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The Effect of Alignment on People’s Ability to
Judge Event Sequence Similarity

Roy A. Ruddle, Jürgen Bernard, Member, IEEE, Hendrik Lücke-Tieke, Thorsten May, and

Jörn Kohlhammer, Member, IEEE.

Abstract—Event sequences are central to the analysis of data in domains that range from biology and health, to logfile analysis and

people’s everyday behavior. Many visualization tools have been created for such data, but people are error-prone when asked to judge

the similarity of event sequences with basic presentation methods. This paper describes an experiment that investigates whether local

and global alignment techniques improve people’s performance when judging sequence similarity. Participants were divided into three

groups (basic vs. local vs. global alignment), and each participant judged the similarity of 180 sets of pseudo-randomly generated

sequences. Each set comprised a target, a correct choice and a wrong choice. After training, the global alignment group was more

accurate than the local alignment group (98% vs. 93% correct), with the basic group getting 95% correct. Participants’ response times

were primarily affected by the number of event types, the similarity of sequences (measured by the Levenshtein distance) and the edit

types (nine combinations of deletion, insertion and substitution). In summary, global alignment is superior and people’s performance

could be further improved by choosing alignment parameters that explicitly penalize sequence mismatches.

Index Terms—Event sequence visualization, sequence alignment, evaluation, user study.

✦

1 INTRODUCTION

COMPARING event sequences is a pivotal activity in
data science [1], and analysis often requires both com-

putation and visualization. For example, by interviewing
researchers we have learned that biologists use heuristics
to automatically align proteins, but the algorithms are diffi-
cult to parameterize so the biologists have to visualize the
sequences to manually correct them, human experts need
to provide guidance about patterns that are peculiar when
analyzing telecommunications logfiles for fraud, and crime
analysts consider their work is too dependent on human
judgment to be automated. As a result there are many tools
for visualizing sequences.

A key research question is how should sequences be
presented in visualizations so that people can respond
quickly and accurately to compare sequence similarity [2]?
We hypothesize that the answer is to align sequences using
local [3] or global methods [4]. These both use heuristics
to increase the number of events that are aligned across
sequences, with local alignment shifting sequences relative
to each other, whereas global methods increase alignment
by inserting gaps that also fragment sequences. By contrast,
basic methods use a pivot event to align sequences and
in the present research that was the first event (i.e., the
sequences were left-justified). However, to date, there has
not been any previous research that compares people’s
performance with such methods.

This paper investigates whether alignment techniques
improve users’ performance when judging sequence simi-
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larity, and makes three main contributions. First, we pro-
pose metrics that may be used in simulations to predict
the difficulty of similarity judgments. Second, we compare
basic, local, and global alignment methods in a controlled
experiment, measuring participants’ accuracy and response
time. This is the first time that those methods have been
investigated in such an experiment, and the results show
statistically significant differences between the methods.
Third, we show how participants’ performance was affected
by task complexity, because the experiment also included
the number of event types, the similarity of sequences and
the edit types as factors. Together, our findings pave the way
for visualization tools to better exploit human perception in
event sequence analysis.

2 RELATED WORK

This section reviews related work from three perspectives:
applications that use visualization to analyze event se-
quences, techniques for visually encoding event types, and
sequence alignment methods. We initially identified 65 pa-
pers from visualization outlets (TVCG, Computer Graphics
Forum, and Visual Analytics in Healthcare) and general
literature searches. Lacking space for an exhaustive review,
we chose a subset (see Table 1) that demonstrate diversity
across applications, analysis goals/tasks, event types, se-
quence lengths, visual channels and alignment methods.

2.1 Sequence Analysis Applications

This section outlines the tasks users perform and the scale
of data (number of event types and sequence lengths) in
sequence analysis applications, from a literature review and
interviews with two professors and a PhD student who
research event sequence visualization in biology, public
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TABLE 1
Characterization of sequence alignment methods used for application examples in previous research (MSA = multiple sequence alignment, MSLA

= Multiple-Sequence Local Alignment, PW = pairwise sequence alignment.
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[5] Biology Alignment Evaluation 3 18 Color & Shape Global (MSA)
[5] Biology Alignment Evaluation 22 7 Color & Letter Global (MSA)
[5] Biology Alignment Evaluation 22 18 Color & Shape & Texture Global (MSA)
[6] Biology Clustering 21 86 Color & Letter Global (MSA)
[7] Biology Event Sequence Search 20 475 Color & Letter Global (MSA)
[8] Biology Sequence Alignment ∼20 97 Color & Letter Global (MSA)
[9] Biology Sequence Alignment ∼20 35 Color & Letter Global (MSA)
[10] Biology Sequence Alignment 23 102 Color & Letter Global (MSA)
[11] Biology Sequence Alignment 23 10 Color & Direction Basic: center
[12] Biology Sequence Alignment (many) 6037 Color Basic: left
[13] Biology Sequence Annotation 4 118 Letter Global (MSA)
[13] Biology Sequence Annotation 18 24 Color & Letter Basic: right
[6] Biology Sequence Annotation 21 86 Letter Global (MSA)
[14] Biology Similarity Search 20 32 Color & Letter Global (PW)
[15] Biology Similarity Search 20 14 Color Global (MSA)
[16] Biology Sequence Alignment 4 60 Letter Local (MSLA)
[17] Health Clustering 3 8 Color Basic: left / time
[18] Health Clustering 13 ∼7 Color Basic: left
[19] Health Cohort Comparison 6 6 Color Basic: left / time
[20] Health Event Sequence Search 6 15 Color Basic: left
[21] Health Sequential Pattern Mining 8 15 Color & Text Basic: left
[22] Health Visual Pattern Analysis 2 7 Shape Basic: top / time
[23] Health Alignment Evaluation 2 5 Color Basic: center
[24] Health Alignment Evaluation 2 7 Color Basic: center
[25] Health Visual Pattern Analysis 3 60 Color & Size Global (DTW)
[18] User Log Analysis Clustering 14 5 Color & Text MSA
[26] User Log Analysis Interactive Grouping 10 16 Color Basic: left
[27] User Log Analysis Process Mining ∼9 ∼15 Shape & Text Global
[28] User Log Analysis Sequential Pattern Mining 9 14 Color & Size Basic: left / time
[29] User Log Analysis Visual Pattern Analysis 3 38 Color & Position Basic: top
[30] User Log Analysis Visual Pattern Analysis 5 27 Color Basic: left
[17] Everyday Life Clustering 6 4 Color Sequence Length
[17] Everyday Life Clustering 10 n.a. Color Basic: left / time
[31] Everyday Life Sequential Pattern Mining 15 4 Color & Text Basic: left
[32] Everyday Life Sequential Pattern Mining 74 32 Color Basic: left
[33] Neural Networks Interactive Grouping 5 7 Color & Size Basic: left
[34] Synthetic Data Visual Pattern Analysis 4 6 Color Basic: left / time

safety and security.One thing that stands out is the variety
of applications that involve event sequences, with biology
dominant, and health, everyday life and user log analysis
also common. There is also considerable variation in the
complexity of the sequences (see Table 1).

Biology (including bio-informatics) is the most common
application domain. The underlying goals are the analysis
of genomes, proteins, and molecules, using tasks such as
sequence alignment [5], [8], [9], [10], [11], [12], sequence
search and retrieval [7], clustering [6], annotation [6], [13]
and similarity search [14], [15]. One characteristic of biology
applications that stands out is that they tend to involve a
larger number of event types (typically about 20) and longer
sequences than other applications, and this is why com-
putation is combined with data visualization. For example,
biologists cluster proteins into a small number (typically 4
or 5) of domains that have certain structural characteristics,
and then analyze the sequences of domains rather than
individual proteins [5], [15].

Health is the second largest application domain, and is
characterized by a focus on patient cohorts or cohort com-
parison, accompanied by interactive clustering and group-
ing. Most of the examples from this domain involved six
or fewer event types (our experiment used sequences with
2 or 6 types), which referred to diseases [22], therapies

and drug prescriptions [19], patient transfer [20], or other
relevant information in electronic health records [17]. Two
approaches with more event types focused on diagnoses (8
types [21]) and hospital activities (13 types [18]).

User log analysis involves analysis tasks that range from
blackbox clustering [18] and data mining [26], [29] to in-
teractive grouping [27] and pattern analysis [28], [30]. The
examples involve a similar number of event types to health,
but longer sequences. However, some visualization tools
allow sequences to be analyzed hierarchically to reduce
complexity [18].

Everyday life is the fourth application domain, and the
examples cover daily life [32], crime signature analysis [31],
and career progression and car maintenance [17]. The main
analysis tasks are sequence pattern mining and clustering,
which are both exploratory in nature. The number of event
types is very diverse, ranging from 6 to 74.

We identified two other pieces of research that do not fit
into any of the above domains. One supports the interactive-
visual grouping and comparison of neural network archi-
tectures, and has five event types and an average event
length of seven [33]. The other is domain-agnostic, and uses
synthetic data examples to outline conceptual aspects of
event sequence comparison and visual analysis [34].
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2.2 Sequence Visualizations

Color, shape, letters, text and texture are the main visual chan-
nels for encoding event types in sequence visualizations (see
Table 1), and it is well-known that features such as color or
shape allow pre-attentive processing in visual search [35].
This section reviews uses of those channels.

Color is the most frequently used channel, and works
by color-coding a “canvas”. Such a canvas can be either a
particular type of area mark (e.g., rectangles [18]) or another
visual channel that also varies (shape, letter or texture [5]).
Interestingly, although guidelines recommend that no more
than 12 categories are encoded with color [36], that is often
exceeded by the examples that are listed in Table 1, and
particularly by genomics and protein analysis applications.
Sometimes similar events are grouped in an upstream step
to keep the number of colors manageable [31], [32], [37].
Color is also sometimes used quantitatively in combination
with similarity-preserving colormaps [38] to give similar
event types similar colors [15]. Alternatively, events can be
colored according to their relative position within a (long)
sequence [12].

Shape is a visual channel that is suitable for data with
a small number of categories [36], as is true for two of the
four examples in Table 1 that use shape encoding. One of
those uses diamonds and circles to differentiate between
coarse and fine-grained events [22]). In general, geometri-
cally regular primitives such as triangles and squares are
often used, and guidance about maximizing the perceptual
distance between shapes is provided by [39]. To further
increase shape variety, one approach adds convexity to the
outlines of graphics primitives, resulting in star-like shapes
with 4, 6, or 8 points [5]. In other cases the visualization type
pre-determines the set of shapes (e.g., states and operators
in a process chart [27]).

Letters are frequently applied to encode event types,
which is why we describe single letters as a separate visual
channel. Referring to Table 1, 35 out of the 37 examples
involve fewer event types than there are letters in the
Latin alphabet. In genome analysis, a standard visualization
approach is using letters to encode the adenine (A), thymine
(T), cytosine (C) and guanine (G) base pairs [13]. A similar
approach is taken for the amino acid alphabet [6], as one of
nine examples that encode about 20 event types with letters.
Rather than directly encoding event types, an interesting
variant is to encode states that have been computed from
event sequences, for example, using three letters to encode
matches (M), deletions (D) and insertions (I) [6].

Text (i.e., labels that are made up of multiple letters) that
is nested within an area mark is used as a visual channel
in four examples [18], [21], [27], [31]. This can help users to
make sense of varieties of event types, particularly when the
event types are diverse or large in number.

Texture is used in one example. This adopted shape-like
textures to increase the number of visually discernible event
types [5].

About half of the examples in Table 1 (17 out of 37)
employ multiple channels to encode characteristics of event
sequences, and we note three different multi-channel strate-
gies. One uses redundancy to encode the same information
with multiple visual channels. In many cases, each letter or

shape is colored differently [10], [13], or the letters them-
selves are black and their background (e.g., a rectangle)
is colored differently [6], [8], [18], [40]. A second strategy
visualizes event types with another source of information
(metadata). Most of the examples in Table 1 use letters
to encode the event types, in combination with color to
link to metadata, such as a coarser level of granularity or
other external characteristics [7], [10]. Rather different is
the use of direction to differentiate binary characteristics
in combination with color [11], or where the combination
of colors and shapes results in a complex glyph-like struc-
ture [21]. The third strategy makes use of three channels
(color, shape, and texture) to depict larger numbers of event
types. The approach listed in Table 1 uses color and shape
to differentiate between event sequences, and texture to
differentiate sub-types within groups [5].

2.3 Sequence Alignment

We divide alignment methods into those that are query-
based or heuristic-based. With all of the methods, the general
aim is to either automatically compute or help users find
sequences of events that are common or similar among
two (pairwise sequence alignment) or more (multiple sequence
alignment) sequences.

Query-based alignment requires pivot events to be se-
lected for each sequence. Sometimes, this is the first event
of a sequence (left-alignment) [9], the last event (right-
alignment) or both [27]. We call all of these cases basic
alignment. In other cases, the pivot is defined by a specific
event type [41] or transition [42]. The most comprehensive
approaches allow users to interactively specify multiple
pivot events or transitions [25], [29], e.g., by combinations
of event type. All of the query-based alignment approaches
preserve the order of events and may preserve temporal
differences. However, visual comparison is often limited to
an area close to the pivot events.

Heuristic-based methods may be subdivided into meth-
ods for local and global alignment. Local alignment shifts
whole sequences relative to each other to maximize the
number of events that are aligned according to some crite-
rion. Common criteria are to maximize the number of matches
(i.e. count the number of identical events at corresponding
positions [43]) or to maximize the number of contiguous
matches (the longest common subsequence [3]). Our experi-
ment used the latter criterion. Global alignment [4] calculates
end-to-end correspondences between sequences and, in the
process, may introduce gaps or even subsequence permu-
tations. Global alignment quality can be determined by a
number of criteria that are combined to calculate a score,
i.e., the alignment of the sequences depends on the ratio of
bonus and penalty parameters. The criteria are as follows:

• Match bonuses and mismatch penalties define similarity
between corresponding elements and the probability
of single-element change (e.g., see [18]). The match
bonuses are added to the score and the mismatch
penalties are subtracted.

• Gap penalties reflect insertions or deletions operating
on sequences. Some approaches may further distin-
guish the number and length of gaps or between
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insertion and deletion costs (see [20]), which are
subtracted from the score.

• Reordering penalties account for the probability of
elements or subsequences being rearranged, which
is relevant in applications such as genetics [44].

• Inversion penalties model the probability of sequences
being reversed [45].

Finally, Albers [12] et al. explore the design space for visu-
alizing global alignments from a user-centered viewpoint,
orthogonal to the alignment calculation. By changing the
visual mapping, their approach allows for the preattentive
perception of mismatches, gaps and rearrangements. This
work further motivated us to conduct a study to investigate
the use of (more complex) global alignment. To the best of
our knowledge, such a study has not been conducted before.

3 PREDICTING THE EFFECT OF ALIGNMENTS

This section describes simulations that were used to conduct
a preliminary investigation that predicted the effect of differ-
ent alignment methods, and choose parameters and factors
for the user experiment that follows. Section 3.1 defines two
metrics that quantify alignment quality. The other parts use
those metrics to investigate how alignment quality varies
with different bonus and penalty values in global alignment
(Section 3.2) and compare basic, local and global alignment
(Section 3.3).

3.1 Metrics

The time taken for serial search tasks increases with the
number of items on a display [35], which in our paradigm
corresponds to the number of positions in a set of sequences.
This leads to a length-based metric (Qlength) that may be
used to quantify alignment quality, and is normalized so
that the minimum is 1.0 / number of sequences, and the
maximum is 1.0:

Qlength = MAX(sequence length without gaps)

/Total length including gaps

It is quicker to determine that events match when they
are aligned rather than offset, because the similarity is more
salient and smaller eye saccades are required [35]. This leads
to a second metric that is based on the number of matches
(Qmatch) and also has a maximum value of 1.0:

Qmatch = Number of aligned matches

/MIN(sequence length without gaps)

3.2 Parameters for global alignment

The effect of the match bonus, mismatch penalty and gap
penalty was investigated as follows. First, a coarse investi-
gation of the effect was performed by randomly generating
pairs of sequences for the variables that are listed in Table 2,
and then a fine-grained investigation was performed using
a narrower range of values for the variables (again, see
Table 2). For both investigations, 100 random pairs were
generated for each combination of values.

Fig. 1. Results for the fine-grained investigation of global alignment
parameters. Qlength was always optimal (= 1.0) for half of the combi-
nations of parameter values, but the other half produced a spread of
Qlength values.

For each sequence, a target sequence that contained N
different event types and was of length L was generated.
The number of events of each type was chosen randomly,
ensuring that there was at least one event of each type, and
the position of each event was chosen randomly. Then a
second sequence was generated by starting with the target,
and randomly choosing a substitute event type for each of
D positions. The Levenshtein distance [46] between the two
sequences was checked, and if it did not equal D then the
sequences were regenerated. Once a valid pair had been
generated, they were aligned using the Needleman-Wunsch
algorithm [4], and Qlength and Qmatch metrics were calcu-
lated. Only substitutions were used, because they are more
difficult to accommodate in global alignment. Deletions and
insertions were included when a comparison was made
with basic and local alignment (see Section 3.3).

Only the fine-grained investigation results are reported
here. Qlength was optimal (see Figure 1) if both of the
following conditions were satisfied:

gap penalty < mismatch penalty
match bonus ≤ ABS(gap penalty)

Qmatch changed more subtly, but the median score
increased slightly as the mismatch:gap penalty ratio became
closer to -1:-1, and the median also increased if match
bonus > ABS(gap penalty).Therefore, for the next part of the
investigation we chose parameter values of match bonus =
1, mismatch penalty = -1 and gap penalty = -2.

3.3 Comparing basic, local and global alignment

The next stage of the investigation was to compare basic,
local and global alignment, using the same target sequence
lengths, numbers of event types and Levenshtein distances
as the fine-grained investigation of global alignment (see
Table 2). Local alignment was performed using the longest
common subsequence (LCS) methodology and basic, left-
justified alignment [3].

The alignment methods were compared by randomly
generating 1000 pairs of sequences for each combination of
the variables values that are listed in Table 2. The target
sequences were generated using the same method as Sec-
tion 3.2, and the second sequence was generated by starting
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TABLE 2
The variable values that were used in coarse and fine investigations of the effect of global alignment parameters (see Section 3.2), and to compare

basic, local and global alignment (see Section 3.3).

Variable Global alignment Basic vs. local vs. global alignment
Coarse investigation Fine investigation

Edit type Substitute Substitute Delete, Insert or Substitute
Total number of sequence pairs 48,600 6,156,000 2,565,000
Match bonus 1, 10 or 100 1, 2, 4, 8, 16 or 32 1
Mismatch penalty -1, -10 or -100 -1, -2, -4, -8, -16 or -32 -1
Gap penalty -1, -10 or -100 -1, -2, -4, -8, -16 or -32 -2
Target sequence length (L) 5, 10 or 15 2 – 10, in steps of 1 2 – 10, in steps of 1
Number of event types (N) 2 or L (i.e., 5, 10 or 15) 2 – L, in steps of 1 2 – L, in steps of 1

(45 combinations of L and N) (45 combinations of L and N)
Levenshtein distance (D) 1, (L + 1)/2 or (L - 1) 1 – (L-1), in steps of 1 1 – (L-1), in steps of 1

(285 combinations of L, N and D) (285 combinations of L, N and D)

with the target, and randomly choosing a delete, insert or
substitute event for each of D positions. Only one edit type
was used for each pair.

For delete and insert events, Qmatch was optimal (= 1.0)
for global alignment, and generally greater for local align-
ment than basic alignment (see Figures 2a and 2b). However,
for substitute events there were not any clear differences
between the alignment methods (see Figure 2c). Qlength
was optimal (= 1.0) for every combination of alignment
and edit type, except insert and substitute events with local
alignment (see Figures 3b and 3c, respectively). Together,
the metrics suggest that it is easier to judge the similarity of
event sequences with global alignment than local or basic
alignment. However, the difference between the alignment
methods is affected by the ways in which sequences differ.
The edit type produces the greatest differences, with addi-
tional differences caused by the number of event types, and
the Levenshtein distance.

4 EXPERIMENT

This section describes an experiment that investigated the
effect of alignment on participants’ ability to judge the
similarity of event sequences. The experiment used a mixed
model design, with the alignment method (Basic, Global or
Local) treated as a between participants factor, and three
within participants factors. They were chosen from the
Section 3.3 results and a four-person pilot study, and were:

• The number of event types in the target sequence (2
vs. 6).

• The Levenshtein distance between the target and two
choices (small vs. large; for details, see Section 4.1.2).

• The combination of edit types that were used for the
correct and wrong answers (9 combinations; delete
vs. delete, delete vs. insert, delete vs. substitute,
insert vs. delete, insert vs. insert, insert vs. substi-
tute, substitute vs. delete, substitute vs. insert, and
substitute vs. substitute).

From the results that are described in Section 3, we
hypothesized that participants would perform faster and/or
more accurately when sequences were visualized with
global alignment. However it was not possible to make
a hypothesis about the overall merits of the other types
of alignment, because the Qmatch metric indicated that
local alignment is superior to basic alignment, whereas the
Qlength metric indicated the opposite.

4.1 Method

4.1.1 Participants

A total of 42 people (33 men, 7 women and 2 who declined
to say) with a mean age of 27.4 years (SD = 6.0) participated.
The participants were students and staff at the authors’
institutions, 12 were studying for their first degree, 28 were
graduates and two did not say. The participants took an
average of 32 minutes (SD = 13) to complete the whole
experiment, gave informed consent but did not receive any
form of payment for their participation. The study was
approved by the Ethics Committee at the first author’s
institution.

4.1.2 Materials

The experiment was delivered via a web browser using
custom-developed Java software [47], which generated sets
of sequences (see Figure 4) using a method that was similar
to the one that was used in Section 3.2. First, a target
sequence that was of length six, and contained either two
or six different event types, was generated. The number
of events of each type was chosen randomly, ensuring that
there was at least one event of each type, and the position
of each event was chosen randomly.

Then two more sequences were generated (the correct
choice and the wrong choice), for a given combination of
edit types (e.g., insert for the correct choice and delete for
the wrong choice) and either a small Levenshtein distance
(distance = 1 vs. 2 for the correct and wrong choices, re-
spectively) or a large Levenshtein distance (distance = 2 vs.
4). Each choice was generated by starting with the target,
and randomly choosing the same number of positions as
the Levenshtein distance. Depending on the edit type, the
events in those positions were deleted, new events were
inserted, or substitute event types were chosen. The type
of each inserted or substituted event was chosen randomly
from either two or six types, according to the number of
types that were in the target. Finally, the Levenshtein dis-
tance between the sequence and the target was checked, and
if it was not appropriate then the sequence was regenerated.

When a set of trials was displayed each type of event was
shown in a different color, which is the visual channel that
is most commonly used in applications of event sequence
visualization (see Table 1), is highly ranked for categori-
cal data [48], [49] and, in a previous experiment, allowed
participants to judge sequence similarity slightly faster and
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Fig. 2. Qmatch for combinations of alignment, number of event types,
Levenshtein distance and edit type: (a) delete edits, (b) insert edits, and
(b) substitute edits. For clarity, only the lowest middle and highest values
of number of event types (2, 6 and 10) and Levenshtein distance are
shown (1, 5 and 9). Each boxplot contains data for the range of values
of target sequence length.

more accurately than position encoding [50]. The colors
were chosen from a ColorBrewer colorblind-safe palate [51].

4.1.3 Procedure

The experiment was divided into two parts: an introduction
and the test. In the introduction, a series of slides that were
specific to the participant’s group (Basic, Global or Local)
were used to explain the task, and the three edit types (insert
vs. delete vs. substitute). Then slides were used to present

Fig. 3. Qlength for combinations of alignment, number of event types,
Levenshtein distance and edit type: (a) delete edits, (b) insert edits, and
(b) substitute edits.

nine practice trials to a participant, one for each combination
of correct answer edit type and wrong answer edit type (see
Figure 4). For each slide, the participant’s task was to “click
on the sequence (A or B) that is most similar to the target
sequence”. Once the participant had made their choice the
correct answer was displayed, together with the edits that
needed to be made to change the answer into the target.

The test involved five blocks of trials, with 36 trials in
each block (one trial for each combination of the within
participants factors: number of event types, Levenshtein
distance, and correct/wrong answer edit types). The trials
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Fig. 4. Examples of the experiment’s trials: (a) Basic alignment: Correct
choice is B (1 insertion) whereas A has 2 deletions, (b) Local alignment:
Correct choice is B (2 deletions) whereas A has 4 substitutions, and (c)
Global alignment: Correct choice is A (1 substitution) whereas B has 2
insertions. Every target sequence contained six events, and either two
or six event types.

were presented in a random order. A participant’s task
was to choose whether sequence A or B was more similar
to the target sequence, which they indicated by clicking
inside the box that surrounded the relevant sequence. That
caused the choice and the participant’s response time to be
recorded, and the screen to be blanked for 1 second before
the next trial was displayed. To reduce fatigue, there was a
30 seconds pause between blocks.

4.2 Results and discussion

This section analyzes participants’ performance in terms
of the percentage of trials that they got correct and their
response time. The response time data was normalized
using a log10 transformation.

Analyses of variance (ANOVAs) were used to investigate
participants’ longitudinal performance and trained perfor-
mance (see summary in Table 3, and details in Sections 4.2.1
and 4.2.2, respectively). Only statistically significant inter-
actions are reported. A † after a p value indicates that the
Greenhouse-Geisser sphericity correction was applied. Fi-
nally, in Section 4.2.3 the alignment quality metrics are used
to explain some of participants’ performance differences.

4.2.1 Longitudinal performance

Participants’ performance across the five blocks of trials was
analyzed using ANOVAs that treated the alignment group
as a between participants factor and block as a within par-
ticipants factor. For the percentage of trials that participants
got correct an ANOVA showed that there were main effects
of block (F(4,156) = 2.58, p = .04) and alignment (F(2, 39)
= 3.43, p = .04) (see Figure 5). Bonferroni-adjusted pairwise

TABLE 3
Summary of the effects that are reported in the main text, for the

longitudinal and trained performance ANOVAs.

Longitudinal (Blocks 1-5)

Independent variable(s) % correct Response time

Block p = .04 p < .01
Block x Alignment p = .24 p = .03
Alignment p = .04 p = .62

Trained (Blocks 4 & 5)

Independent variable(s) % correct Response time

Alignment p < .01 p = .13
Alignment x Levenshtein distance p < .01 p = .80
Alignment x Edit type p = .01 p = .01
Alignment x Edit type x No. event types p = .61 p = .04
No. event types p = .68 p < .01
Levenshtein distance p < .01 p < .01
Edit type p = .15 p < .01
Levenshtein distance x No. event types p = .86 p = .02
No. event types x Edit type p = .07 p < .01
Levenshtein distance x Edit type x

No. event types p = .13 p < .01
Levenshtein distance x Edit type p = .07 p < .01

Fig. 5. The mean % correct trials in each block for the participants
who used each type of alignment. Error bars show the 95% confidence
intervals (CIs).

comparisons showed that the Global group got more trials
correct than the Local group (p = .04), but none of the other
differences between the groups or between the blocks were
statistically significant.

For response time, an ANOVA showed that there was a
main effect of block (F(2, 86) = 52.84, p < .01†). Bonferroni-
adjusted pairwise comparisons showed that participants
responded faster from Blocks 1 to 2, 2 to 3 and 3 to 4 (p < .01
in each case), but there was no difference between Blocks 4
and 5 (p = 1.00). There was not a main effect of alignment
(F(2, 39) = 0.48, p = .62), but there was a alignment x block
interaction (F(8, 156) = 2.18, p = .03), with the Local group
changing from responding slowest in Block 1 to quickest in
Block 5 (see Figure 6).

4.2.2 Trained performance

Based on the longitudinal analyses, the data from Blocks
4 and 5 were combined to investigate differences that oc-
curred between the experiment’s factors once participants’
performance had levelled off. This “trained” performance
was analyzed using ANOVAs that treated the alignment
group as a between participants factor, and the number of
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Fig. 6. The mean response time in each block for the participants who
used each type of alignment. Error bars show the 95% CIs.

Fig. 7. The percentage of trials that each alignment group got correct
with the two Levenshtein distances, in Blocks 4 & 5. Error bars show the
95% CIs.

event types (2 vs. 6), the Levenshtein distance (small vs.
large) and the edit types (9 combinations of types for the
correct and wrong answers) as within participants factors.

Percentage correct: An ANOVA produced two main
effects and two interactions (see Table 3). There was a
main effect of alignment (F(2, 39) = 5.86, p < .01), and
Bonferroni-adjusted pairwise comparisons showed that the
Global group got more trials correct than the Local group (p
< .01), but none of the other differences between the groups
were statistically significant. There was also a main effect
of Levenshtein distance (F(1, 39) = 27.10, p < .01) and a
alignment x Levenshtein distance interaction (F(2, 39) = 5.88,
p < .01). The Basic and Local groups got more trials correct
when the distance was large rather than small, whereas the
Global group’s performance was not affected by distance
and appeared to have reached a ceiling (see Figure 7).

For the percentage correct data, there was no effect of
the number of event types (F(1, 39) = 0.17, p = .68) and
no effect of edit type (F(6, 234) = 1.59, p = .15†). However,
there was a alignment x edit type interaction (F(16, 312) =
2.05, p = .01). The Global group was largely unaffected by
the edit types, whereas the other groups got substantially
fewer trials correct for certain combinations of edit type (see
Figure 8). The worst performance was by the local alignment
group when both the correct and wrong choices involved

Fig. 8. The percentage of trials that each alignment group got correct for
each combination of correct and wrong choice edit type, in Blocks 4 &
5. Error bars show the 95% CIs.

Fig. 9. Participants’ mean response times for each combination of Lev-
enshtein distances and the number of event types, in Blocks 4 & 5. Error
bars show the 95% CIs.

the substitute edit type.

Response time: An ANOVA produced three main ef-
fects and significant interactions (see Table 3). Participants
responded faster when there were two rather than six event
types (F(1, 39) = 134.62, p < .01) or a small Levenshtein dis-
tance (F(1, 39) = 58.89, p < .01), and there was a Levenshtein
distance x number of event types interaction (F(1, 39) = 6.35,
p = .02) (see Figure 9).
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Fig. 10. The alignment groups’ mean response times for each combina-
tion of correct and wrong choice edit type. The data are for Blocks 4 & 5
and the error bars show the 95% CIs.

There was a main effect of edit type (F(8, 312) = 27.93, p
< .01), with participants responding faster when the correct
and/or wrong choice involved deletions, and slower when
those choices involved substitutions. There were interac-
tions of Levenshtein distance x edit type (F(8, 312) = 8.85,
p < .01), number of event types x edit type (F(8, 312) = 3.60,
p < .01), and Levenshtein distance x number of event types
x edit type (F(8, 312) = 2.88, p < .01) (see Table 4). These
interactions shared two general trends, which were that the
response time increased with the number of event types and
with the Levenshtein distance. A notable exception occurred
when the correct and wrong choices both involved deletions
because, with that, participants responded faster when the
Levenshtein distance was large.

Finally, although there was no main effect of alignment
(F(2, 39) = 2.19, p = .13), there was an alignment x edit type
interaction (F(16, 312) = 2.00, p = .01). The Global group were
slowest for every combination of edit type, but the magni-
tude of the difference between the groups varied across the
edit types (see Figure 10). There was also an alignment x
edit type x number of event types interaction (F(16, 312)
= 1.74, p = .04), because participants were typically slower
with six event types than two event types, but there were
some notable exceptions (e.g., when the local group’s correct
choice involved substitutions; see Figure 11).

Fig. 11. The difference in the alignment groups’ mean response times
with 6 event types – 2 event types, for each combination of correct and
wrong choice edit type. The data are for Blocks 4 & 5 and the error bars
show the 95% CIs.

4.2.3 Performance and metrics of alignment quality

In the trained performance data, participants’ accuracy was
affected by the type of alignment. The local and basic
groups were worst, but the global group’s better accuracy
came at the expense of slower response times. This section
investigates errors that the local and basic groups made, and
then why the global group may have responded slower.
Both investigations started with manual inspection of sets
of sequences that were presented to participants, to iden-
tify patterns, which were then investigated with alignment
quality metrics from Section 3. One of the basic group’s
participants was omitted because a software error meant
that their sets of event sequences were not stored when the
experiment took place.

Most of the errors occurred with the small Levenshtein
distance. Manual inspection of the trials showed that 62%
of the local group’s errors occurred when the wrong choice
had either the same number or more events aligned with
the target than the correct choice. This problem is inherent
to local alignment, and made it more likely that participants
would make a mistake. Manual inspection also showed that
47% of the basic group’s errors occurred when both the
correct and wrong choices had the same number of events
aligned with the target, which is also a problem that is
inherent with the alignment method.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 4
Mean [95% confidence intervals] of the log10(Response time) for each combination of the correct/wrong choice edit type, the number of event

types, and the small and large Levenshtein distance.

Correct Wrong 2 event types 6 event types
choice choice Small Large Small Large

Delete Delete 0.53 [0.46, 0.60] 0.43 [0.38, 0.47] 0.63 [0.58, 0.68] 0.62 [0.57, 0.67]
Insert 0.48 [0.44, 0.53] 0.58 [0.52, 0.64] 0.65 [0.59, 0.71] 0.72 [0.66, 0.79]
Substitute 0.51 [0.46, 0.56] 0.64 [0.58, 0.70] 0.69 [0.64, 0.74] 0.84 [0.79, 0.89]

Insert Delete 0.55 [0.50, 0.60] 0.62 [0.56, 0.69] 0.72 [0.67, 0.77] 0.67 [0.61, 0.73]
Insert 0.57 [0.51, 0.63] 0.73 [0.67, 0.79] 0.72 [0.67, 0.78] 0.81 [0.75, 0.87]
Substitute 0.53 [0.48, 0.59] 0.73 [0.67, 0.78] 0.76 [0.71, 0.81] 0.84 [0.77, 0.91]

Substitute Delete 0.60 [0.54, 0.67] 0.65 [0.58, 0.71] 0.68 [0.63, 0.73] 0.72 [0.66, 0.78]
Insert 0.60 [0.54, 0.67] 0.73 [0.66, 0.80] 0.72 [0.67, 0.77] 0.75 [0.69, 0.81]
Substitute 0.60 [0.55, 0.66] 0.76 [0.70, 0.82] 0.77 [0.71, 0.82] 0.89 [0.84, 0.94]

Fig. 12. The difference in Qmatch for the correct and wrong choice in
each trial, for each combination of group (basic vs. local alignment) and
whether participants were correct or made an error. Whiskers are 1.5 x
inter-quartile range.

To investigate the problems, Qmatch was calculated for
the correct choice and target, and for the wrong choice and
target. This showed that, in 75% of trials that participants
got correct, Qmatch was greater for the correct choice than
the wrong choice. By contrast, for 50% of trials in which
participants made an error, the wrong choice’s Qmatch was
greater (see Figure 12). That is consistent with participants
being more likely to make an error if the wrong choice has
a greater number of aligned events.

To investigate the global group’s response times, the 20
slowest correct trials were manually inspected. In 50% of
those, the correct choice and/or the wrong choice involved
substitute events. This problem is not inherent to global
alignment, because alignments depend on the ratio of the
match bonus, mismatch penalty and gap penalty param-
eters. To investigate this for all of the global alignment
trials, the trials were divided into quartiles according to
their response times, and the number of mismatches was
counted. One would expect participants to respond faster
when there were fewer mismatches in the correct choice
than the wrong choice, but the opposite occurred (see Fig-
ure 13a). However, when the correct choices were analyzed
separately then a different pattern was revealed, which was
that the correct choice tended to have a greater number of
mismatches when participants responded more slowly (see
Figure 13b). In other words, participants were slowed down
by the difficulty of comparing each choice to the target,
rather than directly comparing the two choices.

Fig. 13. Mismatches for trials in each quartile of response times for
global alignment trials that participants answered correctly, showing: (a)
the difference between the correct and wrong choice mismatches, and
(b) the number of mismatches in the correct choice.

5 CONCLUSIONS AND FUTURE WORK

This paper describes a controlled experiment which shows
that global alignment allows users to judge the similarity
of event sequences more accurately than if either local
alignment or basic alignment is used. Global alignment is
particularly helpful when users have to judge small dif-
ferences between sequences, whereas basic alignment may
be sufficient for coarser judgements. Our results also pave
the way for visualization tools to better exploit human
perception by adopting global alignment parameters that
heavily penalize mismatches, so that they occur less often.

Global alignment is widely used for computational se-
quence alignment [46], but this is the first time that it has
been investigated in a user experiment. Even though only a
limited set of factors could be studied, the sequence lengths
and number of event types were similar to some of the
examples that are listed in Table 1. Other examples deal
with complexity by adding computational or hierarchical
elements to the workflow, and our results are directly ap-
plicable to where analysts use visualization in those work-
flows [5], [15], [18]. Beyond that, we anticipate that global
alignment will be more beneficial if complexity arises from
sequence length rather than the number of event types (e.g.,
[13], [20], [29], [30]).

Controlled, pre-registered experiments provide a gold
standard for investigating users’ performance but are time-
consuming, which limits the factors that may be investi-
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gated. As well as describing a successful experiment, the
present research showed how metrics may be combined
with simulations to identify good parameter values for user
experiments and also indicated how sequence alignment
metrics could be improved by taking account of the number
of mismatches, as well as length and the number of matches.

Finally, the above conclusions lead to three avenues that
require further research. The first is user-centered, where
there is a clear need for additional controlled experiments
and combining the results to develop a cognitive model that
accurately predicts users’ accuracy and response time when
judging sequence similarity. The second is to incorporate
such models within user interfaces that adapt to the com-
plexity of given sequence data and the types of judgment
that users make. Such interfaces could then provide the core
of new visual analytic tools for event analysis. The third is
understanding the workflows that users adopt with those
adaptive interfaces, to increase the volume and complexity
of data that may be analyzed.
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