
VisConnect:
Distributed Event Synchronization for Collaborative Visualization

Michail Schwab , David Saffo , Yixuan Zhang , Shash Sinha,
Cristina Nita-Rotaru, James Tompkin , Cody Dunne , and Michelle A. Borkin

Fig. 1. Three distributed collaborators analyze a node-link network visualization, with each synchronously interacting by dragging
nodes. This was enabled by adding two lines of VisConnect code to an existing D3.js node-link visualization. As the world becomes
more reliant on collaborating remotely, systems like VisConnect help keep data visualization users connected and effective.

Abstract—Tools and interfaces are increasingly expected to be synchronous and distributed to accommodate remote collaboration. Yet,
adoption of these techniques for data visualization is low partly because development is difficult: existing collaboration software systems
either do not support simultaneous interaction or require expensive redevelopment of existing visualizations. We contribute VisConnect:
a web-based synchronous distributed collaborative visualization system that supports most web-based SVG data visualizations,
balances system safety with responsiveness, and supports simultaneous interaction from many collaborators. VisConnect works
with existing visualization implementations with little-to-no code changes by synchronizing low-level JavaScript events across clients
such that visualization updates proceed transparently across clients. This is accomplished via a peer-to-peer system that establishes
consensus among clients on the per-element sequence of events, and uses a lock service to grant access over elements to clients.
We contribute collaborative extensions of traditional visualization interaction techniques, such as drag, brush, and lasso, and discuss
different strategies for collaborative visualization interactions. To demonstrate the utility of VisConnect, we present novel examples
of collaborative visualizations in the healthcare domain, remote collaboration with annotation, and show in an education case study
for e-learning with 22 participants that students found the ability to remotely collaborate on class activities helpful and enjoyable for
understanding concepts. A free copy of this paper and source code are available on OSF at osf.io/ut7e6 and at visconnect.us.

Index Terms—Collaborative visualization, distributed visualization, toolkit.

1 INTRODUCTION

The shared use of visual representations of data by people [21] has
wide application across domains, yet the problem of supporting collab-
orative visualization has been described by Thomas et al. as a “grand
challenge for data visualization” [42, Ch.3] and as worthy of a call
to action by Isenberg et al.: “We [..] urge for a new generation of
visualization tools that are designed with collaboration in mind from
their very inception” [21]. This need includes interactive visualization
and synchronous remote collaboration, such as for people working
from home, people spread across geographic areas, or people practicing
social distancing to suppress a global pandemic.

• Michail Schwab, David Saffo, Yixuan Zhang, Cristina Nita-Rotaru, Cody
Dunne, and Michelle A. Borkin are with Northeastern University.
E-mail: {schwab.m, saffo.d, zhang.yixua, c.nitarotaru, c.dunne,
m.borkin}@northeastern.edu.

• Yixuan Zhang is now with the Georgia Institute of Technology.
Email: yixuan@gatech.edu.

• Shash Sinha and James Tompkin are with Brown University.
E-mail: ssinha11@cs.brown.edu, james tompkin@brown.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

However, in spite of these calls and this need, there are still few
simple-to-use and broadly-applicable systems for distributed syn-
chronous collaborative visualization. While some projects improve
information exchange across remote teams [34], most existing litera-
ture focuses on co-located collaborations in the same physical space. A
key reason why synchronous distributed collaborative solutions are rare
is technical complexity: distributed systems are complex, error-prone,
and difficult to inspect [31]. Visualization creators often implement cus-
tomized network communication protocols and distributed coordination
algorithms, which end up entwined with the visualization code itself.
Such customization reduces generalizability and readability, and leads
to ‘one-off’ solutions. A general-purpose visualization system that
simplifies development and provides flexibility and robustness would
help lower barriers to the use of remote collaborative visualization.

We contribute VisConnect: a web-based distributed collaborative
visualization system. VisConnect replicates browser events, such as
mousemove, across collaborators to produce synchronized visualiza-
tions. VisConnect supports simultaneous interaction with a lock system
that gives each collaborator control over specific Document Object
Model (DOM) elements. To address the needs of the community,
VisConnect simplifies the creation of collaborative visualizations. Vis-
Connect can be used with D3.js [8] and other visualizations based on
Scalable Vector Graphics (SVG) on the web simply by including a
script tag and applying minimal code changes (e.g., replacing d3.drag
with vc.drag). Users then share a URL to the visualization that will
connect their browsers in communication. For easy-to-use distributed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://orcid.org/0000-0003-4427-3353
https://orcid.org/0000-0001-9515-048X
https://orcid.org/0000-0002-7412-4669
https://orcid.org/0000-0003-2218-2899
https://orcid.org/0000-0002-1609-9776
https://orcid.org/0000-0002-8016-355X
http://osf.io/ut7e6
http://visconnect.us

visualization development, VisConnect includes drop-in replacements
to D3.js functions for collaborative drag, brush, and lasso interactions,
and we discuss “divide and conquer” and “all together” strategies to
extend other interactions for collaborative use.

We evaluate VisConnect along three dimensions. First, in automated
tests, we show that VisConnect can resolve conflicts to ensure that
users stay synchronized, such as when collaborators attempt to make
different modifications to the same object. Second, we demonstrate
the utility of VisConnect with an example implementation for live chat
and by presenting three use cases in the domains of health care, remote
collaboration, and education. As part of the use case in education,
we also evaluate the usability of VisConnect for e-learning through a
case study with 22 students on a team-based in-class activity to teach
students about network visualizations. Students overwhelmingly stated
that the collaboration was helpful and enjoyed the highly interactive
remote teamwork enabled by VisConnect. Finally, we identify research
opportunities and summarize our lessons learned in how to challenge
the single-user assumption often made in visualization data and view
manipulation interactions today. A free copy of this paper and source
code are available on OSF at osf.io/ut7e6 and at visconnect.us.

2 RELATED WORK

2.1 Distributed Collaborative Systems
Distributed collaborative systems are becoming more commonplace.
One might consider video conferencing tools with screen-sharing ca-
pabilities as a collaboration tool, but these are asynchronous because
they let only one person interact at a time. Collaborative text editors
such as Google Docs [16] allow simultaneous edits. For the manip-
ulation of text, an often-used approach is “Distributed Operational
Transforms” [13, 15, 39, 40], where simultaneous manipulation op-
erations on the data are merged in a way that a consistent result is
generated. This is in contrast to the more conventional approach of
resolving conflicts using locks, where parts of a document are “owned”
by one collaborator at a time that can make changes. Ellis & Gibbs
argue that in the text editing context, the granularity question is hard to
answer, as it is not clear whether the lock should be obtained for the
enclosing paragraph, just the word, or the character [15]. In typical
web-based data visualizations, the DOM structure lends itself well to
the use of a lock system, as individual elements can be “owned” by
different clients for interaction. In our work, we use a lock service
to clearly establish allowed and disallowed operations, and achieve
near-zero latency in common interactions by requesting the lock in
anticipation of manipulations.

2.2 Collaborative Visualization
Research on collaboration in interactive systems has been ongoing
for decades and has been approached through different concepts, in-
cluding the Abstraction-Link-View paradigm [18]. For visualization,
Isenberg et al. define collaborative visualization as “the shared use of
computer-supported, (interactive,) visual representations of data by
more than one person with the common goal of contribution to joint
information processing activities” [21]. The authors categorize the de-
sign space of collaborative visualization into distributed or co-located,
and synchronous or asynchronous according to where and when the
usage scenarios happen, respectively. Among these areas, co-located
synchronous collaborative visualizations has been most thoroughly
studied [4, 12, 19, 20, 22, 28, 30, 44, 45]1, typically using multi-user
table tops or multiple co-located devices under the term “beyond the
desktop”. As part of this work, interesting novel interaction techniques
have been proposed, such as collaborative brushing and linking [22].
This collective research demonstrates that collaborative visualizations
enable new data visualization research.

In contrast, distributed synchronous collaborative visualization has
received comparatively little attention [2, 6, 10]. One related research
area considers how to propagate visualization interactions across mul-
tiple coordinated views, using constraint-based layouts, data-centric

1An overview of research in both co-located and distributed settings is in
Section 8 (“Collaborative Immersive Analytics”) of “Immersive Analytics” [7].

approaches, and methods using the Model-View-Controller framework,
where all views share a model that propagates changes [32, 35, 37].
These achieve successful coordination among multiple views, and can
change the internal application logic and flow. We cannot rely on this
ability if we aim for applicability to many independently-created data
visualizations. Another better-established area of distributed collab-
orative visualization research centers around the use of virtual and
mixed reality [7, 14, 23, 29, 47]. Key differences exist between these
setups and the web, as they often position users in a shared “world”
established by a central server, whereas interactive websites operate
more independently. Unfortunately, little work has focused on remote
collaboration with 2D display and interaction devices. This is true even
though remote work has become increasingly popular and important
challenges to remote collaboration have been identified, both for the
technical aspect of distributed synchronous work [21] as well as for the
coordination of team members trying to achieve a common goal [7].

One approach to ensure that all clients see the same content is to
synchronize the DOM across clients. This approach is used by Web-
strates [24]: a general framework for synchronizing documents on the
web. This method has the drawback of breaking data binding if no
specific solutions are provided (Sec. 3.2), which makes this approach
impractical as a general-purpose system that can extend existing data
visualizations. Vistrates [5] helps address this challenge for data visual-
ization by providing a framework with pre-existing visualizations that
can be used in different contexts. Within the Vistrates framework, DOM
synchronization is achieved without breaking data binding with specific
visualization implementations that also synchronize application state.
This approach does not transfer to visualizations created outside the
Vistrates framework. Two works are most related to our approach for
distributed synchronous collaborative visualization: Thum & Schwind
propose co-browsing by sharing browser events [43], and Badam &
Elmqvist’s PolyChrome uses a similar shared browser event system
for distributed visualizations that achieved synchronization without
breaking data binding [3]. Their approach uses timestamps to resolve
orderings, while we use a consensus-driven approach with a lock system
to avoid conflicts. Further, neither work supports simultaneous inter-
action. Because Thum’s synchronization works independently from
the visualization, the implemented interactions can not be aware of
simultaneous events. PolyChrome is designed to be extended with op-
erational transforms to resolve conflicts from simultaneous interactions,
but this was outside the scope of their work. In contrast, our system
adds collaboration with simultaneous interactions to visualizations by
simply adding a script tag, which lowers the barrier to entry.

3 SYSTEM DESIGN

Increasing adoption of synchronous distributed collaborative visual-
izations requires understanding the difficulties faced by visualization
creators. We begin by stating these as requirements, before analyzing
how well different possible architectures may meet these requirements
for the data visualization domain (Sec. 3.3).

3.1 Requirements
To lower barriers for development and use, we seek a design that is ap-
plicable to all types of visualization applications and is compatible with
existing visualization paradigms. We claim the following architecture
requirements:

GENERAL: We seek an architecture that is as generally applicable
and works on as many visualization applications as possible.

EASY TO USE: We seek an architecture that lowers barriers and
makes adoption easy. Adding collaboration should be as auto-
mated as possible, and should ideally only require including a
script tag.

COMPATIBLE: We seek an architecture that is compatible with ex-
isting methods and paradigms. This lets visualization creators
add the system to existing infrastructure without requiring new
development paradigms.

Further, as any other distributed system, our system must be safe —
to apply only agreed-upon changes — and must be live — to apply

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://osf.io/ut7e6
http://visconnect.us

Visualization
DOM
(e.g., Scalable Vector Graphic)

Application Logic
Visualization Code
(e.g., D3.js)

Interactions
DOM Events
(e.g., “click”)

Update based
on data

Trigger

Fig. 2. There are three possible entry points for synchronization within
the update cycle of web-based data visualizations. Interactions, such as
click or drag events; the application logic which updates the internal state
through JavaScript code based on new information; and the visualization,
which renders the output. To achieve synchronous collaboration, systems
must reproduce this update cycle for all clients.

Client 1’s side: (initiates interaction first)

Client 1

Client 2’s side:

Height: 5’11’’
Weight: 150 lbs

Height: 5’11’’
Weight: 170 lbs

Update

x: 150
y: 150

Data
Binding

x: 150
y: 170

Data
Binding

JavaScript DOM

Height: 5’11’’
Weight: 150 lbs

x: 150
y: 170

Height: 5’11’’
Weight: 150 lbs

x: 150
y: 150

Data
Binding

JavaScript DOM

DOM being synchronized

Fig. 3. An illustration of one of the challenges of synchronizing the DOM
across clients. Synchronizing the visualization directly conflicts with data
binding. Client 2’s DOM is updated based on the changes by Client 1,
but the data connected to the DOM is now out of date.

changes immediately to be responsive [26]. Balancing both safety and
liveness is a core problem in distributed computing [1], and system
designers need to make choices about which is more important. For
visualizations, we balance these as follows:

SAFE: Given that we seek an architecture applicable to a broad range
of applications, we have to assume that in some applications, the
display of incorrect information, even if temporary, can prove
detrimental. In addition, it is difficult to resolve conflicts without
knowing the specific use case. We prioritize “safety” and request
access before changes are made to support the general utility of
the system and to ease conflict resolution.

RESPONSIVE: Low responsiveness is quickly apparent in many
interactions, such as dragging data points [17]. Given that we
prioritize safety, we cannot achieve full liveness. However, we
aim to mitigate many of the challenges of not being “live” by
employing strategies to improve the perception of responsiveness.

3.2 Visualization Update Cycle

To understand how to meet these requirements, we analyze the typical
update cycle of data visualizations (Fig. 2). Visualizations are created
and maintained by application logic code, often written using JavaScript
(e.g., D3.js). This happens through data binding: the application loads
data and assigns it to visual objects that represent the data. Any user
interaction with the data visualization, such as clicking or dragging a
node, is detected by event listeners that are part of the application logic.
This causes updates in the data, which the application logic uses to
call for the rendering of the visualization to reflect the changes in the
data, e.g., via SVG. Each layer in Fig. 2 is a potential entry point for
collaborative systems to synchronize the visualization across clients.
As such, next we discuss the trade-offs of these possible architectures.

3.3 Architecture Choices

Visualization Synchronization An obvious choice is to synchro-
nize the visualization itself. Since most web visualizations are based
on SVGs, this represents a well-defined and relatively small target spec-
ification to be replicated across clients. This means that comparably
little implementation work would be needed to adapt visualizations to a
collaborative setting. In this case, a system could guarantee consensus
on a shared DOM among clients and keep the local elements up to

Client 1’s side Client 2’s side

Visualization Code

SVG elements

1. Init 3. Update

2. Click

Visualization Code

SVG elements

1. Init 3. Update

2. Click

Fig. 4. Event synchronization can achieve the same visual update across
clients: From an initial starting visualization across clients (1), a click (2)
by client 1 makes the corresponding visualization code respond and
update the visualization accordingly (3). If the click event (2) is broadcast
to client 2 and then re-emitted, client 2’s visualization code will react as
per client 1 and update the visualizations synchronously.

date, thus ensuring that collaborators see the same visualization. This
approach is used by Webstrates [24] to synchronize document contents.

The disadvantage is that it conflicts with the concept of data binding
(Fig. 3, COMPATIBLE). The conflict arises because this approach
sets DOM attributes directly, such as element positions, whereas data
binding changes attributes to reflect the data. For example, the position
(x,y) of a circle on a scatter plot could represent the values for the
height and weight of a person. With data binding, x and y are updated
when the height or weight change. With a visualization synchronization
approach, x and y are set directly without a change in the data, and so
the client’s application logic would not know about the data change.
This is a problem because application logic typically assumes sole
responsibility for managing the DOM. If the visualization code re-
renders the visualization, any changes made by such a synchronization
system would be overridden by the visualization because the data would
still be out of date. Collaboration systems using this approach would
have to find a solution to the problem of shared responsibility over the
DOM between the application logic and the system.

Application Logic Synchronization Achieving synchronization
of application logic across clients would not break data binding, as the
same executed application logic would lead to the same updated data
and the same updated DOM. This could be achieved via custom events,
such as with d3.dispatch. For example, based on user interaction,
a visualization may trigger a “data-updated” event that declares the
updated data. This event can be distributed to connected clients so that
all update their data accordingly, and developers can control what is
communicated to different clients.

The disadvantage of this approach is that it is visualization-specific,
and a lot of work has to be done on an individual visualization level to
enable collaboration. Specifically, visualizations have to be structured
around these custom events so that changes from other clients always
trigger the correct update procedure on all clients. Any updates that are
executed in response to local changes, such as onclick listeners, can
lead to inconsistent visualizations. Therefore, this approach can easily
lead to errors if not implemented correctly. Collaboration systems using
this approach are potentially useful and can have customized behaviors,
but require more experienced developers that are willing to invest time
in customizing their visualization code for collaboration. Little of this
work is generalizable to other visualizations, which does not lower
barriers and increase adoption (GENERAL, EASY TO USE).

Interaction Synchronization Synchronizing the execution of low
level DOM events, such as onclick, mousedown, mousemove, and
mouseup causes the entire data visualization update cycle to be exe-
cuted for all clients (Fig. 4). This is advantageous because this approach
also has a well-defined and small target specification (which minimizes
visualization implementation changes), and because it is compatible
with data binding. One way to think of this is that it allows multiple
simultaneous cursors (and other interaction types). As most web data
visualizations already react to DOM events, they do not have to be
changed to exploit this approach.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Incompatible with
data binding

Specific to individual
visualizations

DOM
Synchronization

Application Logic
Synchronization

JS Event
Synchronization

Generalizable across
many visualizations

Compatible with
data binding

Fig. 5. Possible data visualization collaboration system architectures.
Bottom left: Application logic synchronization gives flexibility to visualiza-
tion developers, but ties collaboration code to specific visualization code
which hurts reuse. Top right: Synchronizing SVG DOM visualizations is
more generalizable, but breaks the data visualization update cycle as
it is ignorant of data binding. Top left: Synchronizing user interactions
is general because DOM events are standard browser events, and it is
compatible with data binding because any updates to the visualization
flow through the application logic. On the other hand, depending on
implementation, the flow through the application logic may not always
happen in exactly the same way or have the same results. This is a
challenge in the JS Event Synchronization approach.

The disadvantages of this approach lie in its assumption that collabo-
rators have equal starting points and that they have equal outcomes from
the same interactions. This assumption can be violated for a variety of
reasons, including randomness of the visualization, or different screen
or window sizes. Some visualizations assume that only one cursor
exists, and may not react correctly when used with multiple cursors.

Yet, these challenges can be addressed, and are outweighed by three
core advantages: little implementation work is needed to adapt visual-
izations for collaboration, this approach scales to many visualizations,
and the approach is compatible with data binding.

Summary For a system to be easy to develop with, compatible
with data binding, and to synchronize entire data visualizations (EASY
TO USE, COMPATIBLE), we argue that synchronization of events is
the most suitable approach (Fig. 5). This approach is especially useful
to generalize to many visualizations (GENERAL), both existing and
new, and to have the largest potential community impact. Of course,
collaboration systems with more specific requirements may choose
application logic synchronization. However, for the rest of this paper,
we will consider the technical challenges that come with interaction
event synchronization, and propose our solutions through VisConnect.

4 VISCONNECT SYSTEM

VisConnect is a peer-to-peer distributed system which synchronizes
low-level pointer events, such as onclick and mousemove (Fig. 4,
COMPATIBLE). This is challenging to achieve in a way that leads to
consensus among clients, as different collaborators can try to execute
conflicting modifications to the data and the view at the same time. We
address this with explicit client leadership, DOM partitioning, and an
interaction lock service.

Practically, we implemented VisConnect for web-based SVG vi-
sualizations. The implementation works across mobile and desktop
computers, is open source2, and is written in TypeScript using Peer.js.
This approach allows it to be easily be added to many existing visual-
izations with only a few lines of code (EASY TO USE). To help in this
endeavor, VisConnect also includes a customizable set of JavaScript
events that are synchronized across clients.

4.1 Overview

The main functionality of VisConnect is contained in the Core module,
shown in Fig. 6. This intercepts DOM events with the DOM module,
and asks the Synchronization module how to handle them. The Syn-
chronization module decides which events to allow and which to reject
based on the lock service. Then, it broadcasts events to other clients
using the communication component, which also sets up the network,

2Source code is available at github.com/michaschwab/VisConnect

SynchronizationVisConnect Core

DOM Module Lock Service

User Interface Utility ModuleEvent

Communication To clients

Fig. 6. System design of VisConnect. This consists of a minimal user
interface, utility functions for visualization developers, and the Core that
distributes events among clients. Events are picked up by event listeners
in the DOM module. These are then sent to the Synchronization module,
which decides whether to allow or reject them based on the response of
the lock service. Allowed events are broadcast using the communication
component, which is also responsible for managing the clients.

catches up newly joined clients, and transmits lock ownership infor-
mation to the clients. If the Synchronization module decides that an
event should be emitted, whether local or remote, the Core module uses
the DOM module to re-create the event based on the transmitted event
information, and dispatches the event on the original target element as
identified via element selectors.

The components are written in a modular way to allow for indi-
vidual components to be swapped out for alternative implementations.
The provided user interface and utility module are not needed to run
VisConnect — visualizations can create their own interface for their
collaborative visualizations (GENERAL). The Synchronization mod-
ule is not linked to the DOM module, but rather decides which events
to execute and which ones to reject, without any knowledge of the
implications. As such, the Synchronization module can be tested au-
tomatically in isolation with arbitrary mock events to verify system
safety (SAFE). The communication component can be swapped out for
a mock communication component that avoids the tests to require a
network, allowing consistent tests independent of network conditions.
The source code includes automated tests of conflicting changes that
show VisConnect’s correct handling of these situations.

4.2 Interaction Synchronization
The synchronization component is responsible for synchronizing events
across clients. This component receives events from both the network
component (events from other clients) and the event listener component
(events from the local client). Events received from the event listener
are processed, checked for access with the lock service, and if approved,
broadcast to all other clients. Events received from other clients are
processed and executed or ignored, depending on whether the sending
client has been granted the access to execute events on the passed
element, as determined by the lock service. Events from both sources
are recorded in a event log.

Coordination VisConnect uses one leader per collaboration ses-
sion. The leader’s responsibilities are to (1) manage the events, (2) man-
age the clients, and (3) manage the locks, which we defer to Section 4.3.

(1) Managing the events: The leader keeps track of the events that
have been accepted to occur on the network, and keeps track of the
order of the events per element.

(2) Managing the clients: All collaborators can invite new clients
to join the network. Upon joining, a new client requests to join the
network by sending a message to the leader. The leader responds
by sending the list of connected existing clients, and the new client
establishes connections to them.

In the case that a client joins the network after events have already
occurred, the leader ensures that all clients are in the same state by
sending the list of events that have occurred up until that point. The
new client then executes them in the correct order. This catch-up pro-
cess is primarily limited by message size and event timing. When all
mousemove events are captured for several minutes of continuous inter-
action, the array can become too large for PeerJS’ serialization of the
data into JavaScript Blob objects. Often, the entire list of mousemove
events is not necessary to reproduce a visualization state, and better
summaries of the past events could help address this limitation, such

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://github.com/michaschwab/VisConnect

3

1

4

5 2

Lock Service
First come, first serve

Element
Owner Client 2 Client 3 Client 1 Client 1

Circle 2Circle 1 Circle 3 Circle 4 Circle 5

Expire Time 12345ms 12345ms 12345ms 12345ms

Client 1
Locks
Circle 4
Circle 5

History

Circle 2: [evt, evt..]
Circle 3: [evt, evt..]

Circle 1: []

Circle 4: [evt, evt..]
Circle 5: [evt, evt..]

Client 2
Locks
Circle 2

History

Circle 2: [evt, evt..]
Circle 3: [evt, evt..]

Circle 1: []

Circle 4: [evt, evt..]
Circle 5: [evt, evt..]

Client 3
Locks
Circle 3

History

Circle 2: [evt, evt..]
Circle 3: [evt, evt..]

Circle 1: []

Circle 4: [evt, evt..]
Circle 5: [evt, evt..]

Fig. 7. The internal states of connected clients and the lock service during
a collaboration (Fig. 1). On a first come, first come basis, the lock service
grants collaborators write access to individual elements, which can then
trigger events across all clients. After a short time of not broadcasting
events, the write access is revoked so other collaborators can start
modifying the element. This design ensures that no conflicts occur
between collaborators, while allowing smooth simultaneous interaction.

as custom events. For some interactions, the event timing matters for
the visualization state, and it is not possible to reproduce the same
visualization state by replaying the events faster. For these cases, a
better summary of the past events would be helpful, too. VisConnect
does not yet implement custom summaries; this is left for future work.

Partitioning To establish a series of events to be executed on the
visualization across all collaborators, some logic is needed to define
which events are allowed to be executed and which are prohibited
from execution. For example, if two collaborators try to drag the same
DOM element, a system design needs to define how to proceed and
how to establish consensus among these collaborators. One common
distributed systems method to support synchronous changes while
avoiding conflicts is to partition the data on which these events operate.
This technique is used in most collaborative systems [33], including
Google Docs, where the text is separated into underlying sections and
paragraphs of text. VisConnect translates the concept of partitioning to
the data visualization domain by partitioning the visualization via its
individual SVG elements. This allows one element to be manipulated by
one client at a time, avoiding ambiguity on this element, while enabling
simultaneous changes on other elements by other collaborators.

4.3 Lock Service

While DOM elements are partitioned, the VisConnect Synchronization
module still must disambiguate which client can manipulate which SVG
element to avoid conflicts (Fig. 7). To fulfill the safety requirement
(SAFE), the lock must be obtained before any events can be dispatched
by the client. If the element is already controlled by a different client,
then the lock service must reject the request, which leads to other clients
not accepting events from that client for that element, even if broadcast.
If the element is not yet controlled by a different client, then the lock
service must accept the request and broadcasts to all clients that this
client is the lock owner of the element. Then, other clients will accept
events from that client on this element.

A common method of achieving consensus is with a vote-based
lock service, via a voting system similar to PAXOS [27]. In this
setting, a majority of the clients must agree to granting the lock to
a client. However, we found this approach to be too slow for our
interactive visualization setting, as the system would have to wait
for communication from at least half the collaborators. The delay
compounds as the number of clients increases.

Load
VisConnect

Click the Icon Link
Copied

Send Link to
Collaborator

Collaborator
Opens Link

Connected
Successfully

http://domain.tld?
visconnectid=123

Invite
Link

Copied

1 connected

Fig. 8. How to use the VisConnect user interface. A click on the logo
copies the link for inviting others to join the collaboration. After the copied
link is shared with a collaborator, the collaborator can join the session
by clicking the link. Then, the user interface indicates the number of
collaborators with “1 connected”. The VisConnect user interface is shown
in the bottom right of the browser window on a VisConnect visualization.

Instead, we use a central lock service that is conceptually separated
from the rest of the system. The host collaborator automatically also
serves as the lock service. Clients request the lock from this central
source, which minimizes delay and the number of required messages
for the decision to be made. This reduced communication time and so
additionally led to reduced conflicts in our interactive setting.

For smooth interactions (RESPONSIVE), we request the lock as
early as possible. Specifically, any events on an element will request the
lock, including mouseover events. For example, in a drag interaction,
the lock will be requested even before the mouse is pressed down, mak-
ing the delay unnoticeable. Once the lock is obtained, the agreement
is that the client is the lock owner for at least one second. This means
that the client can execute and broadcast subsequent events without
communication or delay. In addition, each broadcast event extends the
lock ownership for one second. This means that once a lock is obtained,
the client can indefinitely smoothly interact with the element without
requiring approval. Once the collaborator stops interacting with the
element, the lock expires after one second, freeing the element to be
interacted with by other collaborators.

This one-second lock avoids conflicts among collaborators, and
serves as a “grace period” for lock owners in cases of accidental control
misrelease, e.g., during mouse repositioning. We determined the lock’s
duration empirically: we try not to release an element too early or
too late; longer durations could lead to cumbersome element owner
changes. This duration will be a parameter in a future VisConnect.

In some visualizations, conflicts are categorically impossible, such
as when all collaborators can independently annotate and draw over
a visualization, as in Sec. 6.2, or in our chat example in Sec. 5.2, and
there is no sense of elements that could be owned. For these cases, the
lock service can be disabled entirely in favor of more responsiveness.
As seen in Listing 2, the collaboration can be set to “live” as opposed
to “safe” to turn off the lock service.

4.4 User Interface
We provide a minimal user interface (UI) to invite friends and co-
workers to collaborate, and to indicate how many collaborators are
connected (Fig. 8). Both the host and the collaborators can click the
user interface to copy the link to invite other collaborators to join.
By default, the UI includes the collaborators’ cursor positions to help
coordination. We plan to make this a changeable setting in future
work and provide more means of non-verbal communication to aid
collaborative tasks. The VisConnect Core works independently of
this interface, and visualization creators can choose to use VisConnect
without using this interface. For example, visualization creators can
integrate the button to start collaborations into existing menus for
appearance consistency.

4.5 Communication
The communication component connects clients and sends messages
between them. We use a peer to peer network implemented with
Peer.js [11] and the WebRTC protocol. Aside from a lightweight in-
browser Javascript server that Peer.js uses to initially connect clients,
the distributed nature of the system design can help provide resilience
to network infrastructure issues. It also allows our implementation to
be easily added to many visualizations with minimal effort (EASE OF
USE): typically, including a script tag suffices to enable collaboration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

The process starts when a user visits a hosted visualization where the
network code will check the URL for a peer ID parameter. If there is
no peer ID present, the client becomes the host and a URL containing
the client’s peer ID is created. The host can share this link with other
users to allow them to join the network. When a user opens this link,
the system detects the peer ID parameter and connects to the host.
When the host receives a new connection, it adds the peer to its list
of connected peers and sends a ‘new connection’ message back to
the newly connected client. The message contains the peer IDs of all
connected peers, and allows the new client to connect to all the other
clients in the network. Once a client is connected to all the peers, it
can send and receive messages. In the current version of VisConnect,
the host is the only point of entry for new clients to join the network,
and so collaboration ends if the host crashes. As this happens rarely,
PAXOS [27] could be used to choose a new host in a future update.

VisConnect sends as many update messages per collaborator as pos-
sible given network constraints. If the network is too slow, VisConnect
starts to batch multiple events into a single message to avoid clogging
the network. However, given modern internet connections, this does
not happen frequently and the network delay is rarely noticeable, even
with a relatively high amount of data transfer such as in the e-learning
example in Sec. 6.3, where four students per group simultaneously and
continuously dragged different elements.

4.6 DOM Module

Visualizations across clients are synchronized by executing events from
one client on all other clients. To this end, capturing events on the
client is core to any VisConnect implementation. The event listener
component is built to listen for a defined list of events on the specified
target — typically, the SVG element containing the visualization, or
the HTML body. We listen for a variety of interaction events such
as mouse move, mouse down, mouse up, and click. This list can be
easily expanded to support other predefined or custom events. When an
event object is captured it is simplified to exclude any non-serializable
data and sent to the VisConnect Synchronization component to be
potentially processed, broadcast, and executed.

4.7 Utility Module

VisConnect gives visualizations access to an agreed-upon list of DOM
events from collaborators. The availability of events from multiple
collaborators has implications for visualization design and interaction,
as visualizations are typically designed with only a single user in mind.

For interaction, many common techniques are implemented for a
single cursor. For example, d3.drag listens to any mousemove events
to move an element once mousedown has occurred. If two clients
are moving their cursors, and one attempts to drag an element, both
clients’ cursor positions are picked up, and the element will flicker
between the two cursor positions. To support multiple collaborators,
traditional techniques have to be generalized. The utility module comes
with generalizations to all interaction techniques included with D3.js
and more, including vc.mouse, vc.drag, vc.brush, and vc.lasso.
These interaction techniques are discussed in Sec. 5.1.

Another single-user assumption often made in data visualizations
is that if no specific node position or color is needed, such as in a
node-link network visualization, then these values can be set randomly.
If multiple users try to collaborate on such a randomized visualization,
they will have inconsistent starting points for their collaboration, which
can lead to conflicts. To address this issue, the utility module comes
with vc.random as alternative to JavaScript’s Math.random. This
function provides random values for the leader of a collaboration, but
yields the same values for collaborators that join the session. This
ensures that collaborators have the same starting point and continue
to see the same visualization during a collaboration. D3.js includes
some utility functions, such as d3.randomNormal, for creating ran-
dom values that follow specific distributions. By default, these are
based on Math.random. However, visualization creators can change
this source: Setting d3.randomNormal.source(vc.random) makes
D3.js’ random functions compatible with VisConnect collaboration.

const svg = d3.select("#vis");
const circles = d3.range(20).map(() => (
{x: vc.random() * 500, y: vc.random() * 400}));

const drag = vc.drag()
.on("drag", function(d) {
d3.select(this).attr("cx", d.x = d3.event.x)
.attr("cy", d.y = d3.event.y);

});

svg.selectAll("circle")
.data(circles).join("circle").attr("r", 20)
.attr("cx", d => d.x).attr("cy", d => d.y)
.attr("fill", (d, i) => d3.schemeCategory10[i%10])
.call(drag);

Listing 1: Collaborative, draggable circles. To add collaboration
to the existing visualization, Math.random and d3.drag are re-
placed with vc.random and vc.drag, respectively. Live demo at
bl.ocks.org/michaschwab/a05187daaaa652de0e903365d1f0d327.

In most cases, no additional changes beyond changing Math.* and
d3.* to vc.* are required to switch to VisConnect’s extensions that
support collaboration. But in some cases, the visualization implementa-
tions also include single-user assumptions. For example, code might
include global variables such as dragCircle that are modified when
dragging occurs. In these cases, implementations must remove their
single-user assumptions to use collaborative drag.

5 VISCONNECT USE AND INTERACTION

To use VisConnect, a developer must add a script tag to the HTML
page of a visualization. This must come before the JavaScript code that
creates the visualization, so that VisConnect can capture events before
they reach the visualization. After adding the library, collaboration can
begin. A click on the VisConnect UI, shown in Fig. 8, lets users share
a link with their collaborators. Once they click the link, they join the
collaboration session and events are synchronized among collaborators.

5.1 Interactions
VisConnect supports all interactions in the D3.js API, with many shown
on our website at visconnect.us and in our Supplemental Video. By
default, mouse events are copied across collaborators. This works well
for collaboration scenarios where all collaborators are meant to share
the same visualization state.

Selection, Zoom, and View Navigation Consider a map visual-
ization that might zoom in to a clicked country. If collaborators wish
to all look at the same country at the same time, perhaps to verify
or discuss each other’s findings, then the strategy of copying mouse
events is suitable. Similarly, this strategy works well for manipulating
the visualization state through a user interface, where either the view
or the data itself are manipulated through sliders, drop-downs, input
fields, and more. We show an example of shared state through shared
details-on-demand hover tooltips and shared data alignment settings in
our IDMVis example in Sec. 6.1 and our Supplemental Video.

Drag To support drag, collaborators must not share the entire
visualization state: if “dragging data point 5” is common across collab-
orators, then they would compete to drag the same data point. Thus, we
replace d3.drag with vc.drag to enable multi-user drag. Listing 1
shows a compact example of collaboratively draggable circles with
minimal changes from an existing demonstration of D3.js drag.

Brush and Lasso These selections are similar to drag interactions
in that sharing the entire visualization state would break the interactions
because the selections would be in conflict between multiple cursor

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://bl.ocks.org/michaschwab/a05187daaaa652de0e903365d1f0d327
http://visconnect.us

<body collaboration="live" custom-events="chat-msg"
ignore-events="click,mousedown,mouseup,mousemove">↪→

<!-- Messages and input fields -->
</body>
const onMessageSent = () => {

let evt = CustomEvent('chat-msg', {sender,text});
document.body.dispatchEvent(evt);

};
const messages = [];
document.body.addEventListener('chat-msg', (e)=>{

messages.push(e.detail); rerender();
});

Listing 2: A simple chat created with VisConnect based on
custom events. Mouse events are ignored, but custom chat
message events are synchronized across clients. Live demo at
bl.ocks.org/michaschwab/20d5f1e5daa091e699f5de4be662ea7d.

positions. Collaborative brush and lasso are more complex than collab-
orative drag: the simultaneous drag of multiple items has an obvious
resulting shared state in the new positions of the data points, whereas
the resulting state for multiple brush or lasso selections is less clear.

One important question is whether the result of multiple brush or
lasso selections should be a shared state common to all collaborators,
such as a shared overall selection of items, or whether each collaborator
should have their own state, such as an individual selection. For a shared
overall state, we must decide how to combine different selections. For
example, one use case could be to select all items within any lasso.
With vc.lasso, we include this as a selection strategy and demonstrate
it online3 as well as in the Supplemental Video.

On the other hand, a collaborative brush and lasso could “divide
and conquer”, where collaborators individually analyze separate parts
of the data to contribute to a shared overall goal. Isenberg et al. [22]
define this as “an awareness technique, in which the interactions of one
collaborator on a visualization are visible to other collaborators viewing
the data items in their own visualizations or views of the data.” We
support this strategy in vc.brush and vc.lasso, as shown in the lasso
bl.ock above as well as in our collaborative brush demo4. With this
strategy, visualization creators must decide how to visualize individual
collaborators’ work as progress on the overall task. We provide an
example, “Where’s the Square”5, where collaborators can individually
zoom in to different parts of a large scatter plot and annotate for all
collaborators to see whether the selected part of the data includes a
target data point. This strategy transfers to more complex tasks.

Currently, VisConnect supports most interactions commonly used
in data visualizations, with active work to support a broader range of
scenarios. We discuss these and other strategies to extend single-user
interactions to collaborative use cases in the Discussion (Sec. 7).

5.2 Custom Events: Chat Example
To customize collaboration behavior, VisConnect can synchronize user-
defined custom events. As discussed in Sec. 3.3, custom events can
be used in JavaScript for a more loose coupling between the input
events, such as mousemove and click, and the effect, such as creating
data points and updating the visualization. The loose coupling has the
advantage that the input mechanics can be changed without having
to change the way the visualization reacts to new data. For example,
a set of user interactions, such as clicking, dragging, and entering
values, can trigger a “data-created” event, which can be captured to

3Collaborative Lasso: bl.ocks.org/994a1ab12de6fb4bf21ee5c7a2461466
4Collaborative Brush: bl.ocks.org/b2d66e94bf90016cb285ebc9515ebc0a
5Where’s the Square: bl.ocks.org/8f83c41f08721bd6e1d780384d9faa32

mg/dl

Mouseover tooltip

1
Overview

Detail View

IDMVis

2 3

mg/dl

Mouseover tooltip

1
Overview

Detail View

IDMVis

2 3

Fig. 9. A collaborative scenario where a doctor (top) and a patient
(bottom) use IDMVis to share decision-making processes in diabetes
management with the help of VisConnect. After the doctor selects a
date from the Overview 1 , both the doctor and the patient see the same
graph in the Detail View 2 . Upon interaction, both can see the same
details on demand in the Mouseover tooltip 3 .

update a visualization. Custom events are supported by D3.js using
d3.dispatch. An example of custom event synchronization is shown
in Listing 2: a chat based on VisConnect. When collaborators submit
chat messages, custom “chat-msg” events are broadcast. The list of
messages are updated when new chat-msg events are received. By
synchronizing these custom events across clients, the communication
of chat messages happens automatically through VisConnect.

In the custom-events HTML attribute, users can specify which events
should be shared among collaborators. In this example, the cursors
should not be synchronized, and so we specify not to synchronize the
corresponding events with the ignore-events tag. Allowing users to
specify which custom and standard events are synchronized allows visu-
alization creators to create collaborative visualizations that address the
specific collaboration needs of the problem. Allowing visualization cre-
ators to specify this information in accessible HTML attributes lowers
the barrier for the customization. More custom event synchronization
examples, such as “Where’s the Square”, are available on our website.

6 USE CASES

To demonstrate the value and utility of VisConnect, we present three
real prototype domain applications examples across telemedicine, re-
mote collaborative work, and education.

6.1 Shared Decision-Making in Telemedicine

For this case study, we collaborated with authors of the recently-
published IDMVis [48] diabetes visualization system to extend their
work. We familiarized ourselves with literature on current diabetes
management practices, and collaboration between diabetes clinicians
and patients (e.g., [46,48]). Diabetes clinicians typically communicate
with patients to jointly reconstruct past events (e.g., meals, exercise,
sleep, sickness). For example, clinicians identify high blood glucose
data points, and investigate possible causes for hyperglycemia based
on patients’ memories and logs of the event times. Conventionally, this
interaction happens unidirectionally as clinicians drive the conversation
by identifying important data points. This type of collaboration could
be partially supported by existing systems such as PolyChrome, as
it supports copying the doctor’s view to a patient. But this type of
collaboration misses the opportunity for patients to respond to inquiries

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://bl.ocks.org/michaschwab/20d5f1e5daa091e699f5de4be662ea7d
http://bl.ocks.org/994a1ab12de6fb4bf21ee5c7a2461466
http://Collaborative Brush: bl.ocks.org/b2d66e94bf90016cb285ebc9515ebc0a
http://bl.ocks.org/8f83c41f08721bd6e1d780384d9faa32

Fig. 10. A scenario where two collaborators are using Live Website Anno-
tate to scrutinize a graph on Wikipedia. Live Website Annotate provides
three main modes: Annotate (currently active)–allows annotating with a
solid line, Highlight–allows highlighting with a opaque thicker line, and
Interact–allows interaction with the underlying web page. A text-based
chat is also available to communicate with other connected collaborators.

about the data by pointing out other relevant data in the visualization,
and drawing the attention of the clinician to potentially important in-
formation. The ability for a patient to interact and have a bidirectional
conversation is even more challenging in a telemedicine situation, and
this two-way interaction is not supported by existing systems.

With VisConnect, on the other hand, patients can not only follow the
clinicians but also redirect the conversation by initiating interaction on
their own screen. This type of interaction is displayed in Fig. 9 with our
IDMVis prototype. A doctor and a patient see the same temporal blood
glucose data in the Overview 1 and can change alignment settings
to explore blood glucose trends and patterns across days. From the
overview, both the doctor and the patient can select a day of interest
to reason about the change of blood glucose levels during a particular
day. Upon selection, more detailed information appears in the Detail
View 2 . They both can hover over specific elements of the graph
to examine details on demand via a mouseover tooltip 3 , which are
shared with their collaborator. This type of bidirectional interaction and
communication has the potential to increase patient engagement and
shed light on potentially important health information to the clinician.

To make IDMVis work with VisConnect, the only action taken was
to add the script tag to load VisConnect in the HTML header. After this
script tag was added, connected collaborators are immediately enabled
to jointly decide which days and events to investigate in detail.6 This
real domain application demonstrates the ease of use of VisConnect to
enable remote collaboration in existing web-based visualization tools,
and the potential for VisConnect’s utility to support telemedicine.

6.2 Real-time Collaborative Annotation

Shared annotations are an ongoing research effort to tackle the chal-
lenges of communication and coordination during remote collaboration
on visualizations [9,21]. Collaborative annotation functionalities enable
group examinations of visualization and support collective and collabo-
rative sensemaking [41], i.e., people actively pursue shared goals and
group interpretations [9]. For example, two collaborators might want
to jointly learn about the U.S. economy from Wikipedia, and point
out interesting facts in the text and included graphs. To illustrate Vis-
Connect’s capabilities in synchronized collaborative sensemaking, we
created a Google Chrome extension, “Live Website Annotate” (LWA),
which enables multiple users to simultaneously annotate existing online
visualizations and websites.7 To enable collaboration, users can install

6A live demo is available at michaschwab.github.io/IDMVis/public/ and a
demo video is provided in the Supplemental Material.

7Source code is available at github.com/shash678/Live-Website-Annotate

the LWA extension from the Chrome Web Store.8 One collaborator can
invite other collaborators to a shared session by creating an invitation
link for the current web page. Other collaborators can join the session
by pasting the link into the extension’s menu. To enable annotation, the
extension adds two stacked SVG elements to a website. The first SVG
is used for the user interface that includes drawing options. The second
SVG is used as the canvas for drawing annotations.9 To allow the
existing drawing block to be used as a collaborative annotation tool, the
typical process for using VisConnect is applied: Load the VisConnect
script into the current page, set the collaboration attribute to live
for the website’s body tag, and replace d3.drag with vc.drag. We
include some other code changes to add a user interface, as shown
in Fig. 10. To annotate, users can draw and highlight in ten different
colors. LWA includes a chat (see Sec. 5.2) to enable communication.

This example shows how VisConnect’s modular structure and com-
patible implementation lead to many use cases, such as annotating
independently-created websites and visualizations. This is not possible
with previous collaboration systems.

6.3 E-Learning for Visualization

E-learning is an increasingly popular method of learning. Some chal-
lenges of e-learning include lower levels of engagement and limited
capabilities for exploration and collaboration [25, 38]. VisConnect
can facilitate e-learning and visualization education: we created an
interactive online exercise to help students learn how to characterize
network graphs. The activity familiarizes learners with planar graphs,
i.e., graphs that are possible to draw without any edge intersections [36].
The online exercise, Planarity Party, asks group members to collabo-
ratively solve a puzzle. A copy of our lesson plan, including links to
relevant online resources, is available in the Supplemental Material.

Protocol: This online exercise was developed for a small group
setting (3–4 students per group) in a graduate-level information visual-
ization course (CS 7250, Spring 2020, Northeastern University). First,
each group selected one member to be the leader who initiated the col-
laborative game. Upon opening the puzzle, group leaders invited their
group members to the collaboration session. Once connected, each
group started the game by dragging nodes until they found a representa-
tion of the graph without edge crossings. When all edge crossings were
removed, the students were informed that they solved the puzzle and
moved to the next new “level”. An example of four users collaborating
on one such graph is included in the Supplemental Video. Every new
graph was harder than the previous one, with one node added per new
level. At the end of the game, each group was able to take a screenshot
of the final level to see how far they got within 15 minutes. Finally,
students were asked to complete a short anonymous user experience
survey regarding their experience using Planarity Party, focusing on
what they liked and disliked about the tool.

Results: Overall, most students found the activity enjoyable and fun,
and stated that it had helped them understand concepts in visualization.
For example, one student commented that “I really liked how nodes and
edges are moving in a distributed manner.” Another student mentioned
how this online collaborative game helped them learn about graphs in
an interesting way: “The tool is quite interesting in the way that we
can drag and drop to see how we can display nodes and links without
[having] too many crosses. It is quite easy to understand the tool and
designed to be easy to use.” However, students also requested some
additional features. Multiple students asked to be able to save the
progress in the game so it can be resumed after reloading the page. A
point of disagreement among the responses was about coordinating
among team members. Some people thought collaboration was easy:

“I think the tool was really fun to play around with. Collaborating was
easy and the levels were challenging but still beatable.” Others thought
that coordinating was difficult: “when we are solving this as a group
remotely, it is hard to discuss our ideas and other team members may
ruin the idea that I had in my mind by moving nodes.” Feedback from

8The extension is available at chrome.google.com/webstore/detail/live-
website-annotate/njhclbnmjgcghngbbbacndfcnbhgomac

9Drawing based on the existing block bl.ocks.org/d79632a53187f8e92b15

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://michaschwab.github.io/IDMVis/public/
http://github.com/shash678/Live-Website-Annotate
http://chrome.google.com/webstore/detail/live-website-annotate/njhclbnmjgcghngbbbacndfcnbhgomac
http://chrome.google.com/webstore/detail/live-website-annotate/njhclbnmjgcghngbbbacndfcnbhgomac
http://bl.ocks.org/d79632a53187f8e92b15

the instructor (an author of this paper) was also positive: “Planarity
Party was a fun and creative way to teach the basics of laying out node-
link network visualizations, and I greatly appreciated having a social
and interactive exercise to use after our shift to distance learning.”

Such interaction with simultaneous graph edits is not possible with
previous systems (e.g., PolyChrome) as they do not automatically
resolve conflicts among collaborators. Our proof of concept shows that
VisConnect in e-learning can help students engage with class material
and encourage learners to interact with each other’s ideas.

7 DISCUSSION

In this section, we discuss the lessons learned from this work, point out
the strengths and weaknesses of our approach, and identify opportuni-
ties for future collaborative visualization research.

Direct Manipulation: VisConnect’s lock system helps mitigate con-
flicts by blocking collaborators from simultaneously dispatching events
on the same element. This model is a good fit for visualizations that
modify data through direct interactions, such as drag. In visualizations
that modify data through multiple elements, such as multiple input
fields, VisConnect’s partitioning system does not disallow simultane-
ous edits because the events are dispatched on different elements. If
different input fields make changes to independent data, then this is not
an issue. However, if multiple input fields were to change the same
data attribute, then VisConnect’s allowance of simultaneous interaction
on these input elements could cause conflicting values in the data. To
increase compatibility with non-direct data manipulations, we hope to
support customizable partitioning strategies in the future.

Peer To Peer: VisConnect uses a peer to peer architecture as op-
posed to a centralized approach. As with all distributed systems, the
main benefit is independence from a server and the main drawbacks are
increased need for communication and required coordination among
clients and a leader. With this architecture, information is only shared
with invited collaborators and, given secure communication, no outside
person can observe or modify the operations. This approach can build
user trust. Independence from a central server also leads to increased
reliability: VisConnect can be used even if the project were to be
discontinued and the VisConnect server shut down.

VisConnect is currently limited to run the lock service on the col-
laborator that starts the session. This prevents further progress on the
collaboration once the host disconnects. Improvements to VisConnect
will allow the system to recognize host disconnects and transfer leader-
ship to another client, as is typical in PAXOS leadership elections.

Single-User Assumptions: VisConnect comes with solutions to ad-
dress some of the single-user assumptions in data visualizations. We
provide vc.random as an alternative to Math.random, and provide
collaborative interaction methods to support collaborative visualiza-
tion development. These cover many common use cases, including
all interaction methods listed as part of D3.js’ API as well as all our
examples on visconnect.us. These examples demonstrate that our
approach scales to many different visualizations and interaction tech-
niques. That said, visualizations can be infinitely varied, including
complex aggregation of pointer events to interpret interactions, and
some of these implementations are not compatible with collaborative
use without change. In this respect, a combined effort is required by
both the visualization community as well as by the VisConnect team
to identify single-user assumptions in their implementations and to
provide collaboration-ready alternatives of commonly used functions.

Collaborative Interactions: Collaboration in data visualization
provides an opportunity to research interaction techniques. To address
single-cursor assumptions in common interactions, VisConnect pro-
vides alternatives such as vc.drag, vc.brush, and vc.lasso. How-
ever, even when recreating these relatively standard interactions for
collaborative use, we discovered questions about how single-user in-
teractions should scale to collaborative use. In Sec. 5.1, we describe
the question of whether collaborative brush should use a single brush
for all collaborators, or if and how multiple brushes should be used
and combined to work toward a common goal. The design space for
distributed collaborative interaction needs to be characterized in fu-
ture research; VisConnect is helpful for discovering and exploring this

design space. As a starting point, we identify an important characteris-
tic of collaborative interactions: whether the interaction is designed to
lead to a common visualization state or different states across collabo-
rators. For example, a “divide-and-conquer” strategy requires selecting
and working on separate subsets of the data, which requires separate
visualization states. In other cases, closer collaboration and coordina-
tion is required as part of a “all together” strategy, and collaborators
work on the same data with the same visualization state. For example,
multiple doctors might analyze a medical image and discuss the case
together. In these cases, a second characteristic of the collaborative
interaction is important: how are different interactions combined to
lead to a shared common state? For selections, options include union
and intersection of the selected subsets. More broadly, strategies to
combine different interactions into a shared state should be identified
to characterize collaborative interactions.

Collaborative-First Interaction Techniques: Beyond extending
single-user interaction techniques for collaborative use, we hope that
the community will also consider entirely new collaborative interac-
tion techniques. For example, cursors could be linked and connected
to form “live” 2D selection techniques, as opposed to conventional
brushing techniques that require time to define start and end points.
As a proof-of-concept example, we include a 2-player “Fire Fighters”
game in our Supplemental Video and online10, where two players move
the ends of a safety net to catch falling people while avoiding debris
that could damage the net. As with all collaboration, trade-offs exist be-
tween the need for coordination among team members and the benefits
of working together. These trade-offs will be explored in future work.

Human Communication: VisConnect automates system-level com-
munication across clients to establish the events that occur on each
element. An important aspect to collaboration that is missing from this
approach is the person-to-person communication. This was highlighted
in the in-class study of our education use case (Sec. 6.3) in which some
students expressed frustration that other collaborators had “ruined their
idea” with their changes. We recognize that communication and coor-
dination is important for collaboration and that, in many scenarios, an
aligned effort is impossible without voice or other means. We show
one way to mitigate this problem with live chat in our annotation tool
(Sec. 6.2), and provide an example of non-verbal communication in our
collaborative brush interaction, where collaborators can see each other’s
region of interest. Future collaborative systems should consider voice
or video communication, as well as more techniques and strategies to
communicate non-verbally.

8 CONCLUSION

We have contributed VisConnect: a system for distributed collaborative
visualization that requires little to no changes to existing visualization
implementations, supports most web-based SVG data visualizations,
scales to many collaborators with simultaneous interactions, and bal-
ances system safety with liveness for a smooth user experience. Using
an element-level lock service, VisConnect establishes consensus among
clients on the sequence of executed events. With our collaborative drag,
brush and lasso interactions, we make progress on the exploration of
the design space of distributed collaborative interaction techniques.
Through our use cases, we demonstrate the ease of implementation
and use of VisConnect in multiple domains. We hope VisConnect
will enable users to more effectively collaborate on visualizations; we
encourage the visualization and human-computer interaction commu-
nity to invest in distributed collaboration research by creating more
collaborative applications and by studying interaction techniques and
visualization designs specifically designed for collaborative use.

ACKNOWLEDGMENTS

We thank Sara Di Bartolomeo, Lulu Liu and Laura South for pilot
testing many of VisConnect’s collaborative features and providing
constructive feedback. This work was supported by the Khoury College
of Computer Sciences at Northeastern University.

10See bl.ocks.org/dsaffo/raw/489cabbb7a6ae4c26f9bdd5b473e8d5b.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://visconnect.us
http://bl.ocks.org/dsaffo/raw/489cabbb7a6ae4c26f9bdd5b473e8d5b

REFERENCES

[1] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Dis-
tributed computing, 2(3):117–126, 1987. doi: 10.1007/BF01782772

[2] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore. Distributed and
collaborative visualization. Computer, 27(7):37–43, July 1994. doi: 10.
1109/2.299409

[3] S. K. Badam and N. Elmqvist. PolyChrome: A Cross-Device Framework
for Collaborative Web Visualization. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces, ITS ’14,
pp. 109–118. Association for Computing Machinery, New York, NY, USA,
2014. doi: 10.1145/2669485.2669518

[4] S. K. Badam and N. Elmqvist. Visfer: Camera-based visual data transfer
for cross-device visualization. Information Visualization, 18(1):68–93,
2019. doi: 10.1177/1473871617725907

[5] S. K. Badam, A. Mathisen, R. Rädle, C. N. Klokmose, and N. Elmqvist.
Vistrates: A component model for ubiquitous analytics. IEEE Transactions
on Visualization and Computer Graphics, 25(1):586–596, 2019. doi: 10.
1109/TVCG.2018.2865144

[6] C. Bajaj and S. Cutchin. Web based collaborative visualization of dis-
tributed and parallel simulation. In Proceedings of the 1999 IEEE Sympo-
sium on Parallel Visualization and Graphics, PVGS ’99, pp. 47–54. IEEE
Computer Society, Washington, DC, USA, 1999. doi: 10.1145/328712.
319336

[7] M. Billinghurst, M. Cordeil, A. Bezerianos, and T. Margolis. Collaborative
Immersive Analytics, pp. 221–257. Springer International Publishing,
Cham, 2018. doi: 10.1007/978-3-030-01388-2 8

[8] M. Bostock, V. Ogievetsky, and J. Heer. D³: Data-Driven Documents.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2301–
2309, 2011. doi: 10.1109/TVCG.2011.185

[9] S. Bresciani and M. J. Eppler. The benefits of synchronous collaborative
information visualization: Evidence from an experimental evaluation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1073–
1080, 2009. doi: 10.1109/TVCG.2009.188

[10] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and J. D.
Wood. Distributed and collaborative visualization. Computer Graphics
Forum, 23(2):223–251, 2004. doi: 10.1111/j.1467-8659.2004.00754.x

[11] M. Bu and E. Zhang. PeerJS. http://peerjs.com. Accessed: 2019-04-
29.

[12] H. Chung and C. North. Savil: Cross-display visual links for sensemaking
in display ecologies. Personal Ubiquitous Comput., 22(2):409–431, Apr.
2018. doi: 10.1007/s00779-017-1091-4

[13] G. V. Cormack. A counterexample to the distributed operational transform
and a corrected algorithm for point-to-point communication. University of
Waterloo Technical Report, 1995.

[14] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler,
S. Yeh, A. Mahabal, M. Graham, A. Drake, S. Davidoff, J. S. Norris, and
G. Longo. Immersive and collaborative data visualization using virtual
reality platforms. In 2014 IEEE International Conference on Big Data
(Big Data), pp. 609–614, 2014. doi: 10.1109/BigData.2014.7004282

[15] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems.
In Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’89, pp. 399–407. Association for
Computing Machinery, New York, NY, USA, 1989. doi: 10.1145/67544.
66963

[16] Google. Google Docs. http://docs.google.com. Accessed: 2019-04.
[17] Google. Web fundamentals: Rendering performance. https:

//developers.google.com/web/fundamentals/performance/

rendering/. Accessed: 2019-03-29.
[18] R. D. Hill. The abstraction-link-view paradigm: Using constraints to

connect user interfaces to applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’92, pp. 335–
342. Association for Computing Machinery, New York, NY, USA, 1992.
doi: 10.1145/142750.142828

[19] T. Horak, A. Mathisen, C. N. Klokmose, R. Dachselt, and N. Elmqvist.
Vistribute: Distributing interactive visualizations in dynamic multi-device
setups. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI ’19. Association for Computing Machinery,
New York, NY, USA, 2019. doi: 10.1145/3290605.3300846

[20] P. Isenberg and S. Carpendale. Interactive tree comparison for co-located
collaborative information visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1232–1239, Nov 2007. doi: 10.
1109/TVCG.2007.70568

[21] P. Isenberg, N. Elmqvist, J. Scholtz, D. Cernea, K.-L. Ma, and H. Ha-
gen. Collaborative visualization: Definition, challenges, and research
agenda. Information Visualization, 10(4):310–326, 2011. doi: 10.1177/
1473871611412817

[22] P. Isenberg and D. Fisher. Collaborative brushing and linking for co-
located visual analytics of document collections. Computer Graphics
Forum, 28(3):1031–1038, 2009. doi: 10.1111/j.1467-8659.2009.01444.x

[23] K. Kim, W. Javed, C. Williams, N. Elmqvist, and P. Irani. Hugin: A
Framework for Awareness and Coordination in Mixed-Presence Collab-
orative Information Visualization. In ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’10, pp. 231–240. New York, NY,
USA, 2010. doi: 10.1145/1936652.1936694

[24] C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay, and M. Beaudouin-
Lafon. Webstrates: Shareable dynamic media. In Proceedings of the
28th Annual ACM Symposium on User Interface Software and Technology,
UIST ’15, pp. 280–290. Association for Computing Machinery, New York,
NY, USA, 2015. doi: 10.1145/2807442.2807446

[25] R. Kop and A. Hill. Connectivism: Learning theory of the future or vestige
of the past? The International Review of Research in Open and Distributed
Learning, 9(3), 2008. doi: 10.19173/irrodl.v9i3.523

[26] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering, 3(2):125–143, 1977. doi: 10.1109/
TSE.1977.229904

[27] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998. doi: 10.1145/279227.279229

[28] R. Langner, T. Horak, and R. Dachselt. VisTiles: Coordinating and
Combining Co-located Mobile Devices for Visual Data Exploration. IEEE
Transactions on Visualization and Computer Graphics, 24:626–636, 2018.
doi: 10.1109/TVCG.2017.2744019

[29] J. Leigh, A. E. Johnson, M. Brown, D. J. Sandin, and T. A. DeFanti.
Visualization in teleimmersive environments. Computer, 32(12):66–73,
1999. doi: 10.1109/2.809253

[30] Z. Li, M. Annett, K. Hinckley, and D. Wigdor. Smac: A simplified model
of attention and capture in multi-device desk-centric environments. Proc.
ACM Hum.-Comput. Interact., 3(EICS), June 2019. doi: 10.1145/3300961

[31] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating Bugs
in Distributed Systems. In Proceedings of the 4th USENIX Conference on
Networked Systems Design & Implementation, NSDI’07, p. 19. USENIX
Association, USA, 2007. doi: 10.5555/1973430.1973449

[32] J. A. McDonald, W. Stuetzle, and A. Buja. Painting multiple views
of complex objects. In Proceedings of the European Conference on
Object-Oriented Programming on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA/ECOOP ’90, pp. 245–257. As-
sociation for Computing Machinery, New York, NY, USA, 1990. doi: 10.
1145/97945.97975

[33] R. Mettälä, J. Piispanen, M. Sahinoja, and A. Sutinen. Data synchroniza-
tion, Aug. 4 2009. US Patent 7,570,668.

[34] S. North, C. Scheidegger, S. Urbanek, and G. Woodhull. Collaborative
visual analysis with rcloud. In 2015 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 25–32, Oct 2015. doi: 10.1109/VAST
.2015.7347627

[35] T. Pattison and M. Phillips. View Coordination Architecture for Informa-
tion Visualisation. In Proceedings of the 2001 Asia-Pacific Symposium on
Information Visualisation - Volume 9, APVis ’01, pp. 165–169. Australian
Computer Society, Inc., AUS, 2001. doi: 10.5555/564040.564061

[36] B. Plestenjak. An algorithm for drawing planar graphs. Software: Practice
and Experience, 29(11):973–984, 1999. doi: 10.1002/(SICI)1097-024X
(199909)29:11<973::AID-SPE268>3.0.CO;2-B

[37] J. C. Roberts. State of the Art: Coordinated Multiple Views in Exploratory
Visualization. In Fifth International Conference on Coordinated and
Multiple Views in Exploratory Visualization (CMV 2007), pp. 61–71, 2007.
doi: 10.1109/CMV.2007.20

[38] I. Roffe. E-learning: engagement, enhancement and execution. Quality
assurance in education, 2002. doi: 10.1108/09684880210416102

[39] C. Sun and C. Ellis. Operational transformation in real-time group editors:
Issues, algorithms, and achievements. In Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work, CSCW ’98, pp.
59–68. Association for Computing Machinery, New York, NY, USA, 1998.
doi: 10.1145/289444.289469

[40] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Trans. Comput.-Hum. Interact., 5(1):63–108, Mar.
1998. doi: 10.1145/274444.274447

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1109/2.299409
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1177/1473871617725907
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1145/328712.319336
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1007/978-3-030-01388-2_8
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1109/TVCG.2009.188
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
https://doi.org/10.1111/j.1467-8659.2004.00754.x
http://peerjs.com
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1007/s00779-017-1091-4
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
http://docs.google.com
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/142750.142828
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1109/TVCG.2007.70568
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1111/j.1467-8659.2009.01444.x
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/1936652.1936694
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.19173/irrodl.v9i3.523
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/2.809253
https://doi.org/10.1109/2.809253
https://doi.org/10.1109/2.809253
https://doi.org/10.1109/2.809253
https://doi.org/10.1109/2.809253
https://doi.org/10.1109/2.809253
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.1145/3300961
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.5555/1973430.1973449
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1145/97945.97975
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.1109/VAST.2015.7347627
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.5555/564040.564061
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-024X(199909)29:11<973::AID-SPE268>3.0.CO;2-B
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1108/09684880210416102
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/289444.289469
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447

[41] J. J. Thomas. Illuminating the path: The Research and Development
Agenda for Visual Analytics. IEEE Computer Society, 2005.

[42] J. J. Thomas and K. A. Cook. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. National Visualization and
Analytics Center, 2005.

[43] C. Thum and M. Schwind. Synchronite - A Service for Real-Time
Lightweight Collaboration. In 2010 International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, pp. 215–221. IEEE, 2010.
doi: 10.1109/3PGCIC.2010.36

[44] D. Wigdor, H. Jiang, C. Forlines, M. Borkin, and C. Shen. Wespace: The
design development and deployment of a walk-up and share multi-surface
visual collaboration system. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09, pp. 1237–1246. As-
sociation for Computing Machinery, New York, NY, USA, 2009. doi: 10.
1145/1518701.1518886

[45] D. Wigdor, H. Jiang, C. Forlines, M. Borkin, and C. Shen. Wespace: The
design development and deployment of a walk-up and share multi-surface
visual collaboration system. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09, pp. 1237–1246. As-
sociation for Computing Machinery, New York, NY, USA, 2009. doi: 10.
1145/1518701.1518886

[46] J. I. Wolfsdorf. Intensive Diabetes Management. American Diabetes
Association, fifth edition ed., 2012. doi: 10.2337/9781580404587

[47] E. K. K. Yasojima, B. S. Meiguins, and A. S. Meiguins. Collaborative
augmented reality application for information visualization support. In
2011 15th International Conference on Information Visualisation, pp.
170–175, 2011. doi: 10.1109/IV.2011.44

[48] Y. Zhang, K. Chanana, and C. Dunne. IDMVis: Temporal Event Sequence
Visualization for Type 1 Diabetes Treatment Decision Support. IEEE
Transactions on Visualization and Computer Graphics, 25(1):512–522,
Jan 2019. doi: 10.1109/TVCG.2018.2865076

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3030366

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1109/3PGCIC.2010.36
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.1145/1518701.1518886
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.2337/9781580404587
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/IV.2011.44
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076
https://doi.org/10.1109/TVCG.2018.2865076

