
1

embComp: Visual Interactive Comparison of
Vector Embeddings

Florian Heimerl, Christoph Kralj, Torsten Möller and Michael Gleicher

Fig. 1: The embComp system on the example of Section 3.3. The (A) configuration drawer allows users to configure the
desktop, select datasets and manage selections. On the right, the desktop contains five views: (B) neighborhood overlap view,
(C) neighborhood spread view, (D) selection list view, (E) neighborhood wall view, and (F) neighborhood sequence view. In
this screenshot, the user has selected a bin in the overlap view on the bottom right (marked by the arrow), adding the objects it
contains to the selection set. Other views highlight bins that contain selected objects (non-transparent bins with dark outlines
in B and C), or show a representation of each selected object (D and E).

Abstract—This paper introduces embComp, a novel approach for comparing two embeddings that capture the similarity between objects,
such as word and document embeddings. We survey scenarios where comparing these embedding spaces is useful. From those
scenarios, we derive common tasks, introduce visual analysis methods that support these tasks, and combine them into a comprehensive
system. One of embComp’s central features are overview visualizations that are based on metrics for measuring differences in the local
structure around objects. Summarizing these local metrics over the embeddings provides global overviews of similarities and differences.
Detail views allow comparison of the local structure around selected objects and relating this local information to the global views.
Integrating and connecting all of these components, embComp supports a range of analysis workflows that help understand similarities
and differences between embedding spaces. We assess our approach by applying it in several use cases, including understanding
corpora differences via word vector embeddings, and understanding algorithmic differences in generating embeddings.

F

1 INTRODUCTION

Analysis techniques for complex objects, such as documents,
images, or words, often rely on object embeddings that associate
each object with a vector in a latent space. These embeddings are
constructed by placing the objects into a vector space such that
related objects are close. Embeddings may be examined directly, or
used as input to other analytic steps that use distance information,
such as clustering and nearest-neighbor classification.

Different embedding methods and parameterizations of these
methods can lead to significantly different results, and embeddings
can encode a variety of relationships in different ways. Comparison

between embeddings is thus an essential part of the embedding
workflow. It can be useful for model selection, model tuning,
and understanding the underlying data set. For all those goals,
users need to understand the differences between embeddings, and
investigate potential causes and effects of these differences. This
makes embedding comparison a complex, user-centric problem that
is not well understood so far.

Embeddings position a potentially large number of objects
within a given space. The results may differ significantly with
respect to the absolute position of the objects, but relative positions

ar
X

iv
:1

91
1.

01
54

2v
2

 [
cs

.H
C

]
 2

 J
un

 2
02

1

2

and local neighborhoods are typically most relevant. With this
work, we enable users to see overviews of local correspondences
between embeddings and enable them to drill down to details
to inspect differences on a more fine-grained level. In contrast,
existing approaches to comparing embeddings typically summa-
rize similarities and differences with one single value, such as
stress [29], or examine a set of pre-selected examples [20]. The
former is problematic because it is a gross oversimplification of
the measured difference, while the latter requires the identification
of examples and fails to provide a broader context.

Comparing embeddings is challenging because it must consider
similarities and differences in the relationships between objects
in different embeddings. For example, two objects may be close
together even if the embeddings have a different number of dimen-
sions or were created by different algorithms. In other words, both
objects could have very different positions in these embeddings,
but still be close in distance. Embedding comparison tools must
help the viewer understand the similarities and differences in
the relationships between objects, independent of where those
objects are placed in their respective spaces. These challenges are
exacerbated because embeddings often involve large collections of
high dimensional objects.

In this paper, we provide a novel, visual approach to comparing
object embeddings. Our approach uses overviews that provide a
synopsis of differences in local object relationships over the data set,
selection mechanisms that use the summaries to identify interesting
subsets of objects, and local views that help understand individual
relationships and relate them back to the global views. A variety
of local metrics capture different aspects of object relationships.
Overview visualizations show the distribution of these metrics
over the collection of objects in the embeddings. These overviews
allow the user to assess the overall amount of difference, and
to identify sets of objects with potentially interesting behavior.
Identified subsets of objects can be examined more closely to
show commonalities and differences in the selection detail views,
their relationships with nearby objects in the local views, and their
context within the larger embedding.

Our contributions are: (1) a visual interactive approach to
embedding comparison and an implementation thereof; (2) a
collection of metrics that convey differences between embeddings
and corresponding visual designs for distributions of those metrics
for a pair of embeddings; (3) the specific designs for some of its
components; and (4) a flexible selection mechanism based on set
algebra. The presented approach is general: it can be applied to
any type of object embedding where pairwise distances between
objects are important. We evaluate our approach by showing how it
enables a variety of uses, and demonstrate the benefits of systematic
comparison of embeddings.

1.1 Motivating Example

We motivate our approach with an example where embComp is
used to compare embeddings generated by different algorithms.
The dataset is a publicly available collection of visualization
publications [25] with all papers from the past 28 years to the
VIS conference series. Our goal is to use a co-author graph
embedding for finding related authors. To build this embedding,
we extract the co-author graph (with 5402 authors as its nodes, and
co-author relationships as edges). We then generate two different

embeddings1 of the graph nodes, one with node2vec [17], and the
other one with deepwalk [45]. We use embComp to compare the
embeddings (Figure 2) to understand the differences in how the
methods model the data, and the potential effect of these differences
in our application scenario.

To start, we use the overlap view (Figure 2A) that provides
a summary of the neighborhood overlap metric. The metric
shows how many author nodes have similar neighbors in the
two embeddings. The details of this metric and the summary
visualization are described in §4.1. In the visualization, the
rightmost column shows the distribution of the metrics for the
author nodes: we see that many nodes share 9-15 neighbors (dark
areas at the top right), but some share 0-2 neighbors. Selecting
the boxes corresponding to 0, 1, and 2 neighbors (lower right in
Figure 2A) we select the authors whose neighborhoods have little
similarity between embeddings. This causes them to be highlighted
across all views currently open.

We want to understand the severity of the changes in distances
that cause the differences in neighborhoods. In other words, do
neighbors in one embedding generally stay in the vicinity in the
other embedding, or do they move further away? For this, we
use the spread metric that is summarized by Figure 2B (details
are described in §4.1). The view shows that overall, many of the
nearest neighbors remain close between embeddings. However,
it also shows that the selected authors have neighbors that move
farther away (shown by boxes with a black outline) in the upper
half of the view, starting from column 3.

We continue to investigate by selecting subsets and viewing
them in a number of additional, close-up views (details about these
views are discussed in §5). Using the selection list (not shown)
we can examine the nodes with low overlap and see they are
authors with a very low publication count and, therefore, little
connection to the rest of the co-author graph. Using the scatterplot
view (Figure 2C), we can see differences in the patterns of the
selected nodes: while node2vec places those nodes in a high-density
area in the embedding very close to similar, unconnected, authors,
deepwalk tends to distribute them throughout the embedding next
to unrelated authors.

Two additional metrics, distance and density, and their overview
visualizations (details are discussed in §4.2) help us identify
unconnected authors in the node2vec embedding. It places them far
away from the other nodes in a low-density region of the embedding.
We can use this knowledge to identify unconnected authors and
use it to increase precision of our author suggestion function. In
this analysis, we identified an important difference between both
embedding methods, which helps us decide which one we prefer
for our application scenario. Closer inspection further provided us
with insights about how to use properties of the embeddings to
extract additional information that is of relevance in the domain.

2 RELATED WORK AND BACKGROUND

Embeddings are generated by inferring structure from input data,
and represent the data objects as vectors. Closeness in the vector
space can be interpreted as high similarity between both data
objects. To compute and compare distances between object pairs
in embeddings, we need a distance function. Different embedding
methods rely on different ways to compute distances between
vectors in the resulting spaces. Our approach is metric agnostic,

1. Parameters for both representations: dimensions: 128, number of walks:
10, walk length: 80, window size: 10.

3

Fig. 2: The picture shows the (A) neighborhood overlap, (B) neighborhood spread and (C) scatterplot views showing the VIS co-author
graph embedding scenario discussed in Section 1.1. The user has clicked on the 3 boxes in the lower right of (A), marked by the orange
arrow, to select all documents that share 2 or fewer of their 15 nearest neighbors.

and can be applied to any vector space for which the object distance
can be computed.

Embedding algorithms are complex and often take high-
dimensional data as input. They then find a representation of
that data in a lower dimensional space closer to the input data’s
latent space such that all relevant relationships between the data
objects are retained, while noise is eliminated. An example for this
is the GloVe word embedding method [44]. It takes a matrix of
word co-occurrences for every possible word pair as input, which
usually has many hundred thousand dimensions. The resulting
vector space, that relates words to each other, typically has a few
hundred dimensions.

Embedding methods exist for many different types of complex
data objects. All of them can be compared with embComp. Domains
and data types include network [45], medical [9], biological [62],
image [23], or citation [5] data. A data type that relies on
embeddings heavily is text data, for which topic models are a
popular type of embedding method. They abstract a document
collection into coherent sets of words, called topics, and represent
documents in a topic space. Two common topic modeling methods
are Latent Dirichlet Allocation (LDA) [6] and Non-negative
Matrix Factorization (NMF) [54]. Topic models can be interpreted
as dimensionality reductions of a high-dimensional document-
term matrix. Dimensionality reductions are a particular type of
embedding, where a high-dimensional representation of the data
is reduced to a lower dimensional representation (embedding) that
keeps some of the features of the original one.

Word embeddings place words into a vector space to encode
semantic relationships. Methods to create word embeddings include
word2vec [38], GloVe [44], and more recent improvements [39],
[46]. Recently, alignment methods for word embeddings have been
proposed that create a mapping between two word spaces [1], [16].
They serve specific linguistic tasks, but are not useful for comparing

embeddings because they do not encode local differences between
embeddings in an accessible way. Those local differences, which
our method helps uncover, are the most relevant properties to guide
comparison.

Another type of embedding approach is dimensionality reduc-
tion, often used to visualize data. They transform one embedding
space into another, lower dimensional (often 2D) one, and try to
retain distance and neighborhood relations as much as possible for
visualization. Popular methods include Multi-Dimensional Scaling
(MDS) [29], t-stochastic neighborhood embedding (t-SNE) [37],
local linear embedding (LLE) [50], and Principal Component
Analysis (PCA) [61]. Any of the previously discussed approaches
can be used with our approach.

2.1 Metrics for Dimensionality Reduction and Networks
Our approach is based on metrics that quantify embedding
correspondences. For the specific case of dimensionality reduc-
tions, metrics exist to gauge the quality of low dimensional
representations. A popular one is stress [29], the sum of squared
errors of pairwise distances between each pair of objects when
projected down to a lower dimensional representation. In the
general embedding comparison case, relative distances between
objects play a more important role than absolute ones. For this
reason, we focus on relative metrics, including neighborhood-based
ones, instead. The idea of comparing neighborhoods has been
used in the past for evaluating dimensionality reductions [32],
[40]. Correspondence metrics between neighborhoods in the
original and the dimensionality-reduced version of a dataset include
trustworthiness and preservation [60]. They measure intrusions and
extrusions into neighborhoods, respectively. While those measures
are not directly applicable in our approach, because they summarize
neighborhood correspondences into one single number, some of
our metrics (§4) borrow from these ideas.

4

In addition to numeric quality metrics for dimensionality reduc-
tions, there are a number of visual interactive approaches that help
users with interpreting and assessing reduction results. For example,
VisCoDeR [12] allows comparisons between 2D dimensionality
reduction methods by enabling brushing and linking between their
respective results. This type of comparison is not feasible for higher
dimensional embeddings, because they cannot be easily represented
visually. Stahnke et al. [55] help users evaluate one specific 2D
representation of a higher dimensional dataset by relating it to
the object features in the original, higher dimensional space. This
requires interpretable features in the original data space, which
often do not exist. DimStiller [24] guides users through the process
of creating dimensionality reductions, while Dis-Function [7]
allows users to interactively modify distance function in a 2D space.
These approaches focus on interpreting dimensionality reductions,
while we consider more general comparison between embeddings.

Metrics that describe large and complex data structures have
been developed and used for network data. Bagrow et al. [4]
introduced the B-matrix format for networks that captures distribu-
tions of neighborhood sizes of network nodes based on hop count.
They use a color ramp-based display to visualize and compare
network structures. GraphPrism [27] implements a variation of the
B-matrix visualization for large networks and combines it with a
range of additional network metrics into a system for analyzing
and comparing network structure. Some of embComp’s metrics
are based on ideas similar to that of a B-matrix, but target vector
spaces with different properties and requirements than networks.

2.2 Visual Model Creation and Comparison

Object embeddings are data-driven models that abstract from
complex data sets. In this section, we review related visual
approaches to model guidance and comparison. While the goals,
comparison targets, and challenges [14] of the approaches differ,
they are all in some aspect related to this work.

Many approaches address the comparison of specific model
types, often for specific usages. For example, Serendip [2] provide
tools for comparing topic models. Clustervision [30] helps users
compare clusters with different quality metrics, while iVisCluster-
ing [31] allows users to interactively explore a topic model on a
set of documents and interactively refine the model by splitting
and combining topics. TreePod [41] helps to interactively create
decision tree models based on trade-offs between model properties.
These previous approaches focus on other models and tasks, while
we aim at embedding model comparison for a broad range of
scenarios.

Other recent approaches consider interpretation of word em-
beddings. Some focus on analogy relationships between word
vectors [8], [34], generate meaningful representations of the
embedding space [52], or help users with specific linguistic tasks,
such as the creation of semantic word fields [43]. Heimerl and
Gleicher focus on local phenomena [20], while Parallax [47] allows
users to view subsets of embeddings based on subspaces meaningful
to the user. Latent Space Cartography [36] is a method that allows
users to map and compare multiple vector spaces based on user-
defined example vectors. None of the above support comparisons
on a global scale between embeddings without requiring the user
to have an initial hypothesis about similarities and differences.

EmbeddingVis [33] introduces metrics for the network domain
to compare nodes within embeddings to the source networks. In
contrast, we focus on comparing any kind of embedding and data

types. Parallel Embeddings [3] uses dimensionality reductions and
visualizations of corresponding clustering structure in embeddings
to help users gauge the relative performance of classification models
based on the embeddings compared.

2.3 Design Inspirations

We use color fields to encode and compare 1D distributions of our
embedding metrics. This basic design supports interaction with the
data and is inspired by Piringer et al. [48], who use color fields to
compare 2D distributions of data. Another source of inspiration [53]
uses, among other designs, color fields to convey value distributions
in tabular data. Szafir et al. [56] discuss the perceptual issues in
using color fields for summaries.

Van Ham and Perer [59] support navigation and drill down in
large network structures to facilitate exploration based on a metric
that quantifies potential interestingness of subgraphs. Heimerl et
al. [21] help navigate large document scatterplots and change focus
to various levels of detail. Neither of these approaches focuses on
comparison tasks.

Our system uses multiple coordinated views that allow a user to
configure the interface to their needs [49]. We use flexible selection
mechanisms to allow for exploration, an idea we further developed
in the Boxer system for classifier comparison [15].

Prior systems have used embeddings to learn about the
underlying data set. Chuang et al. [10] uses topic models to facil-
itate exploration of document similarities and highlight potential
inaccuracies of the model representation. Cite2vec [5] embeds
citations together with words to analyze how they get used in the
citing literature. We use elements from these systems in our design.

3 DESIGN RATIONALE: SCENARIOS AND CHAL-
LENGES

We apply a framework for comparison [14] to provide an ab-
straction of the embedding comparison problem, identify the key
comparative challenges, and suggest solution strategies. First, we
consider a range of example scenarios and abstract common tasks
and data properties. Then, we identify comparative challenges and
connect them to a solution strategy.

3.1 Example Scenarios

We survey a set of representative scenarios of how embedding
comparison is used in practice. These examples illustrate the
potential utility of an embedding comparison tool, common tasks,
and the diversity of challenges. We draw these examples from
our experiences using embeddings, from collaborators interested in
scenarios involving embedding comparison, as well as the literature.
S1 A designer creates a 2D reduction of high-dimensional

data to present it visually. They must check that the visual
presentation adequately conveys the contents of the high-
dimensional space. They first check the overall amount of
local structure preserved to identify potential problems and
then investigate specific objects to see if these errors are
acceptable. For this, simple summary metrics are not sufficient
because they do not give users access to subsets of objects or
single objects for assessment. This is a common scenario [10],
[28]. While data projection methods attempt to retain pairwise
distances [29] or cluster structure [37], quality assessment
must be applied on a case-by-case basis.

5

S2 A researcher performs model selection between topic models
with different hyper-parameters. To identify the best model,
they must make subjective assessments of which of these
embeddings provides better similarity recommendations. They
first survey the differences across the whole embedding to
assess the amount of difference and identify documents with
different recommendations. These differing neighborhoods are
examined to understand differences and learn about potential
causes. Assessing document embeddings that help find similar
documents and analyze similarity and cluster structure of a
text collection is a frequent task (e.g., [2], [11]).

S3 A developer may compare word vector embeddings built
with different numbers of dimensions, algorithms, or hyper-
parameters to understand the effects of these changes. To
assess the differences in results, they may see how often
words have different neighborhoods and what words are most
affected. Users of embedding methods often perform such
tests using standard evaluation measures [20] of single metrics.
There are no existing tools to systematically compare such
spaces. This is a standard scenario in the word embedding
literature [38], [44], and similar challenges exist for other data
objects, such as images [22] and graphs [17], [45].

S4 A data scientist compares two supervised dimensionality
reductions built from different amounts of training data to
analyze potential overfitting of the learning algorithms. After
confirming the overall difference between the embeddings,
they can identify specific objects to explore the relationships
with the training data. Model comparison scenarios for
supervised dimensionality reduction are described in the
literature [13], [63].

S5 A literature scholar compares word vector embeddings, each
built from a different collection of texts to analyze the differ-
ences in word usage. This involves identifying words that stay
constant or have dramatic changes, examining specific words
to see how their neighborhoods change, and reconnecting
these findings to the overall language by looking for groups
and patterns of words that behave similarly. See Section 7.2
for an example. Similar scenarios are also described in the
literature [18], [26].

S6 A linguist may compare word embeddings constructed from
corpora in different languages in order to understand latent
differences in word usage between the languages. Here, the
objects (words) in the different embeddings are not the same;
however, there is a known correspondence between some of
them. This scenario has precedence in the literature [58].

Users currently address these kinds of tasks using either ad hoc
analysis or specialized tools. We use the list to abstract some key
ideas that inspire a general tool for embedding comparison.

Global and local tasks: Each scenario follows a similar pattern
of tasks: (1) generally assess the amount of difference between
the embeddings, (2) identify a set of objects whose neighborhoods
differ in interesting and relevant ways, (3) more closely assess the
objects and their neighborhoods. The changes in neighborhood may
then be dissected to determine their cause, or re-connected to the
overall embedding by finding other objects with similar behavior.
This list provides a core set of abstract tasks that our approach
must address. Using the target/action task notation [42] as adapted
for comparison [14], there are several common comparison targets:
entire embeddings, collections of objects, and the neighborhoods
of objects. Important actions include quantifying the amount

of difference, identifying interesting sets and objects, dissecting
specific differences to understand their cause, and re-connecting
specific findings to the larger set or their impact on downstream
uses.

The ability to identify and analyze the changes in neighbor-
hoods of objects is central to all comparison scenarios we have
considered. Differences in an object’s set of neighbors reflect
differences in the type of relationships encoded between objects.
This ability is particularly important in the common cases where
there is no ground truth, so assessment requires some degree
of subjectivity. For example, if a document has very different
neighbors in two topic models, an expert may want to evaluate if
one set is preferable to the other, or whether the document can be
disregarded as an outlier. Identifying specific objects is often more
interpretable to a user than more abstract relationships between
objects, and connects to the semantics of the embedding. For
example, in a word embedding, the user most likely understands
the objects (words) and has considerable background knowledge to
interpret how words behave.
Understanding models vs. understanding data: Users have two
types of goals. Some scenarios (S1-2DReduction, S2-Parameters,
S3-Dimensions) involve comparing different embeddings of the
same data in order to understand differences between the models.
In contrast, other scenarios (S5-Corpora, S6-Languages) involve
comparing embeddings built from different data to compare the
underlying data sets.
Different uses of embeddings: The scenarios all identify similari-
ties and differences between neighborhoods in embeddings, but use
them in a variety of ways. Some scenarios seek to identify similar
objects (S2-Parameters), while others use this information for
other processes such as clustering or nearest-neighbor classification
(S4-Overfit), or creating 2D models for visual presentation that
place similar objects close together (S1-2DReduction). All of these
uses of embeddings focus on the similarity information in the
embedding; the points assigned to objects are less important than
the distances between objects. In many cases, such as word vector
embeddings or t-SNE dimensionality reduction, the embedding
spaces are abstract, i.e., the dimensions have no meaning other than
providing a space where relationships between objects hold. In
some cases, such as topic models, the dimensions may have some
semantic meaning. For such scenarios, global positions may be
important. These can be addressed with standard high-dimensional
analysis techniques [35].
Differences in embedding spaces: All scenarios may involve
comparing embeddings in different spaces. The spaces may differ
by numbers of dimensions, or have very different scalings. Such
differences preclude direct comparison of object coordinates, or
even of the distances between objects. Therefore, we focus on using
distance ranks (i.e., orderings of closeness) as such measurements
are invariant to dimensionality and scaling; two objects can be
nearest neighbors in very different spaces. However, distance values
may be important in understanding the causes of distance rankings.
For example, a small change in an object’s distance may cause
a large change in its rank if there are many objects with similar
distances. This means we must consider both rank- and distance-
based metrics and allow for using the two types together.

3.2 Challenges and Solution Strategy

Gleicher [14] identifies three categories of comparative challenges.
We focus on pairwise comparison, avoiding the challenge of large

6

numbers of targets for comparison. This leaves the challenges of
large targets (embeddings may have large numbers of objects)
and complex relationships (each object’s local neighborhood may
change in many ways).
Challenges of Complexity: The complexity of embedding compar-
ison stems from the fact that the important similarities, e.g., whether
objects are close together, may be obscured by other differences,
e.g., their positions in space. To manage this complexity, we
focus our attention on the objects and their neighborhoods,
including the distances between objects in these neighborhoods.
We break the comparison of embeddings into the comparison of
the neighborhoods of each object in the embedding. Given a pair of
neighborhoods corresponding to an object in a pair of embeddings,
we can define a number of metrics that capture the degree of
difference in the distance relationships. More global comparisons
consider the distributions of these per-object comparisons. §4
considers a set of metrics for comparing neighborhoods, and
introduces a view for summarizing distributions of each metric for
global assessment. In addition, detail views help with examining
specific objects and their local neighborhoods.
Challenges of Scale: To address the challenges of scale, we use
all three scalability strategies, summarize, select subset, and scan
sequentially [14], [51]. First, we use summary views that aggregate
per-neighborhood metrics across the embeddings. These views
show the distributions of the various metrics. They allow the user
to both have an overall sense of the amount of similarities and
differences, and help identify sets of objects with interesting values
of the metrics for further exploration. These interesting subsets
may be selected to focus on a more manageable portion of the
object collection. Our approach provides mechanisms for creating
complex selections by combining groups seen in summary views
(§4), and provides views that allow details of moderate sized groups
to be examined (§5.2). Scanning in these intermediary views is
used to identify specific objects to examine details.

3.3 Running Example Use Case

We will use one use case as a running example throughout the next
two sections to motivate the methods introduced and illustrate what
they can be used or in practice. Here, we introduce the use case and
will return to it at the end of both Sections 4 and 5. In this example,
we want to assess the quality of a dimensionality reduction by
comparing a bag-of-words embedding (every word in the collection
represents a dimension) of documents to its dimensionality-reduced
version. This is an example of scenario S1. The dimensionality-
reduced space is two-dimensional, therefpre, it can be used for
presentation and visual analysis of the source data.

This example uses t-SNE [59], a dimensionality reduction
method for 2D projections that is popular because it aims to
conserve the neighborhoods from the original space.

Traditionally, metrics are used to quantify the quality of
dimensionality reductions. The most popular one is stress [29].
Stress and all other metrics discussed in §2.1 quantify quality as
one value. This keeps all details and advantages and disadvantages
of a 2D representation of the data hidden. Often, users want
additional information about how good and representative the
dimensionality-reduced version of the dataset is by inspecting
concrete examples and their surroundings. To support this, our
approach treats dimensionality reduction as a comparison of two
embeddings, the original and the dimensionality-reduced one.

pointwise
comparison

distribution
comparison

directional counts rank distances

overlap

spread

distance

density

Fig. 3: The differences between the overview visualizations (over-
lap, spread, distance, and density), including characteristics of the
metrics and designs and data types for the distributions .
Characteristics of the metric determine the design variant used to
convey per-object distributions of the metrics across an embedding
pair. To cover all relevant characteristics, we provide four variants,
as shown in Figure 4. Data types are the types of measurements
we use within or between embeddings. They are important for
interpreting the visualization, and determining whether the per-
object distribution is discrete or continuous. In the latter case,
distributions are binned before they are visualized.

4 COMPARISON METRICS AND OVERVIEWS

Our approach is based on four core metrics that address different
aspects of embeddings. Each metric is based on concepts from
the literature, and has been adapted for the specific embedding
comparison scenarios we support. For each metric, we provide a
visualization to convey an overview of the distribution of the metric
values for each item across the embedding pair. Those summary
visualizations provide a synoptic perspective onto similarities and
differences. Based on these views, users can identify potentially
interesting objects and select them for closer inspection.

We have found that the four metrics cover the range of tasks
and scenarios discussed in §3. Over multiple iterations of design
and evaluation, we found that this set is sufficient. Figure 3
shows a summary of the four metrics and their characteristics
and corresponding overview visualizations. Views with the point-
wise comparison characteristic show distributions of metrics that
directly quantify differences between local object neighborhoods in
embeddings. Views with the distribution comparison characteristic
show metric distributions per embedding, juxtaposing distributions
of the two embeddings. Comparison takes place visually between
the juxtaposed distributions. Directional views are based on metrics
for which the order of the embeddings plays a role, so they yield
two distributions per embedding pair. The possible data types
that the metrics yield distributions over are counts, which are
numbers of objects, rank, which are rank positions in an object
neighborhood, and distances, which are distances between objects
in an embedding.

For each metric, we provide visual summaries through varia-
tions of the same design. This helps users compare distributions for
each of our metrics. Figure 4 shows them next to each other. All
of them are based on a color ramp display to convey distributions.
Similar visual encodings for distributions have been proposed
previously [53]. We use ramps based on different colors to help
distinguish between the data type of the distributions. Those are
counts , ranks , and distances . While we tested alternatives,
including bar charts and violin plots, we decided to use color ramp
displays as our default encoding. Color ramps make it easy to
distinguish between zero and very low values by using a different
color for zero. This is important for outliers and long tails in
the distributions. Furthermore, each segment of the display has a
constant shape, enabling interaction with even small segments for
selection.

7

The color ramps in Figure 4 (legends are on top of each of
the plots), map count values to colors. Zero is encoded by the
distinctive color gray. All counts denote the number of objects for
which the respective metric yields the corresponding value along
the vertical axis. Distributions are organized as columns in the
plots, with low to high values from bottom to top. The variation in
Figure 4a varies in the number of bins along the vertical axis, the
other three views have a constant number of bins for each column.
The variations in Figure 4b-d show two distributions immediately
next to each other for easier comparison between them. We now
introduce the metrics, and connect each one to its specific design
variation.

In the following, we introduce our notation. Local neighbors
are other objects in an embedding that are closest to a given object.
Let de(i, j) ≥ 0 is the distance between two objects i and j in
embedding e. Every embedding can have a different distance metric
associated with it. In practice, we typically use either Euclidean
or cosine distance. The list se

0(i),s
e
1(i),s

e
2(i), ...,s

e
n(i) contains all

elements sorted, smallest to largest, by their distance to i in e. It
is, in other words, the ordered list of nearest neighbors of object i
in embedding e. The n-neighborhood of an object i in embedding
e is neighborhoode,n(i) = {se

0(i), ...,s
e
n(i)}, the set of the n closest

neighbors to i in e. An item j has rank k, ranki
e(j) = k, if and only

if j = se
k(i) in embedding e. This means that the position of item j

in the neighborhood list of object i in embedding e is k.

4.1 Pointwise Comparison Metrics

Pointwise views are based on metrics that directly quantify
local differences in object neighborhoods between embeddings.
They are derived from metrics of neighborhood correspondence,
which have been used in the literature to measure the quality
of dimensionality reductions [32], [40]. Correspondence metrics
include trustworthiness and preservation [60], which measure
intrusions and extrusions into neighborhoods.
Overlap Metric: The overlap metric measures the number of
common objects in both neighborhoods of an object. For a given
neighborhood size and object, it yields one value per embedding
pair that denotes the number of identical neighbors of that object
in both embeddings for the given neighborhood size. Overlap is a
symmetric metric between neighborhoods of two embeddings, i.e.
the order of the embeddings does not play a role for the results. It
is defined as:

overlape1,e2(n, i) = |neighborhoode1,n(i)∩neighborhoode2,n(i)|

A summary of the overlap metric is shown in the overlap view
(Figure 4a) .

The columns of this view convey distributions of counts over
the objects (i). The horizontal axis of Figure 4a shows values
different neighborhood sizes (n). For size 1, the distribution has
two bins, representing the two possibilities for neighborhoods
of size one: there can be an overlap of either 0 (different nearest
neighbor, bin on the bottom) or 1 (same nearest neighbor, bin on the
top). The number of possibilities (bins) increases with increasing
neighborhood size. A color encoding indicates the number of items
in the bin.
Spread Metric: The previous metric helps to find neighborhoods
that change through analyzing its distributions across an embedding
pair. A common next question is where those changing neighbors
move to. This is where the rank-based spread metric can help. The
spread metric yields the maximum neighborhood rank that any

member of the neighborhood of object i of size n in embedding e1
has in embedding e2:

se1,e2(n, i) = max(ranki
e2
(se1

1 (i)), . . . ,ranki
e2
(se1

n (i)))

Spread can be interpreted as how far a neighborhood stretches or
extends from one embedding to the next. It can be viewed as a
summary of the co-ranks within a co-rank matrix [32], [40] that
only includes the maximums. For this metric, the order of the
embedding plays a role. It is thus marked as directional in Figure 3.

Figure 4b shows the visual encoding for the spread metric.
Neighborhood sizes are plotted along the horizontal axis. Each
of the columns has two sides with two different distributions.
These are the distributions for both directions of the metric. In this
example, we can see that the nearest neighbor (neighborhoods of
size 1 in the first column from the left) generally stays close for the
example embedding pair because of the dark purple colors close
to the bottom of the distribution in the first column of Figure 4b.
However, there are also a significant number of outliers (the light
blue bins on the upper end of the distribution). Spread yields a rank
for each ordered embedding pair, object, and neighborhood size, as
shown in Figure 3. The upper limit of the distribution scale is 100,
which we found to work well as a default value. It can be adapted
freely by users. Thus, the resulting distributions are distributions
over a discrete domain (100 bins by default along the vertical axis).

4.2 Distribution Comparison Metrics

Distribution comparison metrics quantify local properties of objects
within single embeddings, while the previous metrics quantify
differences between embeddings directly. Comparison between
embeddings happens by comparing the distributions of a metric for
each of the embeddings. Both design variations for distributions of
these metrics use two-sided columns (see Figure 4c and d). Each
of the sides shows the distribution for a different embedding. This
makes comparisons between distributions straightforward.

Both distribution comparison metrics consider the local config-
urations around an object. Analyzing their distributions gives users
insights about the differences in the placement of objects and their
neighbors in both embeddings.
Neighbor Distance Metric: This metric quantifies raw distances
to the nearest neighbors in both embeddings. For each object i,
embedding e, and neighbor rank k, the neighbor distance metric
yields the distance between the object and its k-th neighbor:
de(i,se

k(i)). This distance is shown along the vertical axis of
Figure 4c. In every column, Figure 4c shows two distributions, one
for each embedding. Users can specify the visible distributions
through the range of neighbor positions.

In contrast to the previous metrics, the neighbor distance metric
yields distributions over a continuous variable (distances in the
metric defined for the embeddings). For this reason, the domain of
the distribution is discretized before it can be displayed. By default,
we found that 100 bins is a good resolution for this view, but
users can freely increase or decrease resolution if needed. Direct
comparisons between distances in the embeddings, especially with
different dimensionality, may not be meaningful. The views of
this metric help to compare distances by providing context for
the entire embedding. For example, an object can be an outlier in
one embedding, far off from its next neighbors, but right at the
second embedding’s distribution center. We can see in Figure 4c
that distances are smaller overall in the embedding on the left (the
entire range of the distribution stays pretty low on the vertical axis).

8

(a) overlap: How much do neighborhoods change
 between embeddings?

(b) spread: How far are neighbors moving away
 between embeddings?

(c) distance: How is distance distributed and what
 distances are meaningful?

(d) density: How tightly are objects embedded into
 their neighborhoods?

Fig. 4: All four variations of the distribution comparison visualization, each one based on a different metric to compare embeddings. We
use different colors based on the data type of the distributions for counts , ranks , and distances . Those overview visualizations
serve as input and output. Each of the bins of the distributions can be selected by users, highlighting all other bins that contain any of the
selected objects.

Local Density Metric: This metric quantifies densities around ob-
jects in each of the embeddings. In order to keep both distributions
comparable across the embeddings, we measure density as the
number of neighbors within certain radii around an object in an
embedding. At first, we compute the average distance re

k to the
k-nearest neighbors across all objects in embedding e, with

re
k =

1
|e|∑i∈e

de(i,se
k(i)).

Then, we use this distance as the radius around objects,
and count, for each object i, the number of neighbors within
re

k. The more neighbors, the denser the local neighborhood of
object i. Embedding-specific determination of the radii scales the
densities by the embedding average, making them comparable
across embeddings. The local density metric yields count numbers
of objects for each object and embedding pair, as indicated in
Figure 3. This is a distribution over a discrete domain.

Figure 4d shows an example of the view for the local density
metric. It shows distributions for different values of k (along the
horizontal axis), that can be chosen by users. For each column, one
distribution per embedding is depicted. By default, the maximum
value displayed along the vertical axis is 100, which we found
to work well in practice. Users can adapt this value as needed.
Figure 4d shows us that density in the right embedding is generally
higher than in the left embedding. We can see this through the
dark color spread higher up in the columns, which means that there
are many objects that have neighbors in the respective radius. The
left embedding, however, has a few high-density outliers along the
range of the scale (light blue and white bins higher up).

4.3 Example Use Case
We now look at how we can use the metrics and their overview
visualizations to compare a dimensionality reduction to the high
dimensional embedding (scenario S1 in §3.1). The first thing
we want to know is how local surroundings of objects change.
To get a first impression of this, we view distributions of the
neighborhood overlap metric. It shows us, for each document, the
number of neighbors that are identical in both its neighborhoods.
From Figure 4a, we can see that most documents have the same
nearest neighbor (darker blue on the top bin in the first column),
but some have a different nearest neighbor. Larger neighborhoods
generally have a high overlap (blue colors towards the top of the
plot). However, there are also a significant number of outliers with
low overlap in their nearest neighbors across both embeddings
(light blue colors on the bottom of the plot). The neighborhood

spread view (Figure 4b) provides additional insights about where
neighbors move that are not in the overlap sets. Dark purple on the
bottom of the plot indicates the neighbors that stay close across
both embeddings. In addition, we can see a range of outliers (light
blue bins higher up) of neighbors that move further away. In
particular, there is a larger number (darker colors) high up on the
left column. This tells us that a number of neighbors that are close
in the original space gets pulled apart on the lower dimensional
one. Further inspection through set selection and additional views
can help us understand more about those examples (see §5) for a
continuation of this use case.

The distribution of neighborhood distances in Figure 4c shows
huge differences in the variance of the distribution. For both
embeddings, we measure distances in Euclidean distance. While the
higher dimensional space (left columns) generally keeps neighbors
very close, the 2-dimensional one places some documents far
apart from their closest neighbors (light blue bins high up in the
right columns). The difference in variance is expected, because
a higher number of dimensions provides more possibilities to
position documents close to each other, while options are more
limited in lower dimensional spaces. The distribution of local
densities (Figure 4d) also shows significant differences between
embeddings. While the high-dimensional one (left column) has
a low density (dark blue at the bottom of the plot), there are a
range of outliers in high-density areas (lighter bins higher up in
the plot). Through selection and closer inspection (the mechanisms
for this are discussed in §5), we can find out if those high-density
documents and their close local clusters are accurately represented
in the lower-dimensional representation.

5 VISUAL INTERACTIVE EMBEDDING COMPARI-
SON

The previously described overviews build the core of our approach
for embedding comparison. These views allow the user to select
items of interest by selecting bins. The views are complemented
by 6 additional views and other functionalities that form a
comprehensive interface. These additional views help users analyze
the details of selections, revise sets of selected objects by adding
or removing objects, and inspect local properties of single objects.
Figure 1 shows an overview of the system, with some of the views
activated. The views are grouped into three different categories:
overviews, selection detail views, and local views. Users can
configure the desktop with different summary visualizations with
selection detail and local views as needed for their analysis. In
addition, we have added functionality to provide some guidance to

9

users with selecting and managing views based on the comparison
scenario at hand (see §5.4).

5.1 Selection Sets
Overviews help to identify subsets of objects that differ in
interesting aspects. Once users identify such a set, selection sets
help them isolating its objects and inspect them in greater detail.
Selection sets are a subset of the objects representing a group of
interest. Users can define selection sets, for example, by selecting
bins in overviews. Users can modify selection sets using set
arithmetic to combine them, for example, to intersect sets to create
conjunctive queries, or to remove a particular set of objects. Objects
in the current selection set are highlighted across all views, letting
users connect from a subset of instances to the global context
through the overviews. This helps identify potential causes for why
the objects are modeled differently by the embeddings, but it also
helps understand the diversity of the examples, which can lead to
the discovery of additional examples of interest.

At any time, the system maintains a history of prior selection
sets, allowing a user to return to previous work or create complex
combinations. To combine the active selection set with a new one
using set arithmetic, users can change the selection mode in the
configuration drawer or by holding down the associated modifier
key (see Figure 1A).

5.2 Selection Detail Views
Selection detail views enable the user to focus on the selected set,
scan it for interesting properties or interesting objects, and alter
what is selected based on new insights. All three selection detail
views show representations of each object in the selection set. The
user can highlight these objects by hovering over them with the
mouse. Those highlighted objects are then displayed in the local
views, and highlighted in all activated selection detail views to
analyze them in detail. In addition, highlighted objects trigger a
tool tip that shows the meta data of the highlighted object.

5.2.1 Selection List
The selection list view shows a tabular representation of the objects
in our selection set, as shown in Figure 1D. Users can sort the
list by meta data attributes, and they can use the search box to
search for specific strings or numerical values to identify objects.
To modify the selection set, users can select rows and reduce the
selection to them, clear the entire selection, or select the entire
dataset. With the last two functions, we are able to build selection
sets in a top down or bottom up fashion by either starting with
an empty set and adding specific objects to it through selection in
the other views, or start with the entire dataset and filter specific
objects based on their meta data or by de-selecting them in other
views (using set arithmetic).

5.2.2 Neighborhood Wall
The neighborhood wall view, introduced in Figure 5, provides an
overview of the local correspondences between the neighborhoods
of the objects in our selection set. It complements the selection
list view in that it focuses on the local neighborhood of the
selected objects. Users can get a sense of the diversity of changes
in neighborhoods across embeddings in the selection set. They
can then, for example, select outliers or particularly interesting
examples to further narrow down the selection, or to view them in
more detail.

neighbor 1

neighbor 10

.

.

.

 highlighted

neighborhood

(a) ranks ≤10 in emb. 2

(b) ranks >10 in emb. 2

(c) ranks >100 in emb. 2

Fig. 5: The encoding of neighborhood correspondences in the
neighborhood wall view. Position from top to bottom encode
neighborhood rank in one embedding, while colors encode rank in
the second embedding. Three different color scales tell us whether
neighbors stayed within the neighborhood (a), moved out of the
neighborhood, but stayed in the vicinity (b), or moved further away
(c). The ordering of colors relative to the color ramp conveys the
change in ordering of the neighbors. Neighborhoods can be sorted
by a range of metrics, including overlap (number of yellow-blue
boxes), and average change in rank.

5.2.3 Scatterplots

Scatterplots based on dimensionality reductions of embeddings
are commonly used to analyze and debug embeddings (e.g.,
[52]). embComp provides a scatterplot view that can show either
embedding, or the pair juxtaposed. The scatterplot view is highly
configurable to best serve the comparison problem at hand. For
embeddings with > 2 dimensions, the view offers a range of
dimensionality reduction methods (t-SNE, UMAP, LLE, PCA,
MDS, and IsoMap). Scatterplots of dimensionality reductions are
potentially inaccurate, but are often useful in combination with the
other views to corroborate hypotheses and confirm findings.

For very large and potentially dense embeddings, the scatterplot
has a binning feature [19] that provides an abstraction so that plots
remain legible. Figure 9c shows an example of a binned scatterplot.
In this particular design (which is adaptable by users), hexagonal
bins are used in combination with pie charts that convey the ratio of
selected (orange) and unselected (blue) objects in a bin. Generally,
in the scatterplot, objects in the active selection set are colored in
orange. By default, t-SNE with pre-defined parameters is selected
to create the 2D representation. The scatterplot allows us to change
or modify our selection set by selecting single objects directly, or
larger areas (e.g., clusters) using a rectangular selection tool. This
is possible in the binned and unbinned version of the scatterplot
view.

5.3 Local Views

Local views allow the user to focus on one particular object in our
selection set and compare it across embeddings. This helps identify
and analyze objects with interesting properties within or across the
embeddings and relate them back to the global context.

5.3.1 Neighborhood List

The neighborhood list is a view that contains two lists similar to
the one from the selection list view (Figure 1D). Each list contains
the nearest neighbors in one embedding of the highlighted object
ordered by the distance from the object. In addition to object meta
data, it also shows the distance to the highlighted object for each
of the neighbors.

10

(a) (b) (c)

Fig. 6: Three views that show the selection (28 objects) from Figure 1. The neighbor distance view (a) shows the distribution of
neighborhood distances in the high dimensional (left) and the 2-dimensional (right) embedding. The distance distribution on the left is
much more widely distributed than in the right embedding. In addition, we can see that the selected (black outlines) objects’ neighbors
are all relatively far away after the 5th neighbor in the embedding on the right. The density view (b) shows the densities around objects in
both embeddings. We can see high-density outliers (light blue bins) on the top of the distribution for high dimensional (left) embedding.
The scatterplot (c) shows a scatterplot of the 2D embedding. The dots are 50% transparent, such that dark colors indicate that there is a
lot of overlap of points and very tight clusters among the selected and the unselected objects. Orange dots are part of the selection set.

Fig. 7: The neighborhood sequence view shows the neighbors for a
highlighted object as colored boxes. Their position from the left
encodes neighbors ordered by distance for the first embedding (top)
and the second embedding (bottom). The color of the bars encodes
the position of the neighbor in the second embedding based on the
color ramp on top of the view. This is a variation of a buddy plot [2].
Gray boxes are neighbors that are not part of the neighborhood in
the second embedding. We see that for 10 neighbors, 7 are different
and the remaining 3 are ordered differently (colors are not ordered
according to ramp). If users are interested in absolute distances,
they can switch to distance mode (depicted in Figure 1F), which
represents neighbors as bars and positions them according to their
distances to the selected object.

5.3.2 Neighborhood Sequence
Compared to the neighborhood list view, which allows us to scan
and compare neighbors based on their meta data, the neighborhood
sequence view focuses on comparing either the correspondence of
ranks or the underlying distances within the neighborhood. Figure 7
explains the encoding.

5.4 View Selection and Management
All of the views described are part of a prototype system (see §6
for details). The current prototype’s design provides freedom to
users with respect to choosing and organizing views for comparing
embeddings. This makes the implementation flexible with respect
to the scenarios that can be supported by it. On the other hand,
it also means that before being able to use it effectively, the user
has to decide which of the views are likely going to be central to
the comparison tasks at hand, and put in effort to create an initial
layout of views that supports to scenario well.

In practice, there are patterns of choices of views and layouts
that occur frequently. In particular, we found the following three
configurations to be most useful across a range of scenarios:

• The overlap view is at the top of the desktop, with the selection
list and neighborhood wall views next to it. This configuration
is the one we use most often. It helps us find similarities and
differences quickly by comparing neighborhood overlap, and
we can start drilling down by selecting them in the overlap
views, and inspecting them more closely in the selection detail
views. Other views, such as additional overviews and local
detail views can be added below as needed.

• The selection list view is at the top of the desktop, and the
overlap and spread views are next to it. This configuration
is useful when users have a good idea about what objects
they are most interested in, for example, when comparing
word usage through word embeddings. The selection list can
be used to select specific words, and the overviews provide
context from the embeddings (e.g., about how constant their
neighborhood is or how far away neighbors move). Additional
relevant local views can be added further down on the desktop.

• The scatterplot view is at the top of the desktop, with the
overlap, selection list, and neighborhood wall view around
it. This configuration is useful when both embeddings are
2-dimensional, and their quality and similarity is to be
analyzed. The scatterplot can then be used to select potentially
interesting groups of examples (e.g., a cluster), and the other
views provide global as well as local context for the objects.

While these configurations are not exhaustive, they provide
an entry point to the functionality of the prototype, and can be
modified and adapted if needed. We have added options to start with
any of these configurations to speed up creating custom layouts.

5.5 Example Use Case (Continued)
We extend the example use case (Figure 1, §§3.3 and 4.3) using
selections and detailed views. In the overlap view in Figure 1B,
we notice that in the rightmost column (neighborhood size 50), the
bin for overlap of size seven contains a relatively high number of
objects, based on its darker blue color. These objects have a large
difference between the embeddings (they share only 7 of their 50
nearest neighbors). We select this bin (marked by the orange arrow
in Figure 1B) by clicking on it, which adds all of its objects to the
selection set. This highlights those objects across all other views.

11

At first, we are interested in how the selected documents are
distributed within both embeddings. For this, we view the selection
in the spread view (Figure 1C). It shows that up until neighbor
7, part of the selection has neighbors that stay close, while the
neighbors of others move far away (the highlights are spread out
across the vertical axis). In addition, we can see neighbors from the
high-dimensional embedding stay either close or move far away
(left columns have highlights either on the bottom or the very top).
This means that some of them are not represented accurately in the
2D space.

The views in Figure 6 provide more detail on the selection.
Figure 6a shows that for all of the selected instances, neighbors
starting from neighbor 4 in the 2D embeddings are far away. This
means that most of the documents have few close neighbors (or
none). Figure 6b shows that our selections are in low to medium
density areas in both embeddings. None of the selected examples
have a particularly high local density.

One possible explanation for this is that documents that
cannot be placed close to their original neighbors from the high-
dimensional embedding end up as outliers in the lower dimensional
one.

Next, we take a closer look at the selection. The selection
list view (Figure 1D) shows that our selection set has 28 objects
(on the bottom right). After adding titles and publication year as
meta data, we skim the documents, and find that they are from
a wide range of topics. In Figure 1E, we can see the diversity of
our selection in terms of neighborhood retention. Position encodes
the ranks of the high dimensional embedding, and color the ones
for the 2D embedding. We can see that they differ widely with
respect to neighbor correspondence within the 10 nearest neighbors.
While some of them keep many of their closest neighbors, others
lose almost all of them (as can be seen by the orange-brown
and pink colored boxes). The latter set of documents have a less
accurate representation of their immediate neighborhood in the
low dimensional embedding. We hover them, which causes them
to highlight in other views, and explore some more details about
them.

When viewing their position in the scatterplot view of the 2D
embedding (Figure 6c), we learn that they are positioned in the
vicinity of clusters. The other members of those clusters, however,
are mostly not their original neighbors from the high dimensional
embedding. Viewing the neighborhoods in the neighborhood
sequence view, we can also see that some of them keep a few
close neighbors. Figure 7 shows an example of this. Moving some
documents far away from their original neighbors is a result of
tSNE that we do not want in our final 2D representation. We can
now test and compare other representations to see if they provide a
better representation of those objects.

6 IMPLEMENTATION

We have implemented our approach in embComp, a web-based
prototype system for embedding comparison. embComp takes pairs
of embeddings with the same (or overlapping) objects as input.
When the embeddings contain different objects, for example, word
embeddings for different languages, embComp requires a list of
correspondences between the objects in both embeddings.

The system’s frontend uses vue.js for the UI, and d3.js for
the visualization components. State management is implemented
using the vuex addon to vue.js. The backend is implemented in
python3, using numpy with the Intel MKL library to speed up

vector processing. Analysis methods are implemented using the
python sklearn library.

For efficient interaction, 100 nearest neighbors per embedding
for each object are pre-computed using the scikit-learn nearest
neighbor framework2, which automatically selects a tree data
structure for fast neighborhood selection based on dimensionality
and size of the dataset. Memory usage of the tree is in O(n),
while looking up the neighbors of n items will take O(n logn) time.
Once the neighborhoods are computed, we store this neighborhood
transform as a matrix. It allows us to quickly compute the overview
metrics that involve object neighborhoods, and save time for
looking up neighborhood the next time the data set is loaded into
embComp. While the number of neighbors is a system parameter
that can be adapted, we found that 100 works well for all the
embeddings we are working with in this work. Since embeddings
can be huge, all of the embedding data, including meta data for the
objects is stored in the backend and transferred to the frontend and
cached as needed.

7 USE CASES

Previously, we have discussed an example for network node
embeddings (§1.1) and quality control of dimensionality reductions
(§§3.3, 4.3, 5.5). This section introduces two additional use cases
that illustrate the workflow of embComp. The first one compares
two different document embeddings and the second one two
different word embeddings.

7.1 Document Embedding: Abstracts and Full Texts
Before text collections can be used as input for machine learning
algorithms or further analysis, they need to be embedded into
a vector space. The choice of the right algorithm and dataset is
essential to preserve information relevant for the given task.

In this use case, we explore the differences created by two
different embeddings. This is a variation of the S2-Parameters
scenario (§3.1). The dataset is a corpus of 1477 publications from
recent visualization conferences. The first embedding was built
using the abstracts as input and NMF [54] as embedding method.
The second embedding uses the full texts instead of abstracts. We
want to decide if it is worth the effort to obtain the text from pdfs
instead of using the publicly available abstracts. Using metrics
based on local features to compare the two embeddings on a global
level helps us understand the differences between the embeddings
created from these two data sources.

We start by assessing the global similarity between both models
by looking at the local neighborhood overlap (Figure 8a). The
overlap view allows us to see the overlap between both embeddings
based on different neighborhood sizes. We can see that most
documents are on the lower end of the chart (dark blue color at
the bottom) and have therefore very different neighbors. Through
mouse-over of the first column, tooltips show us that 29 items have
the same first neighbor in both embeddings and 1448 items have a
different first neighbor.

Even though most documents are placed in different neighbor-
hoods, in each embedding, there are a few with similar neighbors
in both. We can select them using the overlap view by clicking
the top boxes in a larger neighborhood size column (Figure 8b).
In our example, the largest neighborhood size is 30 and visible in
the rightmost column. The selected three boxes include documents

2. https://scikit-learn.org/stable/modules/neighbors.html

12

a) The overlap view shows the number of overlapping
neighbors for different neighborhood sizes. Each column
can be interpreted as overlap percentage, and two similar
embeddings would have all documents on the top of the
chart. The x-axis ranges from 1 to 30 and represents the
neighborhood size taken into account. We can see that
the overlap for our use case is very low throughout
neighborhood sizes from 1 to 30, because in each
column, most of the objects are at the lower end of the

b) After selecting the three bins in the rightmost columns
(neighborhood size 30), all bins that overlap with the
selection are highlighted in the overlap view.

1 WE SELECT the most similar
documents in both embeddings, which
are in the top bins in the rightmost
column. We decide to select the top
three bins, with documents with 18-20
similar neighbors in both embeddings.

c) The selection list also shows the selected documents
(contents of the three selected bins in the overlap view).
We can explore further by looking at document meta
data, including titles of documents. Most documents in
the selection have 'network' or 'graph' in their title.

2 WE THEN SELECT the most dissimilar
documents in both embeddings, at the
bottom of the rightmost column. Those
are documents that have none of the
same neighbors in both embeddings
among their 39 nearest neighbors.

d) We explore the most dissimilar
documents by viewing them in the
selection list view. We want to get
an idea about what might cause the
differences between the
embeddings. In the selection list, we
select a document with the title
"Sequential Document Visualization"
and use the neighborhood list to see
the closest neighbors. The left
(abstract) embedding shows
documents about high dimensional
visualization or multivariate data,
while the right (full text) embedding
shows documents about text
analysis. This suggests that in this
case, the full text embedding is
more fine grained.

Fig. 8: The views and sequence of selection for comparing two document embeddings generated on different source data.

with 20 (the top box), 19 (middle box), and 18 (lowest box) similar
neighbors out of 30 possible. The selection list now allows us to
look at the selected documents and read the titles of the publications.
This reveals that documents with the most similar neighborhoods
talk about networks or graphs (Figure 8c).

We saw at the beginning that most documents have very
different neighborhoods. We start exploring them by selecting
the documents with the lowest overlap given a neighborhood size
of 30. All selected publications have no overlap within the first
30 neighbors. We can compare the neighborhood of different
publications by using the neighborhood list. By looking at the
publication with the title ”Sequential Document Visualization”, we
can see that the closest neighbors in the abstract embedding are
high dimensional visualization and multivariate data publications.
The closest neighbors in the full text embedding are about text
visualization (Figure 8d). Text data is a specific case of high
dimensional data, which suggests that the full text embedding has
a higher resolution and can represent more specific topics. Another
example is the publication titled “Interactive Multiscale Tensor
Reconstruction for Multiresolution Volume Visualization”. The
closest neighbors in the abstract embedding are volume rendering
publications, while the full text neighbors are about tensors. Again,
this pattern revealed through exploration suggests that the full text

embedding represents topics at a higher resolution compared to the
abstract embedding.

To understand the differences between the embeddings on a
more global scale, we use the scatterplot view. UMAP is used to
reduce the dimensionality of both embeddings, and we start looking
at the clusters in both embeddings by using the rectangular selection
tool with the mouse to select and inspect different clusters in both
embeddings. This shows us how documents that are close in one
embedding disperse across the second embedding. We can see that
many clusters selected in the abstract embedding are represented
in the full text embedding as multiple small clusters that stay close
to each other. This suggests that the full text embedding groups
similar documents as the abstract embedding, but with a higher
resolution.

7.2 Word Embedding: Changes in Language

We are collaborating with literary linguists who are interested
in how the English language has changed over the centuries.
To explore these changes, we have constructed word vector
embeddings from two different corpora: a historic corpus consisting
of over 50,000 books published between 1475 to 1700 from the
Early English Books Online (EEBO) collection as transcribed by

13

the Text Creation Partnership (TCP) [57] and a modern corpus built
from the English language Wikipedia. This is a variation of scenario
S5-Corpora (§3.1). We expect that changes in word meanings
between the two eras would be reflected in the differences between
their respective word vector embeddings. For the experiments
described here, we built the embeddings using GloVe with 300
dimensions, a window size of 15, and a minimum token count of 5.

As word vector embeddings model words based on their context
in a large corpus, words that are used in similar context are closer
in the resulting space than words that have different usage patterns.
We can use this to study changes in word meaning based on the
local neighborhood of words. We use the overlap view (Figure 9a)
to look at the global similarity based on the local neighborhoods
up to 30 neighbors. By looking at the color fields in each column,
we can see that most of the words are in bins in the lower area of
the chart. This means that the overall neighborhood overlap is low.
Most words have different neighbors. In contrast, a few words seem
to similar neighborhoods (on the top of the view). Those catch our
attention, and we want to learn more about them. By selecting the
top boxes in the most right column, we select the words with the
highest overlap between both embeddings (Figure 9a). We use the
selection list view to look at the selected words (Figure 9b), and
can see that the most similar words are weekdays, number words,
names or kinship relations.

The linguists were not surprised by that finding as these words
have not changed in usage or meaning. Seeing their knowledge
reflected in the embeddings and our tool increased their confidence
in both.

We take a closer look at these semantically close set of words,
and confirm by connecting back to the global context of the
embeddings through the neighborhood distance view and the
density view that those are clusters that are particularly close
within both embeddings.

An interesting group of stable words are kinship terms, which
we select using the selection list view. We use the binned scatterplot
view (Figure 9c) to see the position of those terms in both
embeddings. We can see that the terms form tight clusters in
both embeddings.

We can see one outlier in the Wikipedia embedding, the term
parent. Interested in how the usage of the term changed, we
look at the local neighbors of the term in each embedding using
the neighbor list view. The closest neighbors in the Wikipedia
embedding are subsidiary, ownership, and acquisition. This reflects
the meaning of parent company. In contrast, the closest neighbors
in the TCP embedding are child, mother, and father. This reflects
less of a word usage change and more of a bias in the Wikipedia
dataset.

Another way to find more interesting word usage changes
is by selecting the words with the lowest overlap between both
embeddings using the overlap view. Our collaborators used this fast
way to validate ideas they had already in mind and to find unknown
changes. Some examples are: the word cup changes the usage from
a drinking vessel to a trophy. The word crisis was used to describe
illness and disease in TCP and changed to financial and conflict in
general in modern English. The word forum changed from market,
theater, and senate to discussion, global and conferences.

After the initial sessions, we had additional meetings with the
experts. They were very interested in comparing more historic and
contemporary corpora, including subsets of TCP and embeddings
built from the Google ngrams corpus. During those comparisons,
they were able to uncover a range of additional insights about

change in the English language over time. One striking example
for our collaborators was the change of the term conduct from ”to
lead something” to ”behavior”.

8 DISCUSSION

In this paper, we have presented an approach to comparing object
embeddings. We surveyed a range of potential scenarios to abstract
common challenges (§3.1) and identify solution strategies (§3.2).
To help address these challenges, we designed embComp (§5), that
implements the strategies to help users with comparing pairs of
embedding models.

8.1 Expert Feedback

We discussed the system and the design of the views with three
expert users. All of them are language experts and were interested
in or had experience working with word vector embeddings. Two
of them are interested in language change within the same language
over time. For this, they are using word embeddings to identifying
subsets of words whose meaning differs in interesting ways between
different historic versions of a language. The third expert, a
cognitive scientist, is interested in how associations between words
and their meaning differ between different languages. He is using
word embeddings for different languages with translation links to
study those differences.

During each of the three sessions we conducted with each of
the experts, we were in control of the system, while the analysis
was guided by the expert. We started each of the sessions by
explaining the metrics and the visual encoding of the overviews.
Initially, we showed simpler configurations with single distributions
and explained the visual encodings with practical examples from
embeddings that the experts were familiar with. We then extended
the overview displays to gradually include more information,
explaining and motivating the visual encodings with the example.
During this training, experts could ask questions and discuss
interpretations of the visualizations and the underlying embeddings.
With us in direct control of embComp, the experts were able to
effectively interpret and use the visualizations, and direct us towards
interesting examples and findings in their data. Many of them were
received enthusiastically by the experts. We provided screen shots
of interesting configurations, and the experts used those to discuss
some of the findings with their colleagues.

In addition to the findings that experts were able to uncover
with embComp, we also received direct feedback about the usability
of our system and the interpretability of the visual encodings. While
they generally found the visualizations straightforward to work
with, two of the experts remarked that the overview visualizations
take some time initially to learn to read and interpret. This was, in
particular, mentioned for the overlap view. They expressed concern
that language scholars in general might have a hard time using the
displays effectively without explicit guidance.

Two of the experts further suggested improving the presentation
of metadata attributes in tables and tooltips. This could be done
by adding visual summaries for a number of columns, and
providing context for single values in form of distributions for
the entire dataset. Beyond those additions to help work more
effectively with metadata, the third expert (cognitive scientist) was
interested in showing summaries of metadata values for each bin
in the overview visualizations. This would allow him to correlate
additional linguistic metrics about the words in the embeddings.

14

a) The overlap view's x-axis ranges from
neighborhood size 1 to 30. We can see that the
overlap for our use case is quite low overall. There
are outliers with relatively high overlap in
neighborhoods of size 30.

1

WE SELECT the most
similar words. This
allows us to view them
in the selection list view.

b) In the selection list, we can now see
that the words that keep many of their
neighbors between the embeddings are
kinship, weekday, and number terms.

c) The scatterplot view for the Wikipedia embedding. Due to the large number of points, we use the
binned scatterplot view instead of the regular scatterplot. The selection is visible as colored fractions of
the pie charts in the hexagonal bins. We can see that the kinship terms that we have selected form a tight
cluster in the Wikipedia embedding, with one outlier in the lower left corner.

2

WE THEN SELECT all
kinship terms in the
selection list (reduce our
selection set to these
words).

Fig. 9: The views and sequence of selections for comparing two word embeddings generated on two different datasets.

This feedback suggests that users are able to interpret the visual
metaphors in conjunction with the rest of the embComp after some
initial training and with adequate guidance. To improve the usability
of the system for users interested in comparing embeddings, we
added some initial guidance that helps with setting up relevant
views for the scenario at hand (§5.4). In addition, we are planning
to develop and implement more advanced guidance mechanisms
for complex multi-view systems. They will be integrated into
embComp to help guide users through meaningful analyses of their
embeddings, without the help of a embComp expert.

8.2 Limitations
While our prototype system shows promise in its utility for
comparing embeddings, it also emphasizes some limitations in
the current state of our work. Foremost, we have only considered
pairwise comparison. Multi-way comparisons are common, and
are particularly important for comparing different hyper-parameter
settings or to determine the consistency of embedding algorithms
across multiple runs. Unfortunately, extensions of our methods
beyond pairwise comparison are challenging: many of the metrics
and visual designs do not scale beyond pairs.

Another limitation of our approach is its complexity: the
approach relies on a collection of different metrics and views. Users
must be able to understand the different options and how to use
them together to achieve their goals. We believe this issue may be
addressed by providing more structured interactions and guidance
to help users apply views that address their goals. Using our
implementation to work with experts on a diverse set of scenarios
helps us gather feedback to improve interaction design and user
guidance.

Our approach has focused on top down analysis: overviews
are used to assess overall differences and identify selections to be
explored in more detail. Bottom up analyses do occur. For example,
the literature scholars like to begin by asking about the behaviors
of specific words, which they then use to generalize to broader sets.
Such workflows are possible with our current system, but may be
better supported with more tailored views and interactions. More
generally, the task list we considered is not exhaustive; supporting
more tasks may require adding new views and interactions.

Our approach is domain agnostic, treating embeddings as
abstract collections of distances. While this allows our tool to be
broadly applicable, it also misses opportunities to use properties of
the domain to enhance the embeddings. For example, knowing that
the objects are documents or images suggests different operations
to perform with them - at a minimum, they can be displayed.
A related limitation is that our approach makes limited use of

metadata about the objects. It is possible to select semantic groups
using the selection list, for example, to select documents labeled
with a particular genre or words labeled with a particular part of
speech. However, future work could facilitate comparisons between
known groupings of objects, for example, to determine if different
genres behave similarly in different embeddings.

Our summary views aggregate data and can scale to large
collections of objects. We use subset selection and scanning to
reduce the problem size for detailed analysis. In practice, our
system works with collections of several thousand objects - for the
examples in this paper, we have reduced the word embeddings to
the 20,000 most common words. Scaling to larger object collections,
which are not uncommon in machine learning applications, will
be challenging for performance reasons, but also in providing
mechanisms to help refine large selections when boxes in the
overviews may represent hundreds or thousands of objects.

ACKNOWLEDGMENTS

This work was funded in part by NSF Award 1841349 and DARPA
award FA8750-17-2-0107. We thank our domain collaborators
including Michael Witmore, Jonathan Hope, and Gary Lupyan.

REFERENCES

[1] J. Alaux, E. Grave, M. Cuturi, and A. Joulin. Unsupervised hyper-
alignment for multilingual word embeddings. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[2] E. Alexander and M. Gleicher. Task-driven comparison of topic models.
IEEE Transactions on Visualization and Computer Graphics, 22(1):320–
329, 2016.

[3] D. L. Arendt, N. Nur, Z. Huang, G. Fair, and W. Dou. Parallel embeddings:
A visualization technique for contrasting learned representations. In
Proceedings of the 25th International Conference on Intelligent User
Interfaces, IUI ’20, p. 259–274. Association for Computing Machinery,
New York, NY, USA, 2020. doi: 10.1145/3377325.3377514

[4] J. P. Bagrow, E. M. Bollt, J. D. Skufca, and D. Ben-Avraham. Portraits of
complex networks. EPL (Europhysics Letters), 81(6):68004, 2008.

[5] M. Berger, K. McDonough, and L. M. Seversky. cite2vec: Citation-
driven document exploration via word embeddings. IEEE Transactions
on Visualization and Computer Graphics, 23(1):691–700, 2017.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[7] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function: Learning
distance functions interactively. In 2012 IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 83–92, Oct 2012.

[8] J. Chen, Y. Tao, and H. Lin. Visual exploration and comparison of word
embeddings. Journal of Visual Languages & Computing, 48:178 – 186,
2018.

15

[9] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost,
J. Tejedor-Sojo, and J. Sun. Multi-layer representation learning for
medical concepts. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
1495–1504. ACM, New York, NY, USA, 2016.

[10] J. Chuang, D. Ramage, C. Manning, and J. Heer. Interpretation and trust:
Designing model-driven visualizations for text analysis. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp.
443–452. ACM, 2012.

[11] P. J. Crossno, A. T. Wilson, T. M. Shead, and D. M. Dunlavy. Topicview:
Visually comparing topic models of text collections. In 2011 IEEE 23rd
International Conference on Tools with Artificial Intelligence, pp. 936–943.
IEEE, 2011.

[12] R. Cutura, S. Holzer, M. Aupetit, and M. Sedlmair. Viscoder: A tool for
visually comparing dimensionality reduction algorithms. In Proc. 26th
Eur. Symp. Artificial Neural Networks, Bruges, Belgium, 2018.

[13] K. Etemad and R. Chellappa. Discriminant analysis for recognition
of human face images. Journal of the Optical Society of America A,
14(8):1724–1733, 1997.

[14] M. Gleicher. Considerations for visualizing comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2018.

[15] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive Compar-
ison of Classifier Results. Computer Graphics Forums (Proceedings of
EuroVis), 39(3):181–193, 2020. doi: 10.1111/cgf.13972

[16] E. Grave, A. Joulin, and Q. Berthet. Unsupervised alignment of
embeddings with wasserstein procrustes. In Proceedings of Machine
Learning Research, vol. 89, pp. 1880–1890. PMLR, 2019.

[17] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
855–864. ACM, New York, NY, USA, 2016.

[18] W. L. Hamilton, J. Leskovec, and D. Jurafsky. Diachronic word
embeddings reveal statistical laws of semantic change. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics,
pp. 1489–1501. Association for Computational Linguistics, 2016.

[19] F. Heimerl, C.-C. Chang, A. Sarikaya, and M. Gleicher. Visual designs
for binned aggregation of multi-class scatterplots. arXiv preprint
arXiv:1810.02445, 2018.

[20] F. Heimerl and M. Gleicher. Interactive analysis of word vector
embeddings. Computer Graphics Forum, 37(3):253–265, 2018.

[21] F. Heimerl, M. John, Q. Han, S. Koch, and T. Ertl. DocuCompass:
Effective exploration of document landscapes. In 2016 IEEE Conference
on Visual Analytics Science and Technology (VAST), pp. 11–20, Oct 2016.

[22] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[23] Y. Hristov, A. Lascarides, and S. Ramamoorthy. Interpretable latent spaces
for learning from demonstration. In Proceedings of Machine Learning
Research, vol. 87, pp. 957–968. PMLR, 2018.

[24] S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Möller.
Dimstiller: Workflows for dimensional analysis and reduction. In IEEE
Symposium on Visual Analytics Science and Technology (VAST), pp. 3–10.
IEEE, 2010.

[25] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper,
M. Sedlmair, J. Chen, T. Möller, and J. Stasko. vispubdata.org: A metadata
collection about IEEE visualization (VIS) publications. IEEE Transactions
on Visualization and Computer Graphics, 23(9):2199–2206, 2017.

[26] A. Jatowt and K. Duh. A framework for analyzing semantic change of
words across time. In IEEE/ACM Joint Conference on Digital Libraries,
pp. 229–238, Sep. 2014.

[27] S. Kairam, D. MacLean, M. Savva, and J. Heer. Graphprism: compact
visualization of network structure. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, pp. 498–505, 2012.

[28] M. Köper, M. Zaiß, Q. Han, S. Koch, and S. S. im Walde. Visualisation and
exploration of high-dimensional distributional features in lexical semantic
classification. In Proceeding of the 10th International Conference on
Language Resources and Evaluation, p. 1202–1206, 2016.

[29] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[30] B. C. Kwon, B. Eysenbach, J. Verma, K. Ng, C. De Filippi, W. F. Stewart,
and A. Perer. Clustervision: Visual supervision of unsupervised clustering.
IEEE Transactions on Visualization and Computer Graphics, 24(1):142–
151, 2018.

[31] H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park. iVisClustering: An
interactive visual document clustering via topic modeling. Computer
Graphics Forum, 31(3pt3):1155–1164, 2012.

[32] J. A. Lee and M. Verleysen. Quality assessment of dimensionality
reduction: Rank-based criteria. Neurocomputing, 72(7-9):1431–1443,
2009.

[33] Q. Li, K. S. Njotoprawiro, H. Haleem, Q. Chen, C. Yi, and X. Ma.
Embeddingvis: A visual analytics approach to comparative network
embedding inspection. In 2018 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 48–59, Oct 2018.

[34] S. Liu, P. Bremer, J. J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, and
V. Pascucci. Visual exploration of semantic relationships in neural word
embeddings. IEEE Transactions on Visualization and Computer Graphics,
24(1):553–562, Jan 2018.

[35] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions
on Visualization and Computer Graphics, 23(3):1249–1268, 2017.

[36] Y. Liu, E. Jun, Q. Li, and J. Heer. Latent space cartography: Visual analysis
of vector space embeddings. Computer Graphics Forum, 38(3):67–78,
2019.

[37] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[39] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances
in pre-training distributed word representations. In Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018). European Language Resources Association
(ELRA), Miyazaki, Japan, may 2018.

[40] B. Mokbel, W. Lueks, A. Gisbrecht, and B. Hammer. Visualizing the
quality of dimensionality reduction. Neurocomputing, 112:109–123, 2013.

[41] T. Mühlbacher, L. Linhardt, T. Möller, and H. Piringer. TreePOD:
Sensitivity-aware selection of Pareto-optimal decision trees. IEEE
Transactions on Visualization and Computer Graphics, 24(1):174–183,
Jan 2018.

[42] T. Munzner. Visualization Analysis and Design. CRC Press, Boca Raton,
FL, 2014.

[43] D. Park, S. Kim, J. Lee, J. Choo, N. Diakopoulos, and N. Elmqvist.
Conceptvector: Text visual analytics via interactive lexicon building using
word embedding. IEEE Transactions on Visualization and Computer
Graphics, 24(1):361–370, Jan 2018.

[44] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014.

[45] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pp.
701–710. ACM, New York, NY, USA, 2014.

[46] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep contextualized word representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pp. 2227–2237. Association for Computational Linguistics,
New Orleans, Louisiana, June 2018.

[47] J. Z. Piero Molino, Yang Wang. Parallax: Visualizing and understanding
the semantics of embedding spaces via algebraic formulae. In ACL, 2019.

[48] H. Piringer, S. Pajer, W. Berger, and H. Teichmann. Comparative visual
analysis of 2d function ensembles. In Computer Graphics Forum, vol. 31,
pp. 1195–1204, 2012.

[49] J. C. Roberts. State of the Art: Coordinated & Multiple Views in Ex-
ploratory Visualization. In Fifth International Conference on Coordinated
and Multiple Views in Exploratory Visualization (CMV 2007), pp. 61–71.
IEEE, July 2007. doi: 10.1109/CMV.2007.20

[50] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326, 2000.

[51] A. Sarikaya, M. Gleicher, and D. Szafir. Design factors for summary
visualization in visual analytics. In Computer Graphics Forum, vol. 37,
pp. 145–156, 2018.

[52] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and
M. Wattenberg. Embedding projector: Interactive visualization and
interpretation of embeddings. Workshop on Interpretable Machine
Learning in Complex Systems, NIPS 2016, 2016.

[53] A. Sopan, M. Freire, M. Taieb-Maimon, J. Golbeck, and B. Shneiderman.
Exploring distributions: design and evaluation. University of Maryland,
Human-Computer Interaction Lab Tech Report HCIL-2010-01, 2010.

[54] S. Sra and I. S. Dhillon. Generalized nonnegative matrix approximations
with Bregman divergences. In Advances in Neural Information Processing
Systems, pp. 283–290, 2006.

16

[55] J. Stahnke, M. Dörk, B. Müller, and A. Thom. Probing projections:
Interaction techniques for interpreting arrangements and errors of dimen-
sionality reductions. IEEE Transactions on Visualization and Computer
Graphics, 22(1):629–638, 2016.

[56] D. A. Szafir, S. Haroz, M. Gleicher, and S. Franconeri. Four types of
ensemble coding in data visualizations. Journal of Vision, 16(5):11, mar
2016.

[57] Text Creation Partnership. EEBO-TCP: Early English Books Online.
https://www.textcreationpartnership.org/tcp-eebo/.

[58] B. Thompson, S. Roberts, and G. Lupyan. Quantifying semantic similarity
across languages. In 40th Annual Conference of the Cognitive Science
Society (CogSci 2018), 2018.

[59] F. Van Ham and A. Perer. “Search, show context, expand on demand”:
Supporting large graph exploration with degree-of-interest. IEEE
Transactions on Visualization and Computer Graphics, 15(6), 2009.

[60] J. Venna and S. Kaski. Neighborhood preservation in nonlinear projection
methods: An experimental study. In G. Dorffner, H. Bischof, and
K. Hornik, eds., Artificial Neural Networks — ICANN 2001, pp. 485–491.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[61] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[62] Y. Yuan, G. Xun, Q. Suo, K. Jia, and A. Zhang. Wave2vec: Learning deep
representations for biosignals. In IEEE International Conference on Data
Mining (ICDM), pp. 1159–1164. IEEE, 2017.

[63] G. Zhong, Y. Chherawala, and M. Cheriet. An empirical evaluation
of supervised dimensionality reduction for recognition. In 2013 12th
International Conference on Document Analysis and Recognition, pp.
1315–1319. IEEE, 2013.

Florian Heimerl is a postdoctoral researcher
in the visualization group at the University of
Wisconsin–Madison. He received his PhD in com-
puter science and his Diplom degree in computa-
tional linguistics from the University of Stuttgart,
Germany. In Stuttgart, he was a doctoral student
at the Institute for Visualization and Interactive
Systems. His research interests include informa-
tion visualization, visual analytics, and visual text
analysis.

Christoph Kralj is a Ph.D. student of computer
science at the University of Vienna, Austria, since
2017. He received his MSc in Computational Sci-
ences from the University of Vienna in 2016 and a
BSc in Earth Sciences from Technical University
of Graz, Austria. His research interest is about
bridging the gap between human understanding
and computational solutions with a strong focus
on textual data. He used tools and methodologies
from natural language processing, visualization,
machine learning, and human-computer interac-

tion to create interactive systems.

Torsten Möller is a professor of computer sci-
ence at the University of Vienna, Austria, since
2013. Between 1999 and 2012 he served as a
Computing Science faculty member at Simon
Fraser University, Canada. He received his PhD
in Computer and Information Science from Ohio
State University in 1999 and a Vordiplom (BSc) in
mathematical computer science from Humboldt
University of Berlin, Germany. He is a senior
member of IEEE and ACM, and a member of
Eurographics. His research interests include al-

gorithms and tools for analyzing and displaying data with principles rooted
in computer graphics, human-computer interaction, signal processing,
data science, and visualization.

Michael Gleicher is a Professor in the Depart-
ment of Computer Sciences at the University of
Wisconsin, Madison. Prof. Gleicher is founder of
the Department’s Visual Computing Group. He
co-directs both the Visual Computing Laboratory
and the Collaborative Robotics Laboratory at UW-
Madison. His research interests span the range
of visual computing, including data visualization,
robotics, and virtual reality. Prior to joining the
University, Prof. Gleicher was a researcher at
The Autodesk Vision Technology Center and in

Apple Computer’s Advanced Technology Group. He earned his Ph. D. in
Computer Science (1994) from Carnegie Mellon University, and holds a
B.S.E. in Electrical Engineering from Duke University (1988). In 2013-
2014, he was a visiting researcher at INRIA Rhone-Alpes. Prof. Gleicher
is an ACM Distinguished Scientist.

