
722 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Manuscript received 30 Apr. 2020; revised 31 July 2020; accepted 14 Aug. 2020.
Date of publication 15 Oct. 2020; date of current version 15 Jan. 2021.
Digital Object Identifier no. 10.1109/TVCG.2020.3030415

Modeling in the Time of COVID-19:
Statistical and Rule-based Mesoscale Models

Ngan Nguyen, Ondřej Strnad, Tobias Klein, Deng Luo, Ruwayda Alharbi,
Peter Wonka, Martina Maritan, Peter Mindek, Ludovic Autin, David S. Goodsell, Ivan Viola

Fig. 1. The ultrastructure of a SARS-CoV-2 virion created using our modeling technique. The membrane shape and distribution of the
spike proteins are determined from microscopy image data. The internal assembly is a result of an interactive 3D rule specification
approach. Left: internal nucleoprotein complex. Middle: RNA condensed within the nucleoprotein. Right: Outer spike distribution.

Abstract— We present a new technique for the rapid modeling and construction of scientifically accurate mesoscale biological models.
The resulting 3D models are based on a few 2D microscopy scans and the latest knowledge available about the biological entity,
represented as a set of geometric relationships. Our new visual-programming technique is based on statistical and rule-based modeling
approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we determine the
statistical properties of various structural aspects, such as the outer membrane shape, the spatial properties, and the distribution
characteristics of the macromolecular elements on the membrane. This information is utilized in the construction of the 3D model.
Once all the imaging evidence is incorporated into the model, additional information can be incorporated by interactively defining
the rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, and their
distances and orientations relative to other structures. These rules are defined through an intuitive 3D interactive visualization as a
visual-programming feedback loop. We demonstrate the applicability of our approach on a use case of the modeling procedure of
the SARS-CoV-2 virion ultrastructure. This atomistic model, which we present here, can steer biological research to new promising
directions in our efforts to fight the spread of the virus.

Index Terms—molecular visualization, mesoscale modeling

1 INTRODUCTION

All living organisms on Earth share a common complex, hierarchical
structure. At the lowest level of the hierarchy, biomolecules such as
proteins and DNA perform all of the basic nanoscale tasks of informa-
tion management, energy transformation, directed motion, etc. These
biomolecules are assembled into cells, the basic units of life. Cells
typically are surrounded by a lipid bilayer membrane, which encloses
several thousand different types of biomolecules that choreograph the
processes of finding resources, responding to environmental changes,
and ultimately growing and reproducing. Most familiar organisms,
such as plants and animals, add an additional level to this hierarchy,

• N. Nguyen, O. Strnad, D. Luo, R. Alharbi, P. Wonka and I. Viola are with
King Abdullah University of Science and Technology (KAUST), Saudi
Arabia. E-mails: {ngan.nguyen | ondrej.strnad | deng.luo |
ruwayda.alharbi | peter.wonka | ivan.viola }@kaust.edu.sa.
N. Nguyen and O. Strnad are co-first authors.

• T. Klein and P. Mindek are with TU Wien and Nanographics GmbH.
E-mails: {tklein | mindek}@cg.tuwien.ac.at.

• M. Maritan, L. Autin and D. Goodsell are with the Scripps Research
Institute, US. E-mail: {mmaritan | autin | goodsell}@scripps.edu.

with multiple cells cooperating to form large, multi-cellular organisms.

Viruses are pared-down versions of living organisms, with just
enough of this hierarchical structure to perform a targeted task: to
get inside a cell and force it to create more copies of the virus. Viruses
are typically comprised of some form of nucleic acid (RNA or DNA)
that encodes the genome and a small collection of proteins that are
encoded in this genome, which together form the molecular mecha-
nism for finding cells and infecting them. Some viruses also include
a surrounding envelope composed of a lipid bilayer membrane that is
acquired as the virus buds from an infected cell.

Effective computational methods are available for modeling and
visualizing the biomolecular components of cells and viruses. Atomic
structures of over a hundred thousand biomolecules are available at
the Protein Data Bank (wwpdb.org) [3], and decades of research and
development have generated a comprehensive toolbox of simulation,
structure prediction, modeling, and visualization tools to utilize and
extend this data [53, 57]. However, modeling and visualization of the
full hierarchical structure of living organisms—from atoms to cells—is
a field still in its infancy, limited largely by the size and complexity of
the hierarchy and its many interacting parts. Modeling and visualization
of the cellular mesoscale—the scale level bridging the nanoscale of
atoms and molecules with the microscale of cells—is necessarily an
integrative process, since there are no existing experimental methods
for directly observing the mesoscale structure of cells [22]. Mesoscale
studies integrate information from microscopy, structural biology, and

Fig. 2. An overview of our mesoscale modeling pipeline. First, the user specifies the segmentation of the membrane outlines (contours) and visible
membrane-embedded proteins. Contours and a histogram of amounts of proteins within individual parts of the membrane (A) are used for statistical
contour modeling that is inflated into a 3D mesh and populated with membrane proteins (B). Subsequently, the user specifies the rules outlining how
invisible proteins should be placed within the 3D model. The output is the model (C), which can be iteratively refined by modifying the rules.

bioinformatics to generate representative models consistent with the
current state of knowledge. Challenges that are currently limiting the
integrative modeling pipeline include (a) finding and curating disparate
sources of data, and (b) constructing and visualizing intuitive 3D models
of this size and complexity with reasonable user and computational
effort. This latter challenge is addressed in this paper.

The central idea behind our rapid modeling approach for mesoscale
models is to take advantage of the repetitive structure of the hierarchy
of living systems. We model the structural characteristics of a small
representative collection of structural elements, which are then assem-
bled into the entire cellular or viral system through a set of learned rules
that guide placement and interaction of the component elements. These
rules are specified directly through 3D interactive modeling, instead of
indirectly through a rule-definition syntax. In this way, we can reduce
the burden on the users, provide them with an intuitive modeling inter-
face, and automatically generate instances of the full model comprised
of a huge number of interactive component elements. In cases where
the model needs to be further fine-tuned or new information needs
to be incorporated, the construction rules are revised in 3D and new
models are generated that incorporate the latest revisions. If structural
evidence is available in the form of electron microscopy (EM) images,
our system determines basic structural properties from these images
while requiring few inputs from the user.

We demonstrate this rapid modeling method for integrating data
from electron microscopy with structural information for the novel
coronavirus SARS-CoV-2. The generated models can be used for ex-
ploring the diversity of structure and analyzing the detailed arrangement
of spike glycoproteins on its surface.

2 RELATED WORK

Modeling of geometric representations of molecules has been driv-
ing scientific visualization and computer graphics research for several
decades. In the late seventies, Richards developed a geometric rep-
resentation of molecular surfaces that characterized their area [60],
which was further popularized by Connolly [14]. Over the years, many
geometric construction algorithms for molecular surfaces have been
developed, notably Reduced Surface [61], blobby objects [5, 55], or
α-shapes [17], to name a few. These algorithms are typically well paral-
lelizable on multiprocessor systems [71] or on modern GPUs [12,29,39]
et al., and nowadays scale up to interactive rates of huge atomistic mod-
els thanks to, for example, visiblity-driven rendering strategies [7].
Simplified representations such as van-der-Waals space filling molecu-
lar models can be interactively constructed and visualized to represent
scenes with up to a billion atoms [19,37,43] et al. by making use of vari-
ous acceleration strategies, such as the procedural impostors [68], adap-
tive level-of-detail tesselation [40, 47], or hybrid particle-volumetric
representation [62].

The geometric representations of the molecular structures described
above have been mostly concerned with modeling protein macro-
molecules. Recently, dedicated approaches for modeling large lipid
membranes have been developed [4, 15], as well as new approaches to
modeling fibrous macromolecules such as the 3D genome. Halladjian
et al. presented an approach to construct and visualize a multi-scale
model of interphase chromosomes [25]. Procedural modeling of the

backbone of linear polymers like RNA or DNA is typically approached
by concatenating building blocks with processes like a random walk. A
random walk produces a sequence of points where the location of each
generated point is dependent on its predecessor. While this process
leads to plausible models and is able to incorporate measured character-
istics like the stiffness, it is hard to control and guide to specific points.
Klein et al. [38] propose a parallel algorithm for constructing a 3D
genome sequence, which builds on the midpoint-displacement concept.
We utilize this approach for calculating the path for nucleic acids.

The above methods model molecular geometry based on some un-
derlying well-defined structure. The technique presented in this paper
is primarily concerned with interactive 3D modeling of molecular as-
semblies, which is inspired by methodologies developed in graphics
research. In particular, our methods build on rapid 3D modeling, which
is a process where the author specifies the desired 3D model through
a minimal amount of user interactions. The algorithm or determined
statistical model then constructs the geometric model by preserving
user-defined constraints. There are two dominant strategies for achiev-
ing rapid 3D modeling.

The first methodology, known as sketch-based modeling, allows
the user to specify certain geometric details directly in the scene. A
good example for sketch-based modeling is the Teddy system presented
by Igarashi et al. [31]. Here the user only specifies a 2D contour of
an object and a 3D geometry is generated using the contour inflation
approach [76], which we also utilize. An interesting recent trend is
to control a deep learning model using sketches, e.g., for modeling
terrains [23], faces [58], or buildings [52]. Utilization in the sciences
can be exemplified through modeling advanced geological concepts
and phenomena [41, 48] or for creating quick molecular landscapes
for communicating to peers or a broader audience. For example, Cell-
PAINT [21] is a system that allows users to create 2D mesoscale ani-
mated illustrations on the web interactively by using molecular palette
and system-defined rules. Users can use pre-defined behavior of com-
ponents of the mesoscale model. These works result in approximate
sketches of complex scientific scenarios and make use of rules that are
algorithmically defined within the system.

The second approach is known as procedural modeling and its basic
idea is that the geometric structure is defined indirectly by specifying
the rules and the parameters of these rules. The rules are then used
when executing procedural construction of the 3D scene geometry, often
without any direct geometric input from the user. The rapid modeling
aspect is achieved through the quick setting of a few parameters that
can serve as sufficient input for massively large scenes. Procedural
modeling has a long tradition in computer graphics [16]. It is frequently
used for modeling large environments that look plausible. Examples
are models of vegetation [59], cloudscapes [75], roads [20], street
networks [54], and buildings [46, 64].

Procedural modeling has been utilized in sciences beyond visually
plausible modeling to create scientifically accurate models. Biologists
can recreate mesoscale systems using procedural modeling methods,
based on constraints from nanoscale and microscale measurements.
Johnson et al. [32] have developed a system called cellPACK that takes
a recipe as an input, which is a description of how structures should be
positioned in the organism model. A packing algorithm then iteratively

NGUYEN ET AL.: MODELING IN THE TIME OF COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS 723

Modeling in the Time of COVID-19:
Statistical and Rule-based Mesoscale Models

Ngan Nguyen, Ondřej Strnad, Tobias Klein, Deng Luo, Ruwayda Alharbi,
Peter Wonka, Martina Maritan, Peter Mindek, Ludovic Autin, David S. Goodsell, Ivan Viola

Fig. 1. The ultrastructure of a SARS-CoV-2 virion created using our modeling technique. The membrane shape and distribution of the
spike proteins are determined from microscopy image data. The internal assembly is a result of an interactive 3D rule specification
approach. Left: internal nucleoprotein complex. Middle: RNA condensed within the nucleoprotein. Right: Outer spike distribution.

Abstract— We present a new technique for the rapid modeling and construction of scientifically accurate mesoscale biological models.
The resulting 3D models are based on a few 2D microscopy scans and the latest knowledge available about the biological entity,
represented as a set of geometric relationships. Our new visual-programming technique is based on statistical and rule-based modeling
approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we determine the
statistical properties of various structural aspects, such as the outer membrane shape, the spatial properties, and the distribution
characteristics of the macromolecular elements on the membrane. This information is utilized in the construction of the 3D model.
Once all the imaging evidence is incorporated into the model, additional information can be incorporated by interactively defining
the rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, and their
distances and orientations relative to other structures. These rules are defined through an intuitive 3D interactive visualization as a
visual-programming feedback loop. We demonstrate the applicability of our approach on a use case of the modeling procedure of
the SARS-CoV-2 virion ultrastructure. This atomistic model, which we present here, can steer biological research to new promising
directions in our efforts to fight the spread of the virus.

Index Terms—molecular visualization, mesoscale modeling

1 INTRODUCTION

All living organisms on Earth share a common complex, hierarchical
structure. At the lowest level of the hierarchy, biomolecules such as
proteins and DNA perform all of the basic nanoscale tasks of informa-
tion management, energy transformation, directed motion, etc. These
biomolecules are assembled into cells, the basic units of life. Cells
typically are surrounded by a lipid bilayer membrane, which encloses
several thousand different types of biomolecules that choreograph the
processes of finding resources, responding to environmental changes,
and ultimately growing and reproducing. Most familiar organisms,
such as plants and animals, add an additional level to this hierarchy,

• N. Nguyen, O. Strnad, D. Luo, R. Alharbi, P. Wonka and I. Viola are with
King Abdullah University of Science and Technology (KAUST), Saudi
Arabia. E-mails: {ngan.nguyen | ondrej.strnad | deng.luo |
ruwayda.alharbi | peter.wonka | ivan.viola }@kaust.edu.sa.
N. Nguyen and O. Strnad are co-first authors.

• T. Klein and P. Mindek are with TU Wien and Nanographics GmbH.
E-mails: {tklein | mindek}@cg.tuwien.ac.at.

• M. Maritan, L. Autin and D. Goodsell are with the Scripps Research
Institute, US. E-mail: {mmaritan | autin | goodsell}@scripps.edu.

with multiple cells cooperating to form large, multi-cellular organisms.

Viruses are pared-down versions of living organisms, with just
enough of this hierarchical structure to perform a targeted task: to
get inside a cell and force it to create more copies of the virus. Viruses
are typically comprised of some form of nucleic acid (RNA or DNA)
that encodes the genome and a small collection of proteins that are
encoded in this genome, which together form the molecular mecha-
nism for finding cells and infecting them. Some viruses also include
a surrounding envelope composed of a lipid bilayer membrane that is
acquired as the virus buds from an infected cell.

Effective computational methods are available for modeling and
visualizing the biomolecular components of cells and viruses. Atomic
structures of over a hundred thousand biomolecules are available at
the Protein Data Bank (wwpdb.org) [3], and decades of research and
development have generated a comprehensive toolbox of simulation,
structure prediction, modeling, and visualization tools to utilize and
extend this data [53, 57]. However, modeling and visualization of the
full hierarchical structure of living organisms—from atoms to cells—is
a field still in its infancy, limited largely by the size and complexity of
the hierarchy and its many interacting parts. Modeling and visualization
of the cellular mesoscale—the scale level bridging the nanoscale of
atoms and molecules with the microscale of cells—is necessarily an
integrative process, since there are no existing experimental methods
for directly observing the mesoscale structure of cells [22]. Mesoscale
studies integrate information from microscopy, structural biology, and

Fig. 2. An overview of our mesoscale modeling pipeline. First, the user specifies the segmentation of the membrane outlines (contours) and visible
membrane-embedded proteins. Contours and a histogram of amounts of proteins within individual parts of the membrane (A) are used for statistical
contour modeling that is inflated into a 3D mesh and populated with membrane proteins (B). Subsequently, the user specifies the rules outlining how
invisible proteins should be placed within the 3D model. The output is the model (C), which can be iteratively refined by modifying the rules.

bioinformatics to generate representative models consistent with the
current state of knowledge. Challenges that are currently limiting the
integrative modeling pipeline include (a) finding and curating disparate
sources of data, and (b) constructing and visualizing intuitive 3D models
of this size and complexity with reasonable user and computational
effort. This latter challenge is addressed in this paper.

The central idea behind our rapid modeling approach for mesoscale
models is to take advantage of the repetitive structure of the hierarchy
of living systems. We model the structural characteristics of a small
representative collection of structural elements, which are then assem-
bled into the entire cellular or viral system through a set of learned rules
that guide placement and interaction of the component elements. These
rules are specified directly through 3D interactive modeling, instead of
indirectly through a rule-definition syntax. In this way, we can reduce
the burden on the users, provide them with an intuitive modeling inter-
face, and automatically generate instances of the full model comprised
of a huge number of interactive component elements. In cases where
the model needs to be further fine-tuned or new information needs
to be incorporated, the construction rules are revised in 3D and new
models are generated that incorporate the latest revisions. If structural
evidence is available in the form of electron microscopy (EM) images,
our system determines basic structural properties from these images
while requiring few inputs from the user.

We demonstrate this rapid modeling method for integrating data
from electron microscopy with structural information for the novel
coronavirus SARS-CoV-2. The generated models can be used for ex-
ploring the diversity of structure and analyzing the detailed arrangement
of spike glycoproteins on its surface.

2 RELATED WORK

Modeling of geometric representations of molecules has been driv-
ing scientific visualization and computer graphics research for several
decades. In the late seventies, Richards developed a geometric rep-
resentation of molecular surfaces that characterized their area [60],
which was further popularized by Connolly [14]. Over the years, many
geometric construction algorithms for molecular surfaces have been
developed, notably Reduced Surface [61], blobby objects [5, 55], or
α-shapes [17], to name a few. These algorithms are typically well paral-
lelizable on multiprocessor systems [71] or on modern GPUs [12,29,39]
et al., and nowadays scale up to interactive rates of huge atomistic mod-
els thanks to, for example, visiblity-driven rendering strategies [7].
Simplified representations such as van-der-Waals space filling molecu-
lar models can be interactively constructed and visualized to represent
scenes with up to a billion atoms [19,37,43] et al. by making use of vari-
ous acceleration strategies, such as the procedural impostors [68], adap-
tive level-of-detail tesselation [40, 47], or hybrid particle-volumetric
representation [62].

The geometric representations of the molecular structures described
above have been mostly concerned with modeling protein macro-
molecules. Recently, dedicated approaches for modeling large lipid
membranes have been developed [4, 15], as well as new approaches to
modeling fibrous macromolecules such as the 3D genome. Halladjian
et al. presented an approach to construct and visualize a multi-scale
model of interphase chromosomes [25]. Procedural modeling of the

backbone of linear polymers like RNA or DNA is typically approached
by concatenating building blocks with processes like a random walk. A
random walk produces a sequence of points where the location of each
generated point is dependent on its predecessor. While this process
leads to plausible models and is able to incorporate measured character-
istics like the stiffness, it is hard to control and guide to specific points.
Klein et al. [38] propose a parallel algorithm for constructing a 3D
genome sequence, which builds on the midpoint-displacement concept.
We utilize this approach for calculating the path for nucleic acids.

The above methods model molecular geometry based on some un-
derlying well-defined structure. The technique presented in this paper
is primarily concerned with interactive 3D modeling of molecular as-
semblies, which is inspired by methodologies developed in graphics
research. In particular, our methods build on rapid 3D modeling, which
is a process where the author specifies the desired 3D model through
a minimal amount of user interactions. The algorithm or determined
statistical model then constructs the geometric model by preserving
user-defined constraints. There are two dominant strategies for achiev-
ing rapid 3D modeling.

The first methodology, known as sketch-based modeling, allows
the user to specify certain geometric details directly in the scene. A
good example for sketch-based modeling is the Teddy system presented
by Igarashi et al. [31]. Here the user only specifies a 2D contour of
an object and a 3D geometry is generated using the contour inflation
approach [76], which we also utilize. An interesting recent trend is
to control a deep learning model using sketches, e.g., for modeling
terrains [23], faces [58], or buildings [52]. Utilization in the sciences
can be exemplified through modeling advanced geological concepts
and phenomena [41, 48] or for creating quick molecular landscapes
for communicating to peers or a broader audience. For example, Cell-
PAINT [21] is a system that allows users to create 2D mesoscale ani-
mated illustrations on the web interactively by using molecular palette
and system-defined rules. Users can use pre-defined behavior of com-
ponents of the mesoscale model. These works result in approximate
sketches of complex scientific scenarios and make use of rules that are
algorithmically defined within the system.

The second approach is known as procedural modeling and its basic
idea is that the geometric structure is defined indirectly by specifying
the rules and the parameters of these rules. The rules are then used
when executing procedural construction of the 3D scene geometry, often
without any direct geometric input from the user. The rapid modeling
aspect is achieved through the quick setting of a few parameters that
can serve as sufficient input for massively large scenes. Procedural
modeling has a long tradition in computer graphics [16]. It is frequently
used for modeling large environments that look plausible. Examples
are models of vegetation [59], cloudscapes [75], roads [20], street
networks [54], and buildings [46, 64].

Procedural modeling has been utilized in sciences beyond visually
plausible modeling to create scientifically accurate models. Biologists
can recreate mesoscale systems using procedural modeling methods,
based on constraints from nanoscale and microscale measurements.
Johnson et al. [32] have developed a system called cellPACK that takes
a recipe as an input, which is a description of how structures should be
positioned in the organism model. A packing algorithm then iteratively

724 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

places the macromolecular building blocks into different compartments
of the model. This compartment is described by a discretized distance
volume, which is packed and updated in a sequential manner. Currently,
on a desktop workstation, such a packing process takes several minutes
up to hours, to pack a representation of the HIV virion that is 100 nm in
diameter. However, the specification of the recipe is a human-readable
textual rule definition that relies on accurate specification from the user.

3 STATISTICAL AND RULE-BASED MODELING

The requirements that guide the design of our approach are scien-
tific relevance, intuitiveness, rapidness, reusability, revisionability, and
controlled precision. Scientific relevance requires a model to be an
abstraction of reality that incorporates all components of reality known
at that particular time. For unknown information, the most accepted
hypothesis may be incorporated in the model. Intuitiveness requires
the target users, i.e., structural biologists, to be able to express their
ideas about a given structure effortlessly in, what is for them, a natural
way. Rapidness requires the process be completed at a fast pace and
reusability requires the ability to reuse previously modeled components
in other assemblies. Revisionability allows users to revise a detail
without the necessity for manual remodeling of the entire assembly
and controlled precision allows users to create assemblies with varying
degrees of precision in structure alignment.

As a target user group, we focus on modelers who are structural
biologists and who know or study a particular structure holistically
and aim to integrate individual elements to form the entire structure.
This target group has neither strong programming skills nor a formal
computer science background. Their envisioned ambition is to create
a model that cannot be created with conventional molecular modeling
methods, based on Newtonian physics simulation solvers. The model-
ing outcome is primarily an externalization of modelers’ understanding
of the ultrastructural assembly, which can be used for communica-
tion, hypothesis generation and validation, or even serving as input for
classical simulation-based methods.

The proposed 3D modeling technique features both sketching and
procedural modeling philosophy for the rapid creation of scientifically
relevant mesoscale models. The foundation of the technique is an
intuitive visual-programming strategy, where the modeler expresses
possible assembly configurations. Our technique applies a copycat
principle to rapidly complete the model driven by the expressed rule-
set. This strategy replaces methodologies that previously relied on
domain-specific languages for formulating such modeling rule-sets that
were not well accepted by the structural biology community. This
overarching approach is complemented by multiple novel and exist-
ing supportive technologies that allow for completion of scientifically
accurate mesoscale models.

Unlike, for example, cellPAINT [21], cellPack [32], and instant
construction mesoscale assembly techniques [37, 38], which are per-
haps the closest techniques for comparison, the proposed approach is
initially rule-free and all rules are specified by the user, incorporating
characteristics extracted from imaging data whenever possible. In the
above-mentioned techniques, all the rules are formulated within the
algorithm, or are pre-defined for each structure. Moreover, in our case,
the rules can be defined at a wide range of modeling precision, from
a precise to a more approximate placement. Our rule design space
is open; many simple rules are generated first, then can be combined
in a construction of more complex structural elements, and obsolete
concepts can be revised into new rules and effortlessly reapplied. The
established rules can be stored as structural templates that can be shared
among users.

In the context of scientific data visualization, the modeling meth-
ods that are employed need to provide suitable representations for
hypothesis generation, testing, or even in the simulation of stability
and dynamics. To be able to create models that are scientifically rele-
vant, our modeling framework needs to allow for versatile structural
arrangement specification and needs to support integration with ac-
quired evidence from microscopy data. These requirements differ from
existing procedural modeling methods. For example, L-system mod-
els [42] are typically topological trees and the procedural models are

based on growing plants according to the tree structure and architectural
models are generated by top-down subdivision with elements in regular
arrangement. Mesoscale biological models are a different case. In this
novel scenario, many elements are in relation to each other and interact
with each other. The arrangement becomes much more irregular than
in architecture, while the statistical variation is specified in a controlled
manner.

Mesoscale biological structure is typically characterized at the
nanoscale by its molecular composition, where molecular structure
can be either measured or simulated. The microscale is characterized
from microscopy images or tomographic volume reconstructions of
the entire entity. Rough shapes of the macromolecules can often be
observed in these image data, so typically several hypotheses can be
formulated about the specifics of the assembly. Usually the membrane
boundaries and associated proteins are more recognizable than the
soluble assemblies inside the membrane. Therefore, we model the
membrane information based on image data and the information inside
the membrane is characterized through interactive 3D modeling using
structural rules.

In our work, we concentrate on the extraction of membrane out-
lines or contours that are often apparent in microscopic images. First,
a handful of membrane contours are traced by the user. These con-
tours are co-registered to analyze their variation. Such representation is
statistically captured so that many new contours, similar to the input
samples, can be generated. Based on the contour information, a three-
dimensional virion geometry is estimated that matches the contour
shape. Resulting mesh representations of virions are populated with
molecules bound to the membrane according to the observations in the
images. We characterize the molecular distribution around the contour
and estimate a corresponding distribution for the entire virion surface.

Once the information from the images is incorporated into the
mesoscale model, further modeling of elements that are not directly ob-
served in image data is used to complete the model. Several hypotheses
can be generated to express what a biologist considers as a valid assem-
bly configuration. The modeling proceeds through an interactive 3D
rule specification process, where the modeler expresses certain spatial
relationships on exemplary structural representatives. An interactive
3D visualization shows how this rule is applied for the corresponding
molecular population. Based on the instantaneous visual feedback, the
modeler can revise previous inputs to obtain the desired assembly. In
this stage, hierarchical relationships can be utilized for expressing the
rules that define distance and orientation distributions among molecular
instances. The scene population is corrected by collision handling so
that a valid molecular scene results from the application of the rules.

An overview of the modeling process and the steps described above
is shown in Figure 2. The following sections (Section 4, Section 5)
describe the technical details of our approach.

4 IMAGING-DRIVEN SHAPES AND DISTRIBUTIONS

At the beginning of our approach, EM images are segmented. A set of
contours together with a distribution of surface proteins is estimated.
Then, a mesh representing the shape of the virion with every triangle
evaluated by a probability for surface protein placement is generated.
The detailed description follows.

Fig. 3. Input electron microscopy [34] image after segmentation. Left:
The contour with a band is created. Right: The histogram representing
the number of spike proteins per contour band region.

Fig. 4. Statistical contour modeling for virion mesh generation: The contour is approximated by an ellipse that is used for bringing all contours into a
canonical form (a). Statistical contour model is generated from a set of contours and new contours can be generated (b). A newly generated contour
is rasterized for contour inflation (c). A two dimensional mesh is generated (d) which is then inflated into the 3D mesh with probability distribution
assigned to its triangles (e). Spike proteins are populated (f).

4.1 Image segmentation
For rapid processing of electron microscopy images, we implemented
a segmentation tool that produces the input for determining the contour
of the membrane and the protein distribution on the membrane. The
user creates an outline, the outer contour of the virion, and places
small elliptical proxy objects representing proteins scattered over the
surface of the virion. The major axis of the ellipse is aligned with
the main axis of the protein. We perform this quick feature extraction
for all proteins that are close to the cross-section or silhouette of the
membrane, as shown in Figure 3. These proteins naturally are not
exactly on the contour, but they are located close to the contour within
a certain surface band. To characterize this band, an inner contour is
specified. The user can easily specify the thickness of this band on
which the marked surface proteins are located. Next, a distribution of
the surface proteins on the membrane band needs to be estimated. For
this, we subdivide the band into equally sized surface patches and count
the amount of proteins associated with each patch. To characterize the
distribution of the proteins from what we see on the membrane contour,
we store the per-patch protein counts in a histogram. This gives us a
distribution function of the amounts of protein per patch area, which we
use when we populate membrane-protein instances on the 3D model of
the membrane. Note that we do not count spike proteins of the virion
in the 2D image to project this number to the 3D surface. Although
this estimation exists, the final amount of surface proteins is decided
by the user in the later phase. The main outcome of this phase is the
contour of the virion and the probability distribution function. This
approach has been inspired by methods used in a recent publication
characterizing membrane proteins [34], which used the highlighting
approach for indicating spike proteins. Instead of data analysis, we
follow their intuitive specification method for model synthesis.

Once we obtain a set of membrane contours extracted from multiple
virions, we then use them for generating new distinct contours that
have similar characteristics. For that, we need to register all contours
into a common coordinate system. We do this by fitting an ellipse to
each contour and then translating and rotating the contours such that
the approximating ellipses are in canonical form. We assume that all
contours can be approximated by an ellipse. To parametrize an ellipse,
we use the two focal points and the semi-major length. A point p is on
the ellipse if and only if:

‖p− c1‖2 +‖p− c2‖2 = 2a (1)

where c1 = (c1.x,c1.y),c2 = (c2.x,c2.y) are the focal points and a
is the semi-major length. To fit an ellipse to a set of data points
pi = (pi.x, pi.y)

n
i=1, we pose the problem as an optimization prob-

lem [81]:

min
c1,c2,a

1
n

n

∑
i=1

(‖pi − c1‖2 +‖pi − c2‖2 −2a)2

This objective function has a global minimum at infinity. When the
two focal points move to infinity and the semi-major length tends to
infinity, the value of this function approaches zero. We therefore add
an L2 regularizer to avoid the undesirable global minimum at infinity:

min
c1,c2,a

[
1
n

n

∑
i=1

(‖pi − c1‖2 +‖pi − c2‖2 −2a)2 +
λ
n
(c1

2 + c2
2 +(2a)2)

]

(2)
where λ is a tuning parameter. In the initialization, a is initialized as the
mean of the distance from the data points to the mean of all data points
pµ , c1 = (− amax

2 ,0),c2 = (amax
2 ,0), where amax is the largest distance

from a data point to pµ . After initialization, the penalized objective
function Equation 2 can be solved by gradient descent. The obtained
ellipse has semi-major length a, semi-minor length b, center ce and
angle of rotation θe. The example of estimated ellipse can be seen in
Figure 4 (a).

To register the contours into a common coordinate system, we esti-
mate the translation and rotation based on the approximating ellipse.
First, the segmented contour is translated to the origin O(0,0) by trans-
lation vector t =−ce. Then, the segmented contour is rotated by angle
−θe.

Each contour in the set of contours is reparameterized by Np points
pi. Each point pi is defined by an angle θi and a distance ri = |Opi| in
a polar-coordinate system. To increase the accuracy of the generating
step, we generate several other orientations from the contours. We
create three augmented contours for each contour. The first augmented
contour is obtained by a rotation with angle π . The second and third
augmented contours are obtained by flipping the original and the rotated
contour through the x-axis. Four contours - the original contour with
three augmented contours - are used for the next step. To generate a new
contour from the contours, we compute a per-angle one-dimensional
normal distribution by casting a ray from the origin O in all θs directions
and intersecting all contours with this ray. To the Np intersection (∩)
points p∩i , we fit a normal distribution for Np r∩i = |Op∩i | with mean
µs and standard deviation σs as parameters. We also truncate the normal
distribution to the minimum and maximum distance values in the data.
From these parameters, we perform rejection sampling [11] of the
truncated normal distribution of r∩i for each angle θs (θs ∈ [0,2π]).
Finally, we interpolate the points using Catmull-Rom splines to create
a new contour. The input contours and a number of generated contours
are shown in Figure 4 (a, b). The algorithm is listed in Algorithm 1 and
Algorithm 2 and can be found in Supplementary Material.

4.2 Virion shape generation
From the generated contour, our next step is to generate a membrane,
which is a three-dimensional ellipsoidal potato-like object. We model
the object based on three principal dimensions, d1 ≥ d2 ≥ d3 of an
ellipsoid, and characterize it by two aspect ratios, namely as elongation
index EI = d2/d1 and flatness index FI = d3/d2 [69]. EI can be

NGUYEN ET AL.: MODELING IN THE TIME OF COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS 725

places the macromolecular building blocks into different compartments
of the model. This compartment is described by a discretized distance
volume, which is packed and updated in a sequential manner. Currently,
on a desktop workstation, such a packing process takes several minutes
up to hours, to pack a representation of the HIV virion that is 100 nm in
diameter. However, the specification of the recipe is a human-readable
textual rule definition that relies on accurate specification from the user.

3 STATISTICAL AND RULE-BASED MODELING

The requirements that guide the design of our approach are scien-
tific relevance, intuitiveness, rapidness, reusability, revisionability, and
controlled precision. Scientific relevance requires a model to be an
abstraction of reality that incorporates all components of reality known
at that particular time. For unknown information, the most accepted
hypothesis may be incorporated in the model. Intuitiveness requires
the target users, i.e., structural biologists, to be able to express their
ideas about a given structure effortlessly in, what is for them, a natural
way. Rapidness requires the process be completed at a fast pace and
reusability requires the ability to reuse previously modeled components
in other assemblies. Revisionability allows users to revise a detail
without the necessity for manual remodeling of the entire assembly
and controlled precision allows users to create assemblies with varying
degrees of precision in structure alignment.

As a target user group, we focus on modelers who are structural
biologists and who know or study a particular structure holistically
and aim to integrate individual elements to form the entire structure.
This target group has neither strong programming skills nor a formal
computer science background. Their envisioned ambition is to create
a model that cannot be created with conventional molecular modeling
methods, based on Newtonian physics simulation solvers. The model-
ing outcome is primarily an externalization of modelers’ understanding
of the ultrastructural assembly, which can be used for communica-
tion, hypothesis generation and validation, or even serving as input for
classical simulation-based methods.

The proposed 3D modeling technique features both sketching and
procedural modeling philosophy for the rapid creation of scientifically
relevant mesoscale models. The foundation of the technique is an
intuitive visual-programming strategy, where the modeler expresses
possible assembly configurations. Our technique applies a copycat
principle to rapidly complete the model driven by the expressed rule-
set. This strategy replaces methodologies that previously relied on
domain-specific languages for formulating such modeling rule-sets that
were not well accepted by the structural biology community. This
overarching approach is complemented by multiple novel and exist-
ing supportive technologies that allow for completion of scientifically
accurate mesoscale models.

Unlike, for example, cellPAINT [21], cellPack [32], and instant
construction mesoscale assembly techniques [37, 38], which are per-
haps the closest techniques for comparison, the proposed approach is
initially rule-free and all rules are specified by the user, incorporating
characteristics extracted from imaging data whenever possible. In the
above-mentioned techniques, all the rules are formulated within the
algorithm, or are pre-defined for each structure. Moreover, in our case,
the rules can be defined at a wide range of modeling precision, from
a precise to a more approximate placement. Our rule design space
is open; many simple rules are generated first, then can be combined
in a construction of more complex structural elements, and obsolete
concepts can be revised into new rules and effortlessly reapplied. The
established rules can be stored as structural templates that can be shared
among users.

In the context of scientific data visualization, the modeling meth-
ods that are employed need to provide suitable representations for
hypothesis generation, testing, or even in the simulation of stability
and dynamics. To be able to create models that are scientifically rele-
vant, our modeling framework needs to allow for versatile structural
arrangement specification and needs to support integration with ac-
quired evidence from microscopy data. These requirements differ from
existing procedural modeling methods. For example, L-system mod-
els [42] are typically topological trees and the procedural models are

based on growing plants according to the tree structure and architectural
models are generated by top-down subdivision with elements in regular
arrangement. Mesoscale biological models are a different case. In this
novel scenario, many elements are in relation to each other and interact
with each other. The arrangement becomes much more irregular than
in architecture, while the statistical variation is specified in a controlled
manner.

Mesoscale biological structure is typically characterized at the
nanoscale by its molecular composition, where molecular structure
can be either measured or simulated. The microscale is characterized
from microscopy images or tomographic volume reconstructions of
the entire entity. Rough shapes of the macromolecules can often be
observed in these image data, so typically several hypotheses can be
formulated about the specifics of the assembly. Usually the membrane
boundaries and associated proteins are more recognizable than the
soluble assemblies inside the membrane. Therefore, we model the
membrane information based on image data and the information inside
the membrane is characterized through interactive 3D modeling using
structural rules.

In our work, we concentrate on the extraction of membrane out-
lines or contours that are often apparent in microscopic images. First,
a handful of membrane contours are traced by the user. These con-
tours are co-registered to analyze their variation. Such representation is
statistically captured so that many new contours, similar to the input
samples, can be generated. Based on the contour information, a three-
dimensional virion geometry is estimated that matches the contour
shape. Resulting mesh representations of virions are populated with
molecules bound to the membrane according to the observations in the
images. We characterize the molecular distribution around the contour
and estimate a corresponding distribution for the entire virion surface.

Once the information from the images is incorporated into the
mesoscale model, further modeling of elements that are not directly ob-
served in image data is used to complete the model. Several hypotheses
can be generated to express what a biologist considers as a valid assem-
bly configuration. The modeling proceeds through an interactive 3D
rule specification process, where the modeler expresses certain spatial
relationships on exemplary structural representatives. An interactive
3D visualization shows how this rule is applied for the corresponding
molecular population. Based on the instantaneous visual feedback, the
modeler can revise previous inputs to obtain the desired assembly. In
this stage, hierarchical relationships can be utilized for expressing the
rules that define distance and orientation distributions among molecular
instances. The scene population is corrected by collision handling so
that a valid molecular scene results from the application of the rules.

An overview of the modeling process and the steps described above
is shown in Figure 2. The following sections (Section 4, Section 5)
describe the technical details of our approach.

4 IMAGING-DRIVEN SHAPES AND DISTRIBUTIONS

At the beginning of our approach, EM images are segmented. A set of
contours together with a distribution of surface proteins is estimated.
Then, a mesh representing the shape of the virion with every triangle
evaluated by a probability for surface protein placement is generated.
The detailed description follows.

Fig. 3. Input electron microscopy [34] image after segmentation. Left:
The contour with a band is created. Right: The histogram representing
the number of spike proteins per contour band region.

Fig. 4. Statistical contour modeling for virion mesh generation: The contour is approximated by an ellipse that is used for bringing all contours into a
canonical form (a). Statistical contour model is generated from a set of contours and new contours can be generated (b). A newly generated contour
is rasterized for contour inflation (c). A two dimensional mesh is generated (d) which is then inflated into the 3D mesh with probability distribution
assigned to its triangles (e). Spike proteins are populated (f).

4.1 Image segmentation
For rapid processing of electron microscopy images, we implemented
a segmentation tool that produces the input for determining the contour
of the membrane and the protein distribution on the membrane. The
user creates an outline, the outer contour of the virion, and places
small elliptical proxy objects representing proteins scattered over the
surface of the virion. The major axis of the ellipse is aligned with
the main axis of the protein. We perform this quick feature extraction
for all proteins that are close to the cross-section or silhouette of the
membrane, as shown in Figure 3. These proteins naturally are not
exactly on the contour, but they are located close to the contour within
a certain surface band. To characterize this band, an inner contour is
specified. The user can easily specify the thickness of this band on
which the marked surface proteins are located. Next, a distribution of
the surface proteins on the membrane band needs to be estimated. For
this, we subdivide the band into equally sized surface patches and count
the amount of proteins associated with each patch. To characterize the
distribution of the proteins from what we see on the membrane contour,
we store the per-patch protein counts in a histogram. This gives us a
distribution function of the amounts of protein per patch area, which we
use when we populate membrane-protein instances on the 3D model of
the membrane. Note that we do not count spike proteins of the virion
in the 2D image to project this number to the 3D surface. Although
this estimation exists, the final amount of surface proteins is decided
by the user in the later phase. The main outcome of this phase is the
contour of the virion and the probability distribution function. This
approach has been inspired by methods used in a recent publication
characterizing membrane proteins [34], which used the highlighting
approach for indicating spike proteins. Instead of data analysis, we
follow their intuitive specification method for model synthesis.

Once we obtain a set of membrane contours extracted from multiple
virions, we then use them for generating new distinct contours that
have similar characteristics. For that, we need to register all contours
into a common coordinate system. We do this by fitting an ellipse to
each contour and then translating and rotating the contours such that
the approximating ellipses are in canonical form. We assume that all
contours can be approximated by an ellipse. To parametrize an ellipse,
we use the two focal points and the semi-major length. A point p is on
the ellipse if and only if:

‖p− c1‖2 +‖p− c2‖2 = 2a (1)

where c1 = (c1.x,c1.y),c2 = (c2.x,c2.y) are the focal points and a
is the semi-major length. To fit an ellipse to a set of data points
pi = (pi.x, pi.y)

n
i=1, we pose the problem as an optimization prob-

lem [81]:

min
c1,c2,a

1
n

n

∑
i=1

(‖pi − c1‖2 +‖pi − c2‖2 −2a)2

This objective function has a global minimum at infinity. When the
two focal points move to infinity and the semi-major length tends to
infinity, the value of this function approaches zero. We therefore add
an L2 regularizer to avoid the undesirable global minimum at infinity:

min
c1,c2,a

[
1
n

n

∑
i=1

(‖pi − c1‖2 +‖pi − c2‖2 −2a)2 +
λ
n
(c1

2 + c2
2 +(2a)2)

]

(2)
where λ is a tuning parameter. In the initialization, a is initialized as the
mean of the distance from the data points to the mean of all data points
pµ , c1 = (− amax

2 ,0),c2 = (amax
2 ,0), where amax is the largest distance

from a data point to pµ . After initialization, the penalized objective
function Equation 2 can be solved by gradient descent. The obtained
ellipse has semi-major length a, semi-minor length b, center ce and
angle of rotation θe. The example of estimated ellipse can be seen in
Figure 4 (a).

To register the contours into a common coordinate system, we esti-
mate the translation and rotation based on the approximating ellipse.
First, the segmented contour is translated to the origin O(0,0) by trans-
lation vector t =−ce. Then, the segmented contour is rotated by angle
−θe.

Each contour in the set of contours is reparameterized by Np points
pi. Each point pi is defined by an angle θi and a distance ri = |Opi| in
a polar-coordinate system. To increase the accuracy of the generating
step, we generate several other orientations from the contours. We
create three augmented contours for each contour. The first augmented
contour is obtained by a rotation with angle π . The second and third
augmented contours are obtained by flipping the original and the rotated
contour through the x-axis. Four contours - the original contour with
three augmented contours - are used for the next step. To generate a new
contour from the contours, we compute a per-angle one-dimensional
normal distribution by casting a ray from the origin O in all θs directions
and intersecting all contours with this ray. To the Np intersection (∩)
points p∩i , we fit a normal distribution for Np r∩i = |Op∩i | with mean
µs and standard deviation σs as parameters. We also truncate the normal
distribution to the minimum and maximum distance values in the data.
From these parameters, we perform rejection sampling [11] of the
truncated normal distribution of r∩i for each angle θs (θs ∈ [0,2π]).
Finally, we interpolate the points using Catmull-Rom splines to create
a new contour. The input contours and a number of generated contours
are shown in Figure 4 (a, b). The algorithm is listed in Algorithm 1 and
Algorithm 2 and can be found in Supplementary Material.

4.2 Virion shape generation
From the generated contour, our next step is to generate a membrane,
which is a three-dimensional ellipsoidal potato-like object. We model
the object based on three principal dimensions, d1 ≥ d2 ≥ d3 of an
ellipsoid, and characterize it by two aspect ratios, namely as elongation
index EI = d2/d1 and flatness index FI = d3/d2 [69]. EI can be

726 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

determined from the contour. FI is defined by the user and then used
for the determined d3. Next, we need to extrude the contour into three
dimensions. For this task, we employ the standard contour inflation
method from sketch-based modeling [76]. To assign a depth (z) value to
all points on the three-dimensional object, we proceed as follows. First,
we make a binary mask from the contour so that 0.0 is assigned to the
outside of the shape and 1.0 to the inside of the shape. Then, we apply
a cascade of Gaussian filters (with radius 32, 16, 8, 4, 2, 1) on the image
mask. After each smoothing pass, the resulting image is multiplied
with the original image mask, so that all pixels that are outside the
contour are again set to zero. The resulting image is used for assigning
the depth values symmetrically on both subspaces partitioned by the
contour plane of z = 0 (see Figure 4 (c)). The next step is to create
the three-dimensional object represented by a triangular mesh. We
create a 3D sphere with approximately equally sized triangles, where
the radius is the largest radius from all contour points to the origin O.
After that, we project this mesh onto the z = 0 contour plane. This
projected mesh is distorted to the shape of the contour. The example 2D
mesh backprojected onto the contour plane can be seen in Figure 4 (d).
Finally, for each mesh point, we extrude its z-coordinate to inflate the
contour. The z-coordinate value of each point of the mesh is calculated
as a multiplication of half of d3 with the corresponding pixel value
(with the same x,y coordinates) from the previously calculated depth
image in Figure 4 (c).

In the image segmentation phase, a band around the contour is
created, subdivided into ten equally-sized regions, and the amount
of membrane proteins belonging (i.e., within close proximity) to the
region is evaluated. We determined this value of ten regions based
on our experiments. Lower numbers correspond to more uniform the
target distribution on the 3D mesh, and with larger numbers, the higher
the probability distribution would be concentrated to small areas of the
3D mesh only. With this construction, we obtain the distribution of
membrane proteins per given area because we know the area of a single
region. We use this distribution for populating the membrane proteins
on the triangular mesh. The membrane protein density of triangles is
computed in the following way. First, the 3D mesh is partitioned into
approximately same-sized triangular patches. The size of the patch is
determined by the size of the area of segments of the bands from the 2D
contour. Afterwards, every patch is associated with one value from the
above distribution. We use random sampling of the distribution. Then
we distribute the number of membrane proteins among the triangles
that belong to the current patch. Examples of generated 3D meshes
with associated protein counts per triangle can be seen in the bottom
right of Figure 18, along with the examples of membranes with the
membrane proteins.

5 INTERACTIVE 3D RULE SPECIFICATION

The second part of our approach is used to populate the model with
biological elements that are placed in relation to other elements in the
virion. While some of these elements cannot be clearly seen in EM
images, their structural information is generally understood, or at least
there is a hypothesis on the structural organization. For example, a
protein can be in a spatial relation (position, rotation) with another
protein. The rules encode how new elements can be placed based on
the geometry of already existing elements.

We create a three-dimensional model that consists of a set of ele-
ments. Our interactive procedural modeling approach organizes the
elements in a tree. An element consists of the following: 1) A name to
identify the element, e.g., to select an input element to a rule. 2) A type
that can be either auxiliary or instance. An auxiliary element will be
invisible in the final model and an instance will be visible. We often
refer to an auxiliary element as skeleton. 3) The element geometry that
can be either a polygonal mesh, a poly-line, or a set of points. Some-
times the geometry is only a single polygon, line segment, or point. 4)
A bounding sphere that consists of a local coordinate system used to
position the geometry in the world coordinate system, an orientation
vector and three scaling factors to determine the size of the element.

We use a library of structural models, for example proteins, in our
framework. Many of these models are freely available on the internet.

Fig. 5. Illustration of element geometry. Left: protein instance from a
database. Middle: a line segment, triangle, and rectangle. Right: an
arrangement of protein instances around a line segment.

The most common form in which they are distributed is a list of atoms
where the type and position of each atom is specified. Conceptually,
we could convert these descriptions into 3D meshes, but we typically
keep them in a different representation (e.g., set of spheres) for faster
rendering. We also assign an identifier Gid to them. These identifiers
will be used in the rules to specify the geometry of elements. We
also use a library of elementary meshes, such as single polygons, a
tetrahedron, or an icosahedron that prove to be useful as an auxiliary
geometry. See Figure 5 for an illustration of example geometries.

The main concept is based on the creation of a model from elements
using rules. The function of a rule is to identify an element in the
current model and to create one or multiple elements either as chil-
dren or as siblings in the derivation tree. In contrast to other popular
procedural modeling systems, such as [46, 59] for example, our rules
are not described by a script-like language, but they are designed and
executed in an interactive editor. The user can interact with elements in
a 3D visual-programming environment, e.g., positioning and rotating
elements using a virtual gizmo tool. In the following, we will describe
the most important concepts and parameters. We plan to release the
executable and detailed UI documentation upon publication of this
work.

5.1 Creation of the model

The creation of a model starts with an auxiliary root node of the tree and
an empty model. The elements are placed by processing the specified
rules and rule groups in a sequence. To preview the effect of rules
on the whole model (or for example only on its part), the user has
full control of the rule execution and can execute all rules at once or
execute rules step by step, and perform interactive edits between the
execution of rules. Furthermore, if the result is not as expected or a
detailed part of the model is about to be solved, the user can undo rules
or even partially undo rules. The rule is partially undone if it is reverted
on a selected subset of elements from all elements to which the rule
is applied. The rules take elements currently presented in the scene
(identified by their name) as input and generate zero, one, or multiple
new elements.

To create various distributions of elements, the rules can be orga-
nized into groups. If rules ri are placed in a group, they can be either
applied in an alternating manner, or rules can be selected randomly
among the set of rules in the rule group according to their probability
ri.probability.

Several geometric parameters (for example a distance or angle be-
tween two structures) can be specified as constants or as probability
distributions. A probability distribution can be modeled by combining
Gaussian and uniform functions as building blocks. The values are
automatically normalized so that their sum integrates to one.

In all the rules, several rotational variants can be used to specify
a transformation. Currently implemented variants are: user-defined
rotation, random rotation, normal vector orthogonal to a parent element
normal vector, and element normal vector aligned to a parent normal
vector. Moreover, these rotations can be extended by user-specified
yaw, pitch, and roll distributions that represent a deviation in rotation
in the respective axis.

An important part of our approach is collision detection. We im-
plemented an octree accelerated method. A naive collision detection
algorithm turned out to be unusable due to the amount of elements in
the model (~200000 element instances). We use an octree with four
levels of subdivision. Every element in the scene is assigned a bounding
sphere. This bounding sphere can be additionally scaled by the user to

Fig. 6. Distance rule. Left: The definition of a probabilistic distance
function. Top right: Application of the rule to a triangular skeleton.
Bottom right: Application of the rule to a point skeleton.

Fig. 7. Relative rule. Left: Illustration of a relative rule created on a
triangular skeleton. Top right: The same rule applied to a pentagonal
skeleton. The result is a pentameric structure. Bottom right: The
pentagonal skeleton model is bound to a triangular skeleton.

Fig. 8. Siblings rule. Left: All three transformations are applied in every
iteration. Right: One transformation is selected randomly per iteration.

Fig. 9. Siblings-parent rule. Left: Creation of a rule. Middle: Application
of the rule. Right: Two rules applied alternatively to place two different
elements in a circle.

better approximate the object when the object is long but thin. Although
this can lead to overlapping of elements, the property can be exploited,
for example, in cases where string-like elements are placed in a plane
close to each other. The user can control how close elements can be
before creating a collision. Once a new element candidate is generated,
all leaf octants of the tree intersecting the element’s bounding sphere
are fetched and used for collision detection. If there is no collision, the
element is created. Otherwise, the element is not created. To avoid rules
that are not terminating because of collisions, we employ a parameter
collisionsmax to specify the maximum number of consecutive detected
collisions. If that number is reached, a rule is terminated.

The specifications of all rules are stored in a file. Thus, the user can
create a library of rules that can be then re-used as templates to build
other mesoscale models.

5.2 Type of rules
We identify and implement four main classes of rules: parent-child,
siblings, siblings-parent, and connection rule.

In the parent-child rule, new child elements are added to a parent
element with name Namein given as input. We employ two types of
rules, called the distance rule and relative rule.

The main purpose of the distance rule is to create new elements
at a specified distance to the parent. The distance d can be either
a constant or modeled probability distribution that is sampled each
time a new element is created. To determine the position of the new
element, a random point on the parent geometry is generated and
translated along the normal vector according to the (sampled) distance
d. Another parameter determines if the translation happens along
the positive normal direction, negative normal direction, or randomly
selected among the two. In Figure 6 left, we illustrate a probability
function that is modeled as a combination of two Gaussians with mean
d1 and d2. The Gaussian around d1 has a higher weight than the
Gaussian around d2. The resulting population of elements using a
triangle and a point skeleton as parent are presented in Figure 6 middle
and right, respectively.

The relative rule specifies the location of new elements with respect
to a vertex of a polygon of the input element. For example, in Figure 7
left) a position K is specified by the user and subsequently encoded
with respect to vertex v0. The position is computed by the parameters
t,u that specify the distance from the edges connected to v0 and the
distance d along the normal of the polygon. The parameters t,u specify
the location of SK , the closest point on the polygon. From these rule
parameters, the corresponding positions SL and SM can be found inside

the triangle, and new elements are placed in the points L and M that
are at the distance d along the normal vector from positions SL and
SM , respectively. The rule created from the previous process can be
transferred and applied to any polygon, e.g., to create a pentamer
(an entity composed of five sub-units where each unit is placed in a
vertex of the pentagon), as shown in Figure 7 middle. The example
in Figure 7 right shows two subsequent applications of the rule to model
the structure of a viral capsid. First, the relative rule is used to create
three pentagon elements as children of a triangle element. Second,
proteins are created as children of each of the pentagons.

The siblings rule creates new elements and adds them as siblings
to the same parent in the tree. The most important parameter of the
siblings rule is a set of transformations Ti. These transformations are
typically a combination of translation and rotation. Each transformation
also has an associated probability Ti.prob. To apply the rule, a trans-
formation Ti is selected according to the probabilities Ti.prob. Then,
a new element with name Nameout is generated by transforming the
coordinate system of the input element Namein and setting the geom-
etry as specified by the identifier Gid . A parameter Tnum determines
how many transformations will be selected. If Tnum is equal to the
number of transformations, all transformations will be selected and the
probabilities will be ignored. The rule is invoked recursively for newly
created elements. Identical to previous rules, the parameter countmax
determines how many elements are inserted. In Figure 8 left, three
different transformations of a single type element T1, T2, T3 were cre-
ated. The user can generate these transformations interactively. In this
example, an additional five instances were generated recursively (for
Tnum = 3). In the example Figure 8 right, Tnum = 1 to showcase the
random selection and application of transformations.

The siblings-parent rule is an extension of the siblings rule. The
user specifies a transformation to the sibling element with name Namein,
as before. After applying the transformation, the new element Nameout
is snapped to a given distance d from the parent shape of Namein. This
distance preservation acts as a correction factor. The main benefit of this
rule is that the user who wants to distribute elements in a circle around
a point or a spiral around a line segment does not have to precisely
measure the angle and translation.

In Figure 9 left, the parent shape is a point labeled S and the input
element is labeled K and the newly generated element is labeled L. The
transformation T1 consists of a translation. In subsequent applications
of the rule, the distance d to the skeleton S is preserved (see Figure 9
middle). The user can specify a group of rules that can be applied in
iterations. In Figure 9 right, two rules with transformations T1, T2 on

NGUYEN ET AL.: MODELING IN THE TIME OF COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS 727

determined from the contour. FI is defined by the user and then used
for the determined d3. Next, we need to extrude the contour into three
dimensions. For this task, we employ the standard contour inflation
method from sketch-based modeling [76]. To assign a depth (z) value to
all points on the three-dimensional object, we proceed as follows. First,
we make a binary mask from the contour so that 0.0 is assigned to the
outside of the shape and 1.0 to the inside of the shape. Then, we apply
a cascade of Gaussian filters (with radius 32, 16, 8, 4, 2, 1) on the image
mask. After each smoothing pass, the resulting image is multiplied
with the original image mask, so that all pixels that are outside the
contour are again set to zero. The resulting image is used for assigning
the depth values symmetrically on both subspaces partitioned by the
contour plane of z = 0 (see Figure 4 (c)). The next step is to create
the three-dimensional object represented by a triangular mesh. We
create a 3D sphere with approximately equally sized triangles, where
the radius is the largest radius from all contour points to the origin O.
After that, we project this mesh onto the z = 0 contour plane. This
projected mesh is distorted to the shape of the contour. The example 2D
mesh backprojected onto the contour plane can be seen in Figure 4 (d).
Finally, for each mesh point, we extrude its z-coordinate to inflate the
contour. The z-coordinate value of each point of the mesh is calculated
as a multiplication of half of d3 with the corresponding pixel value
(with the same x,y coordinates) from the previously calculated depth
image in Figure 4 (c).

In the image segmentation phase, a band around the contour is
created, subdivided into ten equally-sized regions, and the amount
of membrane proteins belonging (i.e., within close proximity) to the
region is evaluated. We determined this value of ten regions based
on our experiments. Lower numbers correspond to more uniform the
target distribution on the 3D mesh, and with larger numbers, the higher
the probability distribution would be concentrated to small areas of the
3D mesh only. With this construction, we obtain the distribution of
membrane proteins per given area because we know the area of a single
region. We use this distribution for populating the membrane proteins
on the triangular mesh. The membrane protein density of triangles is
computed in the following way. First, the 3D mesh is partitioned into
approximately same-sized triangular patches. The size of the patch is
determined by the size of the area of segments of the bands from the 2D
contour. Afterwards, every patch is associated with one value from the
above distribution. We use random sampling of the distribution. Then
we distribute the number of membrane proteins among the triangles
that belong to the current patch. Examples of generated 3D meshes
with associated protein counts per triangle can be seen in the bottom
right of Figure 18, along with the examples of membranes with the
membrane proteins.

5 INTERACTIVE 3D RULE SPECIFICATION

The second part of our approach is used to populate the model with
biological elements that are placed in relation to other elements in the
virion. While some of these elements cannot be clearly seen in EM
images, their structural information is generally understood, or at least
there is a hypothesis on the structural organization. For example, a
protein can be in a spatial relation (position, rotation) with another
protein. The rules encode how new elements can be placed based on
the geometry of already existing elements.

We create a three-dimensional model that consists of a set of ele-
ments. Our interactive procedural modeling approach organizes the
elements in a tree. An element consists of the following: 1) A name to
identify the element, e.g., to select an input element to a rule. 2) A type
that can be either auxiliary or instance. An auxiliary element will be
invisible in the final model and an instance will be visible. We often
refer to an auxiliary element as skeleton. 3) The element geometry that
can be either a polygonal mesh, a poly-line, or a set of points. Some-
times the geometry is only a single polygon, line segment, or point. 4)
A bounding sphere that consists of a local coordinate system used to
position the geometry in the world coordinate system, an orientation
vector and three scaling factors to determine the size of the element.

We use a library of structural models, for example proteins, in our
framework. Many of these models are freely available on the internet.

Fig. 5. Illustration of element geometry. Left: protein instance from a
database. Middle: a line segment, triangle, and rectangle. Right: an
arrangement of protein instances around a line segment.

The most common form in which they are distributed is a list of atoms
where the type and position of each atom is specified. Conceptually,
we could convert these descriptions into 3D meshes, but we typically
keep them in a different representation (e.g., set of spheres) for faster
rendering. We also assign an identifier Gid to them. These identifiers
will be used in the rules to specify the geometry of elements. We
also use a library of elementary meshes, such as single polygons, a
tetrahedron, or an icosahedron that prove to be useful as an auxiliary
geometry. See Figure 5 for an illustration of example geometries.

The main concept is based on the creation of a model from elements
using rules. The function of a rule is to identify an element in the
current model and to create one or multiple elements either as chil-
dren or as siblings in the derivation tree. In contrast to other popular
procedural modeling systems, such as [46, 59] for example, our rules
are not described by a script-like language, but they are designed and
executed in an interactive editor. The user can interact with elements in
a 3D visual-programming environment, e.g., positioning and rotating
elements using a virtual gizmo tool. In the following, we will describe
the most important concepts and parameters. We plan to release the
executable and detailed UI documentation upon publication of this
work.

5.1 Creation of the model

The creation of a model starts with an auxiliary root node of the tree and
an empty model. The elements are placed by processing the specified
rules and rule groups in a sequence. To preview the effect of rules
on the whole model (or for example only on its part), the user has
full control of the rule execution and can execute all rules at once or
execute rules step by step, and perform interactive edits between the
execution of rules. Furthermore, if the result is not as expected or a
detailed part of the model is about to be solved, the user can undo rules
or even partially undo rules. The rule is partially undone if it is reverted
on a selected subset of elements from all elements to which the rule
is applied. The rules take elements currently presented in the scene
(identified by their name) as input and generate zero, one, or multiple
new elements.

To create various distributions of elements, the rules can be orga-
nized into groups. If rules ri are placed in a group, they can be either
applied in an alternating manner, or rules can be selected randomly
among the set of rules in the rule group according to their probability
ri.probability.

Several geometric parameters (for example a distance or angle be-
tween two structures) can be specified as constants or as probability
distributions. A probability distribution can be modeled by combining
Gaussian and uniform functions as building blocks. The values are
automatically normalized so that their sum integrates to one.

In all the rules, several rotational variants can be used to specify
a transformation. Currently implemented variants are: user-defined
rotation, random rotation, normal vector orthogonal to a parent element
normal vector, and element normal vector aligned to a parent normal
vector. Moreover, these rotations can be extended by user-specified
yaw, pitch, and roll distributions that represent a deviation in rotation
in the respective axis.

An important part of our approach is collision detection. We im-
plemented an octree accelerated method. A naive collision detection
algorithm turned out to be unusable due to the amount of elements in
the model (~200000 element instances). We use an octree with four
levels of subdivision. Every element in the scene is assigned a bounding
sphere. This bounding sphere can be additionally scaled by the user to

Fig. 6. Distance rule. Left: The definition of a probabilistic distance
function. Top right: Application of the rule to a triangular skeleton.
Bottom right: Application of the rule to a point skeleton.

Fig. 7. Relative rule. Left: Illustration of a relative rule created on a
triangular skeleton. Top right: The same rule applied to a pentagonal
skeleton. The result is a pentameric structure. Bottom right: The
pentagonal skeleton model is bound to a triangular skeleton.

Fig. 8. Siblings rule. Left: All three transformations are applied in every
iteration. Right: One transformation is selected randomly per iteration.

Fig. 9. Siblings-parent rule. Left: Creation of a rule. Middle: Application
of the rule. Right: Two rules applied alternatively to place two different
elements in a circle.

better approximate the object when the object is long but thin. Although
this can lead to overlapping of elements, the property can be exploited,
for example, in cases where string-like elements are placed in a plane
close to each other. The user can control how close elements can be
before creating a collision. Once a new element candidate is generated,
all leaf octants of the tree intersecting the element’s bounding sphere
are fetched and used for collision detection. If there is no collision, the
element is created. Otherwise, the element is not created. To avoid rules
that are not terminating because of collisions, we employ a parameter
collisionsmax to specify the maximum number of consecutive detected
collisions. If that number is reached, a rule is terminated.

The specifications of all rules are stored in a file. Thus, the user can
create a library of rules that can be then re-used as templates to build
other mesoscale models.

5.2 Type of rules
We identify and implement four main classes of rules: parent-child,
siblings, siblings-parent, and connection rule.

In the parent-child rule, new child elements are added to a parent
element with name Namein given as input. We employ two types of
rules, called the distance rule and relative rule.

The main purpose of the distance rule is to create new elements
at a specified distance to the parent. The distance d can be either
a constant or modeled probability distribution that is sampled each
time a new element is created. To determine the position of the new
element, a random point on the parent geometry is generated and
translated along the normal vector according to the (sampled) distance
d. Another parameter determines if the translation happens along
the positive normal direction, negative normal direction, or randomly
selected among the two. In Figure 6 left, we illustrate a probability
function that is modeled as a combination of two Gaussians with mean
d1 and d2. The Gaussian around d1 has a higher weight than the
Gaussian around d2. The resulting population of elements using a
triangle and a point skeleton as parent are presented in Figure 6 middle
and right, respectively.

The relative rule specifies the location of new elements with respect
to a vertex of a polygon of the input element. For example, in Figure 7
left) a position K is specified by the user and subsequently encoded
with respect to vertex v0. The position is computed by the parameters
t,u that specify the distance from the edges connected to v0 and the
distance d along the normal of the polygon. The parameters t,u specify
the location of SK , the closest point on the polygon. From these rule
parameters, the corresponding positions SL and SM can be found inside

the triangle, and new elements are placed in the points L and M that
are at the distance d along the normal vector from positions SL and
SM , respectively. The rule created from the previous process can be
transferred and applied to any polygon, e.g., to create a pentamer
(an entity composed of five sub-units where each unit is placed in a
vertex of the pentagon), as shown in Figure 7 middle. The example
in Figure 7 right shows two subsequent applications of the rule to model
the structure of a viral capsid. First, the relative rule is used to create
three pentagon elements as children of a triangle element. Second,
proteins are created as children of each of the pentagons.

The siblings rule creates new elements and adds them as siblings
to the same parent in the tree. The most important parameter of the
siblings rule is a set of transformations Ti. These transformations are
typically a combination of translation and rotation. Each transformation
also has an associated probability Ti.prob. To apply the rule, a trans-
formation Ti is selected according to the probabilities Ti.prob. Then,
a new element with name Nameout is generated by transforming the
coordinate system of the input element Namein and setting the geom-
etry as specified by the identifier Gid . A parameter Tnum determines
how many transformations will be selected. If Tnum is equal to the
number of transformations, all transformations will be selected and the
probabilities will be ignored. The rule is invoked recursively for newly
created elements. Identical to previous rules, the parameter countmax
determines how many elements are inserted. In Figure 8 left, three
different transformations of a single type element T1, T2, T3 were cre-
ated. The user can generate these transformations interactively. In this
example, an additional five instances were generated recursively (for
Tnum = 3). In the example Figure 8 right, Tnum = 1 to showcase the
random selection and application of transformations.

The siblings-parent rule is an extension of the siblings rule. The
user specifies a transformation to the sibling element with name Namein,
as before. After applying the transformation, the new element Nameout
is snapped to a given distance d from the parent shape of Namein. This
distance preservation acts as a correction factor. The main benefit of this
rule is that the user who wants to distribute elements in a circle around
a point or a spiral around a line segment does not have to precisely
measure the angle and translation.

In Figure 9 left, the parent shape is a point labeled S and the input
element is labeled K and the newly generated element is labeled L. The
transformation T1 consists of a translation. In subsequent applications
of the rule, the distance d to the skeleton S is preserved (see Figure 9
middle). The user can specify a group of rules that can be applied in
iterations. In Figure 9 right, two rules with transformations T1, T2 on

728 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Fig. 10. Setting of normal vectors to individual atomic structures.

Fig. 11. Spikes scattered on the surface of the 3D mesh according to
the estimated distribution function. Membrane and envelope proteins are
uniformly distributed on the membrane. Left: Model version 20-04. Right:
Model version 20-06.

two different element types were created and applied.
The connection rule is designed for creating string-like structures

that pass through a given set of 3D points. These points typically
represent positions of elements that are generated by other rules. The
output of this rule is a polyline auxiliary element connecting the set of
3D points. The rule proceeds in three steps. First, an initial polyline is
created by connecting the 3D points. For this purpose, the generator
starts at a random point and connects it to a random point in close
proximity until all points are connected. The resulting polyline may
have strong kinks. To remove the kinks, a cubic interpolation and
subdivision is applied resulting in a smoother polyline. The fiber
structures that we would like to model are characterized through a
persistence length property that expresses the bending stiffness of a
fiber. Midpoint displacement is able to incorporate the target stiffness
by increasing or decreasing the amount of displacement [38]. Therefore,
in the third step, the midpoint displacement algorithm is used to enhance
the curve with detailed windings.

6 USE CASE: SARS-COV-2

The novel coronavirus SARS-CoV-2 is currently posing an international
threat to human health. As with previous SARS and MERS outbreaks,
it emerged through zoonotic transfer from animal populations. These
types of emerging viruses pose a continuing threat, and the biomedical
community is currently launching a widespread research effort to under-
stand and fight these viruses. Understanding of the mesoscale structure
will play an essential role in understanding the modes of interaction
of these viruses with their cellular receptors and designing effective
vaccines. We introduce the biology first and then describe our modeling
strategy.

Our mesoscale models integrate a growing body of cryoelectron mi-
crographic data on entire virions with atomic structures of the biomolec-
ular components. SARS-CoV-2 contains four structural proteins, a
single strand of genomic RNA, and a lipid-bilayer envelope [49]. Other
non-structural and/or host proteins may also be incorporated into the
virion—this is a topic of current study in the field and it is not ad-
dressed in these models. Three of the structural proteins are embedded
in the membrane. The spike (S) protein extends from the surface and
forms the characteristic spikes that give the viruses their crown-like
shape, as seen by electron microscopy. The spikes recognize cellular
receptors and mediate entry of the virus into cells. The membrane
(M) protein has an intravirion domain that interacts with the nucleopro-

Fig. 12. Rope-like N protein complex rule. Left: Creating an N protein
CTD octamer structure and its relation with NTD. Right: Connecting N
protein octamer structure to form the rope.

tein and is involved in packaging the viral genome as the virus buds
from the infected cell’s surface. The envelope (E) protein is a small
pentameric complex that forms an ion pore through the membrane,
which is thought to be involved in the process of budding, with only
a small number of copies being incorporated into the virus. The viral
genome is a single strand of RNA about 30,000 nucleotides in length,
which is one of the largest genomes of RNA viruses. It is packaged
by the nucleoprotein (N), which coats and condenses the RNA strand.
Detailed description of the individual protein models is presented in
Supplementary Material.

Due to the rapid progress and numerous discoveries regarding the
structure of SARS-CoV-2 since the beginning of the pandemic, our
technique has faced frequent updates of the model. Thus, we created
two main versions of the SARS-CoV-2 model, first in April 2020, la-
beled as 20-04 and the second in July 2020, labeled as 20-06. The latter
incorporates mainly new findings about S proteins [34]. The model
revision demonstrates the fulfilment of the revisionability requirement.

We describe the modeling process in the remainder of this section.
First, we create the model of virion and later, the RNA construction is
presented.

6.1 Virion modeling

Due to an arbitrary rotation of molecular models in the PDB files, we
specify a normal vector for membrane-bound components to define
their orientation and location within the membrane (see Figure 10).
The whole modeling phase is performed by taking into account the
estimated amount of individual elements published in [2] and [34].

We implemented a tool in which the user can segment 2D elec-
tron microscopy images (see Figure 3) and assign a real-world length.
Firstly, the scale of the image has to be set. The tool then uses this
scale throughout the entire segmentation process. Afterwards, the user
manually segments the image and creates the outer contour by drawing
a polyline enclosing the virion. After the outer polyline is finished, the
inner contour is created by scaling down the outer contour. The scaling
is driven by the user and can be updated whenever necessary. Once
the inner contour is defined, the band between outer and inner contour
is automatically subdivided into ten equally sized regions. As the last
step, the user visually identifies the spikes in the image and marks them
using proxy objects available in our utility. The tool automatically
identifies the closest virion for the spike and assigns the spike into the
corresponding contour region. After this assignment, the histogram is
updated.

This outer contour and histogram are the input for the statistical
determination (Section 4). We process the data and estimate a new
contour, as described previously. From the newly generated contour, we
create a 3D triangular mesh and assign each of its triangles the amount
of containing S-protein instances based on the histogram sampling (see
Figure 3).

In the next step, S proteins are placed on the surface of the mesh.
The user specifies the distance from the center point of a spike to the
surface of the 3D mesh and the number of spikes to be placed. The
parent-child rule (see Section 5.2) is used: the parent is the 3D mesh
and children are the spikes. The illustration is depicted in Figure 11.

Fig. 13. Population of lipids. Left: The rule with seven relations is
created for a lipid. Application of the rule on triangular skeleton forming
patterns. Right: Modifying the rotation of the lipid by setting yaw, pitch,
roll. Resulting population on the triangular skeleton.

Fig. 14. Illustration of RNA building. Top: Creation of a nucleotide
and binding of two RNA nucleotides is illustrated (only the phosphate
sugar backbone is shown; the bases will be populated at the point
proxy above the backbone). Middle: The replication of the rule and
replacing of proxies with A,C,G,U models. Bottom: The rule with a
rotation incorporated applied to a line segment skeleton.

For every type of spike protein (Sopen, Sclosed , Spost), the rule differs in
the number of instances and in the distance to the surface.

A similar rule is used for both M and E proteins. The only dif-
ference is that these protein instances are uniformly distributed, i.e.,
no amounts distributed over the 3D mesh based on observation on the
contour are taken into account. These proteins are not discernible on the
images and their distribution have not yet been characterized. For the
time being, our model assumes a uniform distribution on the mesh(see
Figure 11).

The nucleoprotein complex is built in several steps. To begin, a
fiber-like assembly of N protein conformations is built. The N pro-
tein conformation is modeled using a dimer of the C-terminal domain
(2CDT) and N-terminal domain (NTD) instances as follows. Firstly,
a siblings rule is created to bind two NTD to 2CDT (see Figure 12
top-left). Although there are only two relations depicted in the im-
age, we create the total amount of six relations between 2CTD and
NTD. In the population phase, only two out of six created relations are
randomly chosen. In the following step (see Figure 12 bottom-left),
2CTD is bound to rotated 2CTD using the siblings-parent rule to a
linear skeleton. This forms a tetramer 4CTD. Repeatedly, 4CTD is
bound using a linear skeleton to another instance of 4CTD, forming
an octamer 8CTD. The final N protein assembly is constructed using
the siblings-parent rule of 8CTD and a polyline skeleton. To create
the polyline skeleton, we uniformly fill the interior of the 3D mesh
with instances of a proxy object. This proxy object is a sphere that is
customized to have a radius approximately the same size as the radius
of the bounding sphere of 8CTD. By applying the connection rule
Section 5.2 on such proxy spheres, we obtain the polyline skeleton.
Finally, the siblings-parent rule is applied to 8CTD and the polyline
forming the N protein assembly is created. RNA is then added to form
the entire nucleoprotein complex, as described in the next section. Note
that at this point we cannot use the approach of Klein et al. [38] for
placement of the N-proteins (the rope) because this algorithm uses a
predefined size of the block, which is embedded in the algorithm. At
the beginning, our building blocks are of an unknown size; the user
can create arbitrarily sized building blocks (a group of proteins) that
are subsequently chained along the polyline. Therefore, we designed a
more general approach.

The lipid bilayer membrane is constructed using the siblings-

Fig. 15. RNA proxy objects. Left: Specifying of the proxy objects repre-
senting RNA binding pockets on the surface of a few N proteins. Middle:
The binding pockets computed on all N proteins in the model. Right: The
resulting RNA after populating A,C,G,U,P along the 3D curve approxi-
mating the proxy objects.

parent rule. In reality, both layers can be modeled by the similar
rule with the only exception that the lipids in one layer are rotated so
that they are oriented to each other with their hydrophobic part. The
construction of a single layer is as follows: Two copies of the same lipid
model are added into the scene. The user creates a rule with several rela-
tions by translating (and rotating) one copy of the model to the desired
position and storing these positions together with the distance to the
3D mesh parental skeleton. In our model, seven relations Ri are created
(see Figure 13 left) for the transition from one lipid to another lipid.
We use two models of different lipids - Li1 and Li2. Therefore, there
are seven relations for each of the combinations: Li1 → Li2, Li2 → Li1,
Li1 → Li1. The generating process starts in randomly chosen trian-
gles of the 3D mesh parental skeleton. In the beginning, one lipid is
added. In the next steps, up to seven new lipids can be generated. The
rule is reapplied on these new instances. This process continues until
100 consecutive collision hits are accumulated, which indicates a fully
dense lipid membrane. Note that only populating models with a limited
amount of relations over the surface would lead to an occurrence of
visible patterns. This is overcome by fine-tuning the rotation of newly
placed elements by specifying how the standard deviations of yaw,
pitch, roll vary (see Figure 13 right).

6.2 RNA modeling

We have modeled RNA using five elementary models: four RNA bases
adenine (A), cytosine (C), guanine (G), uracil (U), and one model
consisting of phosphate and sugar (P) that forms the RNA backbone.
A model of an individual nucleotide is created using the following
approach. To a line skeleton using the parent-child rule, a P part and
a point skeleton are bound (see Figure 14 top). The point skeleton
in this case plays a role as a proxy object. In the population phase,
a corresponding model of a base (A,C,G,U) from a genome string is
placed to this position to finish the formation of the intact nucleotide.
The genome string is specified by the user during the definition of the
point skeleton rule.

In the next step, the siblings-parent rule of these individual nu-
cleotides with a line skeleton is created. For simplicity, only the trans-
lation is presented in Figure 14 top-right. Once this relation is applied
to a line skeleton, an RNA strand is created (see Figure 14 middle).

If a rotation between two nucleotides is specified during the process
of modeling, the resulting RNA structure will twist along the line
skeleton (see Figure 14 bottom). The consecutive bases with their
phosphate sugar backbone forms the RNA string. Now the RNA model
is created as a template and can be used anywhere that RNA is needed.
However, the RNA model needs a skeletal structure along which it will
form the RNA backbone fiber and then populate the bases according
to the given RNA sequence. In our case, we replace the line skeleton
with a polyline skeleton that represents a 3D curve connecting binding
pockets of N proteins inside the core of the virion.

In the final model, the RNA of the virion is bound to the predicted
sites on the surface of N proteins. To specify the points on the N protein
that define the RNA path, a rule with relations of a proxy object BPi
to N protein was created (see Figure 15 left). After populating the N
proteins in the model, the algorithm computes positions of all proxies
in the scene. The RNA backbone is obtained by using the connection
rule and a 3D curve generator.

NGUYEN ET AL.: MODELING IN THE TIME OF COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS 729

Fig. 10. Setting of normal vectors to individual atomic structures.

Fig. 11. Spikes scattered on the surface of the 3D mesh according to
the estimated distribution function. Membrane and envelope proteins are
uniformly distributed on the membrane. Left: Model version 20-04. Right:
Model version 20-06.

two different element types were created and applied.
The connection rule is designed for creating string-like structures

that pass through a given set of 3D points. These points typically
represent positions of elements that are generated by other rules. The
output of this rule is a polyline auxiliary element connecting the set of
3D points. The rule proceeds in three steps. First, an initial polyline is
created by connecting the 3D points. For this purpose, the generator
starts at a random point and connects it to a random point in close
proximity until all points are connected. The resulting polyline may
have strong kinks. To remove the kinks, a cubic interpolation and
subdivision is applied resulting in a smoother polyline. The fiber
structures that we would like to model are characterized through a
persistence length property that expresses the bending stiffness of a
fiber. Midpoint displacement is able to incorporate the target stiffness
by increasing or decreasing the amount of displacement [38]. Therefore,
in the third step, the midpoint displacement algorithm is used to enhance
the curve with detailed windings.

6 USE CASE: SARS-COV-2

The novel coronavirus SARS-CoV-2 is currently posing an international
threat to human health. As with previous SARS and MERS outbreaks,
it emerged through zoonotic transfer from animal populations. These
types of emerging viruses pose a continuing threat, and the biomedical
community is currently launching a widespread research effort to under-
stand and fight these viruses. Understanding of the mesoscale structure
will play an essential role in understanding the modes of interaction
of these viruses with their cellular receptors and designing effective
vaccines. We introduce the biology first and then describe our modeling
strategy.

Our mesoscale models integrate a growing body of cryoelectron mi-
crographic data on entire virions with atomic structures of the biomolec-
ular components. SARS-CoV-2 contains four structural proteins, a
single strand of genomic RNA, and a lipid-bilayer envelope [49]. Other
non-structural and/or host proteins may also be incorporated into the
virion—this is a topic of current study in the field and it is not ad-
dressed in these models. Three of the structural proteins are embedded
in the membrane. The spike (S) protein extends from the surface and
forms the characteristic spikes that give the viruses their crown-like
shape, as seen by electron microscopy. The spikes recognize cellular
receptors and mediate entry of the virus into cells. The membrane
(M) protein has an intravirion domain that interacts with the nucleopro-

Fig. 12. Rope-like N protein complex rule. Left: Creating an N protein
CTD octamer structure and its relation with NTD. Right: Connecting N
protein octamer structure to form the rope.

tein and is involved in packaging the viral genome as the virus buds
from the infected cell’s surface. The envelope (E) protein is a small
pentameric complex that forms an ion pore through the membrane,
which is thought to be involved in the process of budding, with only
a small number of copies being incorporated into the virus. The viral
genome is a single strand of RNA about 30,000 nucleotides in length,
which is one of the largest genomes of RNA viruses. It is packaged
by the nucleoprotein (N), which coats and condenses the RNA strand.
Detailed description of the individual protein models is presented in
Supplementary Material.

Due to the rapid progress and numerous discoveries regarding the
structure of SARS-CoV-2 since the beginning of the pandemic, our
technique has faced frequent updates of the model. Thus, we created
two main versions of the SARS-CoV-2 model, first in April 2020, la-
beled as 20-04 and the second in July 2020, labeled as 20-06. The latter
incorporates mainly new findings about S proteins [34]. The model
revision demonstrates the fulfilment of the revisionability requirement.

We describe the modeling process in the remainder of this section.
First, we create the model of virion and later, the RNA construction is
presented.

6.1 Virion modeling

Due to an arbitrary rotation of molecular models in the PDB files, we
specify a normal vector for membrane-bound components to define
their orientation and location within the membrane (see Figure 10).
The whole modeling phase is performed by taking into account the
estimated amount of individual elements published in [2] and [34].

We implemented a tool in which the user can segment 2D elec-
tron microscopy images (see Figure 3) and assign a real-world length.
Firstly, the scale of the image has to be set. The tool then uses this
scale throughout the entire segmentation process. Afterwards, the user
manually segments the image and creates the outer contour by drawing
a polyline enclosing the virion. After the outer polyline is finished, the
inner contour is created by scaling down the outer contour. The scaling
is driven by the user and can be updated whenever necessary. Once
the inner contour is defined, the band between outer and inner contour
is automatically subdivided into ten equally sized regions. As the last
step, the user visually identifies the spikes in the image and marks them
using proxy objects available in our utility. The tool automatically
identifies the closest virion for the spike and assigns the spike into the
corresponding contour region. After this assignment, the histogram is
updated.

This outer contour and histogram are the input for the statistical
determination (Section 4). We process the data and estimate a new
contour, as described previously. From the newly generated contour, we
create a 3D triangular mesh and assign each of its triangles the amount
of containing S-protein instances based on the histogram sampling (see
Figure 3).

In the next step, S proteins are placed on the surface of the mesh.
The user specifies the distance from the center point of a spike to the
surface of the 3D mesh and the number of spikes to be placed. The
parent-child rule (see Section 5.2) is used: the parent is the 3D mesh
and children are the spikes. The illustration is depicted in Figure 11.

Fig. 13. Population of lipids. Left: The rule with seven relations is
created for a lipid. Application of the rule on triangular skeleton forming
patterns. Right: Modifying the rotation of the lipid by setting yaw, pitch,
roll. Resulting population on the triangular skeleton.

Fig. 14. Illustration of RNA building. Top: Creation of a nucleotide
and binding of two RNA nucleotides is illustrated (only the phosphate
sugar backbone is shown; the bases will be populated at the point
proxy above the backbone). Middle: The replication of the rule and
replacing of proxies with A,C,G,U models. Bottom: The rule with a
rotation incorporated applied to a line segment skeleton.

For every type of spike protein (Sopen, Sclosed , Spost), the rule differs in
the number of instances and in the distance to the surface.

A similar rule is used for both M and E proteins. The only dif-
ference is that these protein instances are uniformly distributed, i.e.,
no amounts distributed over the 3D mesh based on observation on the
contour are taken into account. These proteins are not discernible on the
images and their distribution have not yet been characterized. For the
time being, our model assumes a uniform distribution on the mesh(see
Figure 11).

The nucleoprotein complex is built in several steps. To begin, a
fiber-like assembly of N protein conformations is built. The N pro-
tein conformation is modeled using a dimer of the C-terminal domain
(2CDT) and N-terminal domain (NTD) instances as follows. Firstly,
a siblings rule is created to bind two NTD to 2CDT (see Figure 12
top-left). Although there are only two relations depicted in the im-
age, we create the total amount of six relations between 2CTD and
NTD. In the population phase, only two out of six created relations are
randomly chosen. In the following step (see Figure 12 bottom-left),
2CTD is bound to rotated 2CTD using the siblings-parent rule to a
linear skeleton. This forms a tetramer 4CTD. Repeatedly, 4CTD is
bound using a linear skeleton to another instance of 4CTD, forming
an octamer 8CTD. The final N protein assembly is constructed using
the siblings-parent rule of 8CTD and a polyline skeleton. To create
the polyline skeleton, we uniformly fill the interior of the 3D mesh
with instances of a proxy object. This proxy object is a sphere that is
customized to have a radius approximately the same size as the radius
of the bounding sphere of 8CTD. By applying the connection rule
Section 5.2 on such proxy spheres, we obtain the polyline skeleton.
Finally, the siblings-parent rule is applied to 8CTD and the polyline
forming the N protein assembly is created. RNA is then added to form
the entire nucleoprotein complex, as described in the next section. Note
that at this point we cannot use the approach of Klein et al. [38] for
placement of the N-proteins (the rope) because this algorithm uses a
predefined size of the block, which is embedded in the algorithm. At
the beginning, our building blocks are of an unknown size; the user
can create arbitrarily sized building blocks (a group of proteins) that
are subsequently chained along the polyline. Therefore, we designed a
more general approach.

The lipid bilayer membrane is constructed using the siblings-

Fig. 15. RNA proxy objects. Left: Specifying of the proxy objects repre-
senting RNA binding pockets on the surface of a few N proteins. Middle:
The binding pockets computed on all N proteins in the model. Right: The
resulting RNA after populating A,C,G,U,P along the 3D curve approxi-
mating the proxy objects.

parent rule. In reality, both layers can be modeled by the similar
rule with the only exception that the lipids in one layer are rotated so
that they are oriented to each other with their hydrophobic part. The
construction of a single layer is as follows: Two copies of the same lipid
model are added into the scene. The user creates a rule with several rela-
tions by translating (and rotating) one copy of the model to the desired
position and storing these positions together with the distance to the
3D mesh parental skeleton. In our model, seven relations Ri are created
(see Figure 13 left) for the transition from one lipid to another lipid.
We use two models of different lipids - Li1 and Li2. Therefore, there
are seven relations for each of the combinations: Li1 → Li2, Li2 → Li1,
Li1 → Li1. The generating process starts in randomly chosen trian-
gles of the 3D mesh parental skeleton. In the beginning, one lipid is
added. In the next steps, up to seven new lipids can be generated. The
rule is reapplied on these new instances. This process continues until
100 consecutive collision hits are accumulated, which indicates a fully
dense lipid membrane. Note that only populating models with a limited
amount of relations over the surface would lead to an occurrence of
visible patterns. This is overcome by fine-tuning the rotation of newly
placed elements by specifying how the standard deviations of yaw,
pitch, roll vary (see Figure 13 right).

6.2 RNA modeling

We have modeled RNA using five elementary models: four RNA bases
adenine (A), cytosine (C), guanine (G), uracil (U), and one model
consisting of phosphate and sugar (P) that forms the RNA backbone.
A model of an individual nucleotide is created using the following
approach. To a line skeleton using the parent-child rule, a P part and
a point skeleton are bound (see Figure 14 top). The point skeleton
in this case plays a role as a proxy object. In the population phase,
a corresponding model of a base (A,C,G,U) from a genome string is
placed to this position to finish the formation of the intact nucleotide.
The genome string is specified by the user during the definition of the
point skeleton rule.

In the next step, the siblings-parent rule of these individual nu-
cleotides with a line skeleton is created. For simplicity, only the trans-
lation is presented in Figure 14 top-right. Once this relation is applied
to a line skeleton, an RNA strand is created (see Figure 14 middle).

If a rotation between two nucleotides is specified during the process
of modeling, the resulting RNA structure will twist along the line
skeleton (see Figure 14 bottom). The consecutive bases with their
phosphate sugar backbone forms the RNA string. Now the RNA model
is created as a template and can be used anywhere that RNA is needed.
However, the RNA model needs a skeletal structure along which it will
form the RNA backbone fiber and then populate the bases according
to the given RNA sequence. In our case, we replace the line skeleton
with a polyline skeleton that represents a 3D curve connecting binding
pockets of N proteins inside the core of the virion.

In the final model, the RNA of the virion is bound to the predicted
sites on the surface of N proteins. To specify the points on the N protein
that define the RNA path, a rule with relations of a proxy object BPi
to N protein was created (see Figure 15 left). After populating the N
proteins in the model, the algorithm computes positions of all proxies
in the scene. The RNA backbone is obtained by using the connection
rule and a 3D curve generator.

730 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

7 DISCUSSION

The virion model is constantly undergoing many revisions as new
information about its ultrastructure emerges and the literature is subse-
quently updated. Using standard modeling approaches, this dynamic
situation with constant emerging information often necessitates a com-
plete reassembly of the model. In our case, several rules needed to
be redefined and an updated model was instantly generated. This real
world experience, where a stream of new information is constantly
being generated, has confirmed that our modeling framework is suf-
ficiently versatile to accommodate new revisions with a given set of
rules. Moreover, our modeling framework presents a rapid process for
complex structural characteristics of a virion. The benefit of rule-based
modeling is the nature of templating, which is advantageous for its
ability to reuse the assembly patterns for other highly similar biological
models. Therefore, for example, once the RNA rules are specified,
they can be effortlessly applied in another model. If more structural
knowledge comes to light or a more advanced model of the RNA is
refined, our model can still be used in all mesoscale models that contain
the RNA rule. The templating can be utilized, for example, in capsids,
fibers, or membranes. This property inherently supports collaborative
efforts, where modelers can revise the initial models of their peers, and
a community can gradually build a large base of mesoscale biological
assemblies. Additional models created with the same set of rules but
based on different contours are presented in Appendix C.

Today, the availability of mesoscale models provides new opportu-
nities to understand the structure and function of SARS-CoV-2. The
number and distribution of spike proteins is still a matter of some con-
jecture; however, this information is relevant to fully understand the
interactions of the virus with its cellular receptors and its interaction and
neutralization by antibodies. The details of nucleoprotein condensation
and packaging through interaction with the viral membrane proteins
are also of interest because they provide possible targets for therapeutic
intervention.

Currently, our entire approach is implemented as a single-threaded
application on the top of the Marion molecular visualization frame-
work [45] and, as a proof-of-concept implementation, it is not signif-
icantly optimized for performance. Some processing stages are not
calculated at an instance. However, we believe that the overall user
experience is sufficiently performant for the rapid prototyping of bi-
ological mesoscale models. The resulting model consists of 29 S (in
different states), 1000 M dimers, 25 E, ~1000 N (in N-CTD and N-
NTD), 29903 bp ss-RNA bases (GenBank: MN908947.3 [79]), and
29903 P elements forming the RNA backbone, and ~180000 lipids.
The entire model is created by 23 rules (with 59 relations) defined by
the user. Several of these are different possible configurations of the
same elements (as in the case of lipids). The population of S, E, M,
N, and all parts of RNA are processed within 2 seconds each. The
population of lipids is the most computationally demanding part of the
algorithm, taking approximately two minutes for each inner and outer
membrane, primarily because there are many lipid samples that are
regressed. However, the required time is heavily dependent on the rules
defined. We have created a very dense distribution of lipids with five
relations for the rule.

Our technique can be generalized on three levels: system level,
whole-cell level, and molecular level. First, at the system level, our
technology can be applied not only for biological objects but also ob-
jects in materials, chemistry, and physics, i.e., wherever instances of the
same or similar structural elements form hierarchies by assembling into
a complex structure. Second, at the whole-cell level, our technology
can currently extract the overall shape of biological objects that have a
star-domain property, i.e., there is at least one point inside, from which
all internal points are directly visible, without crossing the contour.
This includes many viral envelopes, capsids, and compact cellular com-
partments. Finally, at the molecular level, our system can generalize
the model for many types of viruses and simple bacteria; however, with
their molecules without any motion.

These generalizations simultaneously define the scope and limita-
tions, i.e., the system in its current form is missing a complex com-
partmental specification, such as the inner mitochondrial membrane,

endoplasmic reticulum, or Golgi apparatus, for example. While it is
possible to model with very high complexity, modeling an asymmet-
ric complex, such as the HIV capsid, will impact on the speed of the
modeling process because a non-trivial amount of rules and effort are re-
quired as an input from the user. Another limitation is the case of sticky
fibers, such as single-stranded genome macromolecules, which often
form complex secondary structures that are enabled through sequence
complementarity. It is still unclear whether such a characterization
is possible to be expressed using our system, or if we would need to
expand the rule set. Finally, the entire model does not integrate any
notion of emergent behavior.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a new system for the rapid modeling
of mesoscale biological models. Challenged with frequent revisions
of the SARS-CoV-2 model, we demonstrated that our framework is
suitably versatile and is able to incorporate any new structural insights.
The benefits of this work for the scientific community are two fold: we
present a new technology and a new structural model of SARS-CoV-21

that might lead to the development of effective vaccination or treatment
strategies. There are several research questions that are difficult to
answer without explicitly imaged evidence. One such question is: How
many copies of RNA can a single virion pack? Is it just one or is
there possibly enough space to accommodate another copy? The utility
potential for hypothesis generation of biological questions that are of
an integrative structural nature is tremendous.

This framework allows for varying levels of model precision. A
model can be specified exactly so that one amino acid interacts with
another, or it can be placed more roughly. The system of rules preserves
the accuracy, which is given as input. Combined with the specifica-
tion of flexibility and collision handling, we can achieve even simple
geometric docking.

In the future, we plan to extend this method to generate the overall
shape of the virion from more cross-sections or volume data. We also
plan to incorporate surface representation from virion contours that
would estimate spherical-harmonics coordinates to replace the contour
inflation approach. Modelling asymetric HIV capsid can be made
quicker if additional rule concepts are introduced. For example, a new
type of tessellation rule, based on Euler’s characteristic for convex
polyhedra, would constrain the specification on how a 3D object is
to be formed by various building elements. Two rule-based modeling
systems Biogen [26] and Kappa [6] show promise for expressing the
interaction patterns and we aim to complement kinetic or agent-based
systems with our modeling technique.

It is interesting to study the interplay of rule-modeled structures
and reconstruct details from microscopic images that are difficult to
discern by fitting a particular rule-expressed pattern into the image. Par-
allelizing our implementation would allow for interactive performance,
where a large number of conformations can be tested within a short
time. Iteratively fitting the detail to an unclear microscopy image may
be a way to solve an inverse problem in a brute-force manner.

Modeling with mouse interactions can be complemented with ad-
vanced speech recognition, to allow for voice-controlled modeling.
Simultaneously, the ontology community has created a rich catego-
rization of shapes that have, however, no associated geometry. By
establishing such an association through the usage of terminology in
shape ontologies, a verbal specification of models can lead to the de-
sired model.

ACKNOWLEDGMENTS

The research was supported by the King Abdullah University of Sci-
ence and Technology (KAUST) Office of Sponsored Research (OSR),
under award numbers OSR-2019-CPF-4108 and BAS/1/1680-01-01,
and grant R01-GM120604 from the US National Institutes of Health
(DSG). We thank nanographics.at for providing the Marion software,
Michael Cusack from Publication Services at KAUST for proofreading,
and anonymous reviewers for their constructive comments.

1available at nanovis.kaust.edu.sa/sars-cov-2-virus-model/

REFERENCES

[1] M. Baek, T. Park, L. Heo, C. Park, and C. Seok. Galaxyhomomer: a web
server for protein homo-oligomer structure prediction from a monomer
sequence or structure. Nucleic Acids Research, 45(W1):W320–W324, 04
2017. doi: 10.1093/nar/gkx246

[2] Y. Bar-On, A. Flamholz, R. Phillips, and R. Milo. Sars-cov-2 (covid-19)
by the numbers. eLife, 9, 03 2020. doi: 10.7554/eLife.57309

[3] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide
protein data bank. Nature structural biology, 10(12):980, 2003. doi: 10.
1038/nsb1203-980

[4] H. Bhatia, H. I. Ingólfsson, T. S. Carpenter, F. C. Lightstone, and P.-T.
Bremer. MemSurfer: A tool for robust computation and characterization
of curved membranes. Journal of Chemical Theory and Computation,
15(11):6411–6421, 2019. doi: 10.1021/acs.jctc.9b00453

[5] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transac-
tions on Graphics, 1(3):235––256, 1982. doi: 10.1145/357306.357310

[6] P. Boutillier, M. Maasha, X. Li, H. F. Medina-Abarca, J. Krivine, J. Feret,
I. Cristescu, A. G. Forbes, and W. Fontana. The kappa platform for
rule-based modeling. Bioinformatics, 34(13):i583–i592, 2018. doi: 10.
1093/bioinformatics/bty272

[7] S. Bruckner. Dynamic visibility-driven molecular surfaces. Computer
Graphics Forum, 38(2), 2019. doi: 10.1111/cgf.13640

[8] Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M. Sterling, R. M. Walsh, S. Rawson,
S. Rits-Volloch, and B. Chen. Distinct conformational states of sars-cov-2
spike protein. bioRxiv, 2020. doi: 10.1101/2020.05.16.099317

[9] Y. Cao, B. Su, X. Guo, W. Sun, Y. Deng, L. Bao, Q. Zhu, X. Zhang,
Y. Zheng, C. Geng, X. Chai, R. He, X. Li, Q. Lv, H. Zhu, W. Deng, Y. Xu,
Y. Wang, L. Qiao, Y. Tan, L. Song, G. Wang, X. Du, N. Gao, J. Liu,
J. Xiao, X. dong Su, Z. Du, Y. Feng, C. Qin, C. Qin, R. Jin, and X. S.
Xie. Potent neutralizing antibodies against sars-cov-2 identified by high-
throughput single-cell sequencing of convalescent patients’ b cells. Cell,
182(1):73–84, 2020. doi: 10.1016/j.cell.2020.05.025

[10] L. Casalino, Z. Gaieb, A. C. Dommer, A. M. Harbison, C. A. Fogarty, E. P.
Barros, B. C. Taylor, E. Fadda, and R. E. Amaro. Shielding and beyond:
The roles of glycans in sars-cov-2 spike protein. bioRxiv, 2020. doi: 10.
1101/2020.06.11.146522

[11] G. Casella, C. P. Robert, M. T. Wells, et al. Generalized accept-reject
sampling schemes. In A Festschrift for Herman Rubin, pp. 342–347.
Institute of Mathematical Statistics, 2004. doi: 10.1214/lnms/1196285403

[12] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, and
M. Baaden. Gpu-accelerated atom and dynamic bond visualization using
hyperballs: A unified algorithm for balls, sticks, and hyperboloids. Journal
of Computational Chemistry, 32(13):2924–2935, 2011. doi: 10.1002/jcc.
21861

[13] X. Chi, R. Yan, J. Zhang, G. Zhang, Y. Zhang, M. Hao, Z. Zhang, P. Fan,
Y. Dong, Y. Yang, Z. Chen, Y. Guo, J. Zhang, Y. Li, X. Song, Y. Chen,
L. Xia, L. Fu, L. Hou, J. Xu, C. Yu, J. Li, Q. Zhou, and W. Chen. A
neutralizing human antibody binds to the n-terminal domain of the spike
protein of sars-cov-2. Science, 2020. doi: 10.1126/science.abc6952

[14] M. Connolly. Analytical molecular surface calculation. Journal of Applied
Crystallography, 16(5):548–558, 1983. doi: 10.1107/S0021889883010985

[15] J. D. Durrant and R. E. Amaro. LipidWrapper: An algorithm for generating
large-scale membrane models of arbitrary geometry. PLOS Computational
Biology, 10(7):1–11, 2014. doi: 10.1371/journal.pcbi.1003720

[16] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Textur-
ing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers
Inc., 3rd ed., 2002.

[17] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes.
ACM Transactions on Graphics, 13(1):43––72, 1994. doi: 10.1145/174462.
156635

[18] P. Emsley, B. Lohkamp, W. Scott, and K. Cowtan. Features and develop-
ment of coot. Acta crystallographica. Section D, Biological crystallogra-
phy, 66:486–501, 04 2010. doi: 10.1107/S0907444910007493

[19] M. Falk, M. Krone, and T. Ertl. Atomistic visualization of mesoscopic
whole-cell simulations using ray-casted instancing. Computer Graphics
Forum, 32(8):195–206, 2013. doi: 10.1111/cgf.12197

[20] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin. Procedural generation
of roads. Computer Graphics Forum, 29:429–438, 06 2010. doi: 10.1111/j.
1467-8659.2009.01612.x

[21] A. Gardner, L. Autin, B. Barbaro, A. J. Olson, and D. S. Goodsell. Cell-
paint: Interactive illustration of dynamic mesoscale cellular environments.
IEEE Computer Graphics and Applications, 38(6):51–66, 2018. doi: 10.

1109/MCG.2018.2877076
[22] D. S. Goodsell, A. J. Olson, and S. Forli. Art and science of the cellular

mesoscale. Trends in Biochemical Sciences, 2020. doi: 10.1016/j.tibs.2020.
02.010

[23] E. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes, and B. Mar-
tinez. Interactive example-based terrain authoring with conditional gener-
ative adversarial networks. ACM Transactions on Graphics, 36(6), 2017.
doi: 10.1145/3130800.3130804

[24] M. Gui, X. Liu, D. Guo, Z. Zhang, C.-C. Yin, Y. Chen, and Y. Xiang.
Electron microscopy studies of the coronavirus ribonucleoprotein complex.
Protein & Cell, 8(3):219–224, 2017. doi: 10.1007/s13238-016-0352-8

[25] S. Halladjian, H. Miao, D. Kouřil, M. E. Gröller, I. Viola, and T. Isenberg.
Scale Trotter: Illustrative visual travels across negative scales. IEEE
Transactions on Visualization and Computer Graphics, 26(1):654–664,
2020.

[26] L. A. Harris, J. S. Hogg, J.-J. Tapia, J. A. Sekar, S. Gupta, I. Korsunsky,
A. Arora, D. Barua, R. P. Sheehan, and J. R. Faeder. Bionetgen 2.2:
advances in rule-based modeling. Bioinformatics, 32(21):3366–3368,
2016.

[27] R. Henderson, R. J. Edwards, K. Mansouri, K. Janowska, V. Stalls, S. Gob-
eil, M. Kopp, A. Hsu, M. Borgnia, R. Parks, B. F. Haynes, and P. Acharya.
Controlling the sars-cov-2 spike glycoprotein conformation. bioRxiv, 2020.
doi: 10.1101/2020.05.18.102087

[28] L. Heo and M. Feig. Modeling of severe acute respiratory syndrome
coronavirus 2 (sars-cov-2) proteins by machine learning and physics-based
refinement. bioRxiv, 2020. doi: 10.1101/2020.03.25.008904

[29] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, A. Vinacua, and
T. Ropinski. Interactive gpu-based generation of solvent-excluded surfaces.
The Visual Computer, 33:869––881, 2017. doi: 10.1007/s00371-017-1397-2

[30] J. Huo, Y. Zhao, J. Ren, D. Zhou, H. M. Duyvesteyn, H. M. Ginn,
L. Carrique, T. Malinauskas, R. R. Ruza, P. N. Shah, T. K. Tan, P. Ri-
jal, N. Coombes, K. R. Bewley, J. A. Tree, J. Radecke, N. G. Paterson,
P. Supasa, J. Mongkolsapaya, G. R. Screaton, M. Carroll, A. Townsend,
E. E. Fry, R. J. Owens, and D. I. Stuart. Neutralization of sars-cov-2 by
destruction of the prefusion spike. Cell Host & Microbe, 2020. doi: 10.
1016/j.chom.2020.06.010

[31] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3d freeform design. In Proc. Siggraph, pp. 409–416, 1999. doi: 10.
1145/311535.311602

[32] G. Johnson, L. Autin, M. Al-Alusi, D. Goodsell, M. Sanner, and A. Olson.
cellpack: A virtual mesoscope to model and visualize structural systems
biology. Nature methods, 12, 2014. doi: 10.1038/nmeth.3204

[33] J. Jumper, K. Tunyasuvunakool, P. Kohli, D. Hassabis, and the Al-
phaFold Team. Computational predictions of protein structures associated
with COVID-19, version 2, DeepMind website, 8 April 2020.

[34] Z. Ke, J. Oton, K. Qu, M. Cortese, V. Zila, L. McKeane, T. Nakane, J. Zi-
vanov, C. J. Neufeldt, J. M. Lu, J. Peukes, X. Xiong, H.-G. Kräusslich,
S. H. Scheres, R. Bartenschlager, and J. A. Briggs. Structures, conforma-
tions and distributions of sars-cov-2 spike protein trimers on intact virions.
bioRxiv, 2020. doi: 10.1101/2020.06.27.174979

[35] C. ke Chang, M.-H. Hou, C.-F. Chang, C.-D. Hsiao, and T. huang Huang.
The sars coronavirus nucleocapsid protein – forms and functions. Antiviral
Research, 103:39–50, 2014. doi: 10.1016/j.antiviral.2013.12.009

[36] D. E. Kim, D. Chivian, and D. Baker. Protein structure prediction and anal-
ysis using the Robetta server. Nucleic Acids Research, 32(suppl 2):W526–
W531, 07 2004. doi: 10.1093/nar/gkh468

[37] T. Klein, L. Autin, B. Kozlı́ková, D. S. Goodsell, A. Olson, M. E. Gröller,
and I. Viola. Instant construction and visualization of crowded biolog-
ical environments. IEEE Transactions on Visualization and Computer
Graphics, 24(1):862–872, 2018. doi: 10.1109/TVCG.2017.2744258

[38] T. Klein, P. Mindek, L. Autin, D. Goodsell, A. Olson, M. E. Gröller,
and I. Viola. Parallel generation and visualization of bacterial genome
structures. In Computer Graphics Forum, vol. 38, pp. 57–68, 2019. doi:
10.1111/cgf.13816

[39] M. Krone, K. Bidmon, and T. Ertl. Interactive visualization of molecular
surface dynamics. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1391–1398, 2009.

[40] M. Le Muzic, J. Parulek, A.-K. Stavrum, and I. Viola. Illustrative visual-
ization of molecular reactions using omniscient intelligence and passive
agents. Computer Graphics Forum, 33(3):141–150, 2014. doi: 10.1111/cgf.
12370

[41] E. M. Lidal, M. Natali, D. Patel, H. Hauser, and I. Viola. Geological
storytelling. Computers & Graphics, 37(5):445–459, 2013. doi: 10.1016/j.

NGUYEN ET AL.: MODELING IN THE TIME OF COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS 731

7 DISCUSSION

The virion model is constantly undergoing many revisions as new
information about its ultrastructure emerges and the literature is subse-
quently updated. Using standard modeling approaches, this dynamic
situation with constant emerging information often necessitates a com-
plete reassembly of the model. In our case, several rules needed to
be redefined and an updated model was instantly generated. This real
world experience, where a stream of new information is constantly
being generated, has confirmed that our modeling framework is suf-
ficiently versatile to accommodate new revisions with a given set of
rules. Moreover, our modeling framework presents a rapid process for
complex structural characteristics of a virion. The benefit of rule-based
modeling is the nature of templating, which is advantageous for its
ability to reuse the assembly patterns for other highly similar biological
models. Therefore, for example, once the RNA rules are specified,
they can be effortlessly applied in another model. If more structural
knowledge comes to light or a more advanced model of the RNA is
refined, our model can still be used in all mesoscale models that contain
the RNA rule. The templating can be utilized, for example, in capsids,
fibers, or membranes. This property inherently supports collaborative
efforts, where modelers can revise the initial models of their peers, and
a community can gradually build a large base of mesoscale biological
assemblies. Additional models created with the same set of rules but
based on different contours are presented in Appendix C.

Today, the availability of mesoscale models provides new opportu-
nities to understand the structure and function of SARS-CoV-2. The
number and distribution of spike proteins is still a matter of some con-
jecture; however, this information is relevant to fully understand the
interactions of the virus with its cellular receptors and its interaction and
neutralization by antibodies. The details of nucleoprotein condensation
and packaging through interaction with the viral membrane proteins
are also of interest because they provide possible targets for therapeutic
intervention.

Currently, our entire approach is implemented as a single-threaded
application on the top of the Marion molecular visualization frame-
work [45] and, as a proof-of-concept implementation, it is not signif-
icantly optimized for performance. Some processing stages are not
calculated at an instance. However, we believe that the overall user
experience is sufficiently performant for the rapid prototyping of bi-
ological mesoscale models. The resulting model consists of 29 S (in
different states), 1000 M dimers, 25 E, ~1000 N (in N-CTD and N-
NTD), 29903 bp ss-RNA bases (GenBank: MN908947.3 [79]), and
29903 P elements forming the RNA backbone, and ~180000 lipids.
The entire model is created by 23 rules (with 59 relations) defined by
the user. Several of these are different possible configurations of the
same elements (as in the case of lipids). The population of S, E, M,
N, and all parts of RNA are processed within 2 seconds each. The
population of lipids is the most computationally demanding part of the
algorithm, taking approximately two minutes for each inner and outer
membrane, primarily because there are many lipid samples that are
regressed. However, the required time is heavily dependent on the rules
defined. We have created a very dense distribution of lipids with five
relations for the rule.

Our technique can be generalized on three levels: system level,
whole-cell level, and molecular level. First, at the system level, our
technology can be applied not only for biological objects but also ob-
jects in materials, chemistry, and physics, i.e., wherever instances of the
same or similar structural elements form hierarchies by assembling into
a complex structure. Second, at the whole-cell level, our technology
can currently extract the overall shape of biological objects that have a
star-domain property, i.e., there is at least one point inside, from which
all internal points are directly visible, without crossing the contour.
This includes many viral envelopes, capsids, and compact cellular com-
partments. Finally, at the molecular level, our system can generalize
the model for many types of viruses and simple bacteria; however, with
their molecules without any motion.

These generalizations simultaneously define the scope and limita-
tions, i.e., the system in its current form is missing a complex com-
partmental specification, such as the inner mitochondrial membrane,

endoplasmic reticulum, or Golgi apparatus, for example. While it is
possible to model with very high complexity, modeling an asymmet-
ric complex, such as the HIV capsid, will impact on the speed of the
modeling process because a non-trivial amount of rules and effort are re-
quired as an input from the user. Another limitation is the case of sticky
fibers, such as single-stranded genome macromolecules, which often
form complex secondary structures that are enabled through sequence
complementarity. It is still unclear whether such a characterization
is possible to be expressed using our system, or if we would need to
expand the rule set. Finally, the entire model does not integrate any
notion of emergent behavior.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a new system for the rapid modeling
of mesoscale biological models. Challenged with frequent revisions
of the SARS-CoV-2 model, we demonstrated that our framework is
suitably versatile and is able to incorporate any new structural insights.
The benefits of this work for the scientific community are two fold: we
present a new technology and a new structural model of SARS-CoV-21

that might lead to the development of effective vaccination or treatment
strategies. There are several research questions that are difficult to
answer without explicitly imaged evidence. One such question is: How
many copies of RNA can a single virion pack? Is it just one or is
there possibly enough space to accommodate another copy? The utility
potential for hypothesis generation of biological questions that are of
an integrative structural nature is tremendous.

This framework allows for varying levels of model precision. A
model can be specified exactly so that one amino acid interacts with
another, or it can be placed more roughly. The system of rules preserves
the accuracy, which is given as input. Combined with the specifica-
tion of flexibility and collision handling, we can achieve even simple
geometric docking.

In the future, we plan to extend this method to generate the overall
shape of the virion from more cross-sections or volume data. We also
plan to incorporate surface representation from virion contours that
would estimate spherical-harmonics coordinates to replace the contour
inflation approach. Modelling asymetric HIV capsid can be made
quicker if additional rule concepts are introduced. For example, a new
type of tessellation rule, based on Euler’s characteristic for convex
polyhedra, would constrain the specification on how a 3D object is
to be formed by various building elements. Two rule-based modeling
systems Biogen [26] and Kappa [6] show promise for expressing the
interaction patterns and we aim to complement kinetic or agent-based
systems with our modeling technique.

It is interesting to study the interplay of rule-modeled structures
and reconstruct details from microscopic images that are difficult to
discern by fitting a particular rule-expressed pattern into the image. Par-
allelizing our implementation would allow for interactive performance,
where a large number of conformations can be tested within a short
time. Iteratively fitting the detail to an unclear microscopy image may
be a way to solve an inverse problem in a brute-force manner.

Modeling with mouse interactions can be complemented with ad-
vanced speech recognition, to allow for voice-controlled modeling.
Simultaneously, the ontology community has created a rich catego-
rization of shapes that have, however, no associated geometry. By
establishing such an association through the usage of terminology in
shape ontologies, a verbal specification of models can lead to the de-
sired model.

ACKNOWLEDGMENTS

The research was supported by the King Abdullah University of Sci-
ence and Technology (KAUST) Office of Sponsored Research (OSR),
under award numbers OSR-2019-CPF-4108 and BAS/1/1680-01-01,
and grant R01-GM120604 from the US National Institutes of Health
(DSG). We thank nanographics.at for providing the Marion software,
Michael Cusack from Publication Services at KAUST for proofreading,
and anonymous reviewers for their constructive comments.

1available at nanovis.kaust.edu.sa/sars-cov-2-virus-model/

REFERENCES

[1] M. Baek, T. Park, L. Heo, C. Park, and C. Seok. Galaxyhomomer: a web
server for protein homo-oligomer structure prediction from a monomer
sequence or structure. Nucleic Acids Research, 45(W1):W320–W324, 04
2017. doi: 10.1093/nar/gkx246

[2] Y. Bar-On, A. Flamholz, R. Phillips, and R. Milo. Sars-cov-2 (covid-19)
by the numbers. eLife, 9, 03 2020. doi: 10.7554/eLife.57309

[3] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide
protein data bank. Nature structural biology, 10(12):980, 2003. doi: 10.
1038/nsb1203-980

[4] H. Bhatia, H. I. Ingólfsson, T. S. Carpenter, F. C. Lightstone, and P.-T.
Bremer. MemSurfer: A tool for robust computation and characterization
of curved membranes. Journal of Chemical Theory and Computation,
15(11):6411–6421, 2019. doi: 10.1021/acs.jctc.9b00453

[5] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transac-
tions on Graphics, 1(3):235––256, 1982. doi: 10.1145/357306.357310

[6] P. Boutillier, M. Maasha, X. Li, H. F. Medina-Abarca, J. Krivine, J. Feret,
I. Cristescu, A. G. Forbes, and W. Fontana. The kappa platform for
rule-based modeling. Bioinformatics, 34(13):i583–i592, 2018. doi: 10.
1093/bioinformatics/bty272

[7] S. Bruckner. Dynamic visibility-driven molecular surfaces. Computer
Graphics Forum, 38(2), 2019. doi: 10.1111/cgf.13640

[8] Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M. Sterling, R. M. Walsh, S. Rawson,
S. Rits-Volloch, and B. Chen. Distinct conformational states of sars-cov-2
spike protein. bioRxiv, 2020. doi: 10.1101/2020.05.16.099317

[9] Y. Cao, B. Su, X. Guo, W. Sun, Y. Deng, L. Bao, Q. Zhu, X. Zhang,
Y. Zheng, C. Geng, X. Chai, R. He, X. Li, Q. Lv, H. Zhu, W. Deng, Y. Xu,
Y. Wang, L. Qiao, Y. Tan, L. Song, G. Wang, X. Du, N. Gao, J. Liu,
J. Xiao, X. dong Su, Z. Du, Y. Feng, C. Qin, C. Qin, R. Jin, and X. S.
Xie. Potent neutralizing antibodies against sars-cov-2 identified by high-
throughput single-cell sequencing of convalescent patients’ b cells. Cell,
182(1):73–84, 2020. doi: 10.1016/j.cell.2020.05.025

[10] L. Casalino, Z. Gaieb, A. C. Dommer, A. M. Harbison, C. A. Fogarty, E. P.
Barros, B. C. Taylor, E. Fadda, and R. E. Amaro. Shielding and beyond:
The roles of glycans in sars-cov-2 spike protein. bioRxiv, 2020. doi: 10.
1101/2020.06.11.146522

[11] G. Casella, C. P. Robert, M. T. Wells, et al. Generalized accept-reject
sampling schemes. In A Festschrift for Herman Rubin, pp. 342–347.
Institute of Mathematical Statistics, 2004. doi: 10.1214/lnms/1196285403

[12] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, and
M. Baaden. Gpu-accelerated atom and dynamic bond visualization using
hyperballs: A unified algorithm for balls, sticks, and hyperboloids. Journal
of Computational Chemistry, 32(13):2924–2935, 2011. doi: 10.1002/jcc.
21861

[13] X. Chi, R. Yan, J. Zhang, G. Zhang, Y. Zhang, M. Hao, Z. Zhang, P. Fan,
Y. Dong, Y. Yang, Z. Chen, Y. Guo, J. Zhang, Y. Li, X. Song, Y. Chen,
L. Xia, L. Fu, L. Hou, J. Xu, C. Yu, J. Li, Q. Zhou, and W. Chen. A
neutralizing human antibody binds to the n-terminal domain of the spike
protein of sars-cov-2. Science, 2020. doi: 10.1126/science.abc6952

[14] M. Connolly. Analytical molecular surface calculation. Journal of Applied
Crystallography, 16(5):548–558, 1983. doi: 10.1107/S0021889883010985

[15] J. D. Durrant and R. E. Amaro. LipidWrapper: An algorithm for generating
large-scale membrane models of arbitrary geometry. PLOS Computational
Biology, 10(7):1–11, 2014. doi: 10.1371/journal.pcbi.1003720

[16] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Textur-
ing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers
Inc., 3rd ed., 2002.

[17] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes.
ACM Transactions on Graphics, 13(1):43––72, 1994. doi: 10.1145/174462.
156635

[18] P. Emsley, B. Lohkamp, W. Scott, and K. Cowtan. Features and develop-
ment of coot. Acta crystallographica. Section D, Biological crystallogra-
phy, 66:486–501, 04 2010. doi: 10.1107/S0907444910007493

[19] M. Falk, M. Krone, and T. Ertl. Atomistic visualization of mesoscopic
whole-cell simulations using ray-casted instancing. Computer Graphics
Forum, 32(8):195–206, 2013. doi: 10.1111/cgf.12197

[20] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin. Procedural generation
of roads. Computer Graphics Forum, 29:429–438, 06 2010. doi: 10.1111/j.
1467-8659.2009.01612.x

[21] A. Gardner, L. Autin, B. Barbaro, A. J. Olson, and D. S. Goodsell. Cell-
paint: Interactive illustration of dynamic mesoscale cellular environments.
IEEE Computer Graphics and Applications, 38(6):51–66, 2018. doi: 10.

1109/MCG.2018.2877076
[22] D. S. Goodsell, A. J. Olson, and S. Forli. Art and science of the cellular

mesoscale. Trends in Biochemical Sciences, 2020. doi: 10.1016/j.tibs.2020.
02.010

[23] E. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes, and B. Mar-
tinez. Interactive example-based terrain authoring with conditional gener-
ative adversarial networks. ACM Transactions on Graphics, 36(6), 2017.
doi: 10.1145/3130800.3130804

[24] M. Gui, X. Liu, D. Guo, Z. Zhang, C.-C. Yin, Y. Chen, and Y. Xiang.
Electron microscopy studies of the coronavirus ribonucleoprotein complex.
Protein & Cell, 8(3):219–224, 2017. doi: 10.1007/s13238-016-0352-8

[25] S. Halladjian, H. Miao, D. Kouřil, M. E. Gröller, I. Viola, and T. Isenberg.
Scale Trotter: Illustrative visual travels across negative scales. IEEE
Transactions on Visualization and Computer Graphics, 26(1):654–664,
2020.

[26] L. A. Harris, J. S. Hogg, J.-J. Tapia, J. A. Sekar, S. Gupta, I. Korsunsky,
A. Arora, D. Barua, R. P. Sheehan, and J. R. Faeder. Bionetgen 2.2:
advances in rule-based modeling. Bioinformatics, 32(21):3366–3368,
2016.

[27] R. Henderson, R. J. Edwards, K. Mansouri, K. Janowska, V. Stalls, S. Gob-
eil, M. Kopp, A. Hsu, M. Borgnia, R. Parks, B. F. Haynes, and P. Acharya.
Controlling the sars-cov-2 spike glycoprotein conformation. bioRxiv, 2020.
doi: 10.1101/2020.05.18.102087

[28] L. Heo and M. Feig. Modeling of severe acute respiratory syndrome
coronavirus 2 (sars-cov-2) proteins by machine learning and physics-based
refinement. bioRxiv, 2020. doi: 10.1101/2020.03.25.008904

[29] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, A. Vinacua, and
T. Ropinski. Interactive gpu-based generation of solvent-excluded surfaces.
The Visual Computer, 33:869––881, 2017. doi: 10.1007/s00371-017-1397-2

[30] J. Huo, Y. Zhao, J. Ren, D. Zhou, H. M. Duyvesteyn, H. M. Ginn,
L. Carrique, T. Malinauskas, R. R. Ruza, P. N. Shah, T. K. Tan, P. Ri-
jal, N. Coombes, K. R. Bewley, J. A. Tree, J. Radecke, N. G. Paterson,
P. Supasa, J. Mongkolsapaya, G. R. Screaton, M. Carroll, A. Townsend,
E. E. Fry, R. J. Owens, and D. I. Stuart. Neutralization of sars-cov-2 by
destruction of the prefusion spike. Cell Host & Microbe, 2020. doi: 10.
1016/j.chom.2020.06.010

[31] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3d freeform design. In Proc. Siggraph, pp. 409–416, 1999. doi: 10.
1145/311535.311602

[32] G. Johnson, L. Autin, M. Al-Alusi, D. Goodsell, M. Sanner, and A. Olson.
cellpack: A virtual mesoscope to model and visualize structural systems
biology. Nature methods, 12, 2014. doi: 10.1038/nmeth.3204

[33] J. Jumper, K. Tunyasuvunakool, P. Kohli, D. Hassabis, and the Al-
phaFold Team. Computational predictions of protein structures associated
with COVID-19, version 2, DeepMind website, 8 April 2020.

[34] Z. Ke, J. Oton, K. Qu, M. Cortese, V. Zila, L. McKeane, T. Nakane, J. Zi-
vanov, C. J. Neufeldt, J. M. Lu, J. Peukes, X. Xiong, H.-G. Kräusslich,
S. H. Scheres, R. Bartenschlager, and J. A. Briggs. Structures, conforma-
tions and distributions of sars-cov-2 spike protein trimers on intact virions.
bioRxiv, 2020. doi: 10.1101/2020.06.27.174979

[35] C. ke Chang, M.-H. Hou, C.-F. Chang, C.-D. Hsiao, and T. huang Huang.
The sars coronavirus nucleocapsid protein – forms and functions. Antiviral
Research, 103:39–50, 2014. doi: 10.1016/j.antiviral.2013.12.009

[36] D. E. Kim, D. Chivian, and D. Baker. Protein structure prediction and anal-
ysis using the Robetta server. Nucleic Acids Research, 32(suppl 2):W526–
W531, 07 2004. doi: 10.1093/nar/gkh468

[37] T. Klein, L. Autin, B. Kozlı́ková, D. S. Goodsell, A. Olson, M. E. Gröller,
and I. Viola. Instant construction and visualization of crowded biolog-
ical environments. IEEE Transactions on Visualization and Computer
Graphics, 24(1):862–872, 2018. doi: 10.1109/TVCG.2017.2744258

[38] T. Klein, P. Mindek, L. Autin, D. Goodsell, A. Olson, M. E. Gröller,
and I. Viola. Parallel generation and visualization of bacterial genome
structures. In Computer Graphics Forum, vol. 38, pp. 57–68, 2019. doi:
10.1111/cgf.13816

[39] M. Krone, K. Bidmon, and T. Ertl. Interactive visualization of molecular
surface dynamics. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1391–1398, 2009.

[40] M. Le Muzic, J. Parulek, A.-K. Stavrum, and I. Viola. Illustrative visual-
ization of molecular reactions using omniscient intelligence and passive
agents. Computer Graphics Forum, 33(3):141–150, 2014. doi: 10.1111/cgf.
12370

[41] E. M. Lidal, M. Natali, D. Patel, H. Hauser, and I. Viola. Geological
storytelling. Computers & Graphics, 37(5):445–459, 2013. doi: 10.1016/j.

732 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

cag.2013.01.010
[42] A. Lindenmayer. Mathematical models for cellular interactions in devel-

opment i. filaments with one-sided inputs. Journal of Theoretical Biology,
18(3):280–299, 1968. doi: 10.1016/0022-5193(68)90079-9

[43] N. Lindow, D. Baum, and H.-C. Hege. Interactive rendering of materials
and biological structures on atomic and nanoscopic scale. Computer
Graphics Forum, 31(3pt4):1325–1334, 2012. doi: 10.1111/j.1467-8659.2012.
03128.x

[44] M. R. Macnaughton, H. A. Davies, and M. V. Nermut. Ribonucleoprotein-
like structures from coronavirus particles. Journal of General Virology,
39(3):545–549, 1978. doi: 10.1099/0022-1317-39-3-545

[45] P. Mindek, D. Kouřil, J. Sorger, D. Toloudis, B. Lyons, G. Johnson, M. E.
Gröller, and I. Viola. Visualization multi-pipeline for communicating
biology. IEEE Transactions on Visualization and Computer Graphics,
24(1):883–892, 2018. doi: 10.1109/TVCG.2017.2744518

[46] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural
modeling of buildings. ACM Transactions on Graphics, 25(3):614–623,
2006. doi: 10.1145/1141911.1141931

[47] M. L. Muzic, L. Autin, J. Parulek, and I. Viola. cellVIEW: a tool for
illustrative and multi-scale rendering of large biomolecular datasets. In
Proc. EG VBCM, pp. 61–70, 2015. doi: 10.2312/vcbm.20151209

[48] M. Natali, J. Parulek, and D. Patel. Rapid modelling of interactive geo-
logical illustrations with faults and compaction. In Proc. the 30th Spring
Conference on Computer Graphics, pp. 5–12, 2014. doi: 10.1145/2643188.
2643201

[49] B. Neuman and M. Buchmeier. Chapter one - supramolecular architecture
of the coronavirus particle. In Coronaviruses, vol. 96, pp. 1–27. Academic
Press, 2016. doi: 10.1016/bs.aivir.2016.08.005

[50] B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca, P. Kuhn,
R. A. Milligan, M. Yeager, and M. J. Buchmeier. Supramolecular architec-
ture of severe acute respiratory syndrome coronavirus revealed by electron
cryomicroscopy. Journal of Virology, 80(16):7918–7928, 2006. doi: 10.
1128/JVI.00645-06

[51] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Con-
nelly, B. Droese, J. P. Klaus, S. Makino, S. G. Sawicki, S. G. Siddell,
D. G. Stamou, I. A. Wilson, P. Kuhn, and M. J. Buchmeier. A structural
analysis of m protein in coronavirus assembly and morphology. Journal
of structural biology, 174(1):11–22, 2011. doi: 10.1016/j.jsb.2010.11.021

[52] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and A. Bousseau.
Interactive sketching of urban procedural models. ACM Transactions on
Graphics, 35(4), 2016. doi: 10.1145/2897824.2925951

[53] S. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K.
Hériché, C. Nielsen, C. North, A. Olson, J. Procter, D. Shattuck, T. Walter,
and B. Wong. Visualizing biological data—now and in the future. Nature
Methods, 7(3):S2, 2010. doi: 10.1038/nmeth.f.301

[54] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Proc.
the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques, pp. 301–308. Association for Computing Machinery, 2001. doi:
10.1145/383259.383292

[55] J. Parulek and A. Brambilla. Fast blending scheme for molecular sur-
face representation. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2653–2662, 2013.

[56] D. Pinto, Y.-J. Park, M. Beltramello, A. C. Walls, M. A. Tortorici,
S. Bianchi, S. Jaconi, K. Culap, F. Zatta, A. De Marco, A. Peter, B. Guar-
ino, R. Spreafico, E. Cameroni, J. B. Case, R. E. Chen, C. Havenar-
Daughton, G. Snell, A. Telenti, H. W. Virgin, A. Lanzavecchia, M. S.
Diamond, K. Fink, D. Veesler, and D. Corti. Structural and functional
analysis of a potent sarbecovirus neutralizing antibody. bioRxiv, 2020. doi:
10.1101/2020.04.07.023903

[57] S. Pirhadi, J. Sunseri, and D. R. Koes. Open source molecular modeling.
Journal of Molecular Graphics and Modelling, 69:127–143, 2016. doi: 10.
1016/j.jmgm.2016.07.008

[58] T. Portenier, Q. Hu, A. Szabó, S. A. Bigdeli, P. Favaro, and M. Zwicker.
Faceshop: Deep sketch-based face image editing. ACM Transactions on
Graphics, 37(4), 2018. doi: 10.1145/3197517.3201393

[59] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag New York, Inc., 1990.

[60] F. M. Richards. Areas, volumes, packing, and protein structure. Annual
Review of Biophysics and Bioengineering, 6(1):151–176, 1977. doi: 10.
1146/annurev.bb.06.060177.001055

[61] M. F. Sanner, A. J. Olson, and J.-C. Spehner. Reduced surface: An efficient
way to compute molecular surfaces. Biopolymers, 38(3):305–320, 1996.
doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y

[62] K. Schatz, C. Müller, M. Krone, J. Schneider, G. Reina, and T. Ertl.
Interactive visual exploration of a trillion particles. In Symposium on Large
Data Analysis and Visualization, 2016. doi: 10.1109/LDAV.2016.7874310

[63] L. Schrödinger. The PyMOL molecular graphics system, version 1.8. The
PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC.,
2015.

[64] M. Schwarz and P. Müller. Advanced procedural modeling of architecture.
ACM Transactions on Graphics, 34(4):107:1–107:12, 2015.

[65] A. Shajahan, N. T. Supekar, A. S. Gleinich, and P. Azadi. Deducing the
n- and o- glycosylation profile of the spike protein of novel coronavirus
sars-cov-2. bioRxiv, 2020. doi: 10.1101/2020.04.01.020966

[66] A. Singh, D. Montgomery, X. Xue, B. L. Foley, and R. J. Woods. Gag
builder: a web-tool for modeling 3d structures of glycosaminoglycans.
Glycobiology, 29(7):515–518, 04 2019. doi: 10.1093/glycob/cwz027

[67] W. Surya, Y. Li, and J. Torres. Structural model of the sars coronavirus e
channel in lmpg micelles. Biochimica et Biophysica Acta (BBA) - Biomem-
branes, 1860(6):1309–1317, 2018. doi: 10.1016/j.bbamem.2018.02.017

[68] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cueing
for enhancing real time molecular visualization. IEEE Transactions on
Visualization and Computer Graphics, 12(5):1237–1244, 2006. doi: 10.
1109/TVCG.2006.115

[69] J. Torppa, J. P. T. Valkonen, and K. Muinonen. Three-dimensional stochas-
tic shape modelling for potato tubers. Potato Research, 49(2):109–118,
2006. doi: 10.1007/s11540-006-9010-5

[70] B. Turoňová, M. Sikora, C. Schürmann, W. J. H. Hagen, S. Welsch, F. E. C.
Blanc, S. von Bülow, M. Gecht, K. Bagola, C. Hörner, G. van Zandbergen,
S. Mosalaganti, A. Schwarz, R. Covino, M. D. Mühlebach, G. Hummer,
J. K. Locker, and M. Beck. In situ structural analysis of sars-cov-2 spike
reveals flexibility mediated by three hinges. bioRxiv, 2020. doi: 10.1101/
2020.06.26.173476

[71] A. Varshney, F. P. Brooks, Jr., and W. V. Wright. Linearly scalable com-
putation of smooth molecular surfaces. IEEE Computer Graphics and
Applications, 14(5):19–25, 1994.

[72] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and
D. Veesler. Structure, function, and antigenicity of the sars-cov-2 spike
glycoprotein. Cell, 181(2):281–292, 2020. doi: 10.1016/j.cell.2020.02.058

[73] Y. Watanabe, J. D. Allen, D. Wrapp, J. S. McLellan, and M. Crispin. Site-
specific glycan analysis of the sars-cov-2 spike. Science, 369(6501):330–
333, 2020. doi: 10.1126/science.abb9983

[74] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumi-
enny, F. T. Heer, T. A. de Beer, C. Rempfer, L. Bordoli, R. Lepore, and
T. Schwede. Swiss-model: homology modelling of protein structures and
complexes. Nucleic Acids Research, 46(W1):W296–W303, 05 2018. doi:
10.1093/nar/gky427

[75] A. Webanck, Y. Cortial, E. Guérin, and E. Galin. Procedural cloudscapes.
Computer Graphics Forum, 37(2):431–442, 2018. doi: 10.1111/cgf.13373

[76] L. Williams. Shading in two dimensions. In Proc. Graphics Interface, pp.
143–151, 1991. doi: 10.20380/GI1991.19

[77] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh,
O. Abiona, B. S. Graham, and J. S. McLellan. Cryo-em structure of
the 2019-ncov spike in the prefusion conformation. bioRxiv, 2020. doi: 10.
1101/2020.02.11.944462

[78] A. Wrobel, D. Benton, P. Xu, C. Roustan, S. Martin, P. Rosenthal, J. Ske-
hel, and S. Gamblin. Sars-cov-2 and bat ratg13 spike glycoprotein struc-
tures inform on virus evolution and furin-cleavage effects. Nature Struc-
tural & Molecular Biology, 07 2020. doi: 10.1038/s41594-020-0468-7

[79] F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W.
Tao, J.-H. Tian, Y.-Y. Pei, et al. A new coronavirus associated with human
respiratory disease in china. Nature, 579(7798):265–269, 2020.

[80] H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng,
Z. Zhang, Z. Wu, L. Cheng, D. Shi, X. Lu, J. Lei, M. Crispin, Y. Shi, L. Li,
and S. Li. Molecular architecture of the sars-cov-2 virus. bioRxiv, 2020.
doi: 10.1101/2020.07.08.192104

[81] J. Yu, S. R. Kulkarni, and H. V. Poor. Robust fitting of ellipses and
spheroids. In 2009 Conference Record of the Forty-Third Asilomar Con-
ference on Signals, Systems and Computers, pp. 94–98, 2009.

[82] Y. Zhang, W. Zhao, Y. Mao, S. Wang, Y. Zhong, T. Su, M. Gong, X. Lu,
J. Cheng, and H. Yang. Site-specific n-glycosylation characterization of
recombinant sars-cov-2 spike proteins using high-resolution mass spec-
trometry. bioRxiv, 2020. doi: 10.1101/2020.03.28.013276

