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Abstract— Augmented reality (AR) offers new ways to visualize information on-the-go. As noted in related work, AR graphics presented 
via optical see-through AR displays are particularly prone to color blending, whereby intended graphic colors may be perceptually altered 
by real-world backgrounds, ultimately degrading usability. This work adds to this body of knowledge by presenting a methodology for 
assessing AR interface color robustness, as quantitatively measured via shifts in the CIE color space, and qualitatively assessed in 
terms of users’ perceived color name. We conducted a human factors study where twelve participants examined eight AR colors atop 
three real-world backgrounds as viewed through an in-vehicle AR head-up display (HUD); a type of optical see-through display used to 
project driving-related information atop the forward-looking road scene. Participants completed visual search tasks, matched the 
perceived AR HUD color against the WCS color palette, and verbally named the perceived color. We present analysis that suggests 
blue, green, and yellow AR colors are relatively robust, while red and brown are not, and discuss the impact of chromaticity shift and 
dispersion on outdoor AR interface design. While this work presents a case study in transportation, the methodology is applicable to a 
wide range of AR displays in many application domains and settings.  

Index Terms—D.2.14.a User interfaces, H.1.2.a Human factors, H.5.1.b Artificial, augmented, and virtual realities, I.4.8.a Color 
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1 INTRODUCTION 
ESPITE its growing marketability, augmented reality’s 
(AR) implementation in day-to-day mobile usage set-

tings remains hampered by continuing challenges. Current 
usability issues include unstable or shifting user interface col-
ors and poor text legibility caused by fluctuations in real-
world lighting levels and color blending [1]. These distortions 
resulting from luminance washout and chromaticity shifts 
can impact both the meaning and salience of AR graphics as 
perceived by users, render them useless or even distracting 
[2-4], and may compound issues with depth perception [3, 5, 
6]. However, dynamically changing environments and high 
levels of lighting variability are frequent in outdoor environ-
ments and must inevitably be accounted for in AR interface 
design. Although most technology needed to generate con-
formal AR interfaces is readily available [2], the technology 
needs to undergo further refinement and integration into us-
ers’ environments before it can realize its full potential [7]. Be-

cause of its status as a novel technology, many people are in-
experienced with using AR head-up displays (HUDs), which 
is one manifestation of an optical see-through AR display 
(head worn AR displays such as Microsoft Hololens are an-
other). In fact, new users are likely to experience some per-
ceptual biases from the mere presence of an AR interface in 
their environment [8], making successful design more diffi-
cult until AR is established as a mainstream technology. Ad-
ditionally, since the market for augmented reality is still rela-
tively new, standard guidelines and regulations for AR inter-
face design largely do not exist. Despite this lack of guidance, 
designers are still expected to contend with the frequent con-
straints and standard practices common to industrial envi-
ronments [9, 10]. 

Even with the continuing technical and perceptual obsta-
cles facing AR, interest in optical see-through AR displays 
continues to grow and numerous applications are nearing 
market introduction. The benefits of using AR technology 
over traditional visual displays include overlaying contextual 
real-time graphics atop real world referents, resulting in 
faster and larger information gains than would be available 
through previous approaches, particularly when conveying 
spatial information [11, 12]. Although the benefits of AR are 
being realized in emerging novel head-mounted applications 
(e.g., as delivered via Microsoft HoloLens and Magic Leap 
One), its commercial use is largely limited by these technical 
and perceptual challenges, particularly in the automotive in-
dustry where there are likely promising gains to user (i.e., 
driver) performance. Specifically, when delivered via in-vehi-
cle HUDs, AR graphics can increase drivers’ forward situa-
tional awareness and cognition while minimizing distraction 
[13, 14]. AR HUDs allow drivers to attend to the display while 
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still keeping their eyes focused in the direction of the road, 
resulting in improved divided and selective visual attention 
as compared to traditional head-down displays [7]. In some 
use cases, such as navigation, AR HUDs can afford more effi-
cient divided attention as compared to traditional center 
stack navigation visual displays without negatively impact-
ing driving performance [15]. 

Nonetheless, there is still much work needed to better un-
derstand how AR interface design affects users’ perception of 
AR interface elements, and its resulting effect on user perfor-
mance; be it in HUD-based driving or in head-worn applica-
tions domains. In this paper, we present an approach for as-
sessing different AR interface colors in outdoor settings that 
examines the degree to which a given interface element can 
retain its perceived color name under changing environmen-
tal conditions. The approach allows for further exploration of 
individual differences in color perception and presumably re-
sulting performance while using an AR display. While this 
paper is about optical see-through displays, we believe the 
method could be applied to other forms of AR (e.g. spatial 
augmented reality, video pass-through, head-worn AR). 

We hope that this method will be replicated by others that 
study AR interface design, and ultimately be used to help 
generate design guidelines for AR interface color selection. 
Further, this approach, along with associated measured color 
data, could be used by real-time color correction systems to 
predict whether or not an AR color’s shift will be perceived 
as a different color (i.e., be named a different color), and fur-
ther to establish acceptable ranges of color blending and shift-
ing for which the color correction system to manage and/or 
intervene. 

2 RELATED WORK 
Among outdoor optical see-through AR’s most significant 
human factors problems are perceptual issues such as light-
ing, text legibility, and color blending. Lighting issues in AR 
are already well known; for example, early attempts to pro-
duce AR graphics in an outdoor environment resulted in cer-
tain color subsets like magenta and cyan appearing translu-
cent and difficult to see in sunlight due to washout [16, 17]. 
Generally, users’ experiences with AR are subject to change 
based on the optical elements present, display technology 
used, and the user’s visual context [17]. Under frequent 
changes in lighting and real-world backgrounds, perceived 
colors and lighting of created AR graphics can become dis-
torted and result in poor visual presentation for users [18]. 
Seo, Kang and Park [19] proposed a method to solve visuali-
zation incompatibility problems in AR by altering the render-
ing style of virtual objects as based on real outdoor lighting 
color data and real weather attributes (weather focused AR 
correction). These efforts strive to increase the visual fidelity 
of the AR graphics with respect to the environments (e.g., 
matching lighting, shadows, specular highlights). While this 
work could undoubtedly help produce more realistic looking 
3D AR models, it is unclear if such methods could identify 
robust AR color sets for use in AR interfaces, where we define 
“robust” colors as ones that retain color naming when viewed 

atop different background by different users. 
Another common visual obstacle in AR is text legibility, 

which often results from poor lighting and color presentation. 
With either of these issues, AR text can easily become difficult 
or impossible to interpret. It is already known that real-world 
background colors and textures impact AR text legibility 
within proposed industrial uses of AR. For instance, back-
ground changes can reduce the visual performance of 3D tex-
tures by distorting and producing masking effects on dis-
played text [9]. Methods to correct for and maximize text leg-
ibility have also been examined. For example, text readability 
can be improved by maximizing the contrast between AR text 
and background in optical see-through displays by using sat-
uration and contrast correction and calibration [20]. However, 
correction techniques for both contrast and polarity depend 
on both the type of AR being considered and ambient lighting 
conditions present, especially when evaluating the limits of 
text readability within work environments. For example, op-
tical see-through AR technology is much more severely im-
pacted by background luminance as compared to video-
based AR when used in industrial application settings [10]. 
Consequently, correction methods must be tailored to, and 
limited by, each AR application setting which may not be a 
feasible or conventional solution to these aforementioned ob-
stacles. 

Be it text, symbology or 3D graphics, color blending pro-
duces additional challenges to AR interface designers and is 
characterized by the path that light goes through to reach the 
users’ field of view, including emission, reflection, combina-
tion with the display, and final product [21]. Color blending 
and distortion can also impact the effectiveness of AR 
graphics. Previous work has identified two types of color dis-
tortion; render distortion (i.e. the accuracy at which a display 
can render color) and material distortion (i.e., the extent to 
which real-world background colors are changed by the dis-
play material) [22]. Research on color blending and distortion 
in AR technology has often focused on exact replication of the 
desired color, frequently by having participants match colors 
overlaid onto various backgrounds [23]. Other research that 
examines color blending superficially in optical see-through 
AR offers several different classes of approaches to the prob-
lem including: empirical user observations, real-time correc-
tion algorithms and mathematical modeling of the phenome-
non, and measurement-based color studies. We present re-
lated works in each of these areas below, followed by relevant 
work in color perception. 

2.1. Empirical User Observations 
Early work by Thomas et al., [24] aimed to identify a set of 
colors that were effective in outdoor (i.e., bright) environ-
ments. Their method involved gathering subjective human 
feedback regarding the visibility and opaqueness of AR UI el-
ements of nine prescribed colors and four intensities (36 total 
combinations) against four different outdoor backgrounds. 
Gabbard, Swan, Hix and collaborators present a method for 
empirically examining the legibility of different AR text col-
ors against prescribed backgrounds [25, 26]. Several empirical 
studies were conducted at Politecnico di Bari on the effect of 
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color blending on text legibility in industrial AR environ-
ments; specifically examining color and style [27], contrast 
polarity [10], and text luminance [28] with optical see through 
AR displays, and text color and background surface texture 
when using projection-based spatial augmented reality [9]. 
These works collectively represent examples empirical ap-
proaches that aim to understand color blending by exposing 
participants to AR interface colors in various contexts and 
documenting participant feedback and task performance. 
However, these approaches do not provide the data needed 
to understand how a particular color may undergo color 
blending and how the resulting color may be perceived by 
different users. 
With the gaining appreciation of dark mode UIs, [29] con-
ducted an empirical user study using a Hololens optical see 
through AR HWD to examine the effect of dark mode color 
schemes on user acuity, fatigue and usability. Users com-
pleted text reading tasks and landolt C visual acuity tests 
with graphics rendered in positive and negative contrast 
against three backgrounds (uniform, lightness distortions, 
and chromatic distortions) under two lighting conditions 
(low and high relative to indoor levels). Results suggest dark 
mode could be an effective approach to reduce fatigue and 
increase effectiveness of AR graphics, especially with indoor 
lighting levels and perhaps with video pass-through 
AR.  However, more work is needed to test whether their re-
sults would hold under outdoor lighting levels. 

2.2. Real-time Adaptive Approaches 
Gabbard et al. [26] presents one of the earliest color correction 
approaches that employed a method to examined different 
real-time correction algorithms aimed at increasing the legi-
bility of text on common outdoor backgrounds. This method 
applied algorithms adapted from other domains in an effort 
to maximize luminance contrast. This work aimed to identify 
what color characteristics were most important to modify in 
future, real-time adaptive interface algorithms. 

Sridharan et al. [22] used binned profiles to describe an ac-
curate color blending model and produce color correction in 
optical see-through displays, and subsequent work resulted 
in “SmartColor” which used computer algorithms to employ 
correction, contrast, and show-up contrast (when natural con-
trast is too low) management strategies to mitigate color 
blending and loss of legibility [30]. Still, correcting for color 
blending remains a complex issue in AR, especially since a 
successful calibration strategy for one AR display type may 
not translate well to other displays with differing specifica-
tions. 

In 2008, the groundwork for a more sophisticated ap-
proach to real-time adaptive AR UIs was laid by Grundhöfer 
and Bimber [31]. In this work, they present a real-time adap-
tive radiometric compensation technique to support the pro-
jection of images onto colored and textured surfaces; a color 
blending problem in spatial augmented reality that is very 
much similar to the color blending phenomenon that occurs 
in optical see-through AR head-worn display (HWD). Their 
approach creates a compensation image from a per-pixel im-
age of the projection surface which is then used to minimize 

geometric distortions and color blending caused by the spe-
cific real-world background (in this case, a projection sur-
face). The authors performed a preliminary user study where 
the adaptive algorithm was preferred over a static approach 
when viewing images and videos projected onto a stone back-
ground.  

In 2016, Langlotz, Cook and Regenbrecht [32], presented a 
method for mitigating the effect of color-blending in optical 
see-through HWDs by also using real-time radiometric com-
pensation. As with other similar approaches, the method as-
sumes that a camera is able to capture the userts’ view in real-
time to establish a compensation image. The work explores 
the use of three different algorithms to compensate for color 
blending, each of which the authors argue have various 
strengths and weaknesses. The work demonstrates that per-
pixel corrected images are significantly better than uncor-
rected images (as evidenced by images captured through the 
AR HWD). However, the results of their user study suggest 
that while the approach is promising the perceptual improve-
ments in image quality were marginal. 

Silva et al. [33] presented an approach to mathematically 
model color correction in AR and included a user study with 
a color matching task conceptually similar to our method pre-
sented herein that varied AR colors against differing back-
grounds and foregrounds. The authors concluded with a 
statement of how difficult and complex the issue of AR color 
correction is. Thus, methods that can potentially help inform 
real-time color correction methods could be beneficial to the 
field. Specifically, we posit that our method could be useful in 
defining more flexible boundaries in which a real-time correc-
tion algorithm may need to operate (yet still retain usability 
and color semantics). 

In other approaches to mathematically modelling the 
problem, Itoh et al. [34] present a color calibration method for 
optical see-through AR that is based on a  model of AR dis-
play optics and human perception as experienced through an 
AR HWD.  The goal of the work is to create a calibration rou-
tine that affords pre-processing of AR source images such that 
the image produced by an AR HWD maintains its originally 
colored appearance.  The authors frame the problem as a 
semi-parametric model, separating non-linear color distor-
tions from linear color shifts.  Results are quite promising, 
and demonstrate how properly calibrated input to an HWD 
can result in rendered images that, when measured by “an 
industrial camera” (presumably a form of colorimeter), are 
more closely aligned to the intended rendered color than an 
image that is not pre-processed.  However, the method as-
sumes that an image of the scene exists, so as to form the basis 
by which corrections are made.  Further, the study does not 
examine individual differences in color perception, however, 
the authors suggest conducting user studies as possible next 
steps. 

Fukiage, Oishi and Ikeuchi [35], describe a method to ac-
curately and linearly predict the visibility of the graphics 
overlaid onto background textures, and then optimize a 
blending parameter so as to enhance the visibility of the 
blended AR content. The authors compare two blending 
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methods: the first locally optimizes a blending parameter 
such that the visibility of the blended object achieves a speci-
fied visibility level, while the second adaptively (and locally) 
ensures the visibility of an AR graphics specifically for optical 
see-through AR displays.  The authors note the challenges of 
such approaches, especially when light from real-world 
scenes is brighter than the maximum brightness capability of 
the AR display; which is often the case with today’s state-of-
the-art AR HWDs in outdoor daytime usage contexts. 

Mori et al. present BrightView [36], a creatively different ap-
proach to mitigating some of the challenges associated with 
color blending in bright outdoor environments; namely the 
phenomenon termed “washout due to luminance” in [4]. In 
their work, the authors attach a liquid crystal filter to an AR 
HWD to attenuate the ambient lighting in real-time and thus, 
increase the  perceived brightness of AR graphics without al-
tering users’ perceived brightness of the real-world (although 
the actual brightness is attenuated). The authors detail an AR 
HWD prototype and evaluate its performance on users’ 
brightness perception across three scenes. Interestingly, par-
ticipants perceived changes introduced by the real-time 
BrightView as increased brightness in virtual objects as op-
posed to decreased brightness in the real-world scene. Their 
work focuses exclusively on the luminance of the display rel-
ative the scene, and does not address chromaticity shifts nor 
color perception per se. 

Itoh et al., 2019, presents a completely novel approach to 
adaptively addressing color blending by developing a proto-
type AR optical see-through display with light attenuation 
capabilities that spatially remove (i.e., filter) colored light 
from the real-world scene on a per-pixel basis [37]. The au-
thors do not employ a user study in this early work, however 
benchmark tests provided evidence that the display can in-
deed successfully modify background colors in effective and 
deterministic ways and in some cases can enhance colors. 
Since the display operates on a per-pixel basis, it is conceiva-
ble that this approach could assist users with color vision de-
ficiencies, and once calibrated to an individual's perceptual 
system, could generate alternate, discernible UI colors when 
needed.  

2.3. Measurement-based Color Studies 
Gabbard [4] employed a strictly measurement-based ap-
proach to quantifying the effects of color blending by placing 
a colorimeter in front of an AR display, whilst presenting 27 
full-screen colors on five backgrounds made from physical 
materials, four colored poster backgrounds, and one white 
poster background. The results classify the measured effects 
of color blending into four categories: washout due to chro-
maticity, washout mostly due to luminance, washout due to 
both chromaticity and luminance, and, linear shift in chroma-
ticity.  

In the work presented herein, we focus explicitly on chro-
maticity and luminance as independent aspects of colored 
light.  Chromaticity is defined as the quality of a color inde-
pendent of its luminance, and in, for example the HSV color 
model, would be defined by hue and saturation. Luminance 
is the property of light that describes “brightness” of light, 

independent of its chromaticity.  Note that these terms are not 
to be confused with chrominance, a term often used in lumi-
nance-chrominance models whereby a color is defined by a 
combination of both chrominance (color) and luminance 
(brightness), and importantly whereby any attenuation to the 
luminance will have a proportional effect on the resulting 
chrominance [38]. 

Regardless of the method, it is the consensus of researchers 
in this space that correcting for color blending remains a com-
plex issue in AR, especially since a successful calibration 
strategy for one AR display type may not necessarily trans-
late well to other displays with differing specifications. Thus, 
there is a need for more psychophysical, user-based methods 
that investigate the relationship between physical stimuli 
(e.g., AR graphics and real-world backgrounds and lighting) 
and the sensations and perceptions they produce (e.g., sub-
jective color judgements). In this area, yet despite the appli-
cation of various methods described above, published work 
that employs actual users to understand the effects of back-
ground and ambient lighting on AR color perception are 
scant. Indeed, a systematic review of 10 years of AR usability 
studies between 2005 to 2014 [39], reveals just six user studies 
on color perception in AR [17, 20, 25, 26, 40, 41] out of 369 user 
studies reported in 291 papers. 

2.4. Color Perception  
Colorimetry, or the science of color perception, measurement 
and reproduction, is a complete field of science in itself and a 
full treatment of even the fundamental tenants is beyond the 
scope of this work.  Instead, we cover just a papers that are 
directly related to the work described here. For a comprehen-
sive entry point into the field consider the following [42, 43], 
and for a brief overview of color models commonly used in  
computer graphics applications, such as AR, see [44, 45]. 

Some of the most relevant seminal early work in color fo-
cused on identifying quantitative links between physical pure 
colors (i.e. wavelengths) and how colors are perceived in the 
human visual system (HVS). In the late 1920s, in separate but 
similar intellectual endeavor, William David Wright and John 
Guild performed color matching experiments (e.g., [46] and 
[47] respectively), where participants viewed a circular split 
screen (or bipartite field) comprised of two halves: a target 
color and an adjustable color.  Using a method of adjustment, 
participants independently altered the luminance of three 
primary light sources (red, green and blue) until the adjusta-
ble color perceptually matched the target color.  Interestingly, 
Wright’s study employed 10 participants and Guild’s only 7, 
and both recruited participants “whose colour vision was 
found to be free from any marked abnormality”. Wright and 
Guild’s work generated data that formed the basis of the Com-
mission Internationale de l'éclairage (CIE) RGB color space, from 
which the CIE XYZ color space was later developed. To date, 
the 1931 CIE XYZ color space (and its subsequent modifica-
tions over the years) has been a foundational component of 
color science for nearly 80 years allowing researchers to math-
ematically explore the relationship between color (be it from 
electronic devices, dedicated lamps or even paint pigments) 
and human perception. 
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In the 1940’s, MacAdam employed a method of adjust-
ment similar (but distinctly different)  than that of Wright and 
Guild, to present 25 target colors to a set of nine participants, 
and asked participants to match the target color to the best of 
their ability [48]. MacAdam then plotted individual re-
sponses to each test color and studied their distribution in the 
1931 standard chromaticity diagram (what we refer to herein 
as the CIE x-y plane). MacAdam’s results found that for any 
specific test color, the set of user responses fell into ellipsoids 
of varying shape and orientation and that each ellipsoid rep-
resented a set of colors that are indistinguishable to the aver-
age observer.  In some ways what MacAdam found is unsur-
prising, however, for the purposes our work, it is interesting 
that the size and orientation of each ellipsoid was different 
depending on the target color, providing evidence that not all 
colors are perceptually equivalent.  Said another way, some 
colors may be more easily distinguished from its neighbors 
than others. As for the application of MacAdam ellipses in 
this work, we can consider two cases.  First, we can envision 
an AR user interface color that undergoes color blending, but 
the blending is such that the resulting color is still within the 
source color’s ellipse. If we place that AR color atop different 
backgrounds, and find similar results, then we could argue 
that this color is rather robust since most participants will not 
be able to distinguish the source color from the resulting 
blended color. Second, more broadly, we can consider a vari-
ation of MacAdam ellipses which are likely larger than the 
original by which the average observer would name the color 
the same as the source/target color.  It is this perspective 
which we embrace for this work, as we expect color blending 
will result in shifts outside the original MacAdam ellipses but 
still may not result in said color being named differently. This 
perspective is not unlike that of Berlin and Kay’s work devel-
oping the World Color Survey [49] (described briefly below). 
Lastly, while MacAdam noted that color differences are occa-
sionally different across a given observer’s right and left eye 
(even those that pass standard eye tests), like Wright and 
Guild’s work, MacAdam also recruited subjects that had 
“normal”: color vision as verified through “all the usual tests” 
at that time. 

More recently, across a number of fields including human 
factors and human-computer interaction, there has been in-
creasing interest in understanding and supporting individual 
differences in perception, cognition and capabilities of vari-
ous kinds, including color perception. While most readers are 
likely familiar with common color vision deficiencies (CVDs) 
such as red–green color blindness (the most common affect-
ing ~8% of males and less than 1% of females worldwide) and 
blue–yellow color blindness, work by Flatla and others’ work 
have provided valuable insight into the factors that affect an 
individuals’ ability to differentiate one color from another. 
Specifically, Reineke, Flatla and Brooks [50], demonstrate 
how a user population’s ability to differentiate color may be 
measured and modeled by UI designers. They describe an 
open-source color differentiation test (WebCDT) that ad-
dresses perception of computer-generated light as viewed 
under varying lighting conditions, as well as a design tool, 

ColorCheck, that, given a source image will predict specifi-
cally which portions of the image likely contain indistin-
guishable colors. A key finding from this work is the fact that 
color discrimination is an individual experience, that of 
course is affected by common CVDs (such as those methods 
above) but also by other internal factors such as age, gender, 
fatigue, as well as, external factors such as monitor brightness 
and environmental lighting. And moreover, that ellipsoids of 
indistinguishable colors are not only larger than previously 
assumed, but larger for men than women (controlling for like-
lihood of inherited CVDs), as well as larger for outdoor envi-
ronments as compared to indoor environments.  The latter 
finding being especially relevant for promising AR settings 
such as outdoors and even in driving as the present study ex-
amines 

Flatla and Gutwin also produced a method for identifying 
individual models of color differentiation that require no a 
priori knowledge of user's color vision and is sensitive to real-
time contexts such as lighting and user fatigue [51, 52].  As 
mentioned in our section on lessons learned, we envision 
ways to incorporate these models into the future iterations of 
our proposed method.  

Our work presented herein does not aim to determine 
what set of colors may be indistinguishable from each other, 
but instead help AR UI designers identify colors that are more 
likely than not to be perceived by name as designers’ intended 
given both color blending phenomenon and individual dif-
ferences in color perception.  

3 METHOD OBJECTIVES & DESCRIPTION  
For this work, we posit that perfectly controlled color render-
ing may not be necessary to adequately convey an intended 
color-coded message. Therefore, determining which colors 
are most effective for text readability and symbol recognition 
could offer AR designers a foundational set of guidelines to 
assist in creating future AR applications. General principles 
and patterns that moderate interactions between an AR 
graphic’s chromaticity, luminance, and real-world back-
grounds are still not well understood, and this knowledge 
could help designers understand and consequently limit sub-
sequent negative impact on users’ color perception and 
recognition. In addition to exploring the relationship between 
common rendering distortions (such as color shift and wash-
out), further work is needed to quantify how these distortions 
impact user behavior and color recognition performance. The 
proposed method is one such approach for addressing these 
issues. 

As detailed color correction techniques already exist, the 
purpose of this work is not to identify exact or subtle interac-
tions between AR displays and backgrounds nor to predict 
text legibility or resulting color rendering. Rather, the work 
presented herein aims to present a method for assessing the 
robustness of candidate colors when presented via optical 
see-through AR displays, and to identify patterns in user per-
formance and color perception when using AR HUDs in dif-
ferent driving-relevant contexts. Moreover, to make effective 
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use of AR interfaces, we seek to understand which color sub-
sets are most robust when used in real-world outdoor envi-
ronments as a function of both visual perception (i.e., acuity 
and visual search performance) and verbal identification (i.e., 
color naming).  

Thus, we developed a systematic method to afford percep-
tual selection of AR color, and then connect these selections 
to set of responses in a color space in which we can measure 
and perform calculations previously established for visual 
color perception. The method affords capturing and analyz-
ing individual differences in color perception, which are in-
herently at play when a variety of different people use an AR 
interface (and is especially important to understand when the 
AR interface is subject to color blending). Our method em-
ploys five steps as outlined below. 

Step 1: Choose target color(s) to study. While each study may 
have different specific aims, we assume that there are a set 
number of user interface colors that can be used to render in-
terface elements. Identify the number of distinct colors 
needed to adequately encode the user interface, and then the 
set of colors by name (e.g., red, blue, yellow). Next, chose a 
specific color chip from the World Color Survey (WCS) stim-
ulus array [49], keeping in mind that chips designated as the 
color naming centroids (for the language in which the study 
takes place) are likely to the best representative color. For ex-
ample, in Figure 1, the dots represent the best examples of 
English color terms based on [53]).  

For context, we briefly describe the WCS and the color pal-
ette used for this work. The WCS leveraged a global network 
of “linguist-missionaries” to access speakers of 110 unwritten 

  
Fig. 1. Overview of proposed method to assist in quantifying the perceived effects of color blending in optical see-through AR.  
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languages from non-industrialized societies representing 
forty-five language families [54]. Participants were shown, 
one by one, each of the 330 color chips contained in the estab-
lished Munsell Chip set [55, 56] and then asked to name the 
color in their native language. The Munsell Chip Set (hereaf-
ter referred to as the WCS Palette), contains color chips sys-
tematically generated using 40 gradations of hue crossed with 
8 levels of lightness (Munsell value) at maximum saturation 
(Munsell chroma) resulting in 320 chips. The WCS palette fur-
ther contains 10 grayscale “colors” ranging from black to 
white modified using 10 different levels of lightness. For each 
of the color categories named, participants were asked to 
choose one chip (from the 330 presented on a single palette) 
that represented the “best example” of each color category. 
Results of the work yielded defined clusters of 11 basic colors 
that are universally named, as well as color centroids for each 
of the 11 color categories.  
Step 2: Render the WCS Stimulus Array on a Tablet & Meas-
ure. To support participants’ selections of “closest match” col-
ors, we recommend using a tablet or touch-based computer 
to render a set of color chips. Specifically, we suggest using 
the specific colors and arrangement of color chips used in the 
World Color Survey (WCS) Palette [49]. Depending upon the 
display device used, it may not be possible to render all 330 
WCS palette colors, in which case we recommend a subset 
that is representative of the color gamut of interest and con-
tains the relevant color naming centroids. 

To assist in ensuring tablet-rendered colors match AR 
source colors, measure each of the Munsell color chips as ren-
dered on the tablet paying particular attention to the meas-
ured target colors of interest. Use the CIE color space to define 
chromaticity and luminance [49] for each of the target colors 
you wish to study (as opposed to a technology-based color 
model such as RGB). The 1931 CIE color space was created by 
the Commission Internationale de l'Eclairage, in a collective ef-
fort to generate a color space that adequately represents hu-
man perception and preserves relationships within the space 
that approximates relationships in perceptual differences pre-
sent in human color judgements. The 1931 CIE color space is 
defined by the tuple: x,y,Y. Chromaticity is defined in 2-space 
using x and y (and generates the commonly used 1931 CIE 
color plots). Luminance is represented using the remaining Y 
parameter. While the 1931 CIE space has many potential uses, 
we felt that it was a well-suited for analysis, but not neces-
sarily so for participant selection since it visually represented 
in 2 dimensions as a continuous color space (see Figure 1, Step 
5 for an example of part of the 1931 CIE color space). Con-
versely, the WCS palette is well-suited for selecting a closest 
match, but not for perceptually based post-hoc analysis. 

Most research-quality colorimeters will support measure-
ment using the CIE color model (i.e., output xyY values). In 
Figure 1, one would measure all 148 colors (we used a trun-
cated WCS color palette) and would specifically note the xyY 
values for the chip associated with the “blue” naming cen-
troid chip. 
Step 3: Tune the AR Source Colors. Since each visual display 
is likely to have a different color gamut and color rendering 

properties, we must account for the fact that simply rendering 
a color’s xyY value measured during Step 2 to an optical see-
through display does not guarantee that the color rendered 
by said optical see-through display would actually result in 
the same xyY measurements. Thus, for each target color, we 
must tune the actual color presented to the AR display (i.e., 
the source color) such that the resulting measured CIE xyY 
matches each target color. To achieve this, first render a full-
sized (and adjustable) source color image to an optical see-
through AR display. For the initial color condition, convert 
the CIE xyY of the target color to a computer graphics color 
model (e.g., rgb, hsv, etc.) taking care to choose the correct 
standard illuminant (D65 in mid-day outdoor conditions), 
and standard observer (10 degrees provide the best average 
spectral response in human observer especially at close dis-
tances). Then, measure the CIE xyY color of the presented 
color using a colorimeter in a dark room with no real-world 
backgrounds. Adjust the source color provided to the AR dis-
play until the measured xyY values are equal to those meas-
ured in Step 2. It is important to note that visual displays (in-
cluding AR displays) have per pixel differences in color. 
However, users still need to use these displays despite the 
limitations. To mitigate some of these issues, we recommend 
sampling the presented color at several different screen loca-
tions during this step. Do this for each of the target colors you 
wish to study, and note the associated source color values 
(e.g., r,g,b or other) for each target color.  
Step 4: Participants Name and Match Perceived AR Colors. 
Select an experimental testing location where the AR graphics 
can be rendered atop real-world backgrounds of interest. For 
each target color, systematically render the documented r,g,b 
source colors to an AR display in usage contexts with real-
world backgrounds. Use contexts are very flexible and could 
include interface stimuli such as text (e.g., to examine legibil-
ity, menuing, notifications), symbols (e.g. dashboard indica-
tor lights), and 3D models (e.g., conformal AR graphics such 
as avatars, virtual objects, etc.). If desired, have participants 
complete some task that requires the use of the AR infor-
mation (e.g., visual search task as presented in our exemplar 
user study below). Time on task and accuracy data may be 
useful depending on the goals of the assessment. Further, to 
facilitate assessment of the perceived AR color (given the size, 
shape, saliency of the chosen AR graphics), have participants 
verbally name the perceived AR color as well as match the 
perceived color to the closest swatch on the tablet-rendered 
WCS palette.  
Step 5: Map Participant Palette Responses to CIE Color 
Space & Analyze. For each participant response choice using 
the tablet-rendered WCS palette, document the CIE xyY color 
measured during Step 2 associated with each participant 
color chip choice. With the original target colors noted (from 
Step 2) as well as the corresponding participant responses in 
CIE xyY color space, we can now turn to a series of various 
analysis techniques to better understand the effects of tested 
backgrounds on tested AR colors. We provide a sample of 
analysis techniques below as a starting point. We hope that 
this method inspires other analysis techniques to help the 
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community better understand the perceived interactions be-
tween AR display color and real-world backgrounds. 

For analyzing response data. we propose two quantitative 
measures: shift and dispersion. In simple terms, shift can be 
thought of as a measure of accuracy (resulting primarily from 
color blending), and dispersion a measure of precision (re-
sulting primarily from individual differences in color percep-
tion). More specifically: 
• Shift we consider a measure of how far a response color 

gamut has moved from the original AR source color location 
in the space. 

• Dispersion we consider a measure of the size of a response 
color gamut (or footprint in the 1930 CIE color space) cre-
ated by the set of participants’ perceived colors.  

Specifically, shift is a measure of total deviation of partici-
pants’ color matching tablet responses from the original tar-
get color.  We consider shift in the 1931 CIE chromaticity x-y 
plane (hereafter referred to as the CIE x-y plane) as chroma-
ticity shift independent of luminance changes (although lu-
minance shift can also be calculated using CIE Y values).  Shift 
measurements allow us to better understand how real-world 
backgrounds and lighting blend with source AR color and 
subsequently affect users’ perception of that interface color.  
And when examined in tandem with color naming accuracy 
data, can provide insight into which AR interface colors are 
more and less susceptible to significant x-y shifting that may 
result in participants’ ability to perceive and correctly name 
an interface target color. 

Dispersion is as a measure of similarity between the set of 
CIE x,y values of each participants’ color matching tablet re-
sponses for an experimental condition independent of how 
similar those responses are to the target source color.  Thus, 
dispersion can provide insight on to what degree a given 
source color will be more (or less) likely to be perceived as 
different colors across different individuals.  And in turn, 
help identify AR interface colors that may be less susceptible 
to individual differences in color perception. 

Both shift and dispersion are calculated as a normalized 
quantitative difference using the root mean square distance 
method (RMSD), as shown in Equation (1), which has been 
used to identify the degree of similarity and alignment be-
tween varying structures [57].  

 

𝑅𝑀𝑆𝐷 = &∑ ()
*

)
+

  (1) 
 

For shift, di represents the distance between a specific user-specified 
response color and the respective target color for a given experimental 
condition (e.g., blue text, brick background, symbol task). For disper-
sion, di represents the distance between a specific user-specified re-
sponse color and the average of all user-specified response colors for a 
given experimental condition.  In both cases, n represents the total num-
ber of participant responses per experimental condition, and i denotes a 
specific participant response. 

Equation (2) shows how the term di is calculated. Chroma-
ticity shift and dispersion analysis values for x and y denote 
points on the CIE x-y plane of the 1931 CIE color space.  While 

xi and yi represent a point corresponding to a specific partic-
ipant response, x and y represent the CIE x-y value of the tar-
get color for shift and average x-y value of participants’ re-
sponses for dispersion.   
 

𝑑 = -(𝑥 − 𝑥1)3 + (𝑦 − 𝑦1)3 (2) 
 

Additionally, response color naming data can be qualita-
tively analyzed by, for example, looking at summary statistics 
of accuracy. Together, the dispersion, shift, and color name 
help to collectively define the robustness of an AR color in spe-
cific real-world usage contexts. That is, to what extent a color 
retains its utility on a particular display for different users 
across dynamic contexts with changing backgrounds and 
lighting. 

4 EXEMPLAR USER STUDY 
While the method presented in Section 3 could be used for 
various types of optical see-through AR displays in different 
application domains, the user study presented herein applies 
our method to an optical see-through HUD in a transporta-
tion setting. When color is used to encode important infor-
mation, particularly in safety-critical situations like driving, 
it is vital that the color robustly maintain its perceived color 
across a variety of backgrounds. For example, a red AR 
graphic signaling a driver to stop should clearly be perceived 
as red despite any changes as a result of color blending with 
the environment. If users consistently perceive the graphic to 
be red regardless of background, then we consider it to be a 
robust color. This user study includes an initial analysis to 
identify robust (and not robust) colors in the driving domain. 
Participants and Study Design 

We engaged twelve participants ranging from 21-44 years 
old (six male: mean age =28, SD = 8; six female: mean age =27, 
SD = 6.8) with at least one year of previous driving experience 
and self-reported perfect or corrected-to-perfect vision.  

During each experimental session, participants conducted 
both text- and symbol-based visual search tasks using an AR 
HUD (Figure 2).  We rendered AR stimuli in one of eight dif-
ferent colors atop one of three real-world backgrounds. After 

  
Fig. 2. Experiment setup. The AR HUD (right) was fixed to the dash-
board and adjusted to the user’s line of sight. A color palette was also 
displayed using a tablet mounted at eye level (left) of the driver, simu-
lating a large tablet-style in-vehicle display. 
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each visual search trial, participants also performed a color 
naming and color matching task.  Each participant experi-
enced four repetitions of each condition. Thus the experiment 
was an 8x3 within-subjects repeated measures design. Details 
of the independent variable levels and tasks follow.  

Independent Variable: AR Source Color: In choosing the 
AR source colors to study, we began by constraining the se-
lection to colors present on a tablet-rendered, truncated WCS 
palette to ensure that a color match existed for each trial (al-
beit under optimal or perfect viewing conditions). We ini-
tially adopted the 11 basic color categories which are most sa-
lient for human color recognition [49, 53], but excluded black, 
white and gray from our selection due to poor rendering on 
the AR HUD, leaving eight basic colors: blue, brown, green, 
orange, pink, purple, red, and yellow. For each of the eight 
colors, we chose the specific Munsell color chip from our 
truncated WCS palette historically shown to the be the nam-
ing centroid [53] and applied the method described in Section 
3 to ensure the colors presented on the tablet were adequately 
rendered to the HUD. Specifically, we color matched (in the 
dark) the projected light through the HUD for each of the 8 
colors to the xyY values viewed on the tablet to within 0.01 
chromaticity distance in the CIE color space and 10 cd/m2 for 
luminance.  

Independent Variable: Background: Each participant 
completed visual search and color naming/matching tasks 
using the AR HUD against three different backgrounds; 
brick, pavement, and grass. We intentionally selected very 
different colors including red (brick), green (grass), grey 
(pavement) in order to examine blending across a range of 
colors. We further wanted backgrounds with a high tendency 
to appear in vehicle operations, based on previous studies 
(e.g., [15]). While these backgrounds do not represent a com-
prehensive set of potential backgrounds for drivers, they rep-
resent some possible use-cases.  These backgrounds also al-
low study of a variety of colors that could be reasonably ex-
perienced in the real world and are somewhat homogeneous 
in color within the HUD field of view: a property that we ex-
plicitly chose to control for possible confounds. Complicated 
backgrounds (e.g., advertising billboards) would be more dif-
ficult to study, but certainly of interest for future work. 

Visual Search Task: We assessed two types of visual 
search tasks for this study.  We used a text-based task to exam-
ine structured visual search tasks where users employ known 
strategies (i.e., left- to-right, top-to-bottom) to visually exam-
ine a set of stimuli in order to complete the task (Figure 3, left). 
Throughout the text task, participants were instructed to find 
and record the number of times a target letter occurred in four 

lines of pseudo text built from a randomized sequence of let-
ters, both capitalized and lowercase, spaced similarly to writ-
ten words but following ISO 9241-3, and with characters sub-
tending approximately 1.0 degree in height. We used a san 
serif mono spaced SimHei font, rendered in its most simple, 
plain stroke form.  For this work we did not employ more vis-
ually complex approaches to rendering fonts such as those 
used in [58, 59].  While these approaches are known to in-
crease the legibility of fonts in 2D GUIs, we were specifically 
interested in color perception of the UI element, and adding 
more visual complexity to the font could have confounded 
our results (i.e.., adding transparency or juxtaposing other 
colored pixels as a font outline could affect participants’ color 
perception) 

 The target letter occurred at least once and no more than 
nine times in the four lines of pseudo text.  

We also used a symbol-based task as a semi-structured visual 
search tasks that required participants to identify a target 
symbol within a grid of 3 by 3 symbols randomized from a 
standardized library of commonly known symbols with sim-
ilar levels of visual recognition and complexity [60] (Figure 3, 
right). The average symbol height was approximately 1 de-
gree (min symbol height of 0.067 degree and max height of 
1.653 degree). Following completion of each grid search task, 
participants likewise immediately recorded their response 
time via mouse button press and verbally denoted the loca-
tion of the target symbol. Grid location was defined simply, 
using the terms left-middle-right, and top-middle-bottom for 
horizontal and vertical dimensions respectively. 

Color Matching and Naming Tasks: During both the text 
and symbol tasks, participants were given a color palette dis-
played on a mounted tablet showing a variety of colors or-
dered by hue (left to right) and brightness (top to bottom, Fig-
ure 4). Following completion of each visual search task trial, 
participants used this palette to indicate the tablet color that 
most closely matched the AR color in which they perceived 
through the HUD. Participants verbally designated the clos-
est color match using letters A-G for row position and num-
bers 1-20 for column position.  We selected 170 colors to pre-
sent on the tablet from the World Color Survey (WCS) stimu-
lus palette (originally consisting of 330 Munsell color chips 
[20]). We used a subset of the 330 WCS colors for two reasons: 
first the smaller palette was easier to visually scan given the 
size of our tablet; and secondly, we did not want the color 

 
Fig. 3. Participants completed two types of visual search task, structured 
visual search tasks using pseudo-text (left) and semi-structured visual 
search tasks using symbols (right). 

 
Fig. 4. We rendered a truncated World Color Survey palette on a tablet. 
Participants selected the color that most closely matched the perceived 
color as viewed through the AR HUD.  
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matching task to be overly demanding especially given the 
fact that some participants might not be able to easily differ-
entiate adjacent colors on the full 330 palette due to either 
physiological or inherited differences in their visual system 
[51]. To assist in differentiating colors, our truncated palette 
used a proportional number of the original selection by equi-
distant spacing. 

4.1. Experimental Procedure 
Before testing, participants sat in the vehicle driver seat, ad-
justed the seat to a position that kept viewing position con-
sistent across participants, and familiarized themselves with 
the AR HUD, tablet, and environment in which they com-
pleted tasks.  

Each participant completed a set of text- and symbol-based 
visual search tasks. We limited our choice of visual elements 
to text and symbols because these are very common visual 
elements used in interface design. After completing each vis-
ual search task, participants verbally identified the color of 
the text or symbol they perceived through the AR HUD, and 
then chose a chip from the truncated WCS palette rendered 
on the tablet (Figure 4) that most closely matched the color 
they perceived through the AR HUD.  

Since the study employed a within-subjects design, partic-
ipants experienced 192 trials in total (8 AR source colors * 3 
real-world backgrounds* 4 repetitions). We counterbalanced 
task type and background order, and randomized AR source 
color and repetitions. Throughout the experiment, all trials 
were self-paced, allowing participants to take a short rest in-
terval between any two trials if needed.  

After each experimental background condition concluded 
and participants exited the vehicle, an experimenter navi-
gated the car to the next background location while a second 
experimenter escorted participants to the next location. The 
three background sites were located within five minutes of 
walking distance of each other.  

4.2. Ambient Light  
Since we conducted trials in an outdoor testbed, there were 
some inevitable changes in ambient lighting that occurred 
due to varying weather. We documented fluctuations in am-
bient lighting during experimental trials using a CEM DT 
8820 environment meter equipped with a lux sensor. All trials 
occurred in ambient lighting bounded between 500-2000 lux, 
corresponding to lighting conditions ranging from a dark 
overcast day and light overcast day [61]. Ambient light was 
measured before the commencement of each experiment and 
when ambient lighting changed significantly during the ex-
periment (e.g. over 1000 lux from overcast to light overcast), 
the experiment was paused, and lighting measurements were 
taken again to ensure that it remained within acceptable 
bounds before resuming trials. In practice, most weather con-
sisted of overcast skies which limited the resulting variability 
in ambient lighting.  

4.3. Materials 
All experimental sessions took place in a parked car in front 
of three different outdoor locations, one for each designated 

background. We used Microsoft PowerPoint and Matlab soft-
ware to generate visual cues presented via a Pioneer laser 
scanning HUD with a field of view of 17.1º x 5.7 º and a virtual 
image distance of approximately 2 meters placed approxi-
mately where a driver’s resting gaze would be located (Figure 
2). Both the PowerPoint and Matlab programs were embed-
ded with time tracking, and systematically controlled images 
displayed on the HUD to participants, while simultaneously 
capturing response time data. For each trial, participants 
mapped their perceived color on an Android tablet mounted 
on the dashboard of the car. 

5 RESULTS AND ANALYSES 
Our results focus first on reporting task time and errors for 
both text and symbol tasks.  The remaining analyses focus on 
participants’ verbal color naming performance, specifically 
exploring the interactions between participants’ ability to ac-
curately perceive and name the perceived AR graphics’ colors 
and the degree of chromaticity shift and dispersion associated 
with the set of participants’ color matching responses. 

5.1. Response Time, Errors & Naming Accuracy 
We measured response times and error for both text and sym-
bol visual search tasks. Using Analysis of Variance (ANOVA), 
we found higher error rates for the text task as compared to 
the symbol task across all color conditions, and no significant 
differences across response times by color. We also saw, as ex-
pected, text tasks (µ=12.266) took significantly longer to com-
plete than symbol tasks (µ=2.712, p<.0001) as shown in Figure 
5. 

We also measured the accuracy at which each an AR 
source color could be verbally identified. Because partici-
pants were unconstrained when identifying colors, we cate-
gorized participants’ verbal responses with a binary hit (suc-
cess) or miss (failure) based on whether or not the color name 
was used in the description. For example, a source color of 
yellow named “yellow-orange” by a participant would be a 
hit, but “cream-orange” would be a miss since it did not in-
clude the term “yellow.” Pearson chi-square results show sta-
tistically significant differences between all AR source color 
naming (Figure 6) with blue, green and yellow associated 
with higher naming accuracy (above 80%) and all other AR 
colors associated with relatively poor naming accuracy (0-

 
Fig. 5.  Response time by color for both text and symbol tasks. 
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40%). Participants were notably unable to correctly name 
brown and often reported it as a dark green or yellow instead.  

5.2. Luminance and Naming Accuracy 
One issue meriting further exploration was whether the in-
herent luminance of each source color impacted its resulting 
naming accuracy, meaning for example, that perhaps brighter 
AR source colors would be more likely to be perceived “cor-
rectly” as compared to darker AR source colors. To analyze, 
we plotted the original measured luminance of each AR 
source color against naming accuracy associated with that 
color (Figure 7) and found a weak positive correlation be-
tween source luminance and naming accuracy when mod-
eled linearly. Specifically, luminance accounts for less than 
25% of variation for either task type (symbol task: R2=0.1559, 
text task: R2=0.2394). As a result, the remainder of our analysis 
will focus on chromaticity shift and dispersion.  

Moreover, note that with the exception of the color orange, 
where there were more correct answers associated with the 
symbol task as compared to text (C2=65.759, p<0.0001), there 
are no significant differences in color naming accuracy be-
tween text and symbol. Since we are interested in under-
standing how chromaticity shifts and dispersion are related 
to naming accuracy, and since there appears to be no con-

sistent difference in naming accuracy across task type, the re-
mainder of our analysis reports AR source color using com-
bined text and symbol results. 

5.3. Chromaticity and Naming Accuracy 
For shift and dispersion analyses, we quantified the color that 
each participant perceived using the measured CIE xyY val-
ues associated with each participant’s selected color chip (i.e., 
using the method presented herein, for each response noted 
in step 4, we used the measured CIE values obtained in step 
2).  

Using CIE xy values, and equations 1 and 2 above, 
ANOVA revealed several significant differences in perceived 
x-y shift across AR source colors (p<0.0001), with green, or-
ange and blue associated with the least amount of perceived 
shift, and pink, red and brown AR source colors associated 
with the most perceived shift (especially brown, Figure 8, 
left). Post-hoc analysis revealed significant differences be-
tween most colors as denoted with letters in Figure 8, left).   

When we examine the relationship between x-y shift and 
naming accuracy, we see an expected strong negative correla-
tion (R2 = 0.69958) where lower amounts of shift are associated 
with higher naming accuracy and conversely, colors with 
high x-y shift are associated with low naming accuracy (Fig-
ure 8, right). 

Additional ANOVA revealed several significant differ-
ences in perceived x-y dispersion across AR source colors 
(p<0.0001) but no differences across backgrounds. Results 
show that brown and pink are associated with greater disper-
sion than all other colors, and blue, purple and yellow are as-
sociated with the least amount of x-y dispersion as compared 
to other AR source colors (Figure 9, left). Post-hoc analysis re-
vealed significant differences across groups of colors as de-
noted with letters in Figure 9, right.   

When we examine the relationship between x-y dispersion 
and naming accuracy, we see an a moderate-to-weak negative 
correlation (R2 = 0.40708) where lower amounts of dispersion 
are somewhat associated with higher naming accuracy and 
conversely, colors with high x-y dispersion are loosely associ-
ated with low naming accuracy (Figure 9, right).  

Lastly, to evaluate the relationship between shift and dis-
persion in the CIE x-y color space, we graphed both variables 
by AR color and annotated each data point with its corre-
sponding naming accuracy (Figure 10). In the chromaticity 
space, significant decreases in naming accuracy occur as both 
shift and dispersion increase on a generally largely uniform 
scale. Further studies designed specifically to identify the rel-
ative weighting of chromaticity and dispersion shifts would 
be needed to fully understand the relationship between these 
two parameters and user perception and performance. 

6 DISCUSSION 
Our analyses allow us to characterize the relationships and 
interactions between (1) task performance (response time and 
accuracy), (2) naming accuracy, and, (3) the chromaticity shift 
and dispersion derived from participant tablet responses – ul-
timately attempting to examine which AR UI colors we can 

 
Fig. 7. The original measured display luminance of a color contains a 
weak positive correlation with the resulting naming accuracy of that 
color when rendered through an AR HUD.  Note that brighter colors are 
not universally associated with higher naming accuracy. 
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Fig. 6.  Naming accuracy by color for both text and symbol tasks. Every 
color significantly different with p < 0.01 or smaller. Letters denote sig-
nificant differences between AR source colors. 
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consider robust against the testbed real-world backgrounds.  
In order to identify robust AR colors, we first examined 

task response time and task accuracy. We found no differ-
ences in task response time or accuracy due to color, although 
the task itself (text or symbol) did have a significant impact, 
with text resulting in lower accuracy and longer response 
times. This outcome can be expected because the text task in-
cluded more characters to parse through. And in essence was 
a more difficult task as compared to the symbol task. 

 Intuitively, we might expect that the robustness of a color 
may depend on the nature of how the color used in an AR 
visual element (e.g., as a thin line vs. a filled rectangle).  Inter-
estingly, Figure 6, shows that color naming accuracy was 
fairly consistent across most colors, with the exception of or-
ange (and possibly red and purple). In this case, it may be that 
there is some threshold by which a color becomes robust, but 
under that threshold its perceived name can be more easily 
affected by the number of pixels colored.  For example, or-
ange symbols are more accurately named than orange text.  
But confusingly, red and purple text are more accurately 
named than their symbol counterparts.  Clearly, more work is 
needed to further understand the impact of visual element 

size/footprint and color robustness, but that would require a 
more systematic experimental design and analysis of visual 
stimuli shape and size which is out of scope for the current 
work. 

 
Fig. 10. Average chromaticity shift plotted against average chromaticity 
dispersion, for each color and task type (symbol ê, text Í). Both chro-
maticity shift and dispersion concurrently impact the accuracy of the color 
naming (shown numerically as a percentage next to each color), and po-
tentially in turn the perceived semantics of colored symbols and/or text.  
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Fig. 8. (left) Average x-y shift by color and background. Shifts in the x-y plane can be attributable to both the effects of color blending and, to a less 
extent, individual difference in color perception. (right) Average x-y shift by naming accuracy shows a strong negative correlation. 
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Fig. 9. (left) Average x-y dispersion by color and background (both tasks), where differences in dispersion levels are related to how likely a color is 
to be perceived differently by different users; a reflection of individual differences in color perception. (right) Average x-y dispersion by naming 
accuracy where a regression analysis reveals a moderate-to-weak negative correlation. 
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There were, however, significant differences in color nam-
ing accuracy with blue, green, and yellow resulting in the 
most consistently correct color naming. A possible explana-
tion for higher naming accuracy associated with these colors 
might be that these colors had inherently higher source lumi-
nance, because luminance is often seen as a solution to miti-
gating color blending issues in AR [62]. A complementary 
reason may be that the human visual system (HVS) contains 
three types of specialized cone that are particularly respon-
sive to specific short, medium and long wavelengths of light.  
In particular, the HVS’ tristimulus response is most sensitive 
to blue, green and red colored light (i.e., 420nm, 524nm, and 
564nm wavelengths detected by S, M, and L cones respec-
tively). While the specifics of our HVS may help explain the 
relative robustness of blue and green seen in our results, we 
must consider the relatively high amount of shift and disper-
sion associated with red to understand why participants 
found red more difficult to accurately perceive and name. 
Specifically, we posit that while the HVS is patricianly sensi-
tive to red light, the actual color that reached users eyes was 
likely not red and, indeed, this fact could be explained by its 
relatively low luminance. 

 Therefore, we examined naming accuracy as a result of lu-
minance in Figure 7. However, this finding showed that lu-
minance only accounts for a small part of color naming accu-
racy. That is, blue exhibited high luminance and was more ac-
curately named than other colors, as were green and yellow 
despite exhibiting low luminance.  Moreover, orange and 
purple symbols were associated with similar luminance lev-
els but very different naming accuracy. 

This may indicate that the brightness of rendered colors 
does not directly drive the resulting accuracy to which a color 
is identified since yellow and green exhibited much lower lu-
minance levels as compared to blue (which had the highest 
luminance of all colors measured) but nonetheless were 
named with similar accuracy to blue. This result provides ev-
idence against a commonly held idea that a solution to a spe-
cific color correction is that "brighter is better".  

This initial analysis examining luminance and color nam-
ing accuracy provided some potential direction for AR dis-
play designers. Specifically, that blue, green, and yellow seem 
to have potential to be more robust UI colors across varying 
backgrounds. However, this initial analysis does not help us 
understand the reason behind this finding. For that reason, 
we examined in more detail participants perceived colors’ 
chromaticity shift and dispersion from the source color. 

6.1. Chromaticity x-y shift and color naming accuracy 
When considering the concept of chromaticity x-y shift, in 
this work, we first should unpack what we are measuring 
with respect to both object and subject phenomenon.  Specif-
ically, we have to first consider that there exists an objective, 
physical change in light that reaches users’ eyes via color 
blending which has been shown to be measurable via color-
imeter [1, 4].  That is to say that the AR graphics may have 
undergone a change that could result in some x-y shifting 
even before we ask users to perceive them.  And it is the case 
that analysis of such colorimeter data could predict, to some 

degree, what colors may undergo less x-y shift than others 
which arguably would suggest these colors would be more 
accurately named (on average) as compared to those colors 
that exhibit quantifiably more x-y sift. However, this meas-
urement-based approach does not take into account individ-
ual differences in color perception, which are ultimately at 
play when using AR.   

Next, we must consider the second phenomenon that oc-
curs while using this method, whereby we ask participants to 
perceive the color as viewed through the AR display and at-
tribute a name to that color as well as select a matching color 

swatch on experimental tablet.  While we acknowledge the 
fact that there is likely some noise in the perceptual color 
matching subtask associated with this step, for now, we are 
mostly focused on the fact that such a matching task allows 
for capturing individual differences in perceived x-y shift in-
cluding those related to color vision deficiencies.   

Thus, we consider perceived x-y shift (which we examine 
as an average across all participants), to encompasses both 
the result of objective, measurable x-y shifts associated with 
color blending as well as individual differences in color per-
ception (but arguably to a lesser degree than actual x-y shift). 
This is illustrated in Figure 11 showing a set of participant re-
sponses (●) for a green AR source color (Ó), as well as the 
average perceived x-y shift (○), and our estimate of the actual 
x-y shift (×) shown for illustration purposes.  Note that the 
distance between the actual x-y shift and average perceived 
x-y shift is due to individual differences in color perception 
and is smaller than the distance between the distance be-
tween the source color and actual x-y shift.  If all participants 
had theoretically perfect perception, then we’d see no differ-
ences across participants’ responses and the resulting average 
perceived x-y shift would indeed be the same as the actual x-
y shift due to color blending. However, humans are not per-
fect replicas of each other nor perfect in color perception!  
Thus a contribution of this method is that it takes into account 

 
Fig. 11. The average perceived x-y shift (○) of a green AR color (Ó) 
represents the actual x-y shift as a result of color blending (×) as well 
as, to a lesser extent, the effect of individual color perception differ-
ences (●). 
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the fact that we have imperfect users perceiving colors on the 
fly, and this method may assist the community in under-
standing which colors are associated with less perceived shift 
(and potentially more accurate color naming) as a worthwhile 
endeavor. 

 As mentioned in Section 5.3, we found a strong negative 
correlation between x-y shift and naming accuracy, with 
lower amounts of shift associated with higher naming accu-
racy (Fig 8, right). Of note is the fact that green, yellow, and 
blue were associated with relatively little shift and accurate 
naming accuracy as compared to other colors.  Since we meas-
ured blue to be significantly more luminous than green and 
yellow, we must consider the possibility that some colors un-
dergo less actual and perceived x-y shift as compared to oth-
ers independent of source color brightness. However, what 
we do not know is whether these smaller x-y shifts are due to 
actual x-y shift or perceived x-y shift.  The answer may lie in 
the fact that other colors measured as similarly low in lumi-
nance (e.g., brown and red) were associated with large 
amounts of perceived x-y shift; suggesting that these differ-
ences are perceptual as opposed to the effect to measurable 
color blending. This is important to note, as our method can 
uncover these differences and identify sets of colors as 
“promisingly robust” despite their apparent lack of bright-
ness.   

6.2. Chromaticity x-y dispersion and color naming 
When employing measurement-based approaches, such as 
those that use a colorimeter on a benchtop, we can only meas-
ure dispersion as a result of using different lighting levels or 
backgrounds or colored AR light (holding 2 of those other 
three constant).  What we cannot do in these cases is capture 
the perceptual differences that exist between potential AR us-
ers.  Using a colorimeter, we can observe that an AR color has 
been blended to a different location on the CIE x-y plane, but 
we cannot know if that change will result in has significant 
perceptual differences between users.  That is, we cannot 
know which resulting colors would likely be associated with 
greater x-y dispersion and as a result be more likely to be 
named differently by different users. In short, benchtop meas-
urement alone is insufficient. 

By employing the method presented herein as well as the 
measure of chromaticity x-y dispersion, we believe we can 
hone directly into individual differences.  Indeed, unlike x-y 
shift, the measure of x-y dispersion is solely a function of dif-
ferences between individual responses to a presented color. It 
is calculated based solely on the x-y position of all partici-
pants’ responses, regardless of the source color’s position or 
even the color-blended position as measurable via colorime-
ter).  Thus, x-y dispersion is a more direct measure of the ex-
tent to which a particular color is likely to be misperceived by 
users.  Due to inherent color vision differences, both physio-
logical and cultural, that exist, some colors are more suscep-
tible to be misperceived than others. Moreover, there exists a 
set of colors adjacent to any given color that are likely to be 
perceived  as that same given color (see MacAdam’s work 
that defined a set of  ellipsoids in the CIE color space whereby 
observers are unlikely to distinguish between colors that lie 

within a given ellipsoid when viewed at the same luminance 
[48]). 

Thus, the smaller the x-y dispersion, the more likely that a 
set of users will be to name the perceived color the same 
name.  This is not to say that small x-y dispersions will result 
in accurate color naming, as it is the position of the set of re-
sponses that define the average x-y dispersion relative to the 
source color that plays an equally compelling role in naming 
accuracy. We can nonetheless envision small average x-y dis-
persions that plot atop of a target color in the x-y plane, which 
would likely result in not only many users agreeing on the 
color name, but also that name being correct.  But a small x-y 
dispersion that is significantly displaced from the target color 
could result in very low naming accuracy. This concept is a 
bit asymmetric however, in that large average x-y dispersions 
would almost certainly always increase the chances that: (1) 
users will perceive the color very differently from each other, 
and, (2) that those color perceptions would be farther away 
on the x-y plane from the target color (and thus be likely to be 
misnamed).   

Recall that we calculate x-y dispersion based on the posi-
tion of the average color response, not the target color posi-
tion nor even the measurable position of the color produced 
as a result of color blending.  It could be argued that perhaps 
a more meaningful measure of dispersion could be calculated 
relative to the actual color rendered to users’ eyes as a result 
of color blending (the × in Figure 11 as opposed to the ○). 
However, since we are interested in a human-centered 
method that can be easily conducted in the field, we will as-
sume that the relative difference between the actual measur-
able color and average perceived color is relatively small as 
compared to the difference between the average perceived 
color and individual observations (this assumption can be 
visually explored in Figure 11). 

At this point, it is prudent to note that since x-y dispersion 
calculations are exclusively weighted to individual differ-
ences in color perception (as compared to x-y shift which is 
more heavily weighted by color blending effects), there is 
likely some noise introduced in to the data collection method 
since not only do users need to perceive and the color of the 
AR graphic but also the color of the tablet swatches. Thus, re-
searchers must take care when choosing tablet swatches as 
well as performing calibration and measurement of tablet 
swatches to match candidate AR UI colors.  Specifically, it 
might behoove researchers interested in more fully exploring 
individual color perception differences to use a large tablet 
with more swatches than used in the study presented herein. 

Circling back to our evolving notion of “robustness”, we 
can posit that that colors associated with less dispersion are 
more likely to be named correctly than those with high x-y 
dispersion.  Conversely, we would likely consider colors with 
high dispersion not robust since they are more likely to be as-
sociated with significant individual color perception differ-
ences.  

However, the role of x-y dispersion in robustness is a little 
more complicated.  Our study suggests that two colors with 
similar dispersion may not necessarily be equally robust. For 
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example, green and red show relatively similar levels of x-y 
dispersion (0.038 and 0.043 respectively) but very different 
naming accuracy (with green correctly name 84.8% of the 
time, and red only 5.3%).  

Also, consider the colors pink and red as shown in Figure 
8.  Both exhibit similar x-y shift (and were not statistically dif-
ferent in our testing) but are associated with different levels 
of x-y dispersion (0.060 and 0.043 respectively) and very dif-
ferent naming accuracies (29.9% and 5.3% respectively). The 
end result is that red has similar shift, less dispersion but is 
still less accurately named as compared to pink. Thus, while 
x-y dispersion can help us understand individual differences 
in color perception, it is insufficient alone to predict robust-
ness. 

7 DESIGN IMPLICATIONS 
Examining both x-y shift and dispersion in tandem (Figure 
10) suggests that distortion in both x-y shift and dispersion 
may each play an active role in determining how accurately a 
color can be perceived and thus named. Colors that exhibit 
high naming recognition were associated with low levels of 
either chromaticity dispersion or chromaticity shift but were 
not necessarily associated with low levels of both chromaticity 
dispersion and shift. For example, blue averaged more x-y 
shift than green but was associated with lower levels of x-y 
dispersion than green, and thus both colors could still be ver-
bally identified across different backgrounds. It is possible 
that an AR color’s propensity to be perceived differently by 
different users under varying viewing conditions may in fact 
be compensated by lower amounts of x-y shifting; and vice 
versa.   

Rather than developing a precise or mathematical color 
correction strategy for optical see-through AR displays (such 
as HUDs), this work instead contributes a novel method for 
exploring and understanding the general principles that gov-
ern users' recognition of AR rendered colors after undergoing 
both objective color blending and subjective individual per-
ception.  

In an ideal world, we could color-correct to minimize x-y 
shift and personalize to account for individual differences 
and minimize x-y dispersion.  For example, through the use 
of adaptive color correction techniques, we could minimize 
effects of color blending resulting in rendered colors that 
more closely align with designers’ intent. Further, we could 
add a personalized adaptive component that takes into ac-
count individual differences in color perception.  

Until it is perfectly possible to account for individual dif-
ferences in perception (i.e., x-y dispersion), our method could 
help identify colors that are likely to be associated with lower 
levels of dispersion across a population (i.e., colors that are 
more likely to be named the same by many different users).   

To increase the odds of consistent user experience with re-
gards to color, AR UI designers could select colors with high 
inherent source luminance (e.g. blue, green, and yellow).  
And while it appears that high luminance does not guarantee 
accurate color identification, luminance may play a signifi-

cant role in visualization acuity, resulting in better user per-
formance (e.g., reading small text). Thus, the luminance of an 
AR source color likely functions as a foundational “starting 
point” for that color and may moderate its color blending sen-
sitivity.  

However, in some cases where color is used to convey im-
portant messages (e.g., red) and where that color in its purest 
form exhibits low luminance on a given AR display, designers 
should instead consider other color(s) that exhibit higher lu-
minance but are still meaningfully interpretable (i.e., will be 
interpreted as a “warning” color more so than specifically a 
“red” color). Indeed, our method could be useful in choosing 
this set of potentially more robust candidate adjacent colors. 

It is also interesting to note that brown, as the color with 
the lowest source luminance of the tested colors, was also 
never named correctly by participants. This supports the idea 
that, while increasing luminance may not be a solution to 
color recognition itself, AR graphics may require a minimum 
inherent brightness threshold or suffer becoming unrecog-
nizable. Given this constraint, designers may be required to 
consider certain colors inherently unfit for use in AR applica-
tions if intending to render those at their correct CIE values. 

Designers should be aware that issues in color recognition 
may not always be solved simply by increasing a color's pro-
jected brightness (if, for example, that color is still prone to 
heavy x-y shifts and/or x-y dispersion in that specific envi-
ronment).  Instead, choosing colors associated with lower lev-
els of dispersion may provide another avenue for correcting 
color perception issues in AR displays. In any event, identify-
ing and selecting robust colors that users can correctly iden-
tify in situ is a key to successful color-coded UI designs.  

Lastly, it is important to continue exploring design 
tradeoffs in AR UI design which balance photorealistic and 
practical color rendering strategies, as maintaining both will 
be critical to their future adoption and effectiveness. 

8 LIMITATIONS AND FUTURE WORK 
We recognize several limitations associated with the nature of 
this study.  

While we had participants self-report CVDs, we can envi-
sion an improvement to our method would be to pre-screen 
participants using a suite of CVD tests. For example, by ad-
ministering ColorCheck [50], or perhaps better yet a situa-
tion-specific model of color differentiation such as ICD-2 [52], 
researchers could ensure that the set of tablet choices are more 
likely than not to be distinguishable from each other and 
modify the set of tablet choices as needed per participants’ 
needs. Using ICD-2 could also be used in analysis to assess 
the degree to which participant responses may be attributable 
to CVD, and possibly even posit (using the participant-
named color) whether the inability to differentiate colors ef-
fected the AR color judgment or the tablet response. 

As discussed in the exemplar user study (section 4.2), the 
use of an outdoor testbed resulted in periodic changes in am-
bient lighting. Though the experimenters limited data collec-
tion to a small range of lighting conditions, some variation in 
light may have still impacted users’ perception of rendered 
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graphic color, and this method does not include a way to ac-
count for lighting variations (e.g. screen reflections or ambi-
ent changes) in the color mapping process. We expect that re-
peating a similar design under more controlled lighting com-
parable to the outdoor levels studied herein could provide 
more consistent results and may reduce some of the disper-
sion observed during data collection. Future versions of this 
method may include analysis of ambient lighting to better un-
derstand the interaction between ambient lighting and re-
sults. Running a study with several different but constant 
lighting levels may also be a good strategy to further explore 
the impact of luminance and washout on color recognition.  

We also note that some AR display designs would not al-
low easy measurement of the actual color which might limit 
the usability of this method for some display types. Therefore, 
our method is a first step in further understanding the per-
ceptual experience of color through AR displays. Addition-
ally, the equipment used for this study (e.g. the Pioneer HUD) 
have likely improved both in terms of fidelity and color ren-
dering capability, given the current state of rapid growth in 
this area of technology. Future studies could apply our 
method to other AR s  We also recognize that only eight color 
categories were tested out of a much larger range of possible 
choices. Future work could take a broader approach to by ex-
panding the selection of colors. Nonetheless, it is likely that 
the eight colors chosen for this study could encode the most 
critical elements of an AR user interface.  

Further, our user study only examined text and symbol 
visual UI elements. The fact that we see differences in re-
sponse time performance across task type suggests that the 
display element type (coupled with task) could produce dif-
ferent findings. Indeed, using the method proposed herein, 
future studies could examine other visual elements of AR UIs 
such as transparency, size, shape, etc. and their effect on AR 
color perception. 

Future research with larger sets of backgrounds, including 
those that are dynamic or exhibit more complex spatial, spec-
ular and/or color properties may identify additional charac-
teristics of robust colors. Similar extensions coul d could fur-
ther examine the robustness of UI colors across other AR 
hardware such as video pass-through AR and spatial aug-
mented reality, both of which we believe the method pre-
sented herein could be applied with minimal adaptations.  

Follow on studies could also identify the acceptable chro-
maticity and luminance values bounding a given color name 
centroid within which a presented AR source color retains its 
color naming. Such a study would help set boundaries of ac-
ceptable parameters for real-time color correction systems 
that have constraints imposed by the environments. While 
our work does not explicitly draw the expected boundaries, 
it proves that these relationships between dispersion and 
chromaticity shift exist, and that understanding them is im-
portant to achieve color perception as desired by AR display 
designers. Continuing this work could help us to define the 
thresholds for color-naming sensitivity, or the boundaries 
within which an AR source color should be presented for the 
most successful rendering.  

Lastly, future work could use color measurement tech-
niques (described in section 2) to first quantifiably measure 
color blending and the associated x-y shifts, and then com-
pare that data to perceived shift & dispersion obtained via the 
method presented herein to develop a model.  Given the en-
vironmental lighting and backgrounds as well as the AR 
source color, this model could first predict the actual x-y shift 
(that creates differently color light that reaches users’ visual 
system) as well the subsequent set of possible perceived x-y 
shift & dispersion responses across a user population. 

9 CONCLUSION 
Our psychophysical method of evaluating AR color percep-
tion across a variety of backgrounds can help us better under-
stand color-recognition boundaries and the resulting impact 
on task performance. This method could be a foundation for 
standardizing the way that we test color AR displays. The lu-
minance and chromaticity output, while important, are only 
inputs into the human perception of color. Our method ex-
tends the work done with the World Color Survey (WCS) for 
application in the AR domain. By applying our method in fu-
ture data collection, we could build a data set that shows the 
“robustness” of AR colors much like the WCS stimulus array 
in Figure 4. Further, we propose that this method is a way to 
categorize and draw boundaries around the colors that a par-
ticular display could provide. This method can be used in any 
outdoor setting and with most AR displays to understand the 
capabilities of an individual display.  
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