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Explainable Matrix – Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles

Mário Popolin Neto and Fernando V. Paulovich, Member, IEEE

Abstract—Over the past decades, classification models have proven to be essential machine learning tools given their potential and
applicability in various domains. In these years, the north of the majority of the researchers had been to improve quantitative metrics,
notwithstanding the lack of information about models’ decisions such metrics convey. This paradigm has recently shifted, and strategies
beyond tables and numbers to assist in interpreting models’ decisions are increasing in importance. Part of this trend, visualization
techniques have been extensively used to support classification models’ interpretability, with a significant focus on rule-based models.
Despite the advances, the existing approaches present limitations in terms of visual scalability, and the visualization of large and
complex models, such as the ones produced by the Random Forest (RF) technique, remains a challenge. In this paper, we propose
Explainable Matrix (ExMatrix), a novel visualization method for RF interpretability that can handle models with massive quantities of
rules. It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules
predicates, enabling the analysis of entire models and auditing classification results. ExMatrix applicability is confirmed via different
examples, showing how it can be used in practice to promote RF models interpretability.

Index Terms—Random forest visualization, logic rules visualization, classification model interpretability, explainable artificial intelligence

1 INTRODUCTION

Imagine a machine learning classification model for cancer prediction
with 99% accuracy, prognosticating positive breast cancer for a specific
patient. Even though we are far from reaching such level of precision,
we (researchers, companies, among others) have been trying to convince
the general public to trust classification models, using the premise that
machines are more precise than humans [15]. However, in most cases,
yes or no are not satisfactory answers. A doctor or patient inevitably
may want to know why positive? What are the determinants of the
outcome? What are the changes in patient records that may lead to
a different prediction? Although standard instruments for building
classification models, quantitative metrics such as accuracy and error
cannot tell much about the model prediction, failing to provide detailed
information to support understanding [38].

We are not advocating against machine learning classification mod-
els, since there is no questioning about their potential and applicability
in various domains [10, 20]. The point is the acute need to go be-
yond tables and numbers to understand models’ decisions, increasing
trust in the produced results. Typically, this is called model inter-
pretability and has become the concern of many researchers in recent
years [11, 60]. Model interpretability is an open challenge and op-
portunity for researchers [20] and also a government concern, as the
European General Data Protection Regulation requires explanations
about automated decisions regarding individuals [11, 27, 39].

Model interpretability strategies are typically classified as global or
local approaches. Global techniques aim at explaining entire models,
while the local ones give support for understanding the reasons for the
classification of a single instance [11,19]. In both cases, interpretability
can be attained using inherent interpretable models such as Decision
Trees, Rules Sets, and Decision Tables [31], or through surrogates,
where black-box models, like Artificial Neural Networks or Support
Vector Machines, are approximated by rule-based interpretable mod-
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els [11, 27]. The key idea is to transform models into logic rules, using
them as a mechanism to enable the interpretation of a model and its
decisions [17, 26, 35, 42, 46].

Recently, visualization techniques have been used to empower the
process of interpreting rule-based classification models, particularly
Decision Tree models [17, 47, 57, 61]. In this case, given the inherent
nature of these models, the usual adopted visual metaphors focus on
revealing tree structures, such as the node-link diagrams [25, 42, 61].
However, node-link structures are limited when representing logic
rules [22, 29, 37], and present scalability issues, supporting only small
models with few rules [25, 48, 61]. Matrix-like visual metaphors have
been used [17,42] as an alternative, but visual scalability limitations still
exist, and large and complex models cannot be adequately visualized,
such as the Random Forests [6, 7]. Among rule-based models, Random
Forests is one of the most popular techniques given their simplicity of
use and competitive results [6]. However, they are very complex entities
for visualization since multiple Decision Trees compose a model, and,
although attempts have been made to overcome such a hurdle [61], the
visualization of entire models is still an open challenge.

In this paper, we propose Explainable Matrix (ExMatrix), a novel
method for Random Forest (RF) interpretability based on the visual
representations of logic rules. ExMatrix supports global and local ex-
planations of RF models enabling tasks that involve the overview of
models and the auditing of classification processes. The key idea is to
explore logic rules by demand using matrix visualizations, where rows
are rules, columns are features, and cells are rules predicates. ExMatrix
allows reasoning on a considerable number of rules at once, helping
users to build insights by employing different orderings of rules/rows
and features/columns, not only supporting the analysis of subsets of
rules used on a particular prediction but also the minimum changes
at instance level that may change a prediction. Visual scalability is
addressed in our solution using a simple yet powerful compact rep-
resentation that allows for overviewing entire RF models while also
enables focusing on specific parts for details on-demand. In summary,
the main contributions of this paper are:

• A new matrix-like visual metaphor that supports the visualization
of RF models;
• A strategy for Global interpretation of large and complex RF models

supporting model overview and details on-demand; and
• A strategy to promote Local interpretation of RF models, supporting

auditing models’ decisions.
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2 RELATED WORK

Typically, visualization techniques aid in classification tasks in two
different ways. One is on supporting parametrization and labeling
processes aiming to improve model performance [3, 18, 30, 34, 38, 53,
55, 57]. The other is on understanding the model as a whole or the
reasons for a particular prediction. In this paper, our focus is on the
latter group, usually named model interpretability.

Interpretability techniques can be divided into pre-model, in-model,
or post-model strategies, regarding support to understand classification
results before, during, or after the model construction [11]. Pre-model
strategies usually give support to data exploration and understanding
before model creation [11, 14, 41, 43]. In-model strategies involve
the interpretation of intrinsically interpretable models, such as De-
cision Trees, and post-model strategies concerns interpretability of
complete built models, and they can be model-specific [44, 59] or
model-agnostic [17, 26, 42, 46]. Both in-model and post-model ap-
proaches aim to provide interpretability by producing global and/or
local explanations [19].

2.1 Global Explanation
Global explanation techniques produce overviews of classification mod-
els aiming at improving users’ trust in the model [45]. For inher-
ently interpretable models, the global explanation is attained through
visual representations of the entire model. For more complex non-
interpretable black-box models, such as Artificial Neural Networks or
Support Vector Machines, interpretability can be attained through a
surrogate process where such models are approximated by interpretable
ones [17, 28, 42]. Decision Trees [9, 40, 54] are commonly used as
surrogate models [17, 28], and whether a surrogate or a classification
model per se, the most common visual metaphor for global explanation
is the node-link [42, 61], such as the BaobaView technique [57]. The
node-link metaphor’s problem is scalability [25,48,61], mainly when it
is used to create visual representations for Random Forests, limiting
the model to be small in number of trees [51]. Creating a scalable
visual representation for an entire Random Forest model, presenting all
decision paths (root node to leaf node paths), remains a challenge even
with a considerably small number of trees [38].

Although the node-link metaphor is the straightforward representa-
tion for Decision Trees, logic rules extracted from decision paths have
also been used to help on interpretation [37]. Indeed, disjoint rules have
shown to be more suitable for user interpretation than hierarchical repre-
sentations [33], and a user test comparing the node-link metaphor with
different logic rule representations, showed that Decision Tables [31]
(rules organized into tables) offers better comprehensibility proper-
ties [22, 29]. Nonetheless, this strategy uses text for representing rules
having as drawback model size [22]. Similarly to Decision Tables, our
method does not lean on the hierarchical property of Decision Trees.
However, instead of using text to represent logic rules, we used a matrix-
like visual metaphor, where rows are rules, columns are features, and
cells are rules predicates, capable of displaying a much larger number
of rules than the textual representations.

The idea of using a matrix metaphor to present rules is not new [17,
42], and it has been used before by the RuleMatrix technique [42].
RuleMatrix is a model-agnostic approach to induce logic rules from
black-box models, presenting rules in rows, features in columns, and
predicates in cells using histograms. As data histograms require a
certain display space to support human cognition, the number of rules
displayed at once is reduced. Therefore, not being able to present
entire or even parts of Random Forest models (notice that their focus
is the visualization of surrogate rules, not models). Our approach
also uses a matrix metaphor; however, we employ a simpler icon
(colored rectangular shape) for the matrix cells, mapping different rule
properties (e.g., predicates, class, and others), considerably improving
the scalability of the visual representation. Besides the recognized
scalability of matrix visualization and custom cells [1, 2, 4], rows and
columns order is an important principle [4, 12, 13, 58], and in our
approach rules and features can be organized using different criteria,
promoting analytical tasks not supported by the RuleMatrix, such as the
holistic analysis of Random Forest models through complete overviews.

Worthy mentioning that different from usual matrix visual metaphors
for trees and graphs that focus on nodes [4, 25], our approach focus on
decision paths, which is the object of analysis on Decision Trees [22,
29, 37], so representing a different concept.

2.2 Local Explanation
Unlike the model overview of global explanations, local explanation
techniques focus on a particular instance classification result [46, 61],
aiming to improve users’ trust in the prediction [45]. As in global strate-
gies, local explanations can be provided using inherently interpretable
models or using surrogates of black-boxes [26,46,52]. In general, local
explanations are constructed using the logic rule applied to classify the
instance along with its properties (e.g., coverage, certainty, and fidelity),
providing additional information for prediction reasoning [33, 42].

One example of a visualization technique that supports local expla-
nation is the RuleMatrix [42]. RuleMatrix was applied to support the
analysis of surrogate logic rules of Artificial Neural Networks and Sup-
port Vector Machine models. Local explanations are taken by analyzing
the employed rules, observing the instance features values coupled with
rules predicates and properties. Another interactive system closely
related to our method is the iForest [61], combining techniques for
Random Forest models local explanations. The iForest system focuses
on binary classification problems, and for each instance, it allows the
exploration of decision paths from Decision Trees using multidimen-
sional projection techniques. A summarized decision path is built and
displayed as a node-link diagram by selecting decision paths of interest
(circles in the projection).

As discussed before, node-link diagrams are prone to present scal-
ability issues. Although iForest reduces the associate issues by sum-
marizing similar decision paths, it fails to present the overall picture
of Random Forest classification models’ voting committees. Our ap-
proach shows the voting committee by displaying all rules (decision
paths) used by a model when classifying a particular instance, allowing
insights into the feature space and class association by ordering rules
and features in different ways. Also, our approach can be applied to
multi-class problems, not only binary classifications, and, as iForest, it
supports counterfactual analysis [24, 36] by displaying the rules that,
with the smallest changes, may cause the instance under analysis to
switch its final classification.

3 EXMATRIX

In this section, we present Explainable Matrix (ExMatrix), a visualiza-
tion method to support Random Forest global and local interpretability.

3.1 Overview
To create a classifier, classification techniques take a labelled
dataset X = {x1, ...,xN} with N instances and their classes
Y = {y1, ...,yN}, where yn ∈C = {c1, ...,cJ ≥ 2} and xn consists of a
vector xn = [x1

n, ...,x
M
n ] with M features F = { f1, ..., fM} values, and

build a mathematical model to compute a class yn when new instances
xn /∈ X are given as input. In this process, X is usually split into two
different sets, one Xtrain to build the model and one Xtest to test it. The
existing techniques have adopted many different strategies to build
a classifier. The Random Forest (RF) is an ensemble approach that
creates multiple Decision Tree (DT) models DT1, ...,DTK of randomly
selected subsets of features and/or training instances, and combines
them to classify an instance using a voting strategy [6, 7, 9, 54]. There-
fore, a RF model is a collection of decision paths, belonging to different
DTs, combined to classify an instance.

Aiming at supporting users to examine RF models and enable results
audit, ExMatrix presents the decision paths extracted from DTs as logic
rules using a matrix visual metaphor, supporting global and local ex-
planations. ExMatrix arranges logic rules R = {r1, ...,rZ} as rows, fea-
tures F = { f1, ..., fM} as columns, and rule predicates rz = [r1

z , ...,r
M
z ]

as cells, inspired by similar user-friendly and powerful matrix-like
solutions [12, 13, 58]. Fig. 1 depicts our method overview, composed
mainly of two steps. One involving the vector rules extraction, where
all decision paths of each DTk in the RF model are converted into vec-
tors, and a second one where these vectors are displayed using a matrix
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Fig. 1. Explainable Matrix (ExMatrix) overview. ExMatrix is composed of two main steps. In the first, decision paths of the RF model under analysis
are converted into logic rules. Then, in the second, these rules are displayed using a matrix metaphor to support global and local explanations.

metaphor to support explanations. The next sections detail these steps,
starting with the vector rule extraction process.

3.2 Vector Rules Extraction
As mentioned, ExMatrix first step involves the transformation of each
decision path, the path from a DT root node to a leaf node, into a vector
rule representing the features’ intervals for which the decision path is
true. The resulting vectors present dimensionality equal to the number
of features M, with coordinates composed of pairs representing the fea-
tures’ minimum and maximum interval values. In more mathematical
terms, this process transforms, for every tree DTk, each decision path
p(o,d) (from the root node o to the leaf node d) into a disjoint logic rule
(vector) rz. Let p(o,d) = {( fo

⊗
θo), ...,( fv

⊗
θv)} denotes a decision

path, where each node i contains a logic test
⊗
∈ {“ ≤ ”,“ > ”} bi-

secting the feature fi using a threshold θi ∈ R, and that the node v is
the parent of the leaf node d [61]. To convert p(o,d) into a vector rule
rz = [r1

z , ...,r
M
z ], each element rm

z = {αm
z ,β m

z } is computed represent-
ing the intervals covered by p(o,d) if and only if f m ∈ p(o,d). Otherwise,
rm

z =∅. Considering f m ∈ p(o,d), the lower limit αm
z is the maximum

θi ∈ p(o,d) for the feature f m and logic test
⊗

= “ > ”. If such com-
bination does not exist in p(o,d), αm

z is set to the minimum value of
feature f m in X , that is

α
m
z =

{
max(θi| fi = f m,

⊗
= “ > ”) if ( fi = f m > θi) ∈ p(o,d)

min(xm|xm ∈ X) Otherwise.

Similarly, the upper limit β m
z is the minimum θi ∈ p(o,d) for the

feature f m and logic test
⊗

= “≤ ”. If such combination does not exist
in p(o,d), β m

z is set to the maximum value of feature f m in X , that is

β
m
z =

{
min(θi| fi = f m,

⊗
= “≤ ”) if ( fi = f m ≤ θi) ∈ p(o,d)

max(xm|xm ∈ X) Otherwise.

Beyond predicates, three other properties are extracted for each logic
rule rz, being certainty, class, and coverage. The rule certainty rcert

z
is a vector of probabilities for each class c j ∈ C, obtained from the
decision path (leaf node value). The rule class rclass

z is the c j ∈C with
the highest probability on the rule certainty rcert

z . The rule coverage
rcov

z is the number of instances in Xtrain of class rclass
z for which rz is

valid divided by the total number of instance of rclass
z in Xtrain. The

vector rules extraction process results in a set of disjoint logic rules
R = {r1, ...,rZ}, where each rule rz classifies an instance xn belonging
to class rclass

z if its predicates rz = [r1
z , ...,r

M
z ] are all true for the feature

values in xn.
As an example of vector rule extraction, consider the zoomed DT

in Fig. 1 from a RF for the Iris dataset [21], with 150 instances
in three classes C = {setosa, versicolor, virginica} and 4 features

F = {sepal length , sepal width , petal length , petal width}. From
this tree, the decision path p(#0,#5) is transformed into the vector rule
r3 = [{6.15,7.9},∅,∅,{0.75,1.75}] with rclass

3 = versicolor, since
rule certainty equals to rcert

3 = [0.0,0.83,0.17] (leaf node #5 value),
indicating that r3 is valid for 83% of the versicolor instances and 17%
of virginica instances in Xtrain. The rule coverage rcov

3 = 0.28 as r3 is
valid for 10 out of 35 versicolor instances in Xtrain.

3.3 Visual Explanations
Once the vector rules are extracted, they are used to create the matrix
visual representations for global and local interpretation. To guide our
design process we adopted the iForest design goals (G1 - G3) [61] and
the RuleMatrix target questions (Q1 - Q4) [42] summarized on Table 1.
These goals and questions consider classification model reasoning
beyond performance measures (e.g., accuracy and error), focusing
on the model internals. For global explanations, where the focus is
an overview of a model, ExMatrix displays feature space ranges and
class associations (G1 and Q1), and how reliable these associations are
(Q2). For local explanations, where the focus is the classification of a
particular instance xn, ExMatrix allows the analysis of xn values and
features space ranges that resulted into the assigned class yn (G2 and
Q3), and the inspection of the changes in xn that may lead to a different
classification (G3 and Q4).

Table 1. ExMatrix design goals.

Global Local

G1 Reveal the relationships between
features and predictions [61].

G2 Uncover the underlying working
mechanisms [61].

Q1 What knowledge has the model
learned? [42]

G3 Provide case-based reason-
ing [61].

Q2 How certain is the model for
each piece of knowledge? [42]

Q3 What knowledge does the model
utilize to make a prediction? [42]
Q4 When and where is the model
likely to fail? [42]

ExMatrix implements these goals using a set of four functions:

F1 – Rules of Interest. Function R′ = frules(R, . . .) returns a subset
of rules of interest R′ ⊆ R. For global explanations frules(R, ...)
returns the entire vector rules set R′ =R or a subset R′ ⊂R defined
by the user, while for local explanations frules(R,xn, ...) returns a
subset R′ ⊂ R related to a given instance xn.

F2 – Features of Interest. Function F ′ = f f eatures(R′, . . .) returns fea-
tures of interest F ′ ⊆ F considering a set of rules of inter-
est R′. For global explanations f f eatures(R′, ...) returns all fea-
tures used by the RF model, whereas for local explanations
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f f eatures(R′,xn, ...) returns the features used to classify a given
instance xn.

F3 – Ordering. Function L′ = fordering(L,criteria, . . .) returns an or-
dered version L′ of a input set L following a given criterion, where
L can be rules R′ or features F ′. This is used for both global and
local explanations aiming at revealing patterns, a key property in
matrix-like visualizations [12, 13, 58], where rows and columns
can be sorted in different ways, following, for instance, elements
properties [32] or similarity measures [5, 23, 49, 56].

F4 – Predicate Icon. Function ficon(rm
z , . . .) returns a cell icon (visual

element) for a predicate rm
z of the rule rz and feature fm. For

global and local explanations, a cell icon is a color-filled rectangu-
lar element, allowing our visual metaphor to display a substantial
number of logic rules at once. This is an important aspect since
matrix-like visualizations can display a massive number of rows
and columns relying on such icons not requiring many pixels [12].

Fig. 1 shows how these four functions are used in conjunction to
build the visual representations for global and local interpretation. Func-
tions F1 and F2 are used to select and map rules and features of interest.
Function F3 is used to change the rows and columns order to help
in finding interesting patterns, and function F4 is used to derive the
predicate icon that can vary depending on the type of interpretation task
(global or local). In the next section, we detail how these functions are
used to build ExMatrix visual representations.

3.3.1 Global Explanation (GE)

Our first visual representation is an overview of RF models called
Global Explanation (GE). To build this matrix, R′ = frules(R, . . .) re-
turns all logic rules R or a subset R′ ⊂ R defined by the user, and
F ′ = f f eatures(R′, . . .) returns all features used by at least one rule
rz ∈ R′. As previously explained, matrix rows represent logic rules,
columns features, and cells rules predicates (icons). Rows and columns
can be ordered using different criteria (L′ = fordering(L,criteria, . . .)).
The rows can be ordered by rules’ coverage, certainty, class & cover-
age, and class & certainty, while columns can be ordered by feature
importance, calculated using the Mean Decrease Impurity (MDI) [8].

For the ExMatrix GE visualization, the matrix cell icon representing
the rule predicate rm

z consists of a rectangle ( ficon(rm
z , . . .)) colored

according to the rule class rclass
z , positioned and sized inside the matrix

cell proportional to the predicate limits {αm
z ,β m

z }, where the left side
of the matrix cell represents the value min(xm|xm ∈ X) and the right
side max(xm|xm ∈ X) (goals G1 and Q1). The cell background not
covered by the predicate limits can be either white or be filled using
a less saturated color. If no predicate is present, the matrix cell is left
blank.

Rules and features properties are also exhibited using additional
rows and columns (goal Q2). The rule coverage rcov

z is shown using an
extra column on the left side of the table with cells’ color (grayscale)
and fill proportional to the coverage. The rules certainty rcert

z is shown
in an extra column in the right side of the table with cells split into
colored rectangles with sizes proportional to the probability of the
different classes. The feature importance is shown in an extra row on
the top of the table with cells’ color (grayscale) and fill proportional to
the importance. Also, labels are added below the matrix, combining
feature name and importance value.

Fig. 2 presents a ExMatrix GE visualization of a RF model for
the Iris dataset with 3 trees with maximum depth equals to 3. In
this example, the rows (rules) are ordered by extraction order, and
the columns (features) follows the dataset order. The logic rule
r3 = [{6.15,7.9},∅,∅,{0.75,1.75}] extracted from the decision path
p(#0,#5) (see Fig. 1) is zoomed in. It is colored in orange since this
is the color we assign to the versicolor class and it classifies 83% of
the training instances as belonging to this class (17% belonging to
virginica). Also, its coverage is rcov

3 = 0.28.

Fig. 2. ExMatrix Global Explanation (GE) of a RF model for the Iris
dataset containing 3 trees with maximum depth equal to 3. Rows rep-
resent logic rules, columns features, and matrix cells the predicates.
Additional rows and columns are also used to represent rule coverage
and certainty. One matrix row is highlighted to exemplify how the rules’
information is transformed into icons.

Fig. 3. ExMatrix Local Explanation showing the Used Rules (LE/UR)
visualization. Three rules are used by the RF committee to classify a
given instance as belonging to the versicolor class with 72% of probability.
The dashed line in each column indicates the features’ values of the
instance.

3.3.2 Local Explanation Showing the Used Rules (LE/UR)

The second visual representation, called Local Explanation Showing
the Used Rules (LE/UR), is a matrix to help in auditing the results of
a RF model providing explanations for the classification of a given
instance xn. In this process, R′ = frules(R,xn) returns all logic rules
used by the model to classify xn (goals G2 and Q3). As in the ExMatrix
GE visualization, F ′ = f f eatures(R′) returns all features used by logic
rules R′, ficon(rm

z ,X) returns a cell icon representing predicates limits,
and fordering(L,criteria) can order rules R′ by coverage, certainty, class
& coverage, and class & certainty, and features F ′ by importance.

In addition to the coverage and certainty columns, in the ExMatrix
LE/UR visualization, an extra column is added to represent the commit-
tee’s cumulative voting. In this column, the cell at the ith row is split
into colored rectangles with sizes proportional to the different classes’
probability considering only the first i rules. In this way, given a matrix
order (e.g., based on the rule coverage), it is possible to see from what
rule the committee reaches a decision that is not changed even if the
remaining rules are used to classify xn (indicated by a black line). No-
tice that this column’s last cell always represents the committee’s final
decision regardless of rule ordering.

Fig. 3 presents the ExMatrix LE/UR representation for instance
x13 = [6.9,3.1,4.9,1.5]. We use the same RF model of Fig. 2 with
3 trees, so the RF committee uses 3 rules in the classification. The
resulting matrix rows are ordered by rule coverage and columns by
feature importance. The (optional) dashed line in each column indicates
the values of the features of instance x13. According to the committee,
the probability of x13 to be versicolor is 72% and 28% to be virginica.
Most of the virginica probability comes from the rule r7, which holds
the lowest coverage.
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Fig. 4. ExMatrix Local Explanation Showing Smallest Changes (LE/SC)
visualization. Three rules with the smallest change to make the DTs to
change class decisions are displayed. The rule in the first row presents
the smallest change. Small perturbations may change the RF classifica-
tion decision.

3.3.3 Local Explanation Showing Smallest Changes (LE/SC)

Our final matrix representation, called Local Explanation Showing
Smallest Changes (LE/SC), is also designed to support results audit
when classifying a given instance xn. In this visualization, for each DTk
in the RF model, we display the rule requiring the smallest change to
make DTk to change the classification of xn. Let rz be the rule extracted
from DTk that is true when classifying xn, in this process we seek for
the rule re from DTk with rclass

e 6= rclass
z that presents the minimum

summation of changes to the values of xn that makes re true and rz
false, that is, ∆(re,xn) = ∑

M
m=1(∆

m
(re,xn)

), where

∆
m
(re,xn)

=

{
min(|αm

e −xm
n |,|β m

e −xm
n |)

|max(xm|xm∈Xtrain)−min(xm|xm∈Xtrain)| if xm
n /∈ {αm

e ,β m
e }

0 Otherwise.

Using this formulation, function R′ = frules(R,xn) returns the list
of logic rules that can potentially change the classification process
outcome requiring the lowest changes (goals G3 and Q4), and function
F ′ = f f eatures(R′,xn) returns the features used by the rules in R′. Be-
yond the ordering criteria for rules and features previously discussed,
function fordering(L,criteria) also allows ordering using the change
summation ∑

M
m=1(∆

m
(re,xn)

). Finally, function ficon(rm
e ,xn) returns a

rectangle positioned and sized proportional to the change ∆m
(re,xn)

, with
positive changes colored in green and negative in purple, with the cell
matrix background filled using a less saturated color. If ∆m

(re,xn)
= 0,

the cell matrix is left blank. To help understand the class swapping, we
add another column to the right of the table indicating the classification
returned by the original rule rz, showing the difference to the similar
rule re that cause the DTk to change prediction.

Fig. 4 shows the ExMatrix LE/SC visualization for instance x13 =
[6.9,3.1,4.9,1.5] from the same RF model of Fig. 2. Features F ′ are
ordered by importance and rules by change sum. The dashed lines
represent the instance x13 values. As an illustration, rule r6 presents the
smallest change in the feature “petal length” to replace a rule of majority
class virginica for a rule of class versicolor, potentially increasing the
RF original outcome of 72% for class versicolor on instance x13.

4 RESULTS AND EVALUATION

In this section, we present and evaluate our method through a use-
case 1 discussing the proposed features, two usage-scenarios 23 showing
ExMatrix being used to explore RF models, finishing with a formal
user test. All datasets employed in this section were downloaded
from the UCI Machine Learning Repository [16], and the ExMatrix
implementation is publicly available as a Python package at https:
//pypi.org/project/exmatrix/ to be used in association with the
most popular machine learning packages.

4.1 Use Case: Breast Cancer Diagnostic
In this use case, we utilize the Wisconsin Breast Cancer Diagnostic
(WBCD) dataset to discuss how to use ExMatrix global and local expla-
nations to analyze RF models. The WDBC dataset contains samples
of breast mass cells of N = 569 patients, 357 classified as benign (B)
and 212 as malignant (M), with M = 30 features (cells properties). The
RF model used as example was created randomly selecting 70% of the
instances for training and 30% for testing and setting the number of
DTs to K = 128, not limiting their depths. The result is a model with
3,278 logic rules, 25.6 rules per DT, and an accuracy of 99%.

An overview of this model is presented in Fig. 5(a) using the ExMa-
trix GE representation (see Sect. 3.3.1). In this visualization, rules are
ordered by coverage and features by importance. Using this ordering
scheme, it is possible to see that “concave mean”, “area worst”, and “ra-
dius worst” are the three most important features, whereas “smoothness
std”, “texture std”, and “fractal dimension mean” are less important,
and that the RF model used all 30 features. Also, taking only the high
coverage rules and features with more importance (“concave mean’
to “radius mean”), some patterns in terms of predicate ranges emerge.
To help verify these patterns, low-coverage rules can be filtered out,
resulting in a new visualization containing only high-coverage rules.
Fig. 5(b) presents the resulting filtered visualization with rules ordered
by class & coverage facilitating the comparison between the two dataset
classes. In this new visualization, it is apparent that low feature values
appear to be related to class B whereas higher values to class M (goals
G1, Q1, and Q2). In this example, filtering aids in focusing on what
is important regarding the overall model behavior, removing unim-
portant information and reducing cluttering, relying on the so-called
Schneiderman’s visualization mantra [50].

The error rate of 1% in this model is due to the misclassification of
only one instance of the test set. Instance x29 was wrongly classified
as class B with a probability of 55%. Fig. 6(a) shows the ExMatrix
LE/UR representation (see Sect. 3.3.2) using x29 as target instance. In
this visualization, the matrix is ordered by class & coverage to focus
on the difference between classes, and some interesting patterns are
visible. For instance, predicate ranges of both classes B and M overlap
for most features, except for “fractal dimension std” and “concave std”.
Also, these two features, along with “symmetry std”, “concave mean”,
“compactness std”, and “symmetry mean” are more related to class B
(blue) since rules of such class heavily use them and sparsely used by
rules of class M (orange) showing what is actively used by the model to
make the prediction (goals G2 and Q3). Besides, analyzing ExMatrix
LE/SC visualization on Fig. 6(b), one can notice that positive changes
on features “concave mean” and “perimeter worst” may tie or alter the
prediction of x29 to class M since many green cells can be observed in
the respective columns for rules of class M, while negative changes on
“area worst” and “concavity means” increases its classification as class
B since many purple cells can be observed in the respective columns
for rules of class B (goals G3 and Q4).

4.2 Usage Scenario I: German Credit Bank
As a first hypothetical usage scenario, we describe a bank manager
Sylvia incorporating ExMatrix in her data analytics pipeline. To speed
up the evaluation of loan applications, she sends her dataset of years of
experience to a data science team and asks for a classification system
to aid in the decision-making process. Such dataset contains 1,000
instances (customers profiles) and 9 features (customers information),
with 700 customers presenting rejected applications and 300 accepted
(here we use a pre-processed [61] version of German Credit Data
from UCI). For the implementation of such a system, Sylvia has two
main requirements: (1) the system must be precise in classifying loan
applications, and; (2) the classification results must be interpretable so
she can explain the outcome.

To fulfill the requirements, the data science team builds an RF model
setting the number of DTs to 32 with a maximum depth of 6. The

1https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usecase/
2https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioi/
3https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioii/
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(a) ExMatrix GE visualization.

(b) ExMatrix GE representation with filtered rules (only high-coverage rules).

Fig. 5. ExMatrix GE representations of the WDBC RF model. In (a), giving the ordering scheme by rule coverage and feature importance, some
patterns emerge in terms of predicates ranges. In (b) the low-coverage rules are filtered-out to help focusing the analysis on what is important. Low
feature values appear to be more related to class B whereas higher values to class M for the most important features.

produced model’s accuracy was 81%, resulting in 1,273 logic rules,
38.7 rules per DT. Using the ExMatrix GE representation (omitted
due to space constraints, see supplemental material), she observes that
the features “Account Balance”, “Credit Amount”, and “Duration of
Credit” are the three most important, whereas “Value Savings/Stocks”,
“Duration in Current address”, and “Instalment percent” are the three
less. Also, by inspecting the most generic knowledge learned by the
system (patterns formed by high-coverage rules) using a filtered repre-
sentation of the ExMatrix GE visualization on Fig. 7(a), she notices that
applications that request a credit to be paid in more extended periods
(third column) tend to be rejected, matching her expectations. However,
unexpectedly, customers without account (“Account Balance”: 1 - No
account, 2 - No balance, 3 - Below $200 , 4 - $200 or above) have less
chance to have their application rejected (first column), something she
did not anticipate (goals G1, Q1, and Q2). Although confronting some
of her expectations and bias, she trusts her data, and the classification
accuracy seems convincing, so she decides to put the system in practice.

One day she receives a new customer interest in a loan. After filling
the system with his data, unfortunately, the application got rejected
by the classification system. Based on the new European General
Data Protection Regulation [11,27,39] that requires explanations about

decisions automatically made, the customer requests clarification. By
inspecting the ExMatrix LE/UR visualization on Fig. 7(b), she notices,
besides the denied probability of 65%, that even if all “approved” rules
(blue) are used, very few high-certainty “denied” rules (orange) define
the final decision of the model (see the Cumulative Voting and Rule
Certainty columns), indicating that those rules, and the related logic
statements, have a strong influence in the loan rejection. Also, she sees
that the feature “Length of current employment” is the most directly
related to the denied outcome since it is used only by rules that result
in rejection (goals G2 and Q3). Using this information, she explains
to the customer that since he is working for less than one year in the
current job (2 as “Length of current employment” corresponds to less
than 1 year), the bank recommends denying the application. However,
analyzing the ExMatrix LE/SC representation in Fig. 7(b), she realizes
that negative changes in features “Credit Amount” and “Duration of
Credit” may turn the outcome to approved (goals G3 and Q4). Thereby,
as an alternative, she suggests lowering the requested amount and
the number of installments. Based on the observable differences to
make the rules change class, she notices that upon reducing the credit
application from $1,207 to $867 and the number of payments from 24
to 15, the system changes recommendation to “approved”. Fig. 7(d)
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(a) ExMatrix LE/UR for instance x29, showing the used rules on the classification process.

(b) ExMatrix LE/SC for instance x29, presenting changes in the instance feature values to make the DTs to change class prediction.

Fig. 6. ExMatrix local explanations of the WDBC RF model. Two different visualizations are displayed, one showing the rules employed in the
classification of a target instance (a), and one presenting the smallest changes to make the trees of the model to change the prediction of that
instance (b). In both cases, the target instance is the only misclassified instance.

presents the ExMatrix LE/UR visualization if such suggested values
are used, changing the final classification.

4.3 Usage Scenario II: Contraceptive Method

This last usage scenario presents Christine, a public health policy man-
ager who wants to create a contraceptive campaign to advertise a new,
safer drug for long term use. To investigate married wives’ preferences,
Christine’s data science team creates a prediction model using a data
set with information about contraceptive usage choices her office col-
lected past year (here we use the Contraceptive Method Choice dataset
from UCI). The dataset contains 1,473 samples (married wives pro-
files) with 9 features, where each instance belongs to one of the classes
“No-use”, “Long-term”, and “Short-term”, regarding the contraceptive
usage method, with 42.7% of the instances belonging to class No-use,
22.6% to Long-term, and 34.7% to Short-term.

Since interpretability is mandatory in this scenario, allowing the
results to be used in practice, the data science team creates an RF
model and employs ExMatrix to support analysis. To create the model,
the team set the number of DTs to 32 and maximum depth to 6, resulting
in 1,383 logic rules, 43.2 rules per DT. The RF model accuracy is 63%,
and, although not ideal for individual classifications, can be used to

understand general knowledge learned by the model from the dataset.

By inspecting the ExMatrix GE representation of the model (omit-
ted due to space constraints, see supplemental material), she readily
understands that the features “Number of children ever born”, “Wife
age”, and “Wife education” are the three most relevant for defining the
contraceptive method class, while “Media exposure”, “Wife now work-
ing?”, and “Wife religion” are the three less. Also, further exploring a
filtered version of the ExMatrix GE representation on Fig. 8, to focus
only on high-coverage and high-certainty rules ordered by class, she
notices some interesting patterns regarding features space ranges and
classes. For instance, lower values for the feature “Number of children
ever born” (first column) are more related to class No-use and rarely
related to class Long-term. For contraceptive method usage, higher
values for the feature “Wife age” (second column) are related to class
Long-term, while average and lower values are more related to class
Short-term. Also, higher values for “Wife education” (third column)
are more related to class Long-term (goals G1, Q1, and Q2). Based on
these observations, and given the modest budget she received for the
campaign, Christine decides to focus on the group of older and highly
educated wives with at least one child to target the campaign’s first
phase.
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(a) ExMatrix GE showing rules filtered by coverage and certainty. (b) ExMatrix LE/UR for instance x154.

(c) ExMatrix LE/SC for instance x154. (d) ExMatrix LE/UR modifying instance x154, which changes RF’s decision.

Fig. 7. ExMatrix explanations of a RF model for the German Credit Data UCI dataset. Based on the most generic knowledge learned by the RF
model (rules with high coverage) (a), it is possible to conclude that applications requesting credit to be paid in longer periods tend to be rejected.
Analyzing one sample (instance x154) of rejected application (c), it is possible to infer that it is probably rejected due to the (applicant) short period
working in the current job. However, lowering the requested amount as well as the number of instalments can change the RF’s decision (d) and (e).

Fig. 8. ExMatrix GE representation (rules filtered by coverage and
certainty) of the RF model for the Contraceptive Method Choice UCI
dataset. Based on high-coverage high-certainty rules, some interesting
patterns can be observed. For instance, on contraceptive method usage,
older women tend to use long-term contraceptive methods.

4.4 User Study

To evaluate the ExMatrix method, we performed a user study to assess
the proposed visual representations for global and local explanations.
In this study, we asked four different questions based on the ExMatrix
visualizations created for the use-case presented in Sect. 4.1, focusing
on evaluating the goals presented in Table 1.

The study started with video tutorials about RF basic concepts and
how to use ExMatrix to analyze RF models and classification results
through the proposed explanations. A total of 13 users participated,
69.2% male and 30.8% female, aged between 24 to 36, all with a back-
ground in machine learning. The participants were asked to analyze the
explanations of Fig. 5(a), Fig. 6(a), and Fig. 6(b), where each analysis
was followed by different question(s) (see Table 2). On the visualiza-
tions, features names were replaced by “Feature 1” to “Feature 30” and
classes names by “Class A” and “Class B”, aiming at removing any
influence of knowledge domain in the results, since our focus is to
assess the visual metaphors.

Using the ExMatrix GE representation (Fig. 5(a)), 76.9% of the
participants were able to identify patterns involving feature space ranges
and classes, where, for high coverage rules, low features values are

more related to class B, while features with large values are more related
to class M (Qst 1). Using the ExMatrix LE/UR (Fig. 6(a)), also 76.9%
of the participants were able to recognize that feature “concave std” is
the most related to class B for instance x29 classification outcome (Qst
2). Using the ExMatrix LE/SC (Fig. 6(b)), 61.5% of the participants
were able to identify that negative changes on instance x29 features
“area worst” and “concavity mean” values would better support the
class B outcome (Qst 3), and 46.2% were able to identify that positive
changes on features “concave mean” and “perimeter worst” values may
alter the outcome from class B to class M (Qst 4).

In general, the results were promising for the first two analyses, but
the participants present worse results when interpreting the ExMatrix
LE/SC visualization. This is not surprising since this representation
requires a much better background about RF theory. The ExMatrix
GE and LE/UR visualizations are more generic and involve much
fewer concepts about how RF models work internally. In contrast, the
ExMatrix LE/SC requires a good level of knowledge about ensembles
models and how the voting system work when making a prediction.
Although most of the users self-declared with a background in machine
learning, only 30% are RF experts.

We also have asked subjective, open questions, and, in general,
users gave positive feedbacks about ExMatrix explanations, where
the visualizations were classified as visually pleasing and useful for
understanding RF models.

5 DISCUSSION AND LIMITATIONS

Although the natural choice to visualize a tree collection is to use
tree structure metaphors, two main reasons make disjoint rules orga-
nized into tables a better option when analyzing DTs and especially
RFs. First, using tree structure metaphors, the visual comparison of
logic rules (decision paths) can be overwhelming since different paths
from the root to the leaves define different orders of attributes, slowing
down users when searching within a tree to answer classification ques-
tions [22, 29]. An issue that is amplified in RFs, since multiple DTs are
analyzed collectively. In contrast, in a matrix metaphor, the attributes
are considered in the same order easing this process [22, 29]. Second,
given the constraints of usual DT inference methods (non-overlapping
predicates with open intervals), features can be used multiple times in a
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Table 2. User study questions.

Question Goals Visualization

Qst 1 - About features space ranges and class ASSOCIATIONS. Considering rules with HIGH COVERAGE, and
features with HIGH IMPORTANCE, select your answer: (three options of associations)

G1, Q1, and Q2 Fig. 5(a)

Qst 2 - Instance 29 is classified as Class A with a probability of 55%, against 45% for Class B. What feature is more
related to Class A and less related to Class B? (four options of features)

G2 and Q3 Fig. 6(a)

Qst 3 - Select the pair of features where DELTA CHANGES on instance 29 will potentially INCREASE Class A
probability, and by that may SUPPORT its classification as Class A. (four options of features pairs)

G3 and Q4 Fig. 6(b)

Qst 4 - Select the pair of features where DELTA CHANGES on instance 29 will potentially INCREASE Class B
probability, and by that may ALTER its classification as Class A. (four options of features pairs)

G3 and Q4 Fig. 6(b)

single decision path resulting in multiple nodes (one per test) using the
same feature. Consequently, if tree structures are employed, each fea-
ture’s decision intervals need to be mentally composed by the user, and
nodes using the same feature can be far away in the decision path. The
decision intervals are explicit in the matrix representation and can be
easily compared across multiples rules and trees. Therefore, although
tree structure visual metaphors are the usual choice when hierarchical
structures are the focus [25, 48], on DTs and RFs, the decision paths
are the object of analysis [22, 29, 37, 54] and transforming paths into
disjoint rules organized into tables emphasize what is essential (see
supplemental material).

Considering the above points, it is clear that scalability for RFs
visualization is not just a choice of getting a visual metaphor that can
represent millions of nodes, but getting a visual representation that
is scalable and still properly supports essential analytical tasks (see
Table 2). Something much more complex than merely visualizing a
forest of trees. In this scenario, ExMatrix renders a promising solu-
tion, supporting the analysis of many more rules concomitantly than
the existing state-of-the-art techniques. However, it is not a perfect
solution. ExMatrix covers two different perspectives of RFs, conveying
Global and Local information. In the Local visualization, scalability
is not a problem since one rule is used per DT, so even for RFs with
hundreds or even thousands of trees, ExMatrix scales well. However,
for Global visualization, scalability can be an issue since the number
of rules substantially grows with the number of trees. Although we
can represent one rule per line of pixels, we are limited by the display
resolution, and, even when the display space suffices, ExMatrix layouts
can be cluttered and tricky to explore.

The solution we adopt to address scalability was to implement the
so-called Schneiderman’s visualization mantra [50], allowing users
to start with an overview of the model, getting details-on-demand by
filtering rules to focus on specific sets of interest. Although users are
free to select any subset of rules, considering that the goal of the Global
visualization is to generate insights about the overall models’ behavior,
here we mainly explore filtering low-coverage rules since they are only
valid for a few specific data instances (that is the coverage definition).
Although simple, such a solution makes the analysis of entire models
easier by removing unimportant information and reducing cluttering.
Another potential solution is to make the rows’ height proportional
to coverage or certainty so that the rules with the lowest coverage or
certainty are less prominent (visible) and could even be combined in
less than one line of pixels. We have not tested this approach and left it
as future work.

Regarding the user study, although the results were satisfactory and
within what we expect for the ExMatrix GE and LE/UR visualizations,
the results for the ExMatrix LE/SC representation were sub-optimal,
and the XAI Question Bank [36] can help us to shed some light about
the reasons. According to this bank, the GE addresses the leading
question “How (global)”, whereas the LE/UR addresses the leading
question “Why”, enabling to answer inquiries such as“What are the
top rules/features it uses?” and “Why/how is this instance given this
prediction?”. However, the LE/SC involves three leading questions,
“What If ”, “How to be that”, and “How to still be this”, where the
changes on instance feature values are presented supporting hypotheses
(not answers), which shown to be too complex for the users. We believe
that designing visual representations to answer each of these questions
individually would be more effective and may reach better results.

Nevertheless, as discussed in the User Study section, participants’
low performance not only resulted from the visual metaphor but also
the expertise on RF models. Among the participants, few know the RF
technique in detail, indicating that people with less expertise can use
ExMatrix GE and LE/UR visualizations, but the LE/SC representation
is more suitable for experts. In general, despite the complexity of
the questions we ask participants to solve, they acknowledged the
ExMatrix potential, expressing encouraging remarks, including “... this
solution ... allows a deeper understanding of how each particular rule
or feature impacted on the final the decision/classification.” or “I think
the ExMatrix can be used in a variety of domains, from E-commerce to
Healthcare...”.

Although we design ExMatrix with RF interpretability in mind, it
can be readily applied to DT models, such as the ones used as surrogates
for black-box models as Artificial Neural Networks and Support Vector
Machines, or approaches based on logic rules such as Decision Tables
since the core of our method is the visualization of rules. Another
compelling scenario that can be explored is the engineering of models.
In this case, through rule selection and filtering, simplified models
could be derived where, for instance, only high coverage rules are
employed or any other subset of interest. Also, model construction and
improvement can be supported. The visual metaphors we propose can
be easily applied to the analysis and comparison of RF models resulting
from different parametrizations, such as different numbers of trees and
their maximum depth. Therefore, allowing machine learning engineers
to go beyond accuracy and error when building a model.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present Explainable Matrix (ExMatrix), a novel
method for Random Forest (RF) model interpretability. ExMatrix uses
a matrix-like visual metaphor, where logic rules are rows, features are
columns, and rules predicates are cells, allowing to obtain overviews
of models (Global Explanations) and audit classification results (Local
Explanations). Although simple, ExMatrix visual representations are
powerful and support the execution of tasks that are challenging to
perform without proper visualizations. To attest ExMatrix usefulness,
we present one use-case and two hypothetical usage scenarios, showing
that RF models can be interpreted beyond what is granted by usual
metrics, like accuracy or error rate. Although our primary goal is to aid
in RF models global and local interpretability, the ExMatrix method
can also be applied for the analysis of Decision Trees, such as the
ones used as surrogates models, or any other technique based on logic
rules, opening up new possibilities for future development and use.
We plan as future work to create new ordering and filtering criteria
along with aggregation approaches to improve the current ExMatrix
explanations and, more importantly, to conceive new ones. Another
fascinating forthcoming work is creating optimized rule-based models
from complex RF models, which we also intend to investigate.
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