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EllSeg: An Ellipse Segmentation Framework for Robust Gaze
Tracking
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Abstract—Ellipse fitting, an essential component in pupil or iris tracking based video oculography, is performed on previously
segmented eye parts generated using various computer vision techniques. Several factors, such as occlusions due to eyelid shape,
camera position or eyelashes, frequently break ellipse fitting algorithms that rely on well-defined pupil or iris edge segments. In this
work, we propose training a convolutional neural network to directly segment entire elliptical structures and demonstrate that such a
framework is robust to occlusions and offers superior pupil and iris tracking performance (at least 10% and 24% increase in pupil and
iris center detection rate respectively within a two-pixel error margin) compared to using standard eye parts segmentation for multiple

publicly available synthetic segmentation datasets.

Index Terms—Head mounted eye-tracking, ellipse fitting, eye-segmentation, AR/VR

1 INTRODUCTION

There is great potential for the use of eye tracking in augmented and vir-
tual reality (AR/VR) displays both as a means for user interaction, and
for gaze-dependent rendering techniques that can both increase visual
fidelity [I]] while also lowering computational overhead [2]]. Contem-
porary methods for eye tracking in VR and AR build upon techniques
established in the context of head-mounted video-oculography, which
involve the use of one or more infrared light sources placed next to
infrared eye cameras. These eye cameras are pointed towards each
of the wearer’s eyes while a third camera, referred to as the scene
camera, points away from the wearer to capture the environment being
observed [J3]]. Existing solutions extract gaze descriptive features such
as pupil center [4H9]l, pupil ellipse [T0H14], iris ellipse [I5H17], or track
iridial features [[18|/I9]. These solutions vary in algorithmic complexity,
latency, and computational power requirements. Extracted features are
then correlated to a measure of gaze using calibration routines [20H22],
which compensate for person-specific physiological differences.
Despite many recent advances in eye-tracking technology [23], three
factors continue to adversely impact the performance of eye-tracking
algorithms: 1) reflections from the surroundings and from interven-
ing optics, 2) occlusions due to eyelashes, eyelid shape, or camera
placement and 3) small shifts of the eye-tracker position caused due
to slippage [24]]. Pupil detection algorithms such as ExCuSe [4] and
PuRe [8]] which rely on hand-crafted features are particularly suscep-
tible to stray reflections (unanticipated patterns on eye imagery) and
occlusion of descriptive gaze regions (such as eyelid covering the pupil
or iris). Recent appearance-based methods based on Convolutional Neu-
ral Networks (CNNis) are better able to extract reasonably reliable gaze
features despite the presence of reflections or occlusions [26]. Ad-
ditionally, for head-mounted eye-tracking systems, the degradation of
gaze estimate accuracy over time due to slippage can be minimized
by estimating the 3D eyeball center of rotation [28]] (loosely referred
at as an "eyeball fit’). Estimating the precise physiology of the human
eye is a complicated process and computationally intractable [29]. By
making certain simplifying assumptions about the human eye and
its geometrical constraints, an estimate of a reduced optical eyeball
model can be obtained from 2D pupil or iris
elliptical fits. These elliptical fits are derived from identified pupil and
iris segments or outline [33]. Efforts by Chaudhary et al. and Wu
et al. [34]] demonstrate that CNNs can precisely segment eye images
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Fig. 1. PartSeg vs EllSeg. Left: A Four-class eye part segmentation
at the pixel-level (i.e. PartSeg) produces labelled pupil (yellow), iris
(green), sclera (blue) and background (purple) classes. Right: The
EllSeg (three-class) modification produces labelled pupil (yellow) and iris
(green) elliptical regions and the rest is marked as background (purple).

into its constituent parts, i.e., the pupil, iris, sclera and background skin
regions.

In this work, we show that partially occluded pupil or iris regions
can result in imprecise or degenerate elliptical fits. To mitigate this, we
provide a solution, called EllSeg, which is made robust to occlusion
by training CNNss to predict entire elliptical eye regions (the full pupil
and the full iris) along with the remaining background, as opposed to
the standard visible eye-parts segmentation (PartSeg) (see Figure E[)
Additionally, we demonstrate that this approach enables us to train
segmentation-based CNN architectures directly on datasets wherein
only the pupil centers are available [5[6l[35]], allowing us to combine
eye parts segmentation and pupil center estimation into a common
framework.

The summary of our contributions are as follows:

1. We propose EllSeg, a framework that can be utilized with any
encoder-decoder architecture for pupil and iris ellipse segmen-
tation. EllSeg enables prediction of the pupil and iris as full
elliptical structures despite the presence of occlusions.

2. To establish the utility of our methodology, we rigorously test
our proposed 3-class ellipse segmentation framework using three
network architectures, a modified Dense Fully Connected Net-
work [36] (referred as DenseEINet), RITnet [25]] and Deep-
VOG [14]. Performance is benchmarked with well defined train
and test splits on multiple datasets, including some which are
limited to labelled pupil centers only.

2 RELATED WORK

This work is primarily based on the observation that CNNs can iden-
tify which category a pixel belongs to despite conflicting appearance



(e.g. accurately predicting a pixel as belonging to the pupil despite
being occluded by eyelids or glasses). Successful segmentation in the
presence of ambiguous appearance indicates that a CNN can reason
over a wide range of inter-pixel spatial relationships while precise seg-
mentation boundaries indicate successful utilization of fine-grained,
high-frequency content observed in local neighborhoods. This ability
to capture local information with a global context is achieved by repeat-
edly pooling intermediate outputs of convolutional operations within
a neural network [37|]. While numerous architectures can produce a
“one-to-one” mapping between an image pixel and its segmentation
output class, specific architectures rely on encoding an input image to
low dimensional representation followed by decoding and up-sampling
to a segmentation map - aptly named encoder-decoder architectures.

Researchers have demonstrated promising results using encoder-
decoder architectures for image segmentation. For example, Chaudhary
et al. |25] proposed RITnet, a lightweight architecture which leverages
feature reuse and fixed channel size to maintain low model complexity
while demonstrating state of the art performance on the OpenEDS
dataset [38]]. In this work, we designed our own encoder-decoder
architecture called DenseEI[Net which incorporates the dense block
proposed by RITnet while leveraging residual connections across each
block as proposed by Jegou et al. [36]]. This ensures a healthy gradient
flow and faster convergence while mitigating the vanishing gradient
problem [39}/40]. Similar to common encoder-decoder architectures,
DenseEINet reduces the spatial extent of its input image but increases
the channel size. Note that DenseEINet does not offer any particular
novelty over existing encoder-decoder architectures. It is simply being
used to facilitate testing of our EllSeg framework.

The primary purpose of eye image segmentation, in the context
of gaze estimation, is to produce reliable ellipse fits. The DeepVOG
framework by Yiu et al. [41] utilizes the U-net architecture to segment
the pupil followed by an out-of-network ellipse fitting procedure to gen-
erate a 3D model using the “’two circles” approach [[12/42]]. A limitation
of their approach is that they segment the pupil based solely on appear-
ance which would likely suffer from occlusion as described previously.
Fuhl er al. [43]] demonstrated that ellipse parameters can be regressed
using the bottleneck representation of an input image. However they do
not report any metrics for ellipse fit quality. Wu er al. [34] leverage mul-
tiple decoders to segment an image and estimate 2D cornea and pupil
center. Multiple decoders may increase computational requirements
and introduce bottlenecks in the pipeline by operating on redundant
information. In contrast, we show that the iris and pupil ellipse can be
generated using a single encoder-decoder forward pass.

3 METHODOLOGY

Figure 2] highlights the EllSeg framework on any generic encoder-
decoder (E-D) architecture. First, an input image / C R is passed
through an encoder to produce a bottleneck representation Z such that
Z = E(I). In our implementation of DenseEINet, / is down-sampled
four times by a factor 2 at the bottleneck layer. Subsequently, the
network segmentation output O is given by O = D(Z) and consists of
three channels (background Oy, iris O; and pupil O output maps).
Note that the segmentation outputs are also used to derive pupil and
iris ellipse centers. The pupil and iris centers, along with the remain-
ing ellipse parameters (axes and orientation), are also regressed from
this bottleneck representation Z using a series of convolutional layers
followed by a flattening operation and mapped to a ten-dimensional
output (5 parameters for both the iris and pupil ellipses). Please refer
to Figure E| for the ellipse regression module architecture. We test
the effectiveness of EllSeg framework on three architectures, DenseEl-
Net (2.18M parameters), RITnet (0.25M parameters), and DeepVOG
(3.71M parameters). Note that the regression module is trained along-
side the entire network in an End-to-end fashion.

3.1

The center of any convex shape can be described as a weighted sum-
mation of its spatial extent (see Equation |I|) In this context, spatial
extent refers to all possible pixel coordinates while weight refers to the

Ellipse center

Fig. 2. Proposed ElISeg framework (region enclosed by red dotted line)
builds upon existing CNN-based approaches to facilitate the simultane-
ous segmentation and ellipse prediction for both iris and pupil regions.
The resulting ellipse parameters are highlighted in the blue box.
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Fig. 3. Regression module architecture. The | signifies average pooling
to 1/2 the resolution. Tensors are flattened after three convolutional layers
and passed through two linear layers before regressing 10 values (5
ellipse parameters for pupil and iris each).

probability estimate of a pixel being within the convex structure.
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Here, xX and y% correspond to the center of a particular feature class
k (such as pupil). The iterators i and j span across the width W and
height H of an image. The probability values p* for each pixel are
derived after a scaled, spatial softmax operation [44]:
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Here, f3 is a control parameter (also known as temperature [43]),
which scales network output around the largest value. We empirically
set B as 4. This formulation of ellipse center gives rise to several
advantages offered by EllSeg over PartSeg discussed in Section@
and Section

While one may trivially estimate the pupil center in this manner,
deriving the iris center is not straightforward due to its placement within
the pupil. One alternative is to sum the pupil and iris activation maps
before spatial softmax. However, this incorrectly results in the predicted
pupil and iris sharing the same 2D center which is physiologically
improbable as the pupil is not usually perfectly centered within the
iris [46]. Instead, we propose leveraging the background class to predict
the iris center in our 3 class segmentation framework. Encoder-decoder
architectures have shown to perform exceedingly well at identifying
“background” class pixels (see Supplementary Table 1 in Nair et al. [47]]
and Table 2 in Wu et al. [34]). To derive the iris center, we negate
the background class output map in Equation 2] a modification which
subsequently leads to an inverted peak at the predicted iris center
location. This inversion ensures the background probability scores do
not affect segmentation based loss functions (see Section[6.3.1).

3.2 Ellipse axis and orientation

The bottleneck representation Z is a low dimensional latent representa-
tion of the input image. This convenient representation enables us to
regress parameters such as the ellipse axis and orientation (we use L
loss in our implementation). Experiments revealed that regressing the
pupil and iris centers does not offer sub-pixel accuracy (see Section[6.4)



as opposed to deriving them from segmentation output as described in
the previous section.

3.3 Loss functions
3.3.1 Segmentation losses Zseg

In the EllSeg framework, the network output O is primarily used to
segment an eye image into pupil and iris ellipses, and the background
(which includes scleral regions). To train such an architecture, we
use the combination of loss functions proposed in RITnet [18]]. This
strategy involves using a weighted combination of four loss functions;
cross-entropy loss, Zrgr, generalized dice loss ZcpL, boundary
aware loss %4 and surface loss Lsi.-

The total loss . is given by a weighted combination of these losses
as Zspc = ZLeeL(M + 0 Lpar) + 13 ZL6pr + A4 Zsp- In our exper-
iments, we used A; =1, 1, =20, 43 = (1 — @) and Ay = , where
o = epoch/M and M is the number of epochs.

3.3.2 Center of Mass loss Zcou

The L loss function is used to formulate an error function between the
center of mass, i.e., the pupil and iris ellipse centers from the segmenta-
tion output maps, to their respective ground-truth centers. This enables
us to leverage datasets such as ExCuSe [4] , ElSe [5]l, PupilNet [6]] and
LPW [35] in a segmentation framework where only the ground-truth
pupil center is available. Note that COM L loss (henceforth referred
to as Zrom loss) does not impede segmentation loss functions, but in-
stead conditions the network output to jointly satisfy all loss functions.
This results in the characteristic peaks observed in Section[6.3.1] The
inversion of the background class results in an inverted peak at the iris
center location.

4 DATASETS

Combining segmentation and £y losses allows the EllSeg frame-
work to train CNNs on a large number of datasets (to the best of our
knowledge, it enables the inclusion of all publicly available near-eye
datasets). To demonstrate the utility of EllSeg, we choose the following
datasets for our experiments: NVGaze [9]], OpenEDS [38]], RITEyes,
ElSe [3], ExCuSe [4]], PupilNet [50] and LPW [35]]. The ElSe and
ExCuSe datasets are combined (also referred to as Fuhl) due to simi-
lar environment and eyetracker . For more details about each dataset,
available ground-truth modality, and train/test splits, please refer to
Table[T] Note that we specifically leverage the S-General dataset from
the RIT-Eyes framework as it offers wide spatial distribution of
eye camera position.

4.1 Groundtruth ellipse fits

To obtain groundtruth pupil and iris ellipse fits from the selected
datasets, pupil and limbus edges are extracted from groundtruth segmen-
tation masks using a canny edge detector. To ensure subpixel accuracy,
we consider edge pixels in the inverted mask as well. Edge pixels which
satisfy pupil-iris (i.e., no neighboring sclera or background pixel) or
limbus (i.e., no neighboring pupil or background pixel) conditions are
used to determine ellipse parameters using the ElliFit algorithm
(see Figure E[) Random Sample Consensus (RANSAC) is em-
ployed to remove outliers with residuals higher than 5 x 1073, an
empirically derived threshold . While datasets such as RITEyes and
NVGaze directly offer EllSeg compatible groundtruth semantic masks,
synthetic masks for OpenEDS were generated based on elliptical fits.
Images without valid pupil or iris fits (117 out of 11319) were discarded
from all subsequent analysis.

5 EXPERIMENTS AND HYPOTHESIS

‘We rigorously test various hypotheses to validate the efficacy of our
proposed methodology in the field of eye-tracking. In the first experi-
ment (Section[6.1)), we benchmark the segmentation performance of our
network, DenseEINet, on the standard PartSeg framework. Comparable
or superior performance on the PartSeg task will validate DenseEINet.
In the second experiment (Section [6.2), we test whether the EllSeg
framework improves the detection of both pupil and iris estimates over

Fig. 4. Ellipse fitting quality on ground truth PartSeg masks. These fits
are further used to generate EllSeg masks for the OpenEDS dataset.
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Fig. 5. Summary of all experiments described in following sections
(Center estimates are best viewed on screen).

its PartSeg counterpart. Finally, in the third experiment (Section[6.3),
we compare the results of regressing elliptical parameters in the EllSeg
framework to those found when estimating the ellipse parameters using
RANSAC. This experiment will test whether reliable and differentiable
ellipses can be directly estimated in an encoder-decoder architecture.
Summary of all the experiments can be found in FigureEl

5.1 Training

To ensure fair comparison, all CNN architectures are trained and eval-
uated with identical train/validation/test splits. The development set
is divided into a 80/20% train/validation split. Sample selection is
stratified based on binned 2D pupil center position and subsets present
within each dataset (see Table EI) This approach ensures that biases
introduced due to sampling are minimized while maintaining similar
statistical distributions across training and validation sets. Bins with
fewer than five images are automatically discarded. All architectures
are trained using ADAM optimization on a batch of 48 images
at 320x240 resolution with a learning rate of 5 x 10~ on an NVIDIA
V100 GPU.

During training, all models were evaluated with the metric: [4 +
mloU — 0.0025(d), + d;) — (6,+6:)/90°], where mIoU corresponds to
the mean intersection over union (IoU) [54] score which quantifies
segmentation performance, dj, & d; are the distances between pupil and
iris centers from their groundtruth values in pixels, and 6, & 6; are the
angular error between the predicted and groundtruth ellipse orientations
in degrees. If no improvement above 10~3 was observed on this metric
for ten consecutive epochs, then a network’s parameters were deemed
converged. The learning rate was reduced by a factor of ten if no
improvements were identified over five epochs. To reduce training time
and ensure stable training on pupil-center-only datasets, all models



Table 1. Summary of datasets. 1 and | correspond to up and down sampling respectively. OpenEDS image crops are extracted around the scleral

center followed by up-sampling. Note that images without valid pupil and iris fits are discarded (see Section @

Dataset Resolution Train subset Test subset Gfoundtruth Image Count Preprocessing
included (train, test)
male 1-4 male 5
NVGaze [9] 1280%x960 female 1-4 female 5 All 15623, 3895 14
Crop to
19 19 P
OpenEDS'? [38] | 400640 OpenEDS OpenEDS PartSeg 8826,2376 |  400x300
train valid 1.6
RITEyes 640480 Avatars 1-18 Avatars 19-24 All 33997, 11519 12
General [47]]
LPW [35] 640x480 Subjects 1-16 Subjects 17-22 Cilﬁgr 93127, 33388 12
I, I, VI, VIII, IX, IL IV, V, VII, Pupil
Fuhl [4,5] 384x288 | XI, XIII, XV, XVII, | X, XII, XIV, XVI Cenit)er 60079, 33846 15/3
XIX, XX, XXII XVIII, XXI, XXIII
PupilNet [SO] | 384x288 LI V I, IV i‘ggr 25471, 15707 15/3
were pretrained on NVGaze, OpenEDS and RIT-Eyes training sets for -
two epochs.
v
5.2 Data augmentation
To increase the robustness of models and avoid overfitting, training ¢ e -
images were randomly augmented with the following procedures with
: Loy £P @) () © @

equal probability (12.5%) of occurrence:
* Horizontal flips
» Image rotation up to +30°
¢ Addition of Gaussian blur with 2< ¢ <7
¢ Random Gamma correction for y =[0.6, 0.8, 1.2, 1.4]
* Exposure offset up to £25 levels
¢ Gaussian noise with 2< o <16

* Image corruption by masking out pixels along a four-pixel thick
line

* No augmentation

5.3 Evaluation Metrics

All segmentation performance is evaluated by IoU scores. Ellipse
center accuracy is reported as the Euclidean distance in pixel error from
their respective groundtruth annotations. Additionally, pupil and iris
detection rate [[11]], i.e., the percentage of ellipse centers accurately
identified within a range of pixels of the groundtruth center point is
also reported.

As most gaze estimation algorithms rely on ellipse fitting on the
segmented pupil and/or iris, we quantify elliptical goodness of fit with
metrics that effectively capture ellipse offset, orientation errors and
scaling errors. In this work, we utilize a bounding box overlap IoU
metric that accounts for all ellipse parameters: center, axes, and ori-
entation. For each defined elliptical structure, a enclosing bounding
box is generated. IoU scores are obtained from a comparison between
groundtruth and predicted bounding boxes (Figure[6). Note that the ori-
entation error (difference in ellipse orientation) of the fits is calculated
for images in which the ratio of major to minor axis length exceeded
1.1 - this avoids large artifacts when elliptical fits are nearly circular.

6 RESULTS AND DISCUSSION

6.1 Comparison with state-of-the-art models

The DenseEINet architecture is a hybrid of RITnet and TiramisuNet,
and has 2.18M parameters. We also explore the alternative possibility

of utilizing other state-of-the-art encoder-decoder architectures like
DeepVOG and RITNet. DeepVOG, with 3.71M parameters, segments

Fig. 6. Visualization of goodness of fit metrics used in the paper. (a)
Groudtruth ellipse (pupil or iris). (b) Corresponding predicted ellipse.
The rectangular boxes denote ellipse-axis-aligned bounding boxes for
the respective ellipses. (¢) denotes the bounding box overlap region and
(d) illustrates the angular difference between the two ellipses.

images into two classes; pupil and background, i.e., (non-pupil). RIT-
net, with 0.25M parameters, defines four classes; pupil, iris, sclera, and
background (other). Table[2] highlights that both RITnet and DenseEl-
Net models outperform DeepVOG on every dataset. Table [2] also
demonstrates that the performance of DenseEINet and RITnet are com-
parable (< 2% difference) on all datasets despite varying model com-
plexity.

Table 2. Eye Parts Segmentation: Comparison of pupil (and iris, inside
parenthesis) class loU scores for RITnet, DeepVOG and DenseEINet
model architectures (along rows) in OpenEDS, NVGaze and RIT-Eyes
dataset (along columns). Bold values indicate the best performance
within each dataset. Because DeepVOG was not trained to segment the
iris, we are unable to provide iris IOU scores.

Model OpenEDS NVGaze RIT-Eyes
RITnet 95.0(91.4) | 93.2(91.7) | 89.5/94.4
DeepVOG 89.1 (NA) | 90.9 (NA) | 83.5(NA)
DenseEINet | 95.4 (92.1) | 93.1 (91.4) | 91.5 (954)

6.2 Ellipse center estimation

In this section, we explore the usefulness of the full ellipse segmenta-
tion (EllSeg) over the traditional eye parts segmentation (PartSeg) by
comparing the pupil/iris center detection rates. We train three network
architectures; RITnet, DeepVOG, and DenseEINet both with L5z
loss functions using the following training scenarios:

e Traditional, four class PartSeg (referred as RITnet-PartSeg,
DeepVOG-PartSeg, and DenseE[Net-PartSeg)

* 3-class EllSeg (referred as RITnet-EllSeg, DeepVOG-EllSeg, and
DenseEINet-EllSeg)



Table 3. The percentage of images classified as three categories of
occlusion (see Section[6.2) for each dataset. Values are presented as

pupil (iris).
Occluded Partial Visible
OpenEDS | 0.0 (0.0) 1.5(17.2) | 98.5(82.7)
NVGaze 2.3 (0.0) 14.8 (75.6) | 82.9 (24.4)
RITEyes | 9.5(11.1) | 70.7 (22.3) | 19.8 (66.7)

Note that, in this section, all ellipse centers are derived by utilizing
ElliFit [51] along with RANSAC outlier removal on output segmenta-
tion maps.

Figure[7]presents the pupil/iris detection rate as a function of the error
threshold (in pixels) for DeepVOG, RITnet, and DenseElNet, using
both PartSeg and EllSeg frameworks. Although all models demonstrate
similar performance when tested upon the OpenEDS dataset, models
trained using the EllSeg framework demonstrate superior pupil and iris
detection on the NVGaze and RIT-Eyes datasets.

Analysis of the ground truth imagery suggests that this difference
may be attributed to the varying amounts of pupil/iris occlusion within
each dataset. In order to verify this, we compute occlusion magnitude,
Oy, which is defined as one minus the IoU of PartSeg and EllSeg
ground truth maps. Based on this magnitude, each image is classified
into 3 categories of occlusion (shown in Table[3) based on empirical
thresholds, a) fully occluded (O,, > 0.7) b) partially occluded (0.3 <
O, < 0.7) and ¢) fully visible (O,, < 0.3).

Dramatic improvements can be observed for the NVGaze and
RITEyes datasets wherein a large percent of images demonstrate par-
tially occluded iris or pupil. Since a smaller percent of images are
occluded in the OpenEDS dataset, we observe a small but consistent
improvement in the iris detection rate between 3-6 pixel error threshold
(see Figure[7} second row-first column). These results and subsequent
analysis clearly demonstrate that EllSeg is robust to occlusions.

In addition to improving ellipse center estimates, Table 4] demon-
strates that the EllSeg protocol reduces the number of images with
invalid ellipse fits on the predicted segmentation output.

Table 4. The number of images without valid PartSeg or EllSeg ellipse
fits for pupil (and iris, inside parenthesis) for DeepVOG, RITnet, and
DenseEINet. The total column represents the number of valid images
used for testing (as in section [4.7). Bold text (lower number) shows
superior performance and illustrates the effectiveness of the EllSeg
framework.

Dataset Total | DeepVOG | RITnet | DenseEINet
eo | OpenEDS | 2376 17 (NA) 1(0) 2 (0)
£ NVGaze 3895 10 (NA) 0(0) 0(0)
& RIT-Eyes | 11519 | 1072 (NA) | 287 (69) 353 (62)
5o | OpenEDS | 2376 6 (NA) 1(0) 0 (0)
z: NVGaze 3895 0 (NA) 0(0) 0(0)
& RIT-Eyes | 11519 | 215(NA) 60 (18) 1(0)

6.3 Improving the ellipse estimates

In this section, we analyze the impact of Loy, on segmentation output
maps, ellipse shape parameters and ellipse center estimates.

Ellipse center estimates results are shown in Figure[§] All models
(RITnet, DeepVOG and DenseEINet) are trained with the EllSeg frame-
work with and without £¢op - Ellipse centers without £¢op loss are
estimated using ElliFit on segmentation output maps. Models trained
with £coum loss estimate their centers (x. and y.) as shown in Figure

Figure (8| also includes the results of non-CNN based algorithms
ExCuSe [4], PuRe [8], and PuReST [7|] which rely on filtered edges,
morphological operations and handcrafted features using computer-
vision based methods. Note that none of these methods were designed
for OpenEDS, NVGaze, or RITeyes datasets. To facilitate application,
pixels with a ground truth label identifying them as a member of the

Table 5. Comparison of Pupil center estimate errors (in pixels) on various
datasets in terms of median scores. Note all the CNN models are trained
with ElISeg framework. Image size is 320 x 240.

Model RITnet DenseEINet
Method Ellipse fit | Zronm | Ellipse fit | Zeom
OpenEDS 0.8 1.5 0.8 0.7
NVGaze 0.5 0.8 04 0.3
RIT-Eyes 1.0 1.2 0.7 0.7
Fuhl - 73.4 - 1.7
LPW - 4.7 - 0.8
PupilNet - 77.6 - 1.6

”background” class are converted to a uniform grey (digital count=127).
This step minimizes the chance of false detection of the pupil within the
background, which is a common issue for images within the OpenEDS
and NVGaze datasets, which have black regions in the periphery. Note
that for ExCuSe, images are resized to the author-recommended size
(384x288). The predicted center is then remapped to (320x240) to
facilitate comparison. For PuRe and PuReST, the EyeRecTool [55] is
used to compute pupil center using the original image size (320x240).

Figure[§|reveals that, although introduction of .-Zrop often degraded
the performance of RITnet, it improved performance for our model,
(DenseElINet). Further, for pupil detection, the models trained using
CNN outperforms all the non-CNNs based models ExCuSe, PuRe and
PuReST.

Table [5] shows the comparison of median values of pupil center
estimates with and without £¢ oy loss in regards to both models RITnet
and DenseElINet. There is a slight improvement in the median values
in the DenseEINet model with the introduction of this loss function.
However, for the RITnet model, the inclusion of Zr¢y, deteriorated
the performance by 57%, 19%, and 19% for OpenEDS, NVGaze, and
RIT-Eyes datasets respectively (within one-pixel error range for Pupil
center). We suspect this behavior is due to the relatively limited channel
size and low parameter count of RITnet when compared to DenseEINet.

The analyses presented up to this point focus on the accuracy of
pupil/iris center estimates. However, many algorithms for gaze es-
timation rely on accurate estimation of pupil and iris ellipses for the
construction of 3D geometric models of the oriented eye [12,/14,/1531].
This necessitates a quantitative measure for the goodness of an ellipse
fit. The methodology presented in Section[5.3]and represented in Fig-
ure[f]is used to calculate the boundary IOU - a measure used to estimate
the quality of boundary estimation. Boundary IoU was calculated for
both the pupil and the iris after application of RITnet and Densenet to
several datasets, either with or without Z-op. When Loy is used,
ellipse orientation and axis parameters are regressed via the bottleneck
layer, and when it is not, the ellipse is fit to the segmented mask.

The result of this analysis are presented in Figure[0} and reveal that
that DenseElINet with £ oy outperforms without ZLcop in terms of
boundary IOU and orientation error for both, the pupil and iris, on
almost all datasets.

The pixel-wise IOU score of iris and pupil segmentation is presented
in Figure 0] (last three rows). This analysis reveals that DenseEINet
also outperforms other models in the segmentation of the pupil and
iris. Although DeepVOG has the highest overall IoU score, one must
also consider that the DeepVOG model is a two-class (binary) classifier
(pupil vs. background) being compared against models of three-class
segmentation (pupil, iris, background) and, in the former case, the
IoU score is inflated by the presence of a large number or background
pixels. This analysis also demonstrates that segmentation performance
is improved by the inclusion of ., for all cases. Some examples of
segmentation outputs with the inclusion of Zroys for OpenEDS and
RIT-Eyes datasets are shown in Figure [I0}

6.3.1 Qualitative Analysis: Effectiveness of %oy loss

Here, we study the impact of the Zop loss function with the DenseEIl-
Net architecture. Figure[TT|shows the activation maps generated (with



OpenEDS NVGaze RIT-Eyes

t:

=
(==
o

o ©
(S
o w

o
N
u

Pupil Detection Rate

o
=
S

=
(=
S

o
=)
u

o
[N
U

Iris Detection Rate
(=]
[¥)]
(]

8 100 2 4 6 8 10

beepVOG_PaﬂSed DeepVOG_ElISeg

RITnet_EllSeg IDenseEINet PartSegl  |DenseElNet EllSeg

Fig. 7. PartSeg vs EllISeg: The pupil detection rate (top row) and iris detection rate (bottom row) as a function of the threshold for tolerated pixel error
for center approximation for OpenEDS (left column), NVGaze (middle column) and RIT-Eyes (right column). Results for three architectures RITnet,
DeepVOG and DenseEINet are present for both cases PartSeg (dashed lines) and EllSeg (solid lines). Note that only the pupil detection rate is
shown for the DeepVOG architecture. All detection rates presented here are derived using ellipse fits on segmentation outputs on images sized at
320 x 240. Here, one pixel error corresponds to 0.25% of the image diagonal length.

OpenEDS NVGaze o RIT-Eyes

9 1.00 —= —— -
L] e ,-/';
o P4 i
c 0.75 ;
o ¢
) ;'
s 0.50 F
2 /
00.25 i
Jn
0.005 1 2 3 40 1 2 3 40 1 2 3 4
Error Threshold (pixels)
- R : e w 1
ExCuSe PuRe ’_PuReST —i DeepVOG_Ellipse RITnet_Ellipse || RITnet LCOM |DenseEINet_E|Iipse| DenseEINet LCOM

All of these results are for models run with EllISeg Framework

Fig. 8. EllSeg with and without %oy loss: The pupil detection rate (top row) and iris detection rate (bottom row) for various pixel error thresholds of
center approximation for three datasets. Models (RITnet, DenseEINet and DeepVOG) are trained with the ElISeg framework before the pupil center
is estimated using either the ElliFit segmentation output map, or with Z¢op loss. The result for non-CNN based model ExCuSe, PuRe and PuReST
are also shown. One pixel error corresponds to 0.25% of the image diagonal length.



m RITNet_Ellipse | | DenseEINet_Ellipse

Legend: RITNet_Leom [ DenseEiNet Leoy B oeepvos

Al

Pupil Ellipse

%;Y%? "

s E""’% T

Pupil error

V|7

Iris error

5 L1.00-
2 0.85-
3

3 0.70-
20.55
2 0.40-
>

3 1.00- p
0.85- |
0.70- &
0.55-

=it
2AAA
A

1.00-
0.95-
0.90-
0.85-
0.80-

i

T

Orientation Difference [ ©]

Overall loU

ML
tt
t

OpenEDS

n
I

1.00-
0.95-
0.90-
0.85-
0.80-

loU scores

Iris Accuracy
1.00-
0.95+(
0.90-
0.85-
0.80-

"
o

Fig. 9. Violin plots of boundary overlap loU (1st and 2nd row: top
dashed box), orientation error (3rd and 4th row: middle solid box), and
segmentation loU score (last three rows: bottom dashed box) following
EllSeg framework by RITnet and DenseEINet, with or without .%oy loss
(Zcom vs Ellipse), following application to the OpenEDS, NVGaze, and
RIT-Eyes datasets (columns)

(Best viewed on screen).

and without) Zcop for three eye images. On closer observation of
the pupil class, we observe a high intensity peak in the region around
pupil center in the with £y condition (last column) compared to the
without £cop condition (fourth column from left). This peak around
the pupil center is also evident in Figure[T2] which shows a horizontal
scan through the pupil center of one of the eye images illustrating the
relative activation value for background, pupil, and iris without (left)
and with (right) Zeoum-

Note that in Figure[TT] the iris activation maps appear even when
the iris is occluded by the eyelids in both with £cop (second column
from right) and without Zcop (third column from left) conditions.

Figure[T2]shows relatively flat activation values near the iris centers
for the iris class in both with and without £cop cases; no peak is
evident in the iris activation values. Note that the minimum in the
background activation value localizes the center of the iris representing
the inverse of the background (non-iris) region.

6.4 Center via bottleneck vs softargmax

To help provide an intuition regarding future network designs, we
observe the impact of regressing the pupil and iris center estimates
from the bottleneck (latent) layer [43]), as opposed to estimating them
using soft-argmax on the output segmentation maps (see Figure [2).
Estimates from segmentation outputs are observed to be better than
those regressed from latent space (pupil 81% — 98% and iris 42% —
58% detection at the two-pixel error margin) (see Figure[T3). We hope
that this intuition can help guide future efforts for CNN based near-eye
feature extraction.

7 SUMMARY

This paper presents EllSeg, a new framework for training a CNN to
directly segment the entire elliptical structures of the pupil and iris.
This framework was applied to RITnet [25]], DeepVOG and a
custom designed hybrid model, DenseElINet, for segmentation as well
as predicting pupil/iris ellipse estimates from eye images.

In Section we benchmark our custom designed network ar-
chitecture, DenseElNet, and achieve better baseline PartSeg perfor-
mance to state-of-the-art encoder-decoder architectures, RITnet and
DeepVOG (see Table[2). Our un-optimized forward pass implementa-
tion of DenseElINet operates at atleast 120Hz on a NVIDIA 1080 Ti,
Intel-7800K. In Section@ we show that our proposed framework
EllSeg outperforms part-segmentation networks, i.e., PartSeg, for pupil
(OpenEDS: 0.2%, NVGaze: 11%, RIT-Eyes: 12%) and iris center
(OpenEDS: 4%, NVGaze: 29%, RIT-Eyes: 25%) detection across three
test datasets. Additional analysis reveals that the accuracy of EllSeg
can be attributed to greater robustness to occlusion of the iris and pupil
by the eyelids.

Sectiondemonstrates that the addition of %y loss function to
the EllSeg framework results in improved pupil/iris ellipse estimates for
pupil (OpenEDS: 2%, NVGaze: 11%, RIT-Eyes: 21% ) and iris center (
OpenEDS: 15%, NVGaze: 29%, RIT-Eyes: 40% ) detection rate within
a two-pixel error margin) and segmentation performance (> 0.6%, >
1.5%,> 2% for OpenEDS, NVGaze and RIT-Eyes respectively).

Visual inspection of output EllSeg activation maps reveals high
confidence conditioned around the pupil and iris centers. Lastly in
Section [6.4] we determine that deriving pupil and iris centers using
softargmax is better than regressing the same via the bottleneck layer.

8 CONCLUSION AND FUTURE WORK

To conclude, we present EllSeg, a simple 3-class full ellipse segmen-
tation framework intended to extend conventional encoder-decoder
architectures for the segmentation of eye images into pixels that rep-
resent the pupil, iris, and background. The EllSeg framework was
benchmarked on multiple datasets using two network architectures:
RITnet and our custom CNN design, DenseEINet. Results demonstrate
superior estimation of the pupil and iris centers and orientation com-
pared to their eye part segmentation models. An added benefit of the
EllSeg framework is that it extends model training to image datasets in
which only the pupil center has been labelled. Superior performance
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by the EllSeg framework can be attributed to greater robustness to
occlusion of the pupil or iris.

While we evaluate EllSeg on multiple datasets collected from a large
pool of individuals (see Table[T), a user based evaluation was not per-
formed due to the time consuming nature of manual data collection and
labelling. For future work, we intend on performing a comprehensive
user study of our model on a wide range of subjects to further quantify
the performance of our framework. We also intend on exploring other
models with varying complexity to evaluate the efficacy of EllSeg. Pre-
trained models, code and other related resources will be made publicly
available
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