and value. In
general, there are three types of view properties in PILING.JS, which
related to our data model (Sect. 5.1): global, pile-specific, and item-
specific view properties. Global properties relate to the entire piling
interface and do not change during interactive grouping. For instance,
set(’columns’,10) sets the number of columns to 10. In contrast,
pile- and item-specific properties can depend on the grouping on the
pile, i.e., the state of grouping, and therefore support dynamic specifier
functions (Fig. 8). For instance, the pile border size could be a function
of the number of elements on a pile. Inspired by D3 [9], PILING.JS
implements a declarative data-driven interface to dynamic properties by
passing the specific items and piles to the specifier function. Using
this approach, the designer only needs to specify how to translate the
data object into a property value, while PILING.JS visually renders the

Fig. 7. Gallery Previews. The built-in representative renderer supports
galleries of two, three, four, six, eight, and nine previews.

(item, i, pile) => Math.min(
.85, .05 * (pile.items.length - i-1))

pile => 1 + Math.min(
2, (pile.items.length - 1) * .05)

Pile Scale

Item Brightness

Fig. 8. Dynamic View Properties. (Left) We dynamically scale the pixel
size of the pile by the number of items. (Right) We dynamically adjust the
brightness of items, based on the item order. Items with a small index
appear brighter. The brightness ranges from -1 (black) to 1 (white).

property. Dynamic pile-specific properties are invoked for every pile.
They receive the current pile object and return a corresponding property
value. Item-specific property specifiers are invoked for every item on a
pile as the pile’s composition changes. The specifier function receives
an item’s data object, index, and corresponding pile object, and returns
the property value (Fig. 8 bottom-right).

5.3 Pile Interactions
While visual piling is agnostic to the input device (e.g., mouse, pen,
or touch), PILING.JS currently focuses on mouse interactions and im-
plements general mouse gestures found across several related works
(Sect. 4) for manual grouping, arrangement, browsing, as well as meth-
ods for automatic grouping and arrangement.

Gestures for Manual Interactions. PILING.JS implements com-
mon gestures for grouping and arrangement (Sect. 4). Piles can be
arranged manually via a drag-and-drop gesture. For sequential group-
ing, an item or pile needs to be dropped onto another item or pile (Fig. 9
top-left). To group multiple items at once, PILING.JS offers a lasso tool.
The lasso is initiated by clicking into an empty region of the canvas.
Subsequently, a circle will appear (Fig. 9 bottom-left). By clicking
into this circle and holding down the primary mouse button, the user
can start the lasso selection. All items located within the lasso area
are grouped upon releasing the primary mouse button. For browsing
(Sect. 4.4), PILING.JS implements gestures for in-place, dispersive,
layered, and hierarchical browsing. In-place browsing is triggered by a
click on a pile and moving the mouse cursor over the previews. Double-
clicking on a pile will temporarily disperse a pile into a regular grid,
as shown in Fig. 9 (top-right). To browse a pile in layers, the user can
activate the pile’s context menu (Fig. 9 top-right) and select “browse
separately.” The browsed pile is additionally dispersed on the next layer
to support rapid sub-piling.

Automatic Grouping and Arrangements To support automatic
grouping and arrangement, PILING.JS features a groupBy, splitBy
and arrangeBy method. The groupBy method enables layout-,
proximity-, and data-driven groupings, as described in Sect. 4.1. As a
complement, the splitBymethod can split piles based on their position
and data properties of items. Finally, the arrangeBy method enables
automatic pile-specific arrangements. All three methods rely on a type
and an objective. The type determines the subroutine to be used and
the objective provides the necessary data to execute this subroutine.

Grouping Browsing

Drag-and-drop
Dispersive browsing

Lasso Layered browsing

Fig. 9. Interaction Techniques. PILING.JS supports drag-and-drop and
lasso gestures for manual grouping. In PILING.JS, piles can be dispersed
temporarily via a double click and browsed in layers via the context menu.

https://piling.js.org
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{
name: 'poly-T hue',
dtype: 'float',
min: 0,
max: 1,
numSteps: 360,
defaultValue: 240,
onInput: true,
setter: hue => {

renderer.setColor(
0, hue

);
piling.render();

}
}

Fig. 10. Graphical User Interface for Parameterization. PILING.JS
implements several default settings and allows to define use-case specific
settings. See Supplementary Figure S4 for a scaled-up version.

For an example, see Supplementary Figure S3. Currently, groupBy sup-
ports proximity-based (distance and overlap), layout-driven (grid,
column, and row), and similarity-based (category and cluster)
grouping. For instance, groupBy(’category’, ’country’) will
group all items of the same country, assuming that the items contain
a property called country. We chose this API style to keep the num-
ber of public API methods small. The splitBy method supports the
same proximity- and similarity-based subroutines for splitting piles.
The arrangeBy offers coordinate-based (xy, ij, uv, and index) and
data-driven (data) layouts, e.g., arrangeBy(’data’, ’size’) will
order items by a property called country. Finally, the proximity-based
groupBy subroutines can be re-evaluated automatically upon zooming,
as the proximity between items might have changed (Fig. 17). Sim-
ilarly, the arrangeBy subroutines can be re-evaluated automatically
after grouping piles.

5.4 Adjust and Explore the Piling Interface via a GUI
PILING.JS provides a mid-level API, which hides the state and ren-
dering aspects of visual piling but relies on the designer to implement
the rendering pipeline programmatically. As we worked on the use
cases (Sect. 6), we realized that switching between a text editor and
the browser to parameterize view specification can be time-consuming
since the visual feedback is delayed until the browser refreshes. There-
fore, as shown in Fig. 10, we provide a simple yet effective GUI to
allow the designer to adjust various view properties dynamically.

Currently, the GUI features elements for adjusting static property
values such as Boolean flags, single or multiple selections, or numerical
values. The GUI also has support for triggering groupings and arrange-
ments. Finally, given the breadth of view properties, it is infeasible to
cover every possible setting. Therefore, PILING.JS allows the designer
to specify custom settings (Fig. 10 bottom-right).

5.5 Implementation
PILING.JS is implemented in JavaScript using PixiJS [20] for WebGL
rendering. We chose PixiJS for its highly-optimized 2D texture render-
ing and flexible mid-level API, which greatly simplifies the develop-
ment of WebGL programs. The source code of PILING.JS is free and
openly available at https://github.com/flekschas/piling.js
and features extensive documentation (https://piling.js.org/
docs) for all available view configurations.

5.6 Performance Evaluation
PILING.JS is designed to support datasets of up to a few thousand items.
In the following, we evaluate the initialization time and frame rate
(Fig. 11). The initialization time includes the library’s startup time,
data rendering, and item creation. We compare the time for loading
items of the following media types: images, canvas-derived textures,
and WebGL programs. For the frame rate, we compare navigation,
arrangement, and grouping animations (i.e., animated transitions of
the piling state triggered by scripted interactions) using the example

from Fig. 1. Specifically, we examine scrolling, pan-and-zoom, auto-
matic arrangements of all items, and lasso-based grouping, which cover
the essential core interactions. We repeated each animation ten times
and measured the duration in seconds and frames per second (FPS) in
Chromium (v80) on a 2016 MacBook Pro.
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Fig. 11. Performance Evaluation. Construction time (smaller is better)
and frame rate (higher is better; 60 FPS is the best) as a function of the
number of items for different media and interaction types. Loading 5,000
dynamic WebGL renderers (“X”) was not feasible as the browser timed
out. Error bars show standard deviation.

As shown in Fig. 11, the initialization time increases with the number
of items but remains acceptable until 1,000 items. The media type and
size of the items greatly influences the initialization time. Especially
the custom WebGL programs take longer to initialize. The frame rates
for scrolling and pan-and-zoom interactions with datasets of up to 1,000
items is smooth but starts to degrade significantly for datasets larger
than 2,000 items. As the arrangement and grouping animations are
more involved, their frame rates are lower but remain acceptable for up
to 2,000 items.

6 USE CASES

In the following section, we present several use cases to demonstrate
the generality of the visual piling approach and the expressiveness of
our PILING.JS library for exploring large collections of small multiples.
The use cases are also available online at https://piling.js.org.

Compiling Training Data for Machine Learning.
A critical aspect of machine learning research, especially deep learn-

ing, is the composition of training and validation datasets to probe
machine learning models. For instance, in computer vision research,
this involves collecting, sorting, and selecting images. While several
collections of annotated images exist for comparison and benchmark-
ing [13,16,29,33], subsets are often used during the initial development
of the model for exploration. Creating these subsets is not trivial as
nuanced image features might not have been extracted, and formal
categorization of every potential interesting feature is prohibitive. Vi-
sual piling can address this issue by allowing users to sort existing
datasets into subsets (T1) for rapid hypothesis testing. For example,
in Fig. 12.1, we sampled 2,000 images of cars in context from the Mi-
crosoft COCO [33] dataset that can be used to train car detector models.
Browsing all images provides a first overview. Using the given object
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Fig. 12. Compiling Natural Images from the COCO dataset [33]. All
images (1) contain car annotations, but only a subset of them show a car
prominently. (2) Arranging the images by their primary annotation type
and relative annotation size improves the explorability.
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Fig. 13. Microscopy Cell Instances. Small multiples of different cell
types (1) from an immunofluorescence microscopy image [12] where
green shows total mRNA and blue represents nuclei. Visual piling (2)
allows for simultaneous exploration of the cell phenotype and related
gene expression profiles (black and white heatmap) as highlighted in (3).

annotations, we can arrange (T2) the images in a two-dimensional grid
by their primary category (x-axis) and relative size of the annotation in
pixels2 (y-axis). Google Facets [21] allows for similar arrangements
but requires zooming as the number of items increases. With PILING.JS
we can instead group all items that are located within the same grid cell
into piles, which provides visual cues about the groups’ content and the
ability to compose new groups manually.

Exploring Instance Annotations in Large Images. One aspect
of analyzing large image data involves the exploration of instance
annotations. For example, in cell biology, researchers annotate cell
boundaries in immunofluorescence microscopy data of tissues or cell
cultures. The goal of visual exploration is to compare and organize
cells to each other for quality control and stratification (T1). Using a
conventional small-multiples approach can be limiting when there are
several potentially-interesting arrangements. In Fig. 13 we show an
exploration of a microscopy image from Codeluppi et al. [12]. Since
the cells were clustered based on their gene expression profiles, we
arranged cells by the gene expression data reported in the original paper
(T2). As the cell bodies do not align well, we show a gallery preview of
representative images (Fig. 13 2 and 3) as the pile cover to highlight the
diversity of cell images across the pile (T5). Additionally, we preview
individual cell annotations as one-dimensional heatmaps (T3) above
the cover, which show the cells’ gene expression profiles. This enables
us to correlate the cell morphology to the gene expression data.

Comparing Repeated One-Dimensional Measurements. Com-
paring one-dimensional repeated measurements with small multiples
typically involves the alignment of items along a shared axis to dis-
cover patterns (T2). For large numbers of repeated measurements, it
can be beneficial to explicitly group measurements to emphasize trends
and to interactively change the grouping to highlight different patterns
between subsets of the data. For example, in Fig. 14, we loaded the
global surface temperature anomaly dataset from NASA [18, 32]. This
dataset contains surface temperature measurements for each month
across 14 decades (the 1880s to 2010s) that is normalized by the mean
temperature of 1951-1980. We plotted the mean temperature deviations
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Fig. 14. Global Temperature Anomalies. Surface temperature devia-
tions from -1.5 to +1.5 degrees Celsius across decades. Piling enables
the dynamic creation of ridge plot-like piles (2 and 3) from small multiples
(1) for interactive comparison of decennial (2) and monthly (3) trends.
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Fig. 15. Annual Precipitation Cycle. Displaying movie frames as small
multiples (1) does not uncover similar scenes well. After arranging the
frames by their similarity (2) to show clusters and grouping the frames
into piles, we can identify nine distinct states (3).

from -1.5 to +1.5 degrees Celsius for each month of the 14 decades
(Fig. 14.1). Grouping the plots by decades or months, and arranging
them by a vertical offset enables us to dynamically create ridge plot-like
piles. Positioning the piles next to each other makes it easy to compare
decennial (Fig. 14.2) and monthly trends (Fig. 14.3). We can now
immediately see how the temperature increased over the last 140 years.

Movie Analysis. When analyzing movies, it can be insightful to
study the visual similarity of scenes. To compare the similarity between
frames, Bach et al. [4] folded a linear curve, called a time curve, in
2D space using a dimensionality reduction technique. In Fig. 15.1, we
loaded 365 frames from a movie showing the annual precipitation cycle
of the United States [11] (one frame per day). Based on the similarity
between each frame, we embedded the frames into a two-dimensional
space with UMAP [38] (Fig. 15.2). After arranging the frames by their
embedding (T2), we can highlight the annual precipitation cycle and
several clusters of highly similar frames. Visualizing the frames as
thumbnails shows what these clusters represent. As the high number of
frames makes it hard to compare individual frames, we grouped over-
lapping frames into piles to simplify the view (T1), which highlights
nine visually distinct precipitation patterns (Fig. 15.3). Additionally,
we encode the frame order via the border color (which ranges from
light gray (January) to black (December)) and connect the piles with a
line visualization to foster the connection to the underlying sequence
of the movie. This line visualization is realized with D3 [9] and linked
to the pile interface.

Time Series Analysis. When dealing with time series, an important
task is to identify overall trends and variations. To see and make sense
of any trends, one must be able to compare individual items. Visual
piling can address this challenge through content-aware browsing (T4).
In Fig. 16, we plot the fertility rate (x-axis) against life expectancy
(y-axis) from Worldbank [52] from 1960 to 2017 as small multiples,
resolved by country and colored according to the geographic region.
After grouping (T1) European countries (Fig. 16.2), we can see that,
over time, the fertility rate lowers while the life expectancy increases,
as shown by color gradient going from bright (1960) to dark (2017). To
support comparing individual years without having to split the groups,

Pile up 1960 and 2017

Pile up 1960 to 2017 "Leaf" through the yearsIndicating Previews

1
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Fig. 16. Fertility Rate vs. Life Expectancy. We group small multiples
(1) into a pile (2) to compare changes over time, which we browse by
leafing through the indicating previews (3). Manual grouping (bottom)
allows us to compare East Asia (blue) against North America (yellow).
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Fig. 17. Worldmap of COVID-19 Infection Rates. Small multiples of
area charts (1) show the number of infected people over time. Arranging
the charts geographically (2) and grouping them by overlap (3) highlights
infection hot spots without overplotting issues. Upon zooming in, piles
are automatically split (3-5).

we render small rectangles next to a pile as indicating previews (T3)
of the years. By leafing through the rectangles (T4), the year’s corre-
sponding scatterplot is revealed, which allows us to trace the temporal
development (Fig. 16.3 top). Upon manually grouping scatterplots, we
aggregate (T5) the data into a combined and connected scatterplot [22],
which is shown as the pile cover, to allow tracing the development of
individual countries. By piling up the years 1960 and 2017 of North
America and East Asia, we can see the alignment of countries in both
regions (Fig. 16.3 bottom).

Pattern-Driven Navigation in Multiscale Visualization. A com-
mon challenge in exploring local patterns in multiscale visualization is
the lack of visual details at an overview [26]. These details are often
needed to decide which region to explore in detail. Lens techniques can
be applied to magnify a selected region, but many lens techniques do
not scale well to large numbers of local patterns. As shown in Scalable
Insets [30], the scalability issue can be addressed by displaying local
patterns as insets and grouping those insets into piles upon zooming out.
In Fig. 17.1, we show area charts of COVID-19 infection rates as small
multiples. By arranging the small multiples according to their geoloca-
tion (T2) we can gain an overview of the global spread (Fig. 17.2). To
avoid issues of overplotting, we group (T1) overlapping items into piles
(Fig. 17.3). Piles are visually represented by a stacked area chart to
show the overall regional spread of the virus (T5). The combination of
grouping and aggregating provides guidance without introducing severe
occlusion. Browsing individual countries (T4), states, or counties is
realized by navigating to a specific area. Upon zooming in, piles are
automatically split when the items do not overlap anymore, given their
original position (Fig. 17.4).

Matrix Pattern Comparison. A common task in analyzing net-
work data involves the detection and assessment of reoccurring pattern
instances, known as motifs. When the data is visualized as a matrix,
these motifs can be represented as small multiples. In analyzing motifs,
single instances provide only limited insight. Instead, the analyst typ-
ically needs to compare individual motifs to groups of motifs. Using
a piling interface, this comparison can be achieved by interactively
grouping and aggregating the patterns into piles. For example, Fig. 18
shows pattern instances from Rao et al. [39], which should show a dark
dot in the center and act as proxies for specific biological events. As
these instances are retrieved computationally, the goal is to verify if the
expected pattern is truly exhibited. Scanning over the small multiples
sequentially is time-consuming but highlights differences (Fig. 18.1).
Ordering the small multiples (Fig. 18.2) helps to find instances with
the expected pattern (T2). By aggregating (T5) all instances and show-
ing the average as the pile cover, we can confirm that, on average,
the algorithm works as desired (Fig. 18.3). However, by additionally
showing one-dimensional previews on top of the cover, we can identify
many outliers, which should be removed prior to subsequent analyses
(Fig. 18.3 asterisk). Interactive grouping also enables us to stratify (T1)
the pattern collection for more efficient data cleaning (Fig. 18.4).
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Fig. 18. Comparison of Matrix Patterns. Small multiples of matrix
patterns (1) that are supposed to show a dark dot in the center. Ordering
(2), aggregating (3), and grouping (4) through visual piling enables us to
discover overall trends and outliers (*).

7 DISCUSSION & FUTURE WORK

The piling metaphor is a generic and flexible approach for organizing
and exploring small multiples. We have demonstrated a variety of
use cases, but visual piling can be useful for any small-multiple setup
that benefits from interactive re-organization and comparison of the
items. This is, for instance, the case when different arrangements can be
insightful or multiple aggregated items are to be compared. However, to
drive new insights, visual piling requires at least some user interaction.

With the development of PILING.JS our goal is to provide a domain-
and application-independent toolkit that is extensible to many different
use cases. To this end, we decoupled the rendering and aggregation
methods in PILING.JS to allow the designer to provide their own so-
lutions. Depending on the data and visualization type of the items,
the visual piling approach can potentially scale to tens of thousands
of items given the application of scalable arrangement, browsing, and
aggregation methods. For example, to visually scale to piles with many
items, the designer needs to choose a previewing layout that either
naturally limits the number of previewed items, e.g., partial, gallery,
or combining) or applies a preview aggregator that limits the number
of previewed items. Technically, to improve the initialization time
of PILING.JS for large datasets, we are planning to bundle multiple
items into larger textures first and upload the textures onto the GPU in
batches. To address the rendering performance, we will optimize the
interaction handling. As non-interactive rendering scales to 10,000 and
more items, dynamically enabling and disabling interaction handling
could greatly improve the performance.

The intended target users of PILING.JS are visualization designers
who are familiar with web development. While PILING.JS greatly sim-
plifies the creation of piling interfaces, the user still needs to understand
and wrangle the source data to design an effective visualization for
the individual small multiples. From our experience in implementing
the eight use cases, we learned that designing a piling interface with
PILING.JS requires a holistic approach during the development of the
different design dimensions, as the dimensions are not independent.

Our structured design space definition provides a framework to guide
the design of new interactive visual piling interfaces. In combination
with our PILING.JS toolkit, we hope that this work will increase the
accessibility of visual piling for a wide range of use cases. Beyond
the application of piling to new domains, one exciting direction for
future work is the evaluation of the perceptual effectiveness of different
previewing approaches. Similarly, many different pen, touch, and
mouse gestures can be employed to trigger grouping, arrangement, and
browsing interactions. We hope that PILING.JS will streamline user
studies development to understand the performance of different piling
techniques better.
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pp. 627–634. Association for Computing Machinery, 1992.

[36] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, et al. Design galleries:
A general approach to setting parameters for computer graphics and an-
imation. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH âĂŹ97, pp. 389–400.
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