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The Effectiveness of Interactive Visualization Techniques for Time
Navigation of Dynamic Graphs on Large Displays

Alexandra Lee, Daniel Archambault, and Miguel A. Nacenta

Abstract— Dynamic networks can be challenging to analyze visually, especially if they span a large time range during which new nodes
and edges can appear and disappear. Although it is straightforward to provide interfaces for visualization that represent multiple states
of the network (i.e., multiple timeslices) either simultaneously (e.g., through small multiples) or interactively (e.g., through interactive
animation), these interfaces might not support tasks in which disjoint timeslices need to be compared. Since these tasks are key for
understanding the dynamic aspects of the network, understanding which interactive visualizations best support these tasks is important.
We present the results of a series of laboratory experiments comparing two traditional approaches (small multiples and interactive
animation), with a more recent approach based on interactive timeslicing. The tasks were performed on a large display through a touch
interface. Participants completed 24 trials of three tasks with all techniques. The results show that interactive timeslicing brings benefit
when comparing distant points in time, but less benefits when analyzing contiguous intervals of time.

Index Terms—Dynamic networks, Information visualization, Large displays

1 INTRODUCTION

Dynamic networks are networks that change over time. Nodes and links
might appear or disappear at different points in time and attribute values
may change. Dynamic networks appear in many domains including
social science [22], transportation [30], digital communications [31],
epidemiology [45], and others. These networks are difficult to ana-
lyze and interpret and can therefore benefit from having interactive
visualization techniques applied to them.

Dynamic networks are most commonly visualized by two ap-
proaches [6, 12, 41, 46]. One approach is an interactive animated
representation where the user can control which moment in time is
being displayed. The other is to split the time domain into a series of
timeslices and represent them separately as small multiples. This latter
approach is currently the most popular in the literature. Multiple studies
have shown that the small multiples approach is faster than interactive
animation with no significant differences in error rate [4, 5, 26].

The above approaches and experiments all assume uniform slicing
at a given level of granularity. However, what uniform duration of
timeslice should be chosen? If the timeslices are too coarse, the rep-
resentation collapses too many events onto the same timeslice, hiding
the subtlety and the true order of events within each timeslice. If the
timeslices are too fine, there are too many points in time to navigate
in the data and analysts will have a hard time remembering timeslices
that are off screen when identifying patterns. Interactive timeslicing
addresses this issue by allowing the analyst to interactively select the
width and location of timeslices with the possibility of representing
several of these timeslices at once [44]. Similar methods have been
used in other areas [49], but the effectiveness for interactive timeslicing
for dynamic graphs is still unknown.

We designed a series of experiments to test an interactive times-
licing approach against interactive animation and small multiples for
navigating time in dynamic graphs. We tested these approaches on
a touch-based 84” display with 4K resolution that we consider rep-

• Alexandra Lee is with the Dept. of Computer Science, Swansea University
and Swansea University Medical School, UK.
E-mail: a.s.lee@swansea.ac.uk

• Daniel Archambault is with the Dept. of Computer Science, Swansea
University, UK. E-mail: d.w.archambault@swansea.ac.uk

• Miguel A. Nacenta is with the Dept. of Computer Science, University of
Victoria, Canada. E-mail: nacenta@uvic.ca

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

resentative of advanced visualization set-ups in current collaborative
professional settings [44]. We discuss generalizability implications in
Section 10. Currently, there is no evidence that an interactive times-
licing approach will be better; the additional complexity of interaction
might be too costly, in terms of time, which could negate all benefits.

We conducted three experiments 1 where participants interactively
navigated time to find: a) changes in graph structure at points in time
(specific timeslices), b) changes in graph structure across an interval of
time (a series of consecutive timeslices), and c) changes in attributes
at points in time. For each experiment we had two conditions: near,
where the moments in time of interest were close to each other in time,
and far, where the moments were further apart in time.

Our results show that interactive timeslicing shortens completion
time (small multiples takes 1.42 times longer) and improves correctness
(5 percentage point improvement over small multiples) for comparing
graph structure at discrete time points. The differences increase almost
by a factor of two for temporally distant network events. For finding
attribute changes within discrete time points, interactive timeslicing
improves completion times (small multiples takes 1.19 times longer for
near time intervals). However, for finding graph structure changes over
time intervals, small multiples outperforms interactive timeslicing (in-
teractive timeslicing takes 1.42 times longer). These results show how
the addition of a relatively simple interactive feature can greatly facili-
tate the challenging and important analysis tasks of dynamic networks.
Our results also further generalize previous findings from the literature
on additional tasks that found small multiples has faster completion
times when compared to interactive animations for graph analysis with
no difference in correctness.

2 RELATED WORK

We review related work for dynamic network visualization techniques
along with relevant empirical evaluations. We also provide an overview
of network visualization techniques on large displays.

2.1 Dynamic Network Visualization Techniques

Beck et al. [12] separate dynamic graph visualizations into two cate-
gories based on their method for encoding time. Time-to-time mappings
represent time naturally via the temporal dimension, the most common
example of this being animation. Time-to-space mappings use one or
more spatial dimensions to encode the temporal information, a common
example of this is small multiples.

1All experimental material is available on the OSF at https://osf.io/
bdpnr/?view_only=8d2e29693b714b7d8bb4abd407ad8e56.
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Time-to-Time Mapping Animation was one of the first, and is still
one of the most common, approaches for visualizing dynamic data. In
interactive animation, an interactive video plays a movie of the evolving
graph. The result is reasonably intuitive for node-link visualizations of
data (e.g., [8, 27, 28]). However it requires the user to heavily rely on
his or her memory as multiple time points are not visible concurrently.
Thus, frequent backwards and forwards navigation through the data is
required, incurring interaction costs [5] and additional errors due to
fatigue and reliance on memory.

Time-to-Space Mapping Timeline-based visualizations encode
the temporal dimension as one or more spatial dimensions. These
visualizations can be broken down into four categories: node-link
based approaches [23, 54], matrix based approaches [14, 19, 37, 66],
hybrid approaches [36], and comic-style approaches [7]. Additionally,
scalable line charts can effectively show the variations in an attribute
value over time [63]. Timeline-based visualizations have the advantage
of displaying multiple timeslices on screen simultaneously. However,
when event order within a timeslice is essential it is hard to draw
conclusions about these events [55]. Also, if the timeslices are separated
by large spans of time, interaction is required to scroll back and forth
between them for comparison when reordering the timeslices is not
possible.

2.2 Experimental Evaluations and Dynamic Data
Much existing work has evaluated the performance of different time
and visualization types within a mapping.

Saraiya et al. [53] compared time-to-time and time-to-space map-
pings for node-link diagrams when interacting with multidimensional
data. Animation performed better for two points in time, but tasks
involving more time steps were better served by timeline-based ap-
proaches. A number of studies have demonstrated advantages for
time-to-space mappings on dynamic graphs [4, 5, 26] and visualization
in general [62]. These studies use linear interpolation (fading nodes
in/out from the visualization) and find that small multiples is faster with
no significant differences in terms of error rate. Boyandin et al. [17]
find that animation facilitates findings on adjacent time steps but that
small multiples allow the discovery of patterns which last for greater
periods of time. Hybrid approaches mixing animation and timelines
can, under certain conditions, produce better results than animation or
timeline approaches alone [52].

The majority of these experiments have focused on the structural
properties of the network first and the time navigation second. Also, all
the above experiments assumed a uniform timeslicing selected before-
hand whereas many recent techniques for graph visualization do not
make this assumption [44,57,58,64]. For dynamic graphs that are long
in time (for example, events lasting seconds over months of data), no
experiments have been run. Also, interactive timeslicing has not been
evaluated. We present three experiments that evaluate user interaction
with the time dimension for long in time dynamic graphs on a large
touch display.

2.3 Visualization on Large-Screen Devices
Visualization on large displays has a long history and is appealing for
a variety of reasons. In the past, larger displays (usually composites
of many smaller displays [9, 15, 34, 48, 59]) were, due to technology
constraints, the easiest way to increase the available pixel count. This,
in turn, increased the ability to display detail or more data items. In-
creased number of pixels and larger size has been shown to increase
performance and has perceived benefits [25, 60, 61].

Although modern display technology has reached pixel densities
that make the argument about pixel counts largely irrelevant (a state-of-
the-art 15” display can have as many pixels as an 88” display from just
a few years ago), there are still reasons why large displays are desirable
for visualization. First, they enable larger numbers of people to work on
the same data [39]. Second, people interacting with large displays seem
to benefit from physical navigation [2, 10, 40], which might improve
memory and performance [39]. The ability to change the distance to
the display easily and naturally by stepping back and forth also enables
a natural zoom experience and supports visualization techniques that

would be hard or awkward with personal displays (e.g., [38,40,47]). In-
cidentally, a larger display will also reduce problems with the precision
of touch interaction (e.g., the fat finger problem [56]) simply because
the content will normally be larger.

Perhaps due to these reasons, research investigating and translating
visualization to large displays is still active (e.g., [43, 44, 50]). From
the information available in literature and our own experience, we
speculate that large displays are likely to offer the best environment
for the visualization of complex and high-density information such as
dynamic networks, particularly when scalability in the time dimension
is required. The specialized nature of this kind of analysis also means
that the extra cost of procuring large displays is usually well justified,
and many research environments already offer medium to very large
displays. Hence, we carried out our implementation on a relatively
large display that matches the use of dynamic network visualizations
that we envision in the near future. Our implementations do not include
any interactive or visual features that prevent use with a small personal
display. Therefore, we do not expect that the comparisons between
human performance or preference between the techniques would vary
in a smaller display, although this will need to be supported empirically
in the future.

3 EXPERIMENT INTERFACES

For this experiment, we consider three dynamic graph visualization
techniques: small multiples, interactive animation, and interactive
timeslicing. Animation and small multiples were chosen because they
are widely considered the dominant alternatives in dynamic graph
visualization [12], are in common use, and have been revisited in recent
data visualization experiments for small displays [21]. Interactive
timeslicing represents a novel alternative that is promising but has not
yet been compared with the other two approaches [44].

Node-link diagrams were used for all graph representations as they
are popular in media and are well explored in literature. All approaches
were implemented to work on a large touch-enabled display (see Appa-
ratus).

3.1 Interactive Animation
Interactive animations present the dynamic graph as an interactive film,
with the user being given control of playing the dynamic data via a
slider that can travel both forwards and backwards in time. Nodes
and edges fade in and out of the drawing area as they are inserted or
removed from the network.

For this study our animation interface has four components. The
component labeled (A) (see Figure 1, interactive animation) was the
main timeline which showed the number of edges within the dataset
aggregated at the hour level. The component labeled (B) was an interac-
tive time window selection. Users would touch and drag to select a time
window from the longer time series, with component (B.1) also select-
ing the 6 hour time period immediately preceding the user selected time
window. An alternative solution would have been to animate directly on
the long timeline. However, this could potentially introduce a confound
into our experiment as the animation would need to consider a much
larger amount of data (the entire long-in-time dynamic graph) rather
than a shorter animation around a given time window. Therefore, we
decided to allow the user to select the animation window on the longer
timeline around the target area.

Component (C) is the flattened graph representation of the time
window selected by component (B.1). This static graph allows the
participant to enter an answer without navigating through the network.
Component (D) is the interactive animation window — when the time
range was first selected, component (D) showed a flattened, static, rep-
resentation of the graph within the selected time range. The participant
pressed and dragged on area (D.1) to control the rate and position of the
animation. A purple line within (D.1) follows the participant’s finger to
show the current temporal graph position relative to the timeline.

3.2 Small Multiples
Small multiples uses many interrelated graphs to represent time. It is
analogous to a comic book representation for time where the evolution
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(A) Timeline

(B) Time window selection

(B.1) Secondary static time window

(C) Left (static) vignette

(D) Animatable vignette
(D.1) Animation controller

Interactive anim
ation

(A) Timeline

(B) Vignette

(C) Timeline scroller (D) Vignette Area

(E) Time window
       positioner

Sm
all m

ultiples
(A) Timeline

(B) Interactive time
window selection

(C) Vignette

Interactive tim
eslicing

Fig. 1. The interfaces used in this experiment. Interactive animation is at the top, small multiples in the middle, and interactive timeslicing at the
bottom.
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of the data can be tracked by reading across the frames from left to right.
We use the term small multiples as it is most similar to those in other
experiments [4, 5, 21, 26, 51]. For temporal networks, it is common
to uniformly timeslice data by flattening each timeslice into its own
window, with these graphs then drawn next to each other in a timeline
pattern. Small multiples can be used for most forms of dynamic data;
in dynamic graph visualization, it can be used both with matrices and
node-link diagrams.

For the small multiples representation in these experiments, our
study dataset (Section 5.3) was divided into blocks of 6 hours, giving
a total of 120 timeslices which were translated into vignettes. Along
the top of the screen, labeled (A), is the timeline. Each block of color
defines one 6 hour time range, and each block of color also corresponds
to the border color of the relevant vignette shown in (B). The vignette
area was designed to only show four small multiple representations
simultaneously due to screen size and readability constraints. The re-
maining vignettes could be accessed by moving the scroll bar at the
bottom of the screen, (C), touching and dragging on the vignette area,
(D), or by moving the light gray time-positioner on the timeline, (E).
The gray time-positioner, (E), helped participants map the current posi-
tion of the vignette area to its temporal position within the entire time
series without performing color comparisons of the vignette borders.

3.3 Interactive Timeslicing
This interface was based on a previous interactive timeslicing de-
sign [44] where users could define custom time ranges of any desired
size or order and have the individual representations positioned based
upon the order of user interactions.

Component (A) is the timeline that is common to all of our experi-
mental interfaces. Participants touched and dragged at any position on
the timeline to create a new time window selection of any size (B). A
time window selection created a new vignette (C) containing a flattened,
static, representation of the graph. A time window selection could be
any multiple of 6 hours, with the edges of the selection snapping to the
same timeslice intervals as all conditions — this was to avoid small
off-by-one errors that may seriously hinder the ability of a participant
to successfully complete any given task.

The maximum number of interactive timeslices that could appear
onscreen at any time was four. This limitation was introduced to
avoid giving interactive timeslicing an artificial advantage over small
multiples. Interactive selection of timeslices in this way allows the
participant to make independent time windows at very distant points in
time for the network. However, there is an interaction cost associated
with creating the time windows that is higher than both animation and
small multiples: the location in time needs to be determined first and
then the participant needs to draw a much more precise window both
in terms of its width and position.

4 EXPERIMENT AND RESEARCH QUESTIONS

Our general goal is to provide empirical evidence that can support the
design of better interfaces for time navigation when exploring dynamic
networks. Thus, we designed three experiments, each testing a different
task. For each experiment we seek to answer the following questions:

Q1 Which interface will have the lowest completion times for the
selected tasks?

Q2 Which interface will be the most accurate for completing the
selected tasks?

Q3 How does distance in time between data elements of interest affect
the performance with the different interfaces?

5 EXPERIMENTAL APPROACH

We designed a series of three experiments through the following it-
erative process. First, we looked at existing relevant taxonomies of
tasks [1, 3, 42] and at findings from previous observations of analysts
working with dynamic networks [44]. Then we filtered out tasks that do
not involve navigation between at least two given time points. We ex-
cluded tasks that only involve single time points, since are we primarily

interested in challenges specific to dynamic, rather than static, networks.
From the remaining tasks we selected three tasks with the following
criteria: a) we preferred low-level tasks that might be components of
larger tasks, and b) we preferred tasks that were very different from
each other and where the focus was on different elements of the data
(e.g., the structure of the network or the variation of attributes) and how
they varied over time.

The chosen tasks can be broadly summarized as:

E1 Detecting graph structure changes at discrete points in time.

E2 Detecting graph structure changes over a time interval.

E3 Detecting single attribute change at discrete points in time.

We run the three experiments with the same participants in the same
session.We prioritize comparing results across interfaces on the same
task; to reduce noise from order effects on our comparisons of interest,
we run the three experiments in the same order for all participants (i.e.,
we do not randomize experiment order). Experiments took place in
early March 2020 and took approximately 85 minutes to complete.

5.1 Participants
Twenty-four unpaid volunteers (8 identified as females, and 16 as males,
age range of 18 to 32) from our department participated in the study.
The number of participants was decided in advance using our prior ex-
perience from the four pilots and to ensure proper counterbalancing. We
used a simple questionnaire to screen participants without typical color
vision and those who did not have basic computer and mathematics
experience. We did not require prior knowledge of networks.

Before beginning the first experiment, participants filled a short de-
mographic questionnaire indicating their familiarity with networks and
network graph visualization using a 1–5 Likert scale. Four participants
gave their familiarity as 1 (no knowledge), six as 2, nine as 3, three as
4, and two as 5 (high knowledge).

5.2 Apparatus
The interfaces were built in JavaScript, primarily leveraging the D3.js
library [16] with some modifications. Conditions ran in a Chromium
browser window which was wrapped in a QT front end interface, with a
Python Flask back-end. Implementations of the interfaces are identical
across the three experiments; visual indicators for the task and methods
to indicate the answer vary with the task and are described within each
experiment.

All three of these approaches were implemented for an 86” wall
display with 4k resolution (3840 by 2160 pixels) mounted at 90cm
from the floor.

5.3 Experimental Dataset and Graph Layout
The dataset used in these experiments is a filtered version of a previously
collected dataset [22] which describes interactions between anonymized
actors on Instagram who liked or commented on non-suicidal self-
injury posts. Edges have unique identifiers, have a specific occurrence
time (down to second precision), and do not have a duration (i.e., are
considered atomic, only measured at the time of posting). A duration
of one hour is assigned to each edge at its posting time to ensure it is
visible and lies completely within the six hour time window. Additional
attributes of the dataset were removed for anonymity; hence the dataset
contains only nodes, edges, and the time that the nodes and edges
appeared in the dataset.

The dataset is representative of typical dynamic networks but was
substantially filtered to reduce its size to make our tasks feasible. We
removed single interactions between actors (cases where two actors
only interacted with each other once), self-interactions, actors that
received less than 250 interactions, and actors who only interacted with
removed actors. This allowed a stable graph layout and made task
duration appropriate to the available time. The final dataset consists
of 776 distinct nodes and 8182 edges over a 30-day period of time.
It had an approximate average density of 11 events per hour, or 66
events per 6 hour timeslice. As this dataset is based on real data, the
event distribution was non-uniform and therefore some time periods
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had a higher event density, while others had a lower event density. This
variability over long time periods allowed for very different graphs
to be presented at the time points and intervals in our tasks, which
increases the generalizability of trials.

Our dataset is long in time with a fine grained temporal resolution
(hour resolution over a month of data), meaning that there are hundreds
of timeslices. Typical timeslice-based approaches [18], in particular
linking strategies, generally do not scale to hundreds of timeslices as
nodes move unnecessarily with the many inter-timeslice edges being ar-
tificially inserted [57]. As we wanted to control for graph layout across
conditions we could not draw the graph on demand as the user navi-
gated through time. Thus, we needed to draw the full dynamic graph
beforehand. Event-based dynamic network drawing techniques could
provide a solution [57, 58] but they only scale to about 5000 events.
Therefore, we computed a fixed layout for nodes and edges that uses
pinning strategies so that nodes retain position whenever they appear,
allowing the drawing stability to consistently support the mental map
across conditions for all experiments. The final graph layout was gener-
ated first with the Visone aggregation strategy [20] (all events collapsed
down to a single timeslice) and then cleaned slightly in Gephi [11],
using its implementation of Fruchterman and Reingold’s algorithm [29].
Although more scalable algorithms are available [35], our graphs are
relatively small in terms of the number of nodes and edges. This allows
us to use standard force-directed approaches instead of multilevel ones.
The resulting layout still contained some overlapping nodes and edges;
we manually adjusted overlapping items.

5.4 Experimental Design and Procedure

All three experiments share an identical structure in terms of factors,
conditions, and repetitions. The main manipulation of interest is inter-
face, with the three interfaces Anim, Mult, and Int TS as levels—see
Section 3. One factor is temporal distance (near and far), which ma-
nipulates the separation of the target timeslices or the length of the
time interval involved in the task. In the near condition, timeslices had
a separation of 18 hours (three timeslices) while in the far condition
timeslices had a separation of four days (16 timeslices).

We performed a within-participant design with participants complet-
ing 3 repetitions for each cell, for a total of 18 trials, as well as two
additional easy tasks on each interface for training which was discarded
before data analysis. Participants carried out trials (including train-
ing) in three blocks of 8, with 15 second breaks between each block.
Possible ordering effects were counterbalanced using Latin squares
for each participant. A participant always did the interfaces in the
same order for each experiment that they completed. Trials in the near
condition always took place before trials in the far condition. We did
not counterbalance temporal distance because we are not interested
in the quantitative comparison of performance between near and far
conditions.

Prior to the real trials of each interface condition participants re-
ceived a tutorial on the specific interface and carried out one trial ex-
ample. Upon completion of each experiment participants ranked each
condition on a scale of 1 (best) to 3 (worst), according to their preferred
interface for completing the type of tasks tested. The experimenter also
collected qualitative notes during the experiment. Participants had the
opportunity to make other comments and share their thoughts about the
tasks, interfaces, and hardware.

5.5 Statistical Methodology

The statistical methodology was decided during the experimental design
process and recorded before data collection. All three experiments
employed the same methodology.

Correctness and completion time were measured and analyzed sepa-
rately for all three experiments. Completion time was measured as the
number of seconds (s) to complete each task for all three experiments.
Measurements for correctness varied for each experiment, and these
measures are detailed in their respective sections. However, for all
three experiments, correctness was measured on a [0,1] interval (with
1 corresponding to 100% correctness).

As we were interested in determining the performance of the three
interfaces under near and far conditions, we chose to divide the data of
each experiment by the near and far factor before beginning the analysis.
The completion times and correctness of the three repetitions in each
cell was averaged per participant. Completion time was log transformed
(log2) before analysis and compared through pairwise, two tailed t-tests.
We were uncertain if the distribution of correctness data would follow
a normal distribution for our measurements, as a result we applied a
Shapiro-Wilk test with α = 0.05 to each condition of near and far for
each experiment separately. For all three experiments, the correctness
data did not usually follow a normal distribution. Therefore, two tailed,
pairwise Wilcoxon signed rank tests were used for correctness in all
three experiments. For each experiment, six pairwise comparisons
(three for near and three for far) for time and six pairwise comparisons
for correctness were performed. HolmBonferroni corrections were
used to determine significant results.

The results are presented in the next section. In all result figures,
blue corresponds to animation (Anim), red to small multiples (Mult),
and orange for interactive timeslicing (Int TS). The mean is indicated
using a circle and the median using a square. Error bars represent boot-
strapped 95% confidence intervals computed using 250,000 repetitions.
We report p-values to three decimal places in all figures [13, 32, 33, 65].
Solid lines indicate p < 0.05 and dashed lines p≥ 0.05.

6 EXP. 1: GRAPH STRUCTURE CHANGES AT POINTS IN TIME

This experiment tests completion time and accuracy for tasks where the
structure of the graph had to be compared at two separate time points.
We suspected that interactive timeslicing would perform the best for
this task (Q1 and Q2). In addition, we anticipated that interactive times-
licing would perform much better than animation and small multiples
for the far condition. However, we were less sure of the performance
of the remaining two interfaces on this condition of the experiment as
they have not been tested and were not designed for exploring distant
points in time (Q3).

Task and Procedure. The task prompt provided to participants for
experiment one was ‘each pair of red (start) and blue (stop) lines signify
a timeslice. In the first timeslice, click on all edges that disappear at
least once in all other timeslices.’ The target timeslices of six hours
each began with a red line and finished with a blue line. Participants
completed the task by selecting edges in the first window that did not
appear in the other window.

The video figure in the supplementary material illustrates how par-
ticipants answered this task on all three interfaces. For all interfaces,
answers to the question were entered through lasso selection on the
leftmost vignette to control for answer entry. Edges selected using the
lasso tool were coloured red and increased 4× in width and could be
de-selected.

Animation. Participants dragged on the timeline starting from the
end of the first red-blue pair of timeslice demarcation lines, ensuring
that the vignette to define an answer was correctly created. This action
would generate two vignettes: a left vignette displaying the selected
time interval of the first pair of timeslice lines as a static, flattened,
graph for answer entry; and a right vignette which initially displayed
the flattened, static, graph covering the whole time range selected by
the participant during the original time selection operation.

A timeline appeared at the bottom of the right hand vignette dis-
playing a zoomed version of the selected area of the main timeline,
with task target timeslice areas shaded in blue. Participants were able
to touch and drag on the timeline to animate the right hand vignette.
Touching and dragging in the left vignette would activate the lasso tool
to allow participants to select, or deselect, edges for their task answer.

Small Multiples. Participants used either the grey time positioner
(Figure 1, small multiples, item E) or the scroll bar attached to the
vignette area (Figure 1, small multiples, item C) to navigate to the cor-
rect position in time. Task relevant vignettes were distinguished from
non-task vignettes by increasing the border thickness 4×. Participants
were able to touch and drag in the left vignette to use the lasso tool to
define the answer set.

5
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Fig. 2. Experiment 1 correctness for the near (top) and far (bottom) condi-
tions as computed by the F1 score (Equation (1)). The dot represents the
mean, square the median, and 95% CIs shown. Pairwise lines indicate
p-values with solid lines indicating significant differences.

Interactive Timeslicing. Participants touched and dragged on the
correct area of the timeline to create a time window selection (Figure 1,
interactive timeslicing, item B). To avoid small selection errors these
user-created time windows always readjusted to the nearest 6 hour
boundary, ensuring that the selection was the exact time period required
by the task. After the creation of a time window a corresponding
vignette appeared below the timeline (Figure 1, interactive timeslicing,
item C). Touching and dragging in the left-most vignette with the lasso
tool defined an answer to the given task.

Measurements. Time (number of seconds) and accuracy were
measured for this experiment. Accuracy involved comparing the set of
edges selected by the user and the set of edges present in the correct
answer of the question. In order to evaluate correctness in this case, we
employ a method from pattern recognition and information retrieval. A
perfect answer would have perfect precision (p) (no edges outside the
correct answer are selected) and perfect recall (r) (all of the edges in
the correct answer are selected). Precision and recall can be combined
together into the F1 score to give a measure between [0,1]:

F1 = 2
pr

p+ r
(1)

The value of p and r are defined in the following way. Consider two
edge sets: the set of participant answer edges (X), and the set of correct
answer edges (Y ).

p =
|X ∩Y |
|X |

(2)

r =
|X ∩Y |
|Y |

(3)

Results. Correctness and completion time are shown in Figures 2
and 3 respectively. After a HolmBonferroni correction, we found sig-
nificant differences in terms of correctness for the near condition with
interactive timeslicing outperforming animation with a difference of
14 percentage points (W = 82, p < 0.001) and small multiples with a
difference of 6 percentage points (W = 148, p = 0.003). On the far
condition, interactive timeslicing outperformed animation with a differ-
ence of 11 percentage points (W = 109, p < 0.001) and small multiples
with a difference of 5 percentage points (W = 143, p = 0.002). No
other differences were statistically significant. In terms of completion
time, we have the same pattern. On near, interactive timeslicing outper-
forms animation with a difference of 42.1s (animation 1.61× slower)
(t = 5.76, d f = 23, p < 0.001) and small multiples with a difference of
28.9s (small multiples 1.42× slower) (t = 4.28, d f = 23, p < 0.001).
On far, interactive timeslicing outperforms animation with a difference
of 52.5s (animation 1.91× slower) (t = 8.04, d f = 23, p < 0.001)
and small multiples with a difference of 61.8s (small multiples 2.07×
slower) (t = 8.01, d f = 23, p < 0.001).
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p-values with solid lines indicating significant differences.
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Participant Survey. After completing the experiment, participants
ranked each condition on a scale of 1 (best) to 3 (worst) to indicate their
preference for conditions to complete the given task type. These ranking
responses are in Fig. 4. For this experiment 87.5% of participants
indicated that they preferred the interactive timeslicing, with interactive
animation second, and small multiples as the least preferred option.
The primary criticism of small multiples was that, for tasks involving
the far in time condition, it was impossible to put both timeslices on
screen simultaneously in order to directly compare them. Participants
found it challenging to remember edge positions and edge presence
when they had to scroll through many intermediate representations to
reach the comparison target.

The memory cost was also probably a factor in the ranking of anima-
tion. However, this was less pronounced as the interactive animation
interface made it simpler to switch backwards and forwards in time
without having to view intervening timeslices.

Summary and Discussion. For both the near and far conditions,
interactive timeslicing outperforms animation and small multiples in
terms of correctness and completion time, confirming our conjectures
for all research questions. There were no other significant differences
found in the experiment. Interactive timeslicing was primarily designed
for dynamic graphs spanning a long interval of time and specifically
for the case of comparing distant points in time, as required by the task.
Animation incurs higher interaction costs by requiring interaction to
play the animation back and forth between the distant time periods.
Small multiples requires the participant to scroll back and forth be-
tween the distant time periods. In addition, both animation and small
multiples require participants to remember the structure at distant time
points, whereas interactive timeslicing is able to show representations
simultaneously and side-by-side on screen. It seems that the added
interaction cost of interaction timeslicing is offset by this benefit. It is
important to note that we did not see a significant difference between
animation and small multiples for either near or far. This could be due
to the fact that neither of these interfaces were designed with long time
series in mind. Thus, on the task of comparing distant points in time,
these interfaces were too taxing on memory and interaction, which
dominated the result.
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Fig. 5. An example of a vignette with a cluster of purple nodes, as shown
to participants during Exp. 2

7 EXP. 2: GRAPH STRUCTURE CHANGES OVER A TIME IN-
TERVAL

This experiment tests how interactive timeslicing performs over a time
interval when examining a change in graph structure. A time interval
is several consecutive timeslices. In terms of our research questions,
we conjectured that interactive timeslicing would not perform as well
on this task type because it is mainly designed for time points and not
continuous intervals (Q1 and Q2). We also felt that the performance of
interactive timeslicing would decrease with far trials because a longer
interval of time needed to be considered and more information needed
to be remembered (Q3).

Task and Procedure. The on-screen prompt provided to partici-
pants for experiment two was: ‘select a timeslice between the red lines
where the cluster of purple nodes is most dense.’

The video figure in the supplementary material illustrates how par-
ticipants answered this task on all three interfaces. Participants saw a
pair of red lines on interface timelines (see Figure 1, (A), on all inter-
faces), indicating the beginning and end of the time interval of interest.
Successful completion of the task involved investigating every six hour
timeslice within this interval to identify the timeslice in which there
were the highest number of connected purple nodes (see Figure 5 for
an example).

When participants were confident that they had found the correct
answer, they would tap a button above the timeline to switch into
‘answer entry’ mode. In this mode, participants would slide a green
time window (the fixed size of one timeslice) to the position on the
timeline containing their answer.

Measurements. Time (s) and accuracy were measured for this ex-
periment. Accuracy involved comparing the number of edges between
purple nodes in the selected timeslice (ns) to the timeslice where the
number of edges is a maximum (the correct answer) (na). In order to
do this, we use the following measure:

c = 1− na−ns

na
(4)

The value of this measure is 1 when the correct answer is selected
and diminishes to zero with a window of fewer and fewer edges between
the purple nodes.

Results. Correctness and completion time are shown in Figures 6
and 7 respectively. After a HolmBonferroni correction, we found no
significant differences in correctness between interfaces in neither near
nor far conditions. In terms of completion time on near, small multiples
outperformed animation by 9.3s (animation 1.24× slower) (t = 3.31,
d f = 23, p = 0.003) and interactive timeslicing outperformed anima-
tion by 9.1s (animation 1.24× slower) (t = 3.54, d f = 23, p = 0.002).
On far, small multiples outperformed both animation 17.8s (animation
1.34× slower) (t = 4.01, d f = 23, p < 0.001) and interactive timeslic-
ing 21.8s (interactive timeslicing 1.42× slower) (t =−6.67, d f = 23,
p < 0.001). No other significant differences were found.
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Fig. 6. Experiment 2 correctness (Equation (4)) for the near (top) and far
(bottom) conditions. The dot represents the mean, square the median,
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indicating significant differences.
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Participant Survey. After completing the experiment, participants
ranked each condition on a scale of 1 (best) to 3 (worst) to indicate
their preference for conditions to complete the given task type. These
ranking responses can be seen in Fig. 4. For this experiment, 92% of
participants preferred small multiples for completing tasks of this type.
Animation ranked second and 67% of participants ranked interactive
timeslicing as the worst.

There was widespread frustration among participants while using
the interactive timeslicing condition during this experiment. The com-
parison of a number of time points within a time interval required much
interaction effort. A large amount of very precise interactions were
required to position and re-position the timeslices; in contrast, small
multiples simply required scrolling the vignette display area while look-
ing at the screen. For this task type interactive timeslicing was also
vulnerable to ‘fat finger’ [56] problems, where participants aimed to
carry out one operation but accidentally triggered a different one due to
imprecise touching of the screen. A common example occurred when a
participant tried to move a time window selector but instead activated
a resize operation by selecting a handle for the selected time window.
The participant then had to return the time window to its previous size
and attempt to carry out the re-positioning operation again.

Summary and Discussion. For this experiment, we found no sig-
nificant differences in correctness. Therefore, we have no evidence that
any interface was more accurate than another, but some of the interfaces
were more efficient. When the time interval is smaller, we can conclude
that animation is slower than both small multiples and interactive times-
licing. Interactive animation is the only one of these interfaces where all
timeslices of the time interval must be remembered in order to compare
them. For both small multiples and interactive timeslicing some of the
representation of the time interval can be offloaded to the interface as
multiple timeslices are shown. When the time interval is wider, we
can conclude that small multiples is faster than both animation and
interactive timeslicing. As the interval of time considered increases,
interactive timeslicing is more strongly affected as this technique is
based on individual timeslices. The implementation of small multiples
from this experiment provides a more natural interaction with a time
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Fig. 8. Two vignettes, as seen during task 3, with a standard size pink
node (left) and a small size pink node (right). Pink nodes are highlighted
with a blue circle for the purposes of readability, but this was not present
on the experiment interfaces.

interval as all timeslices must be contiguous.

8 EXP. 3: ATTRIBUTE CHANGES AT POINTS IN TIME

This experiment tests performance when reading attribute values at
multiple, disjoint, time points. In terms of research questions, we
thought that interactive timeslicing would perform well here (Q1 and
Q2). We felt that this difference would increase for the far level (Q3).

Task and Procedure. The instruction for this third experiment
was ‘each pair of red (start) and blue (stop) lines signify a timeslice
where a pink node is present. In which timeslice is the pink node
smallest?’. The video figure in the supplementary material illustrates
how participants answered this task on all three interfaces. A randomly
selected node, present throughout the interval of interest, was given
a minimum attribute value at precisely one of those timeslices and a
maximum value in all others. Bright pink was chosen as the color of
the target node for contrast reasons to minimize visual search time. The
standard node size is 3.3× bigger than the size of the smaller answer
node. An example of a normal pink node vs. the smallest pink node
can be seen in Figure 8.

The procedure for submitting answers for this task was the same
as Exp 2, with participants using a button to enter ‘answer mode’ and
moving a timeslice, of fixed size, to their answer position.

Measurements. Time (s) and accuracy were measured for this
experiment. There was only one correct answer where the attribute was
at its minimum value. Therefore, a score of 1 was recorded for each
task answered correctly and 0 for an incorrect answer.

Results. Correctness and completion time are shown in Figures 9
and 10 respectively. After a HolmBonferroni correction, we found no
significant differences between the interface conditions in neither the
near nor the far condition. All interfaces had median 100% correct-
ness for this experiment for both near and far conditions. In terms
of completion time on near, all pairwise differences were significant
with interactive timeslicing outperforming both small multiples by
6.3s (small multiples 1.19× slower) (t = 4.45, d f = 23, p < 0.001)
and animation by 13.6s (animation 1.42× slower) (t = 8.52, d f = 23,
p < 0.001), and small multiples outperforming animation by 7.3s (an-
imation 1.19× slower) (t = 4.80, d f = 23, p < 0.001). On the far
condition, small multiples outperformed animation by 26.1s (anima-
tion 1.96× slower) (t = 12.7, d f = 23, p < 0.001) and interactive
timeslicing outperformed animation by 26.7s (animation 2.00× slower)
(t = 11.8, d f = 23, p < 0.001). The remaining pairwise difference be-
tween interactive timeslicing and small multiples was not significant.

Participant Survey. After completing the experiment, participants
ranked the interfaces on a scale of 1 (best) to 3 (worst) in order of pref-
erence to complete the given task type. For full results see Fig. 4. There
was no clear preference for a single interface for completing this task
type. However, animation was strongly disliked with 87.5% partici-
pants giving it a rank of 3. There is a relatively low interaction cost for
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conditions. The dot represents the mean, square the median, and 95%
CIs shown. Pairwise lines indicate p-values with solid lines indicating
significant differences.
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small multiples and interactive timeslicing for this task, whereas ani-
mation required participants to scroll across the timeslices. Interactive
animation also required a much higher level of concentration for this
task type than the other interfaces, with participants having to identify
the target node and then remember its position while animating the
graph. The opposite is the case for interactive timeslicing and small
multiples where all nodes and edges were always visible, meaning
participants simply had to identify the pink node in each time window
of interest rather than attempt to remember the previous node position.

Summary and Discussion. For this experiment, no significant dif-
ferences were found in terms of correctness. Hence there is no evidence
supporting superior accuracy of any of the interfaces. In terms of com-
pletion time for near, all pairwise differences were significant with
interactive timeslicing the fastest, followed by small multiples, and
then animation. As the near condition is closest to previous experi-
ments [4,26], small multiples outperforming interactive animation is
consistent with this result. For far, we did not see a difference between
interactive timeslicing and small multiples where there was one for
near. However, animation is significantly slower than both interfaces.
There could be many reasons why we did not find a difference between
small multiples and interactive timeslicing. One possible interpretation
is that the task is less demanding on participant memory (remembering
a single node instead of a collection of edges), and thus, the difference
is less pronounced. Further experimentation is required to test this
hypothesis.

9 GENERAL DISCUSSION

We first summarize the main results from the experiment based on the
research questions from Section 4. Answers to the questions vary de-
pending on the task, with Experiment 1 and 3 showing similar patterns
but different from Experiment 2.

In Experiments 1 and 3, task completion times with the different
techniques (Q1) show the clear advantage of interactive timeslicing
over the other techniques. We take this as indication that interactive
timeslicing facilitates time navigation between discrete points, which
is what the tasks from Experiments 1 and 3 have in common. There is
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one exception: in the far condition of Experiment 3, small multiples
and interactive timeslicing showed similar completion times (i.e., we
observed a difference between the near and far conditions — Q3). We
attribute this to a reduced memory requirement for that condition. Oc-
casionally small multiples visibly outperformed animation. In accuracy
(Q2), interactive timeslicing also showed a clear advantage over the
other two techniques in Experiment 1, but not in Experiment 3, where
accuracy was high for all interfaces and statistically indistinguishable.

Experiment 2 has very different results. Small multiples was faster
than the other techniques in the far condition (Q1), although statistically
indistinguishable from interactive timeslicing in the near condition.
Accuracy measurements in this experiment show fairly large differences
in means, but large variance in the trials prevents us from finding
statistically reliable differences between interfaces in both near and
far conditions (Q2). A possible explanation of why small multiples
performed significantly better is that it naturally represents consecutive
time windows that can be scrolled through easily.

When considering the survey data, no interface was preferred by
the majority of participants for all tasks. Instead, interface preference
is task dependent. For the first and second experiments the rankings
did indicate clear interface preferences for the completion of those
task types; interactive timeslicing and small multiples ranked first for
those experiments, respectively. In contrast to Experiment 1 and 2,
there was no clear preference for a single interface for completing the
third experiment. From our own observations of Experiment 3, there
seemed to be fewer ‘fat finger’ [56] interaction mistakes with interactive
timeslicing than in Experiment 2. It is likely that this is because there
was no requirement to move or resize a time window after the initial
definition stage (barring participant error). One participant remarked
that their version of a perfect interface would be small multiples with
the ability to make selected vignettes appear and disappear to better
facilitate side-by-side comparison of highly distant time points.

Interactive animation is often slower and less preferred but with no
difference in terms of correctness, meaning it is a less efficient way of
finding the correct solution. On Experiment 1, it is significantly slower
than interactive timeslicing. On Experiment 2, it is significantly slower
than small multiples. On Experiment 3, it is significantly slower than
the other two interfaces. Thus, for tasks involving time navigation as
tested in these experiments, we confirm some results of other experi-
ments on dynamic data [4, 5, 21, 26, 51]. One possible conjecture for
why it is slower is that the participant has no idea where to look in
the animation when undertaking an exploratory task. Although there
are some preliminary results [51], it remains an open question whether
animation works well for explanatory tasks where a presenter can point
out regions of interest for another viewer to understand.

Brehmer et al. [21] compared the efficiency of animation and small
multiples on mobile phones for animated scatterplots. The result of this
previous experiment found that small multiples was usually faster than
animation with no difference in correctness. One could view our study
as a somewhat analogous test on large displays with a touch interface
that confirms several results comparing the interactive animation and
small multiples conditions.

10 LIMITATIONS AND FUTURE WORK

As with all experiments, experimental design choices cause limitations
in result interpretability. One such choice is that we prioritized counter-
balancing the interfaces, and not the experiments or near/far factor, in
order to reduce experimental noise. Thus, later experiments might have
had more tired participants and earlier experiments had less training.
Far tasks might have benefited from the experience of having done the
near tasks first. Nevertheless, we hypothesize that it is unlikely that
training or fatigue might have affected the interfaces differently.

All trials in our experiment use parts of the same dynamic network
data. Although this dynamic graph is long in time with much variability
in the different time points and intervals of the different trials, it is im-
portant to test other datasets in the future for the sake of generalizability
and to further explore which types of structures or values might affect
the different interfaces.

In order to keep a reasonable experiment length, we only tested three

task types, but understanding how these interfaces perform for a wider
set of tasks (e.g., additional ones from [3] or [1, 42]) would produce
further insights. We only test our interfaces with node-link diagrams
despite matrices being another popular method for representation [12].
Testing the interfaces with a wider range of graph representations and
task types would ensure that results are more generalizable.

It is also important to remark that we also made specific design
decisions in the implementation of the visualization interfaces, usually
to support fair comparison between techniques. For example, only
four small multiples were visible at a time and scrolling was required,
and the most basic form of interactive animation was used whereby
individual events are controlled with a slider. Similarly, we used linear
interpolation in our animations; staged animated transitions could be
considered [8, 24]. The effects of some of these secondary design
decisions have the potential to be important, but are out of scope for this
work. Future work manipulating further parameters will be welcome
and should compare and further extend our findings.

It is possible that some of the advantages and disadvantages that
we observed are significantly affected by the type of input (e.g., direct
touch vs. indirect mouse). Although we have justified testing with touch
input as the more natural way to work on large collaborative displays,
indirect inputs such as computer mice or touch pads are probably still
a more common way to interact with dynamic network visualizations.
Hence, it is important to further investigate the role of input type in
these results. We are already working on an experiment to empirically
verify possible differences caused by input.

Similarly, the size of the display or the portion of the field of view
that it covers could explain some of the differences that we observed.
Investigating how performance with these interfaces varies will provide
generalizability, but it could also offer valuable insights to design
improved variants that are even better.

11 CONCLUSION

In this paper, we present the results of a series of experiments intended
to formally evaluate methods to visualize dynamic networks on large
touch displays. We were primarily interested in comparing interfaces
for tasks that involve cross-time operations to see network structure
and attribute variation. Two of our selected interfaces, interactive
animation and small multiples, are already well studied in previous
literature [4, 5, 21, 26, 51]. Our third selected interface, interactive
timeslicing, has not previously been experimentally evaluated.

For tasks involving comparison of specific time points, interactive
timeslicing offered greater speed than interactive animation or small
multiples; when the comparison was of network structure (collections
of edges), there was also an important difference in accuracy. In several
instances, small multiples was also better than interactive animation.

For navigating time intervals, small multiples is faster than both
interactive animation and interactive timeslicing when time intervals
are larger (the far condition). Small multiples has the advantage that
it naturally represents contiguous time intervals, whereas interactive
timeslicing requires the participant to create and move each of these
timeslices individually. Interactive timeslicing was also ranked by par-
ticipants as the worst interface for completing tasks of this type. Whilst
completing an exploration of time intervals some participants struggled
with ‘fat finger’ [56] problems; time windows would be accidentally
re-sized rather than moved. Further refinement of interactive times-
licing would help resolve the issues of distinguishing between these
interactions.

Due to the lack of existing evaluations for interactive timeslicing,
assessing interface performance with solo participants is a necessary
starting point. However, large displays are commonly used in col-
laborative settings and previous evaluations have shown the value of
collaboration for graph exploration [50]. With this in mind, future ex-
periments evaluating the usability of these interfaces for collaborative
situations is vital.
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