2682

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

Multi-Level Area Balancing of Clustered Graphs

Hsiang-Yun Wu

, Martin Nollenburg™, and Ivan Viola

Abstract—We present a multi-level area balancing technique for laying out clustered graphs to facilitate a comprehensive understanding
of the complex relationships that exist in various fields, such as life sciences and sociology. Clustered graphs are often used to model
relationships that are accompanied by attribute-based grouping information. Such information is essential for robust data analysis, such
as for the study of biological taxonomies or educational backgrounds. Hence, the ability to smartly arrange textual labels and packing
graphs within a certain screen space is therefore desired to successfully convey the attribute data . Here we propose to hierarchically
partition the input screen space using Voronoi tessellations in multiple levels of detail. In our method, the position of textual labels is
guided by the blending of constrained forces and the forces derived from centroidal Voronoi cells. The proposed algorithm considers three
main factors: (1) area balancing, (2) schematized space partitioning, and (3) hairball management. We primarily focus on area balancing,
which aims to allocate a uniform area for each textual label in the diagram. We achieve this by first untangling a general graph to a
clustered graph through textual label duplication, and then coupling with spanning-tree-like visual integration. We illustrate the feasibility
of our approach with examples and then evaluate our method by comparing it with well-known conventional approaches and collecting

feedback from domain experts.

Index Terms—Graph drawing, Voronoi tessellation, multi-level, spatially-efficient layout

1 INTRODUCTION

VER recent decades, graphs have been developed to for-

mulate relationship networks between entities. Social
networks, for example, have emerged in recent years and
have quickly dominated network data. Graph theory, graph
drawing, and graph visualization methods have been iden-
tified as effective techniques to analyze this data [13]. Now-
adays, the architecture of knowledge graphs [10], which are
powerful representations of knowledge, can be effectively
analyzed by means of graph-related computational- and
visual-analytics machinery. Furthermore, the recently estab-
lished scientific discipline of complexity science [39] studies
the complex relationships among entities within particular
structures or phenomena.

One typical example for the application of complexity
science includes network structures in biology. For instance,
life functions are organized in a relationship of interacting
elements and chemical compounds that form a supercom-
plex network of reactions occurring throughout the entire
life form. To semantically organize these enormous net-
works, they can be segmented into network sub-elements,
known as pathways, to form a graph containing dozens of
chemical elements that represent a particular function of
life. However, the full collection of pathways is too large to
be easily handled using common graph visualization tech-
niques. Therefore, these complex networks are typically

o Hsiang-Yun Wu and Martin Nollenburg are with the TU Wien, 1040 Vienna,
Austria. E-mail: hsiang.yun.wu@acm.org, noellenburg@ac.tuwien.ac.at.

o [van Viola is with the King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia. E-mail: ivan.viola@kaust.edu.sa.

Manuscript received 1 Nov. 2019; revised 13 Oct. 2020; accepted 4 Nov. 2020.
Date of publication 17 Nov. 2020; date of current version 27 May 2022.
(Corresponding author: Hsiang-Yun Wi.)

Recommended for acceptance by S. C North.

Digital Object Identifier no. 10.1109/TVCG.2020.3038154

organized into clusters, denoted as subsystems, to make
them easier to visually comprehend. Furthermore, because
there is only a limited number of chemical elements that
play a role in evolution and other roles in several pathways,
molecules of water, oxygen, carbon dioxide, ATP, or NAD
are so frequently interconnected that they inevitably form
part of almost every pathway, making these networks very
tightly connected. Thus, graphical representations of biolog-
ical networks pose a huge challenge for scientific graph
visualization techniques.

Applying state-of-the-art graph-drawing and graph-
visualization techniques to such complex scientific networks
inevitably becomes hopelessly computationally infeasible. To
date, Metabopolis [64] is the only study that has attempted to
algorithmically design a network layout for the entire meta-
bolic pathway network. While their algorithm can compute a
layout within a reasonable time of just over two hours, it still
cannot compete with manually designed metabolic pathway
diagrams in terms of visual quality [52].

Perhaps the most notable shortcoming of Metabopolis, as
compared to ReconMap (a manual layout that has been com-
piled over several years; v3 at the time of writing), is its lack
of space utilization uniformity. In Metabopolis, some subsys-
tems are given ample space for their pathway layouts with
generous space around them, while some other pathways
are extremely densely packed, which severely comprises
their readability. Some subsystem boxes on the next level of
spatial organization are well connected with their neighbor-
ing interacting subsystems, but some create inefficient holes
in the overall layout. In contrast, ReconMap3 organizes the
subsystems more organically for tighter and more uniform
space utilization. ReconMap3 also occasionally non-uni-
formly distributes the network ink. This is, however, by
design and purposely done to communicate a particular
structural motif, such as the citric acid cycle, which is rather
sparse, and transport pathways, which are rather dense. Due

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1028-0010
https://orcid.org/0000-0003-1028-0010
https://orcid.org/0000-0003-1028-0010
https://orcid.org/0000-0003-1028-0010
https://orcid.org/0000-0003-1028-0010
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0003-4248-6574
https://orcid.org/0000-0003-4248-6574
https://orcid.org/0000-0003-4248-6574
https://orcid.org/0000-0003-4248-6574
https://orcid.org/0000-0003-4248-6574
mailto:hsiang.yun.wu@acm.org
mailto:noellenburg@ac.tuwien.ac.at
mailto:ivan.viola@kaust.edu.sa

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

to the uniqueness of those motifs (recognizable topological
structures), some localization of detail can be performed
even without recognizing the full details.

We draw inspiration from the manually crafted network
design of ReconMap3 for tackling the key shortcomings of
the current fully algorithmic network layout of metabolic
pathways. In this paper, we address one of the major scien-
tific graph visualization challenges, namely the uniformity
of the layout. Our approach is generally applicable, how-
ever, and is especially tailored for scientific networks such
as metabolic pathways. Moreover, our approach tackles the
problem as a multi-layer problem with several scales of con-
ceptual organization. The uniformity, or as we denote it, the
area balancing, allocates nearly equal area for each textual
label over the canvas as an even density of stations across a
map [54]. Our approach is conceptually a top-down multi-
pass process based on Voronoi tessellations, which results
in a well-balanced spatial layout. Our approach also sup-
ports motif alignment and vertex duplication to resolve
hard hairball-causing cases. When calculating the layout on
a detailed level, the approach also takes into consideration
the size of the textual labels associated with the vertices. To
emphasize this association, we denote a vertex annotated
with a textual label as a vertext (pl. vertexts) in this paper. In
summary, our main technical contributions are:

Multi-level area balancing
Schematized space partitioning and overlap-free ver-
text arrangement
e Hairball management via vertext duplication cou-
pled with visual integration
The remainder of this paper is structured as follows: In
Section 2, we relate our new algorithm to the existing body of
work. We then begin with an explanation of the design crite-
ria for achieving area-balanced networks and provide a
high-level algorithm explanation in Section 3. The technical
contribution and details are presented in Sections 4, 5, and 6.
Several improvements in our implementation are detailed in
Section 7, followed by the implemented results in Section 8,
and evaluation and discussion in Section 9. Finally, we con-
clude this paper and sketch interesting future directions in
Section 10.

2 RELATED WORK

Our proposed approach for visualizing clustered graphs in
a way that assigns a fair share of the available space to each
vertext is related to several studies in the literature. We first
cover the layout approach for clustered graphs, and the rele-
vant space partitioning algorithms followed by the layout
schematization approaches.

2.1 Layout of Clustered Graphs

Numerous approaches for drawing graphs with additional
vertex grouping or clustering information exist in the litera-
ture [12], [17], [23], [38], [70]; however, most of those studies
assume proper hierarchical clustering, in the sense that clus-
ters must be either disjoint or one cluster must be contained
in the other cluster. Recent surveys by Vehlow et al. [59] on
visualizing group structures in graphs and by McGee et al. [46]
on visualizing more generally multilayer graphs [39] give a

2683

good overview of the state of the art. A recent scalable method
for drawing graphs based on stress minimization with addi-
tional layout constraints, including constraints for avoiding
cluster overlap, has been presented by Wang ef al. [61]. In com-
parison to preserving the geometric structures of node-link dia-
grams, set visualization techniques can be used to emphasize
cluster information. BubbleSets [18], LineSets [9], and KelpFu-
sion [47] are techniques that introduce enclosed regions around
pre-placed elements to provide a stronger sense of the grouped
elements.

Due to the application of the map metaphor, we are partic-
ularly interested in those approaches that use a proper (hier-
archical) partitioning of the available space among the
different clusters, similar to countries on a map, rather than
methods that merely color vertices or use non-space-filling
lines or contour overlays on top of node-link diagrams. A
well-known example is GMap [31], which first draws the
given graph using standard algorithms such as force-directed
layout or multidimensional scaling, and then computes a flat
clustering of the graph (which could also be given in the
input). The vertex positions as well as a large set of addition-
ally placed points are then used as seeds to compute a Voro-
noi diagram, whose cells are colored according to the cluster
information. As a result, a GMap visualization can show a
clustered graph in the shape of a political map with countries
representing clusters. In the initial paper, vertices always
belong to a single cluster, and clusters can sometimes be non-
contiguous because the layout and the clustering are com-
puted separately. A more recent journal extension later over-
comes this weakness by overlaying semi-transparent clusters
over each other [32]. In comparison to GMap, we incorporate
a duplication scheme to simplify the graph topological struc-
tures to achieve the same goal. Kobourov et al. [41] subse-
quently developed a method for computing GMap-style
layouts with contiguous cluster regions in the setting where
either the input embedding or the clustering can be modified.
MapSets [25] is another extension for showing cluster mem-
bership of vertices in a graph layout by space partitioning.
However, regions in MapSets are computed for existing
graph layouts that must be preserved and thus may enforce
complex cluster shapes. Other works that use a map meta-
phor for graph layouts similar to GMap draw topographic
maps of clustered graphs [33], maps of computer science [28],
and GraphMaps [49].

2.2 Space-Partitioning Algorithms
Space-partitioning algorithms for graph layouts typically
use a recursive partitioning scheme to assign the required
space (or area) of the available drawing area to certain sub-
graphs, as is often needed when using a map metaphor.
Treemaps [56], [57] are among the most prominent space
partitioning schemes to visualize (weighted) trees by split-
ting the region representing a certain interior node into sub-
regions for all its children, each of them proportional to the
weight or subtree size. While the original treemaps have
used rectangular subdivisions, treemaps have also been
studied for non-rectangular regions, e.g., Voronoi cells [11].
A different type of space-filling graph layout represents
planar graphs by dual planar subdivisions, where each ver-
tex is represented by one cell or face in the subdivision and
two vertices are connected by an edge if and only if the cells

2684

(a) vertices in G~ (b) extended vertices in G¢

(f) vertices in G (8) g2

(c) vertices in Ge

(h) vertexts in G

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

() ta

(i) go3

Fig. 1. These figures depict the overall pipeline of our approach. (a) A primary graph skeleton for describing a strong neighborhood relationship
between clusters. (b) A collection of cycles computed from (a) which are used for estimating the required screen space. (c) The distribution of the
cycles after forces are applied. (d) Simplified cluster boundaries. (e) Underlying structures that show the inter-connectivity between packed Voronoi
cells, which are used to specify the center of each connected graph component. (f) Abstract graph structures are then used to estimate the area
needed for the fine layout. (g) Rearranged cell boundaries. (h) Balanced detailed graph distribution after forces are applied. (i) Boundary for each ver-
text is then rearranged for better readability. (j) A Steiner tree representation that highlights identical vertexts.

share a common boundary. Such layouts are related to car-
tograms [53], i.e., value-by-area maps of countries, where
the area of each country is proportional to some external
value. Similarly, floor planning [68] in VLSI designs consid-
ers the task of partitioning the space of a circuit board into
regions to place electronic components with neighborhood
preferences given by a graph model. Floor planning techni-
ques have also been applied in visualization, e.g., for brows-
ing images using a Voronoi tesselation [14], Voronoi-based
distribution of overlap-free vertex labels [66], [67] or com-
puting word cloud layouts [19].

2.3 Network Schematization Algorithms

The cluster boundaries in our approach are simplified and
schematized into octilinear polygons, where the slope of each
edge is a multiple of 45°, as is commonly seen in metro maps,
for example [63]. Several algorithms exist for schematizing
polylines [20] and also for area- and topology-preserving
schematization of polygons [15], [48].

3 OUR BALANCING STRATEGIES

We use a graph model G = (V, E) to represent a complex
relationship network. The model consists of a set of vertexts
V ={vi,vs,...,v,} representing individual, named entities
and the mutual entity connectivity is represented by the
edges E = {e1,e2,...,e,} CV x V. We aim to tackle more
generally clustered graphs, where each v € V' can belong to
one or more clusters ¢ € C' = {¢y, ¢a, ..., ¢}, where each ¢; C
V. We can consider this as a specific type of multilayer
graphs, which is a unified model for complex networks [65].

In this paper, we primarily focus on the development of
(S1) vertext area balancing, which is done by integrating a
(S2) schematized space partitioning algorithm together with
additional vertexts arrangement. Moreover, a (S3) hairball
management via vertext duplication is accommodated with
a spanning-tree-like visual integration. We will first give an
explanation based on our selected design principles (51)-
(53) as a whole, followed by a step-by-step example, as
shown in Fig. 1.

3.1 Vertext Area Balancing (S1)

Note that our approach is decomposed into several levels in
a top-down fashion, where area balancing for each level
takes into account information complexity or density of the
level underneath. This strategy with several refinement
steps eventually leads us to a balanced vertext distribution,
which takes into account connectivity information on all
levels in the progressive composition. Our solution is tai-
lored initially for metabolic networks, although its utility
potential reaches beyond this specific application. Based on
hand-made graphs and prior experience of box-based clus-
tered graph visualization [64], this approach supports more
free-form organic shapes of graphs to ensure the high effec-
tiveness of the layout compaction.

This is achieved by a four-level area balancing approach
to allocate appropriate space for each vertext within a cluster.
The four distinct phases include (1) category-level (Figs. 1a,
1b, 1c, and 1d), (2) component-level (Fig. 1e), (3) topology-
level (Figs. 1f and 1g), and (4) detail-level space partitioning
(Figs. 1h and 1i). This design decision has been made based
on the topological properties of networks, where category-
level refers to cluster properties, component-level indicates
connected-component properties, topology-level represents
the abstract form of sub-networks, and detail-level shows
the detailed sub-networks. In practice, each level is com-
puted by a force-based layout (see Section 4) followed by a
schematization approach for simplifying the shapes of the
contours (see Section 5) to accomplish detail-level vertext
area balancing.

3.2 Schematized Space Partitioning and
Overlap-Free Vertexts Arrangement (S2)

To achieve our goal, we establish a corresponding graph skel-
eton g; € Gs = {G¢, Gy, Gr,Gp} for each of the four levels,
Category, coMponent, Topology, and Detail levels, respec-
tively. The layout of each graph skeleton is used to guide the
positioning of its belonging vertices to their expected position,
in order to retain a balanced distribution. Each skeleton g is
built individually based on the structures needed at each
level, where we consider the topological properties when
forming this skeleton (see definition in Section 5).

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

In the category-level, we aim to reserve sufficient space
for each category using Voronoi seeds for estimating the
appropriate space. For example, each vertex in Fig. 1a is a
representative vertex for a cluster. It consists of elements
mg, € Mg, that are used as a representative unit for a cer-
tain number of detail-level vertexts within a cluster (Fig. 1b).
This is done by replacing the representative vertex for a clus-
ter with a cycle graph, which enables the flexibility of verti-
ces in the cycle graphs to move during the layout process.
We introduce this strategy because force-directed layout
approaches are good at handling sparse and tree-like graphs.

In the component-level, we drag components sharing
some vertexts close to each other (see red edges in Figs. 1d
and le) and align cells containing subgraphs with similar
topological structures in their neighborhood. In the topol-
ogy-level, we again spread representative units in the sub-
domains by referring to its abstract topological structures
for distribution estimation.

Finally, in the detail-level, we compute the detailed lay-
out by assigning a seed to each vertext for a Voronoi cell
computation. Note that we utilize the area computed by
Voronoi cells as partitions reserved for each graph skeleton.
To improve the layout representation, at the end of each
level, we reshape each contour polygon and simplify its
boundaries for better shape identification. Adjusting poly-
gon boundaries also allows us to pay particular attention to
the textual-annotation of vertexts. Our design takes into
account the size of the textual label at each vertext. This is
because conventional approaches often introduce textual
labels as a post-processing approach by prolonging edges
horizontally or vertically to solve the problem [30], which
has the drawback that users cannot control the aspect ratio
of the final drawing. The algorithm may also produce an
unexpected horizontally or vertically long diagram based
on the input graph layout.

We therefore define our ideal layout by finding a com-
promise between the conventional force-directed algorithm
through the blending with Voronoi centroidal forces to
retain its initial graph layout. The shapes of the vertext areas
are simplified and schematized to better highlight the
boundaries of the components. This design is analogous to
the boundaries of different districts or countries in a politi-
cal map. Such a map metaphor has proved its usability in
previous approaches [25], [31].

3.3 Hairball Management via Vertext Duplication
Coupled With Visual Integration (S3)

In metabolic pathways, some metabolites are omnipresent
and connected with almost every elementary subsystem in a
pathway category, and this naturally leads to a hairball effect.
Our design strategy here is inspired by hand-crafted maps by
biologists [52], [55], where we perform a vertext duplication
of these metabolites to reduce the graph density and mutual
complexity. However, if we duplicate vertexts too much,
then the graph components are oversimplified. As a conse-
quence, tracking duplicated vertexts becomes difficult. One
challenge is to find the right level of duplication that simpli-
fies the graph just enough, but not more than necessary. The
effectiveness of vertex duplication has been demonstrated by
Henry et al. [35], who showed that vertex duplication is useful
for community-related tasks when exploring grouping

2685

structures in a social network. Nielsen ef al. [51] also demon-
strated its applicability in biological networks. Vertex dupli-
cation is helpful here, since it also provides readers with a
visual hierarchy of vertices using different visual variables.
For example, a high-degree vertex involved in many groups
could be essential in social network analysis because it shows
the activity of a person who interacts strongly with other per-
sons in the network. On the contrary, it could be less compel-
ling in the case of molecules H,O or H in biological networks.
These molecules frequently join reactions in metabolic path-
ways, but due to their abundance in the cells do not provide
essential biological meaning for interpretation. For this rea-
son, we reduce the hairball effect by duplicating such ver-
texts. We therefore define two duplication strategies to guide
readers to concentrate on important vertexts. Note that dupli-
cation also helps in reducing potential edge crossings. The
details will be explained in Section 6.1.

Once the vertext duplication is being performed, we con-
struct a graph skeleton G¢ representing the connectivity of
neighborhood clusters. Each vertex indicates a cluster (see
Fig. 1a), while an edge shows how strongly connected a
pair of clusters are, which share vertexts in the dataset. This
is done by computing a spanning tree of the clusters based
on the number of shared vertexts. For example, in Fig. 1a,
there exist three vertices, each representing a differently col-
ored cluster later. We then extend the skeleton G¢ (Fig. 1b),
which will be later used as seeds of Voronoi tessellation for
estimating the appropriate space to embed vertexts and
edges in this category. The number of vertices in a cycle (see
Fig. 1b) of each vertex in Fig. 1a is proportional to the total
pixel size of labels needed to be placed within this category
(as shown in Fig. 1c).

To introduce a vertex in the cycle as a representative of
an area bounded by the corresponding Voronoi cell, we
define a unit d, which represents a collection of pixels suit-
able for area approximation. The default value is d = 40
since it gives a good approximation.

Unfortunately, the vertext duplication naturally creates
many more vertexts, and finding one in the network does
not mean that we know all copies of that vertext. We need
to formulate the means to be once again able to perceive
these as a single node and thus comprehensively under-
stand its role in the entire network. We therefore introduce
a visual integration strategy to connect identical duplicated
vertexts for their better identification. This is useful in the
sense that highlighting the vertexts only shows the distribu-
tion of the vertexts, but does not show the connectivity of
vertexts between different clusters. Since this is a different
type of edge, representing a set of identical vertexts rather
than the mutual connectivity of entities in the input data,
we adopt a distinct visual representation. This can be mod-
eled as a set visualization problem with a spanning tree that
minimizes the distance to each of the identical vertexts.
Fig. 1j shows such an example, which allows us to visually
discriminate duplicated vertexts in different clusters.

4 VERTEXT AREA BALANCING (S1)

At each designated level, we process the corresponding
graph skeletons g, € G'g, as shown in Fig. 1, and move the
corresponding vertices or vertexts toward their expected

2686
Vi
o o
2
Vi
For

d
centroid(v;)

(a) (b) (c) (d)

Fig. 2. Our force model, including (a) attractive forces, (b) vertex-vertex
repulsive forces, (c) edge-edge repulsive forces, and (d) centroidal
forces generated from Voronoi tessellation.

target positions. This is accomplished through the blending
of forces generated by force-directed algorithms and forces
computed from centroidal Voronoi tessellation [66] for allo-
cating the appropriate area for each vertex in Gg. The chal-
lenge of embedding a graph within an arbitrary shape is to
keep vertex movement restricted within the region. The
nature of Voronoi Cells allows us to cleverly avoid this prob-
lem by constantly moving the vertex away from the bound-
ary of its Voronoi cell. In the following subsections, we will
use detail-level vertexts as examples to describe our force
model, since we apply the full set of forces incorporated in
our approach to this skeleton graph.

4.1 Conventional Force-Directed Model
Once the initial overlap-free positions of the skeleton G¢
have been computed [64], we employ the conventional force-
directed algorithm in order to lay out the skeleton. In our
implementation, we introduce attractive forces (Eq. (1)) and
two types of repulsive forces, including vertex-vertex repul-
sive forces (Eq. (2)) and edge-edge repulsive forces (Eq. (3)).
The attractive force (see Fig. 2a) is often formulated using
Hooke’s law applied on edges e = (v;,v;) € E (we also use
the abbreviated form e;; = (v;, v;)) as follows:

Fa(vi, vg) = Ka([[vj = vill = o) (v; — vi), M

where [, represents the ideal length of the spring, which is
estimated using the ideal average pair-wise distance, as
detailed in Section 7. The user-defined constant %, controls
the magnitude of the forces.

The vertex-vertex repulsive force (see Fig. 2b) is
assumed to have electrical charges on vertices so that we
can keep minimum distances between them. The force is
thus defined as:

Fo(vi, v5) = k(v — 03) /oy — i, ()

where £k, corresponds to the magnitude of the electric forces
and is set to be 1000.0 by default in our system. The value is
decided by not adding excessively strong forces relative to
the attractive force.

The edge-edge repulsive force (see Fig. 2¢) is similarly
defined by adding forces generated from edges (v;,v;) and
(vi,vi;) that share the same end vertex v; in order to push
away those edges with a sharp angle 6 [45]. This is com-
puted using:

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

Fe(vivvjavk) -

o) 0 —1
<k:c (arctamM + arctan M)) < > U
Co Co 1 0
6\ /0 —1
+(k€cot§)(1 0)-u,
3)

where k. and k. correspond to the magnitudes of the forces
from edge lengths and the forces from the angle 6 inter-
sected by edges e;; and e;;, respectively. The value ¢ is the
ideal length for edges e;; and e;;, which is computed simi-

larly as lp. The matrix (? Bl) is the rotation matrix of 7 /2
—Y Vi

=aar=n)E

4.2 Centroidal Voronoi Tessellation

Our key idea to balance the area for each vertext is to apply
a centroidal Voronoi force to distribute vertexts evenly
within a finite polygonal region, while keeping vertexts
within this region. This also allows us to potentially elimi-
nate unwanted overlaps between text labels [66]. We accom-
plish this by partitioning the space through the following

steps and move each vertext to its corresponding Voronoi
centroid:

and w is the unit vector of (

1) Compute the Voronoi tessellation using predefined

seed points.

2) Crop the Voronoi cell by the polygonal contour.

3) Determine the centroid centroid(v;) of each cropped

Voronoi cell.

In Step 1, we compute the Voronoi tessellation [40] by
referring to the coordinates of each v; € g; as a seed point.
Next, we crop the Voronoi cell with the polygonal shape of
the cluster one level above in the hierarchy. Alternatively, a
hardware-assisted algorithm [37] can be used to approxi-
mate the effect of the geometric algorithm by plotting 3D
cones of different colors at the given seed points and projec-
ting them onto the frame buffer. In our implementation, we
use the first approach for the ease of extracting the polygo-
nal contour from the Voronoi diagram. The centroidal force
to each node v; € Gg is computed as:

F,(v;) = —k,(v; — centroid(v;)), 4

where £k, is a constant that determines the magnitude of the
centroidal force. The value is determined by seeking a bal-
ance between the centroidal force and other forces to normal-
ize the weights w; and w, in Eq. (5). These aforementioned
steps are repeatedly computed until all seed points reach
their equilibrium position.

Until here, we sum up these attractive and repulsive
forces from Sections 4.1 and 4.2 to each vertext v; as:

Fy(v) = = wy * < Z Fo(v7,v]> Z E'(Uz‘,,vj)

el jev—{v;} (5)
+ Z v(vi, v, 08)) + wy * ZF v;).
€ij.€ik €L i€V

This force is applied to each node until the network lay-
out achieves an equilibrium state. With repulsive forces, we

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

TABLE 1
A Summary of the Default Parameter Settings in Our Force Model

wyg Wy ku kr kc ke k'ﬂ ko

Fig.1(c) G 03 0.7 0.1 10000 05 05 1.0 0.0
Fig.1(e) Gy 0.1 09 0.1 10000 05 05 1.0 0.0
Fig. 16 G 01 09 01 10000 05 05 1.0 0.0
Fig.1h) Gp 01 09 01 10000 05 05 1.0

can empirically avoid unexpected visual clutter, such as
edge crossings, and with centroidal Voronoi forces, we can
balance the area for individual vertices. In our approach,
the above steps are iteratively computed until we find a rea-
sonably uniformly partitioned space. Note that the addi-
tional force F,(v;, vj) = —ko(v; — vi)/|lvj — vl is adaptively
added if the two vertexts unexpectedly overlap. Further
note that F, is only applied on vertexts in the detail-level
graph Gp, since we consider the vertex overlaps in other
levels will be less influential on the final layout. The weight
w, is increasing toward detail-level since this helps us to
find a better vertext distribution.

Table 1 provides a summary of default parameters used
in our system, where we strengthen the centroid forces in
the last step to evenly distribute the vertexts.

Practically, F}, and F, are conventional forces to preserve
the distance between connected vertices, and F,, influences
the overall balance of the area preserved for each vertex.
Fig. 3 shows an example of how F, will influence the final
visualization. The forces F., F,, and F, have a stronger
impact on the final rendering by retaining angular resolution
and eliminating vertext overlaps. We study the effect of these
parameters in the supplementary materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2020.3038154.

5 SCHEMATIZED SPACE PARTITIONING AND
VERTEXT POSITION ARRANGEMENT (S2)

As described previously, the constrained forces for vertex
area balancing are computed in four levels, including (1) a
category-level, (2) a component-level, (3) a topology-level,
and (4) a detailed-level computation.

5.1 Representative Graph Skeletons

Note that at each level, we generate a unique graph skeleton
gs € Gs ={Gc,Gy,Gr,Gp} for guiding corresponding
area allocation by applying the technique described in the
previous section.

5.1.1 Category-Level Skeleton (G¢)

Since important vertexts shared between clusters are dupli-
cated to form a hierarchically clustered graph, those clusters
sharing vertexts are expected to stay close to each other to
avoid scattered vertexts. To achieve this, we prepare a span-
ning subgraph G¢ for maximally retaining the neighborhood
relationships of pairs of clusters. We first apply the same
strategy as in Metabopolis [64]. This allows us to create a
spanning subgraph, which is planar, so that the correspond-
ing planar embedding can be used as the initial positions of
the cluster centers (see Fig. 1a). We then explode the vertices

2687

(b) Without F,

(a) With F,
Fig. 3. An example of how the canvas is partitioned by incorporating (a)
with all forces, and (b) without F,.

of this spanning subgraph into a sequence of cycle vertices,
where the number of vertices here are computed to be pro-
portional to the total pixel size of labels within the corre-
sponding categories (Fig. 1b).

5.1.2 Component-Level Skeleton (G,;)

After the vertex duplication, some subgraphs can become
disconnected. We first need to distribute these components
without overlaps, so that subgraphs will not be drawn over
others unexpectedly. Additionally, in order to reduce the
readers’ workload when tracing duplicated vertexts, we
move those components sharing similar important vertexts
in different clusters close to each other by adding cross-clus-
ter edges to the graph. Those edges are marked in red in
Figs. 1d and 1e.

5.1.3 Topology-Level Skeleton (Gr)

Here, we aim to shape the area to fit the topological struc-
ture of a component. For example, if a graph contains a cir-
cular structure, a round area is more suitable for the layout.
However, this may not be suitable for a chain graph since it
can be embedded better within a long horizontal or vertical
rectangular area. A graph skeleton Gr is used to support
this idea. For each component, we compute its representa-
tive topological structure using the Markov Cluster Algo-
rithm [5], [21]. The graph G7 is built upon the connectivity
of those clusters, which is used as a representative unit of
the entire subgraphs. Of course, we can also apply the Edge
Sparsification technique [24], or Motif Simplification [22] to
achieve the same goal.

Additionally, to efficiently recognize some similar topo-
logical patterns in the components, we also place subgraphs
with similar topological structures close to each other. In
our system, we detect and connect pair-wise isomorphic
components, but users can also define their own similarity
measure for evaluating two subgraphs. Since we consider
each component as an independent object, we need to add
secondary edges to guarantee that they are expected neigh-
bors in the graph skeleton G'r. This is done by adding ran-
dom edges between similar vertices while keeping the
resulting graph planar.

5.1.4 Detailed-Level Skeleton (Gp)

At this final level, we simply treat vertexts in the clustered
graph as individual vertexts in the skeleton Gp, which
allows us to finalize the vertext position of each vertext
through the blending of Centroidal Voronoi force.

5.2 Layout Frame Schematization

Although Voronoi tessellation allows us to find a partition-
ing of a region, where each cell consists of all points closer

http://doi.ieeecomputersociety.org/10.1109/TVCG.2020.3038154
http://doi.ieeecomputersociety.org/10.1109/TVCG.2020.3038154

2688

to its seed than to any other seed, the boundary of such a cell
has a unique, irregular shape. This increases the visual com-
plexity, since it is still difficult to recognize the polygonal
contours extracted from a group of cells. In this section, we
aim to rearrange and simplify the boundary formed by Voro-
noi cells to provide the readers with clean and easily trace-
able region patterns for better memorability. We incorporate
three constraints here. This includes (O1) octilinearity, to
arrange edge orientation to a limited set of angles, (O2) rela-
tive positioning, to maximally retain the initial boundary
positions, and (O3) overlap removal, to remove overlaps
between vertexts and the schematized boundary. To achieve
this, we first construct a boundary graph G 5. We take bound-
ary edges extracted from the Voronoi cells into consideration
and build a simple network that covers all edge segments
along the cluster boundary. This graph G is necessary since
it will then later be used to bundle the edges that are used to
show the set of duplicated vertexts without occluding text
labels. We use the following three constraints.

5.2.1 (0O1) Octilinearity

Our primary goal here is to rearrange the edges in G'p so that
the edge orientation is constrained to either horizontal, verti-
cal, or diagonal at 45 degrees, also known as octilinear (or
octolinear) orientations. This is achieved by minimizing the
angle difference between the current edge angle and the target
octilinear angle 6.. Note that the target angle 0, € {0,0.257,
0.57,0.757, 7w, 1.257, 1.57, 1.75m} is precomputed from the
inputedge e;; € G p. The constraint can be formulated as:

>

eij=(vi,vj)EE

Q, = |(vf —) = Oct(v; — v;) [, (6)

where v}, v € V represents the unknown ideal output coor-
dinates that need to be computed, and Oct is a function that
rotates the edge e;; = (v;, v;) in the input graph to its closest
octilinear direction 6,.

5.22 (02) Relative Positioning

To maximally retain the balanced partitioning from the Vor-
onoi cell computation, we want to avoid a drastic change
from this partitioning after schematizing G 5. Therefore, the
relative position of vertexts should play a role in determin-
ing where to place a vertext. This is done by minimizing the
distance between the input vertext v; and the expected out-
put vertext v}, and the energy term is defined as follows:

Q,, = Z (W — ;). (7)

Ui ev’

5.2.3 (03) Overlap Removal

The final constraint aims to remove the overlaps between
vertexts and boundary edges e € G5. The idea is to retain a
minimal distance between a vertext and its corresponding
Voronoi cell. This is done by giving a soft penalty to the term:

2
Qo; = Z |(v; — p;’k) —8(vi — pj)|" (€©)
v; €G.e(vj,u)€GR

€
Vi =Pk
between vertext v; and edge ej.. We set this value to be equal

where § = The value ¢ is the minimum distance

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

1-10 0 000 0 0 O (v}) 1.6

] i
v 01 =10 000 0 0 O (vg) o Vy "
V g
3 00 0 0 001 =10 0 o) 1.9 J
o 1 1 o o 0 o0 Ti{vy) 0.9
L
V. oo 0 0 000 1 10 ol 0.0 Vs
00 o0 1 10 o o o wi 1.2 0
. 2 et L
vy o0 0 0 000 0 1 1 wi o vy
10 0 0 —-100 0 0 0 ol o
00 0 © 010 0 0 1 (v) 2.0
(a) (b) (©)

Fig. 4. An example of (a) an input boundary graph G, (b) its associated
AV’ = b with constraints (O1), and (c) the corresponding output.

to half the text label width, in order to maintain some distance
between a vertext and its cell boundary. The point pj, is the
closest point on the edge e, to vertext v;. This is computed at
each iterative step.

In summary, the objective function is defined as:

0= Wo, Qol + Wo, Qoz + Woq Qoga (9)

where w,, indicates the weight for each energy term. Based
on our empirical experiences, we assign the weights as
wo, = 10.0, w,, = 0.00001, and w,, = 20.0 by default. Read-
ers can refer to [58], [62] for some similar implementation
details.

During this optimization process, our system tends to
find the ideal aligned position of vertext v € V(Gp). Fig. 4
gives an example of how the optimization is computed,
where v = (1.0,1.0), vy = (—0.5,1.6), v3 = (—1.2, —0.2), vy =
(—0.2,-1.0), and v5 = (1.0, —1.0) are our input vertices. The
constraints in Egs. (6), (7), and (8) can be transformed into a
linear system AV’ = b(V’), where A is a coefficient matrix,
and V' collects all vertext output coordinates. The con-
straints we have here are more than the number of varia-
bles, so the matrix is over-determined. Therefore, the
problem is then solved by using V' = (ATA)"'ATb’. In our
system, we incorporate the conjugate gradient optimization
technique [36] to minimize our objective function ().
Another benefit of using a conjugate gradient is that it
allows us to iteratively solve this problem. We therefore
check the overlaps of text labels by examining the distance
between label centers to edges e in G5, and introduce neces-
sary constraints to penalize (O3) at each iterative step. This
allows us to not include all constraints from the beginning,
thus avoiding unnecessary computational complexity.

6 HAIRBALL MANAGEMENT VIA VERTEXT
DupPLICATION COUPLED WITH VISUAL
INTEGRATION (S3)

In this section, we explain how we transform a real-world
relationship into a clustered graph so that we can create mul-
tiple graph skeletons at different levels for finding appropri-
ate vertext areas as described in the previous subsections.

6.1 Vertext Duplication and Spanning Subgraphs

The goal of visualizing a clustered graph is to arrange verti-
ces in the same cluster close to each other for better identifica-
tion. Clusterings can be automatically generated [50], or
predefined by domain experts in biology, medicine, or
finance etc. Clusters, often highlighted using colors associ-
ated with the underlying subgraph, provide additional

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

insight into the data. For instance, in biology, a reader can
associate relationships with corresponding functional groups
or cellular compartments. However, clusters in clustered
graphs are by definition either disjoint or one cluster contains
the other [27]. Such clusters sometimes cannot cover the
properties of real-world relationships [65]. Vertext duplica-
tion is an intuitive way to transform overlapping clusters into
disjoint clusters and is an alternative scenario to remove
mutual edge crossings for better visual quality. This strategy
is commonly applied in biological [52] and social network
visualization [35]. We apply two strategies for vertext dupli-
cation by defining the importance of vertexts in the datasets.

Besides umimportant vertexts, the remaining high-degree
vertexts are denoted as important. We only duplicate an
important vertext if it belongs to multiple clusters. Moreover,
each important vertext is unique to each component. On the
other hand, a less informative vertext, such as H>O in meta-
bolic pathways, will be fully duplicated for each incident
edge to reduce the visual complexity induced by edge cross-
ings. The importance of a vertext can be either determined
from a list given by the user or derived from a threshold on
the degree.

6.2 Spanning-Tree Visual Integration

Since a vertext in our input graph can belong to multiple cate-
gories, we declutter the visual complexity originating from
this property by duplicating vertexts to set up a clustered
graph for better readability. Once the vertext duplication is
applied as described in the previous subsection, we naturally
increase the number of vertexts, which also complicates read-
ing in the sense that a vertext is not unique anymore. To alle-
viate the problem of finding all copies of a vertext, our
system allows users to connect all vertext instances using a
spanning sub-tree computed from Gp, beyond simply
highlighting vertexts using colors. With the use of the graph
G, we can avoid drawing edges over any vertext, and with a
spanning sub-tree, we can also show the connectivity of the
vertext between different clusters. The underlying problem is
formulated as a Steiner tree problem, which finds an optimal
tree of minimum weight for a given set of vertexts in a graph.
This problem differs from the minimum spanning tree problem
in the sense that not all vertexts will be included and finding
such a set with minimum weight is an NP-complete problem.
To solve this problem, we use a greedy algorithm for comput-
ing the Steiner tree [42] for all instances of an identical vertext.
When a user selects a target vertext, the system will compute
the corresponding set of duplicates and highlight them using
user-specified or determined colors (see Fig. 1j).

7 IMPLEMENTATION AND FORCE APPROXIMATION

In this section, we present experimental results of the pro-
posed approach on synthetic and real-world datasets,
together with discussions of the present approach. Our pro-
totype system has been implemented on a desktop PC with
Quad-Core Intel Xeon CPUs (3.7GHz, 10MB cache) and
12GB RAM, and the source code was written in C++ using
GSL for numerical computation, OpenGL for graphics, and
GLUI library for the user interface. The source code was writ-
ten in C++, and the graphics rendering and user interface
were implemented using the Qt library [6]. The primary

2689

graph data structure was developed on the Boost Graph
Library [1], and CGAL [2] was used for computational geom-
etry algorithms, such as computing Voronoi diagrams.
Eigen [3] is used to perform matrix computation for optimi-
zation and the Micans package is used for fast graph cluster-
ing algorithms [5], [21]. The source code for our system is
available on github https:/ / github.com/yun-vis/KeiRo.

7.1 Estimation of Screen Size and Initial Settings

It is often tricky to decide how big a canvas we need for
embedding a graph with vertexts and their specified aspect
ratios. Our approach estimates the canvas size as D =
(X eq fvi)) * (le|®/|v] + 1), where f(v;) represents the
number of pixels of a vertext. R is a user-defined constant
that determines the size of a region dedicated to drawing
edges, by default set to 1.3. Users can also specify an aspect
ratio r : 1 to fully control the diagram in our approach. Since
we use Voronoi cells to allocate a balanced area for each ver-
text, all vertexts are expected to be uniformly distributed
over the entire screen space. Based on this assumption and
the aspect ratio r, we compute our ideal edge length of a
graph skeleton G using ly ~ /0.5 * region(Gs)/n, where
region(Gs) returns the bounding region of G.

Since our graph is not simply embedded inside a rectan-
gular domain but an arbitrary polygonal domain, we have to
guarantee that no vertext will move outside of the domain.
Our Voronoi centroidal force directly solves this problem
since it always provides forces to move the vertext away
from the boundary. However, we are not this lucky when
assigning the initial positions of vertexts since we cannot
guarantee that the centroid of a polygon is always located
inside the polygon. We thus try to perturb the centroid sev-
eral times (100 by default), and select the one with the maxi-
mum radius to the boundary of the polygon. In this case, we
can initialize the vertext positions within this circle using
conventional layout approaches.

7.2 Perturbation in Simulated Annealing
Nevertheless, conventional force-directed algorithms are
known for their low computational efficiency and less flexi-
bility to escape poor local minima. To avoid this, we also
implemented a spatial quadtree subdivision technique and
a temperature function to enable vertext perturbation when
applying the force-directed algorithm. As described previ-
ously in Section 4, the force-directed layout is simulated by
finding an equilibrium state of a physical system, where the
attractive and repulsive forces applied on vertexts are bal-
anced. Even though in our formulation we do not place ver-
texts fully randomly at the initial steps, but rather slightly
move the vertexts to their preferred boundary edges, some
vertexts could nevertheless still fall into local minima. To
avoid this, a temperature function from simulated anneal-
ing is introduced to perturb vertexts to escape this situation.
This temperature constrains the dynamics of moving ver-
texts as the temperature decreases, which is captured as the
simulated iteration counter iter is increased:

1.0/iter
)

Decay = 1.0 — MinTemperature (10)

where MinTemperature indicates the lower limit of the sys-
tem temperature.

https://github.com/yun-vis/KeiRo

2690

TABLE 2
The Number of Nodes (|V]), Edges (| E|), and Density (Den)
Before and After Node Duplication, While |C| Shows
the Number of Clusters

Before duplication/After duplication

VI/Vol |B/IEo] Den/Den, [C]
Fig. 5 169/211 223/260 0.79/0.59 3
Fig. 7(b-4) 593/948 1244 /1635 0.35/0.18 11
Fig. 7(c-4) 448 /1377 1618/3236 0.80/0.17 11
Fig. 6 3679/3832 4008/4010 0.0296/0.0273 13

For simplicity, we assume the mass of all charged ver-
texts is m = 1, so the acceleration of a vertext at time ¢ is
then computed by Newton’s law a; = F;/m. In our imple-
mentation, we use velocity Verlet integration [60] to calcu-
late the next position of a vertext v;(4) as:

oD (0) = 200 (3) — 0V (G) 4+ al) A, (11)
where v"1), (), and v{"~!) represent the next, current, and
previous time steps, respectively. After introducing velocity
attenuation Decay, the equation becomes

oV (i) = '@ 4 Decay * (v — V(i) 4+ ') A2 12)

The time step of simulation is defined as At = 1. The idea of
the simulated annealing algorithm allows us to gradually
control vertext movement during the process. The system
has a higher temperature initially, which enables faster move-
ment to escape local minimum. This magnitude of the move-
ment decreases as the iteration counter increases, until the
final layout is obtained.

7.3 Force Approximation Using Quadtree
Subdivision

Computing repulsive forces is also computationally expen-
sive because it requires examining all pairs of vertices. Thus,
our solution is to subdivide the screen space into a quadtree
for faster computation using Barnes-Hut approximation [71],
as done in earlier force-directed approaches [29], [34]. The
idea is to aggregate vertices with large distances and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

compute repulsive forces from these aggregated vertices.
This will improve the time complexity to O(n log n) for well-
distributed vertex positions.

7.4 Continuous Curvy Contours and Curvy Paths

To improve the visual quality of the layout, we incorporate
Chaikin’s corner cutting algorithm [16] to generate curvy
contours and curvy paths in the final visual representation.
The idea of this algorithm is to smoothen the corners of a
polygon or a polyline by cutting the corners off the original
one. The smoothness of Chaikin curves depends on the sam-
ple points on the contours and the recursive steps that add
intermediate points. We first re-sample the points on a con-
tour, so that sample points are evenly distributed to avoid
sharp artifacts. Then we use Chaikin’s algorithm to refine
the corner points by adding intermediate points. The under-
lying process is based on iterative improvement until the
distance between two adjacent sample points is below a pre-
defined threshold.

8 RESULTS

In this section, we demonstrate the feasibility of our approach
by visualizing the four datasets Small Pathway, Recipe, Met-
abolic Pathway, and KEGG Overview Pathway. The scale of
the datasets ranges from small to relatively large, as shown in
Table 2.

Small Pathway. In Fig. 5, we present a small set of meta-
bolic pathways to demonstrate the balanced layout gener-
ated using our approach. Biological pathways are chains of
biochemical reactions within cells. Such pathways often
include proper classifications (e.g., subsystems) of reactions,
such as Transferase together with their associated metabo-
lites, such as ATP or glucose. Some metabolites are often
involved in multiple subsystems, which visually compli-
cates the diagram and thus leads to an unwanted hairball
effect.

Our technique allows us to focus on important metabo-
lites, for example, ADP (pink), while fully duplicating less
informative molecules such as H>O and H (cyan). Thus,
users can select and trace in which reactions the Glutamate

Fig. 5. A collection of pathways in human metabolism, including Alanine and Aspartate Metabolism, Alkaloid Synthesis, and Aminosugar Metabolism.
Each of the clusters, or so-called subsystems in metabolism, is highlighted in different colors in the diagram. White rectangular labels represent bio-
chemical reactions, and rounded labels are metabolites involved in the reactions. Pink vertices indicate important vertices, such as the metabolite
ATP carrying energy in Alanine and Aspartate Metabolism, and cyan vertices are the duplicated less important metabolites, such as H,O or Hs,
which are involved in most of the reactions in human metabolism. The Small Pathway includes 52 reactions and 117 different metabolites before
duplication, where each reaction belongs to one of the three subsystems. The red route here indicates a highlighted metabolite appearing as a dupli-
cate in multiple subsystems. Our system allows users to specify an input aspect ratio such as (a) r = 8/3 and (b) r = 4/3.

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

2691

Fig. 6. Redrawing the human metabolic pathway map of KEGG [43] using our approach in comparison to the diagram in Metabopolis [64]. The pres-

ent aspect ratio is r = 4/3.

(red) is involved. In both examples in Fig. 5, we see that the
Glutamate connects to ASNS1, ASPTA, and GF6PTA in Alanine
and aspartate metabolism and Aminosugar metabolism, respec-
tively. Glutamate is shared, so that its containing subsystems
are positioned as neighbors. Figs. 5a and 5b show the results
with a different aspect ratio of » = 8/3 and r = 4/3, respec-
tively. While similar in both images, vertexts r0113 and r0782
(highlighted in yellow in Fig. 5) are placed side by side
within the purple region due to their identical topological
structure.

Metabolic Pathway. Fig. 7(b-4) gives an example of major
pathways as a subset of human metabolism in ReconMap [52].
To generate a clustered graph, we first performed our
duplication scheme to guarantee that each vertext appears
in one cluster only, which are highlighted in differently col-
ored regions. This successfully relaxes the topological struc-
ture as well as the hairball effect induced by the H,O
molecules that connect to almost all reactions in this data-
set. After computing our layout, the vertexts are nearly uni-
formly distributed over the screen space and small
connected components are pushed and aligned at the cor-
ner (see top-right corner in Fig. 7(b-4)). Glutamate is again
highlighted here and demonstrates that those subsystems
involving Glutamate are placed in the neighborhood. Since
our spanning subtree is computed based on the boundary
generated by Voronoi cells, we successfully avoid drawing

paths over other vertexts and avoid introducing further
unwanted visual complexity.

Recipe. This dataset originates from the Graph Drawing Con-
test 2019 [4] and includes 151 popular food recipes extracted
from the TheMealDB database [7]. The extracted recipes come
from 11 countries, including USA, Britain, China, etc.,
and in total include 297 ingredients, such as Flour, Onion,
Egg, and so on. We construct our input graph by con-
necting the recipes with their associated ingredients and
assign a country id as clusters to each of the recipes. In
the end, the graph includes 448 vertexts and 1377 edges
(Table 2). Fig. 7(c-4) shows the resulting diagram gener-
ated by our approach. The white rectangular labels are
recipe vertexts and the rounded rectangular labels are
ingredient vertexts, similarly to the biological pathways.
The cyan vertexts indicate fully duplicated common ver-
texts and the pink ones are important vertexts that users
may want to focus on. We assume that frequently used
ingredients are less informative since they can be easily
found in several local areas.

To produce authentic food, we can mainly focus on country
specific ingredients (white, rounded vertexts) in this case. The
threshold between important and less important vertexts is set
as 9 here, based on the frequency of ingredient usage in the
dataset. From the results, we can see that many British recipes
are contained in the database. Compared to other countries,

2692 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

Small Pathway Metabolic Pathway

2

]
W
-
i)
-
E]
=]

(a-4)

Fig. 7. Results generated using the Bubble Sets [18], GMap [31], MapSets [25] and our area balancing algorithms. The initial layout has been computed using
the graphviz library (version 2.40.1), which generate better results in comparison to previous versions. Readers can refer to supplementary materials, avail-
able online (supplementary materials) for larger figures. Note that each color here indicates a single cluster, even if it is non-contiguous in some cases.

ingredients in British recipes (yellow) are relatively strongly Besides commonly used ingredients, ingredients of Ital-
connected, since after vertext duplication, apart from Vegetar- ian recipes (green) are relatively independent from each
ian Chili (bottom-right of yellow region), the subgraphisstilla other. In Fig. 7(c-4), readers can see that there are more
single connected component. individual star-liked structures. Those recipes have a

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

TABLE 3
Comparison of Space Coverage With Bubble Sets [18],
GMap [31], MapSets [25], and Ours

2693

TABLE 4
Comparison of Running Times (in Seconds) With Bubble
Sets [18], GMap [31], MapSets [25], and Ours

Fig. 5

(Neighbor My)/(Voronoi My) Bubble Sets GMap MapSets Ours
Bubble Sets ~ GMap MapSets Ours Fig. 5 7.03 3.88 7.87 22
0.195/0966 0.195/0966 0315/4779 0.181/0202 1.8 7Y a8 - e
Fig. 7(b-4) 0.233/1.210 0.233/1.210 0.282/5.549 0.201/0.382 Flg 6 610..72 8:76 1096'27 1136

Fig. 7(c-4) 0.293/0.965 0.293/0.965 0.328/7.836 0.262/0.595
Fig. 6 0.280/0.743 0.280/0.743 0.421/8.276 0.392/0.791

We chose k = 5 for the k nearest neighbors.

tendency to be considered as home cooking, for which we
do not need specific ingredients. As an example, the red
highlighted Steiner tree here connects the common ingre-
dient Soy Sauce vertexts in different countries (if any). It is
not surprising that Chinese (purple) and Japanese (pink)
recipes often use Soy Sauce as primary ingredients, while it
is absent from most other countries. Nonetheless, one out-
lier (Mushroom and Chestnut Rotolo) exists in British cuisine.
The map we created using this dataset won the 1st Place
Award in the 28th Annual Graph Drawing Contest [44].
KEGG Overview Pathway. Fig. 6 is the result of reproduc-
ing the KEGG overview pathway map using our approach.
The color coding of the category here is directly retrieved
from the original KEGG database [43], as similarly incorpo-
rated in Metabopolis [64] (see figures in supplementary
materials, available online). We also set the same threshold
for specifying unimportant vertices as in Metabopolis, so
that readers can refer to the paper for comparison (Fig. 6).
The advantage of this technique allows us to arrange the
vertexts in a balanced fashion by pushing vertexts away
from each other. This initially gives users an idea of how
big each category is, and explicitly shows which reaction is
classified under which category. Users can also identify
sub-components effectively since those components with
identical topological structures are aligned as neighbors.
This also helps users to comprehend which structures are
associated with certain types of pathways, such as small
chains, stars, etc.

9 EVALUATION AND DISCUSSION

In this section, we measure and evaluate the space cover-
age of the results generated by our implementation, and
we report the running time for each image shown in this
paper. Table 2 summarizes the properties of our datasets,
where the number of vertexts, edges, clusters, and the cor-
responding graph densities are noted as V, E, C, and Den,
respectively. The notation with subscript p refers to these
numbers after vertext duplication. We use the same graph
density function for Den and Denp, which is defined as
Den= |E|/(|[V|* — |V]) [69]. We multiply this ratio by 100
for simplicity in Table 2.

9.1 Measuring Space Coverage and Time
Complexity

To the best of our knowledge, none of the existing works vis-

ualizes clustered graphs by balancing vertext areas within

an arbitrary shape by fully utilizing the entire screen space.
However, Bubble Sets [18] is a pioneering technique to visu-
alize set information over point clouds. The advantage of
this approach is that it shows the connectivity of components
in the same clusters. GMap [31] and MapSets [25] are also rel-
evant techniques, which use Voronoi tessellation to visualize
clustered graphs with a map metaphor. We therefore com-
pare our results together with these three conventional
approaches, since they all utilize filled-in arbitrary regions to
emphasize cluster information. The figures give the results
from Bubble Sets, GMap, and MapSets that visualize the
same datasets from Section 8. Since the region computation
of Bubble Sets, GMap, and MapSets relies on the same initial
layout algorithms, all three approaches cannot fully control
the number of split clusters (see the purple clusters in Fig. 7),
and the screen size.

One property of Bubble Sets, GMap, and MapSets is that
space usage is fragmented with empty white spaces and the
fragmented empty space is not fully utilized. Our approach
relaxes this constraint and finds a balanced layout that fully
uses the screen as preferred by the biologists [52]. We thus
introduce two space coverage measures My and My to
evaluate the proper distribution of vertexts in the layout.
We define My as the coefficient of variation (CV =0, /1,)
of distances of the vertexts to their k nearest neighbors, to
examine if each vertext has equal distances to its neighbors.

The value o, = \/ |L,|1_1ZL”:|1 (X; — m,)* corresponds to the
standard deviation of average distances X; of a vertext to
its k nearest neighbors and u is the corresponding mean
value of X;. The other measure, My =o,/p,, is defined
similarly to My, while each vertext value X; corresponds
to the number of pixels of its corresponding Voronoi cell.
Table 3 gives the summarized CVs. Both measures show
that the area assigned to each vertext is more balanced in
our approach, and this tendency increases as the data size
increases.

We show the running times for Bubble Sets, GMap,
MapSets, and our approach in Table 4, and Fig. 7 shows
the corresponding layouts. In general, Bubble Sets and
GMap are faster than our approach since they only com-
pute the Voronoi tessellation once to generate the contour.
The bottleneck of our algorithm is that we need to itera-
tively compute Voronoi tessellations in order to guide a
vertext to its proper position. Nonetheless, our approach
runs comparably to MapSets, since it also has an iterative
process to glue separate clusters into an aggregated one.
We observe that the MapSets strategy sometimes fails to
link all identical clusters, because the positions of points
are fixed initially (see Figs. 7(a-3)-(c-3)).

2694

9.2 Interview With Experts in Biology

To validate the usability of our approach, we shared our
results with six domain experts who are experienced with
manually creating pathway diagrams, and discussed our
selected aesthetic criteria and the quality of the results
with them. The interviews involved one professor (P1)
from Scripps Research in the USA, one professor (P2)
from the University of Vienna specializing in biology, two
postdoctoral researchers (P3 and P4), and two PhD candi-
dates (P5 and P6) from the Research Center for Molecular
Medicine of the Austrian Academy of Sciences (CeMM),
who specialize in bioinformatics. The professors had more
than seven years experience manually working with the
pathway layout, and the participants had, on average,
about three years of experience. The process began by first
explaining how to read the visualization (see supplemen-
tary materials for a complete reference), including the con-
tent of the datasets and the corresponding color coding.
We gave all participants enough time (10-15 minutes) to
investigate, question, and understand the results, until
they did not have any further questions about the visual
representation.

The two senior professors (P1 and P2) expressed that
(51) has evenly distributed vertexts with fewer overlaps,
making the map easier to read because the vertexts retain
mutual distance. P6 expressed that singular clusters help
to quickly spot biological functions, and complex shapes
do not provide additional contextual information (S2).
Two postdoctoral researchers (P3 and P4) considered the
visual integration in (S3) to be more important than (S1)
and (S2), since it helps readers to focus on the network
connectivity.

P3 suggested we could eliminate unimportant duplicated
vertexts (e.g., H,O) completely from the diagram, and P4
mentioned that balanced distribution is nice only if it helps
to remove vertext overlaps. This constraint also untangles
high-degree vertices, which eliminates the nature of highly
connected vertices that are often gathered in a dense region.
P5 stated that the diagram with less vertext occlusion (S1)
gives the best readability. All participants agreed that dupli-
cating the vertexts improves the visual quality; however,
completely duplicating the vertexts helps to untangle visual
clutter, even though it requires more effort to find all the
connected neighbors.

P3 and P5 considered our visual integration helpful for
tracking duplicated vertices; nonetheless, we could add
many visual integrations, which again would complicate
the readability of the diagrams. Four participants appreci-
ated the adjustment of the input aspect ratio when using
our approach, while the other two thought that it was
good to have but not critical. All participants expressed
their interest in using our algorithm. In the end, we also
discussed what they considered are the other important
factors for pathway diagrams. P4 preferred to have the
possibility to adjust parameters to retrieve her preferred
results and P5 preferred that the usage should be as sim-
ple as possible. P1 strongly recommended to integrate
interaction techniques into the computed diagrams, espe-
cially when the diagram is large. P6 suggested that we
could visualize pathways beyond referring to topological
patterns.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

P1 and P3-P6 agreed that Bubble Sets, GMap, and Map-
Sets preserve the network structure well, while our
approach provides contiguous clusters and a more balanced
area to follow. As a trade-off, non-separate and contiguous
clusters were more appreciated, and a more balanced area
improved label readability. We did not receive specific feed-
back from P2 regarding this comparison.

9.3 Limitations and Potential Extensions

Since the present approach is a force-based balancing tech-
nique, it also inherits the same limitations from the conven-
tional force-based approach. One significant drawback is
that the initial position has a strong influence on the final lay-
out. In our current implementation, we use the sfdp package,
a multi-scale version of Kamada and Kawai’s approach in
GraphViz [26], to compute the initial layout of the decom-
posed subgraphs. Another common limitation is that our
technique has the potential to fall into a local minimum,
where a vertext is constrained by the positions of other ver-
texts. This could potentially generate unpleasant octilinear
boundaries. Perturbation on vertexts has been introduced to
experimentally avoid a vertext being trapped by other sur-
rounding forces. As shown in Fig. 6, large graphs require a
large canvas for proper investigation. A possible approach
for a fixed canvas size would be to consider a hierarchical
representation, but this in turn would require careful design
and evaluation of its interpretability.

Moreover, as mentioned previously in Section 3, the
structure of the graph has been transformed from a general
graph to a clustered graph through vertext duplication, so
that clusters in the diagram are disjoint. This property also
allows us to apply the approach to visualize multilayer
graphs, since we can compress each layer of the graph and
embed each layer into a polygonal region and can still uti-
lize the same spanning-tree visual integration to highlight
vertext instances in different layers. We do not claim that
our technique can fully solve multilayer graph visualiza-
tion. However, our method provides an alternative solution
because our original idea mimics the design principles from
domain experts in biology [52], where they manually adjust
pathway diagrams as a multilayer graph.

10 CoONCLUSION AND FUTURE WORK

This paper presents a pioneering approach that takes ver-
text area into consideration in order to embed a clustered
graph inside arbitrary polygonal areas in a space-balanced
fashion. We achieve this by incorporating a multi-level
scheme to balance vertext area using a top-down model,
where we utilize structure motifs to guide the partitioning
in order to approximate the regions effectively. Hairball
effects are controlled via vertext duplication, which is cou-
pled with a visual integration using a Steiner tree algorithm.

As a future research direction, we plan to extend the
same concept by introducing features other than the points,
and integrate features to multiple hierarchy layers. Such fea-
tures may include line features or area features to enable
more complex visual representations together with a graph,
because some experimental analysis requires spatial infor-
mation together with relationship information. For example,
biologists often investigate which pathways occur inside

WU ETAL.: MULTI-LEVEL AREA BALANCING OF CLUSTERED GRAPHS

which portion of a cell. Establishing a motif library is also a
future goal to develop a standard language to convey and
link domain knowledge to representative topological struc-
tures. This can be done through topological structure analy-
sis to partition structures into certain limited disjoint sets. A
more sophisticated vertext duplication technique [51], such
as minimizing the duplication number or the best scheme to
split a vertext, will also be investigated further. Last but not
least, we will make the source code for our system readily
available to the community [8].

ACKNOWLEDGMENTS

The project has received funding from the European Union
Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie Grant agreement No. 747985,
from the Vienna Science and Technology Fund (WWTEF)
through projects VRG11-010, from the Austrian Science
Fund (FWF) through project P31119, and from King Abdul-
lah University of Science and Technology (KAUST) through
award BAS/1/1680-01-01. The authors would like to thank
Michael Cusack from Research Communication and Publica-
tion Services at KAUST for proofreading.

REFERENCES

[1] Boost C++ Libraries, version 1.71, 2019. Accessed: Feb. 15, 2018.
[Online]. Available: http:/ /www.boost.org/

[2] CGAL: The Computational Geometry Algorithms Library, version 4.14,
2019. Accessed: Aug. 9, 2018. [Online]. Available: https:/ /www.cgal.org

[3] Eigen: A C++ template library for linear algebra, version 3.3, 2018.
Accessed: Aug. 9, 2018. [Online]. Available: https://eigen.
tuxfamily.org/

[4] Graph drawing contest 2019, 2019. Accessed: Mar. 11,2019. [Online].
Available: http:// www.graphdrawing.de/contest2019 / topics.html

[5] MCL: A cluster algorithm for graphs, 2008. Accessed: Dec. 9, 2018.
[Online]. Available: https://micans.org/mcl/index.html

[6] Qt 5.8: Cross-platform software development for embedded &
desktop, 2017. Accessed: Feb. 15, 2018. [Online]. Available:
https://www.qt.io/

[71 Themealdb database, 2016. Accessed: Mar. 11, 2019. [Online].
Available: https:/ /www.themealdb.com/

[8] Keiro: A package for visualizing graphs, 2020.

[9] B. Alper, N. Riche, G. Ramos, and M. Czerwinski, “Design study

of linesets, a novel set visualization technique,” IEEE Trans. Vis.

Comput. Graphics, vol. 17, no. 12, pp. 22592267, Dec. 2011.

S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, and

M. E. Vidal, “Towards a knowledge graph for science,” in Proc. 8th

Int. Conf. Web Intell. Mining Semantics, 2018, pp. 1-6.

M. Balzer and O. Deussen, “Voronoi treemaps,” in Proc. IEEE

Symp. Inf. Vis., 2005, pp. 49-56.

F. Bertault and M. Miller, “An algorithm for drawing compound

graphs,” in Proc. Int. Symp. Graph Drawing, 1999, pp. 197-204.

S.P.Borgatti, A. Mehra, D.]. Brass, and G. Labianca, “Network anal-

ysis in the social sciences,” Science, vol. 323, no. 5916, pp. 892-895,

2009.

P. Brivio, M. Tarini, and P. Cignoni, “Browsing large image data-

sets through Voronoi diagrams,” IEEE Trans. Vis. Comput.

Graphics, vol. 16, no. 6, pp. 1261-1270, Nov./Dec. 2010.

K. Buchin, W. Meulemans, and B. Speckmann, “A new method for

subdivision simplification with applications to urban-area gener-

alization,” in Proc. 19th ACM SIGSPATIAL Int. Conf. Advances Geo-

graphic Inf. Syst., 2011, pp. 261-270.

G. M. Chaikin, “An algorithm for high-speed curve generation,”

Comput. Graph. Image Process., vol. 3, no. 4, pp. 346-349, 1974.

S. Chaturvedi, C. Dunne, Z. Ashktorab, R. Zachariah, and

B. Shneiderman, “Group-in-a-box meta-layouts for topological

clusters and attribute-based groups: Space-efficient visualizations

of network communities and their ties,” Comput. Graph. Forum,

vol. 33, no. 8, pp. 52-68, 2014.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

2695

C. Collins, G. Penn, and S. Carpendale, “Bubble sets: Revealing set
relations with isocontours over existing visualizations,” IEEE Trans.
Vis. Comput. Graphics, vol. 15, no. 6, pp. 1009-1016, Nov. /Dec. 2009.
W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu, “Context
preserving dynamic word cloud visualization,” in Proc. IEEE
Pacific Vis. Symp., 2010, pp. 121-128.

D. Delling, A. Gemsa, M. Nollenburg, T. Pajor, and I. Rutter, “On
d-regular schematization of embedded paths,” Comput. Geom. The-
ory Appl., vol. 47, no. 3, pp. 381-406, 2014.

S. Dongen, “A cluster algorithm for graphs,” Centre for Mathemat-
ics and Computer Science, Amsterdam, The Netherlands,
Rep. no. INS-R0010, 2000.

C. Dunne and B. Shneiderman, “Motif simplification: Improving
network visualization readability with fan, connector, and clique
glyphs,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2013,
pp. 3247-3256.

P. Eades and Q.-W. Feng, “Multilevel visualization of clustered
graphs,” in Proc. Int. Symp. Graph Drawing, 1997, pp. 101-112.

P. Eades, Q. Nguyen, and S.-H. Hong, “Drawing big graphs using
spectral sparsification,” in Proc. Int. Symp. Graph Drawing Netw.
Vis., 2018, pp. 272-286.

A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev, “MapSets: Visu-
alizing embedded and clustered graphs,” |. Graph Algorithms
Appl., vol. 19, no. 2, pp. 571-593, 2015.

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhul],
“Graphviz— open source graph drawing tools,” in Proc. Int.
Symp. Graph Drawing, 2002, pp. 483-484.

F. Frati, Clustered Graph Drawing. Berlin, Germany: Springer, 2016,
pp- 326-331.

D. Fried and S. G. Kobourov, “Maps of computer science,” in Proc.
IEEE Pacific Vis. Symp.2014, pp. 113-120.

T. M.]J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Softw. Practice Experience, vol. 21, no. 11,
pp- 1129-1164, 1991.

E. R. Gansner and Y. Hu, “Efficient node overlap removal using a
proximity stress model,” in Proc. Int. Symp. Graph Drawing, 2009,
pp- 206-217.

E. R. Gansner, Y. Hu, and S. Kobourov, “GMap: Visualizing
graphs and clusters as maps,” in Proc. IEEE Pacific Vis. Symp.,
2010, pp. 201-208.

E. R. Gansner, Y. Hu, and S. Kobourov, “Visualizing graphs and
clusters as maps,” IEEE Comput. Graphics Appl., vol. 30, no. 6,
pp- 54-66, Nov./Dec. 2010.

M. Gronemann and M. Jiinger, “Drawing clustered graphs as topo-
graphic maps,” in Proc. Int. Symp. Graph Drawing, 2013, pp. 426-438.
S. Hachul and M. Jiinger, “Drawing large graphs with a potential-
field-based multilevel algorithm,” in Proc. Int. Symp. Graph Draw-
ing, 2005, pp. 285-295.

N. Henry, A. Bezerianos, and J. Fekete, “Improving the readability of
clustered social networks using node duplication,” IEEE Trans. Vis.
Comput. Graphics, vol. 14, no. 6, pp. 1317-1324, Nov./Dec. 2008.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,”]. Res. Nat. Bureau Standards, vol. 49, no. 6,
pp. 409-436, 1952.

K. E. Hoff, I1I, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast
computation of generalized Voronoi diagrams using graphics
hardware,” in Proc 26th Annu. Conf. Comput. Graph. Interactive
Techn., 1999, pp. 277-286.

M. L. Huang and Q. V. Nguyen, “A space efficient clustered visu-
alization of large graphs,” in Proc. 4th Int. Conf. Image Graph., 2007,
pp- 920-927.

M. Kiveld, A. Arenas, M. Barthelemy,]J. P. Gleeson, Y. Moreno,
and M. A. Porter, “Multilayer networks,” |. Complex Netw., vol. 2,
no. 3, pp. 203-271, 2014.

R. Klein, Concrete and Abstract Voronoi Diagrams, Berlin, Germany:
Springer, 1989.

S. Kobourov, S. Pupyrev, and P. Simonetto, “Visualizing graphs as
maps with contiguous regions,” in Proc. Eurographics Conf. Vis.,
2014, pp. 31-35.

L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for
steiner trees,” Acta Informatica, vol. 15, no. 2, pp. 141-145, 1981.

K. Laboratories, “KEGG PATHWAY database: Metabolic pathways,”
Accessed: Jul. 20, 2018, 2018. [Online]. Available: https:/ /www .kegg.
jp/kegg-bin/show_pathway?map01100

K. Philipp, M. Tamara, and R. Ignaz, “Graph drawing contest
report,” Graph Drawing Netw. Visualization, pp. 575-583, 2019.

http://www.boost.org/
https://www.cgal.org
https://eigen.tuxfamily.org/
https://eigen.tuxfamily.org/
http://www.graphdrawing.de/contest2019/topics.html
https://micans.org/mcl/index.html
https://www.qt.io/
https://www.themealdb.com/
https://www.kegg.jp/kegg-bin/show_pathway?map01100
https://www.kegg.jp/kegg-bin/show_pathway?map01100

2696

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 7, JULY 2022

C.-C. Lin and H.-C. Yen, “A new force-directed graph drawing
method based on edge—edge repulsion,” |. Vis. Languages Comput.,
vol. 23,no. 1, pp. 29-42, 2012.

F. Mcgee, M. Ghoniem, G. Melangon, B. Otjacques, and B. Pinaud,
“The state of the art in multilayer network visualization,” Comput.
Graph. Forum, vol. 38, no. 6, pp. 125-149, 2019.

W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer,
“Kelpfusion: A hybrid set visualization technique,” IEEE Trans. Vis.
Comput. Graphics, vol. 19, no. 11, pp. 1846-1858, Nov. 2013.

W. Meulemans, A. van Renssen, and B. Speckmann, “Area-
preserving subdivision schematization,” in Proc. 6th Int. Conf. Geo-
graphic Inf. Sci., 2010, pp. 160-174.

L. Nachmanson, R. Prutkin, B. Lee, N. H. Riche, A. E. Holroyd,
and X. Chen, “Graphmaps: Browsing large graphs as interactive
maps,” in Graph Drawing and Network Visualization, Berlin,
Germany: Springer, 2015, pp. 3-15.

M. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577-82, 2006.

S. S. Nielsen, M. Ostaszewski, F. McGee, D. Hoksza, and S. Zorzan,
“Machine learning to support the presentation of complex path-
way graphs,” IEEE/ACM Trans. Comput. Biol. Bioinf., to be
published, doi: 10.1109/TCBB.2019.2938501.

A. Noronha et al., “ReconMap: An interactive visualization of
human metabolism,” Bioinformatics, vol. 33, no. 4, pp. 605-607,2017.
S. Nusrat and S. Kobourov, “The state of the art in cartograms,”
Comput. Graph. Forum, vol. 35, no. 3, pp. 619-642, 2016.

M. J. Roberts, H. Gray, and]. Lesnik, “Preference versus perfor-
mance: Investigating the dissociation between objective measures
and subjective ratings of usability for schematic metro maps and
intuitive theories of design,” Int. |. Human-Comput. Studies, vol. 98,
pp. 109-128, 2017.

A. Roy et al., “The virtual metabolic human database: Integrating
human and gut microbiome metabolism with nutrition and dis-
ease,” Nucleic Acids Res., vol. 47, no. D1, pp. D614-D624, 2018.

B. Shneiderman, “Tree Visualization with Tree-maps: 2-D space-fill-
ing approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92-99, 1992.

B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,”
in Proc. IEEE Symp. Inf. Vis., 2001, pp. 73-78.

O. Sorkine and D. Cohen-Or, “Least-squares meshes,” in Proc.
Shape Model. Appl., 2004, pp. 191-199.

C. Vehlow, F. Beck, and D. Weiskopf, “Visualizing group struc-
tures in graphs: A survey,” Comput. Graph. Forum, vol. 36, no. 6,
pp. 201-225, 2017.

L. Verlet, “Computer “experiments” on classical fluids. I. thermo-
dynamical properties of Lennard-Jones molecules,” Phys. Rev. .
Archive, vol. 159, pp. 98-103, 1967.

Y. Wang et al., “Revisiting stress majorization as a unified frame-
work for interactive constrained graph visualization,” IEEE Trans.
Vis. Comput. Graphics, vol. 24, no. 1, pp. 489499, Jan. 2018.

Y .-S. Wang and M.-T. Chi, “Focus+context metro maps,” IEEE Trans.
Vis. Comput. Graphics, vol. 17, no. 12, pp. 2528-2535, Dec. 2011.

H.-Y. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and
M. Nollenburg, “A survey on transit map layout — from design,
machine, and human perspectives,” Comput. Graph. Forum,
vol. 39, no. 3, pp. 619-646, 2020.

H.-Y. Wu, M. Nollenburg, F. L. Sousa, and I. Viola, “Metabopolis:
Scalable network layout for biological pathway diagrams in urban
map style,” BMC Bioinf., vol. 20, no. 1, 2019, Art. no. 187.

H.-Y. Wu, M. Nollenburg, and I. Viola, “Graph models for biologi-
cal pathway visualization: State of the art and future challenges,”
in Proc. 1st Workshop Vis. Multilayer Netw., 2019. [Online]. Avail-
able: https://www.cg.tuwien.ac.at/research/publications/2019/
wu-2019-visworkshop /wu-2019-visworkshop-paper.pdf.

[66] H.-Y. Wu, S. Takahashi, and R. Ishida, “Overlap-free labeling of
clustered networks based on Voronoi tessellation,” J. Vis. Lan-
guages Comput., vol. 44, pp. 106-119, 2018.

[67] H.-Y.Wu, S. Takahashi, C.-C. Lin, and H.-C. Yen, “Voronoi-based
label placement for metro maps,” in Proc. 17th Int. Conf. Inf. Vis.,
2013, pp. 96-101.

[68] K.-H. Yeap and M. Sarrafzadeh, “Floor-planning by graph dual-
ization: 2-concave rectilinear modules,” SIAM . Comput., vol. 22,
no. 3, pp. 500-526, 1993.

[69] V. Yoghourdjian et al., “Exploring the limits of complexity: A sur-
vey of empirical studies on graph visualisation,” Vis. Inform., vol. 2,
no. 4, pp. 264-282,2018.

[70] V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and
K. Marriott, “High-quality ultra-compact grid layout of grouped
networks,” IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 1,
pp- 339-348, Jan. 2016.

[71] Y. Zhonghua and W. Lingda, “Accelerated layout for large-scale
network based on quadtree,” in Proc. 8th IEEE Int. Conf. Softw.
Eng. Service Sci., 2017, pp. 422-425.

Hsiang-Yun Wu received the PhD degree from the
University of Tokyo, Japan, in 2013. She is currently
a postdoctoral research fellow with the Institute of
Visual Computing & Human-Centered Technology,
TU Wien, Austria. Her research interests include
the algorithm development of customized graph
representations and she has been working on map
labeling, railway map design, and complex network
visualization.

Martin Nollenburg received the PhD and habilita-
tion degrees in computer science from the Karls-
ruhe Institute of Technology (KIT), Germany, in
2009 and 2015, respectively. He is currently an
associate professor for graph and geometric algo-
rithms with the Algorithms and Complexity Group,
TU Wien, Vienna, Austria. His research interests
include graph drawing algorithms, computational
geometry, and information visualization with a focus
on applications in network and geovisualization.

Ivan Viola is currently an associate professor in
visual computing with the King Abdullah Univer-
sity of Science and Technology (KAUST), Saudi
Arabia. His research interest include scalable
technology for interactive visualization with the
ultimate goal of constructing, visualizing, and
modeling the entire complex biological organism
at an atomistic or molecular detail. This technol-
ogy will allow people to interact, explore, study,
and understand the life at nanoscale.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

http://dx.doi.org/10.1109/TCBB.2019.2938501
https://www.cg.tuwien.ac.at/research/publications/2019/wu-2019-visworkshop/wu-2019-visworkshop-paper.pdf.
https://www.cg.tuwien.ac.at/research/publications/2019/wu-2019-visworkshop/wu-2019-visworkshop-paper.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

