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Three-Dimensional Mesh Steganography
and Steganalysis: A Review

Hang Zhou, Weiming Zhang, Kejiang Chen, Weixiang Li, and Nenghai Yu

Abstract—Three-dimensional (3-D) meshes are commonly used to represent virtual surfaces and volumes. Over the past decade, 3-D
meshes have emerged in industrial, medical, and entertainment applications, being of large practical significance for 3-D mesh
steganography and steganalysis. In this article, we provide a systematic survey of the literature on 3-D mesh steganography and
steganalysis. Compared with an earlier survey [1], we propose a new taxonomy of steganographic algorithms with four categories: 1)
two-state domain, 2) LSB domain, 3) permutation domain, and 4) transform domain. Regarding steganalysis algorithms, we divide
them into two categories: 1) universal steganalysis and 2) specific steganalysis. For each category, the history of technical
developments and the current technological level are introduced and discussed. Finally, we highlight some promising future research
directions and challenges in improving the performance of 3-D mesh steganography and steganalysis.

Index Terms—3-D, polygonal mesh, information hiding, steganography, steganalysis, survey, review
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1 INTRODUCTION

1.1 Motivation

IN this paper, we report a systematic review of papers
on 3-D mesh steganography and steganalysis published

in conferences and journals related to computer graphics
and security. We provide objective reports on the types
of steganographic and steganalytic methods encountered
in the literature. At the same time, we also quantitatively
evaluate these papers from the perspective of security
evaluations. Our goal in this work is to understand the
assessment procedure in the 3-D mesh steganography and
steganalysis methods as a whole. The significance of this
research has been well recognized by the growing body of
work on how to improve the anti-steganalysis ability on the
steganographer side and how to improve the steganalysis
ability on the steganalyzer side. In this paper, we contribute
to previous work by providing some standard evaluation
metrics, an overall summary and an understanding of re-
lated papers that have not been subject to this kind of
systematic assessment in the past.

Different from image steganography that embeds data
by modifying pixel values, 3-D mesh steganography mod-
ifies vertex coordinates or vertex order to embed data.
In the latest literature analysis of 3-D steganography and
steganalysis by Girdhar and Kumar [1], steganography is
divided into three categories (geometrical domain, topolog-
ical domain and representation domain), the robustness of
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the algorithms against attacks is examined, and steganalysis
is briefly introduced. Their paper is an important contri-
bution but is not a comprehensive survey nor reflects the
entire 3-D steganography and steganalysis community. For
example, the geometrical domain can still be split into the
two-state domain and LSB domain. Moreover, the concepts
of “steganography” and “watermarking” are used inter-
changeably. Watermarking pursues robustness and is used
to protect copyright ownership and reduce the counter-
feiting of digital multimedia, while steganography pursues
undetectability and is used for covert communication. They
focus mainly on analyzing the robustness of the existing
methods, while the undetectability of steganography is a
more important property, resulting from the requirement of
its real application: covert communication. Compared with
[1], we have included the missing related literature in our
survey.

In this paper, we strive to provide readers with a more
comprehensive survey, a clear taxonomy and several stan-
dard evaluation metrics in terms of both robustness and
undetectability. From the perspective of reversible or not,
we classify data hiding as either reversible data hiding or
steganography, and regarding the structure of 3-D data, we
mainly consider the 3-D mesh and RGBD image. Here, we
consider only 3-D meshes as carriers and steganographic
techniques. We also group the steganographic techniques
into several domains (two-state domain, LSB domain, per-
mutation domain and transform domain) but in a subdi-
vided manner, excluding those with small embedding ca-
pacities. Addtionally, we divide 3-D mesh steganalysis into
two aspects (universal steganalysis and specific steganaly-
sis). Our analysis of the existing methods reveals massive
weaknesses and strengths, from which we can learn lessons
for future work. Therefore, we not only describe the current
methods but also show how to improve them.

In summary, the contributions of our paper are fourfold:

• We objectively report the current evaluation metrics
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used in the 3-D mesh steganography and steganaly-
sis community.

• We introduce in detail the embedding capacity,
computational complexity and security analysis of
steganographic methods.

• We introduce in detail the complexity and security
analysis of steganalytic methods and explore the
effectiveness of submodels and the generalizability
of trained models.

• We summarize the current challenges in this field
and propose possible directions for researchers to
address them in future work.

1.2 History

The word steganography comes from New Latin
steganographia and combines the Greek steganós
(στεγαυóς), which means “covered or concealed”, and
-graphia (γραϕή), which means “writing” [2]. The first
recorded use of the term was in 1499 by Johannes Trithemius
in his work, disguised as a magic book, Steganographia, a
monograph on cryptography and steganography.

Generally, the technique of hiding secret messages in
innocuous objects (called covers) dates back to ancient
times [3]. For example, hidden messages may be displayed
in invisible ink between visible lines of private letters. Some
implementations of steganography that lack shared secrets
are a form of security achieved through obscurity, and
steganographic schemes that rely on keys follow Kerck-
hoffs’s principle [4]. The advantage of steganography over
cryptography is that the expected secret message will not at-
tract attention because of scrutiny. Plainly visible encrypted
messages, no matter how indestructible they are, will arouse
interest [5].

More formally, the goal of steganography is to allow
communication between a sender and receiver through se-
cret communication channels, in which Alice embeds mes-
sages in an innocuous-looking cover object with a specified
steganographic method, making it impossible for potential
eavesdroppers to detect their presence. Recently, according
to some news reports, before the 9/11 attack, Al-Qaeda and
other terrorist organizations used steganography for covert
communication [6], [7], [8]. Thus far, there have been many
research papers on digital image steganography, such as [9],
[10], [11] and books such as [12], [13], [14], [15].

Steganography and steganalysis are counterpart prob-
lems that usually occur in pairs and have attracted world-
wide attention. Steganalysis, from the opponent’s perspec-
tive, aims to detect the existence of confidential data hidden
in digital media. Its primary demand is to accurately decide
whether confidential data are hidden in the test object or
not. More precisely, it is possible to even determine the
steganographic method type, estimate the message length,
and extract secret data. Research on image steganalysis
includes survey papers [16], [17] and books [18], [19].

While the early steganography and steganalysis methods
mostly address images, audio files or videos, the usage
of 3-D geometry as the host object has attracted people’s
attention over the past several years. The price of 3-D
hardware is lower than ever before, which has stimulated
the widespread usage of 3-D meshes, from the CAM/CAD
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Fig. 1: An example of a 3-D mesh (from the Princeton ModelNet
dataset).

industry to real-world end-user applications such as vir-
tual reality (VR), web integration, Facebook support, video
games, 3-D printing, and animated movies [20]. Therefore,
the development of computer graphics has accelerated the
production, usage and distribution of 3-D geometric fig-
ures, the newest generation of digital media. Moreover, the
flexible data structure of 3-D geometry may provide ample
room for hosting secret information, making it very suitable
as a cover object for steganography. The development of
3-D techniques has facilitated the rapid development of
3-D-related applications. Investigations of 3-D mesh wa-
termarking methods are available in the form of research
papers [21], [22] and as book chapters [23]. In addition, a
survey on 3-D mesh steganography was initially conducted
by Girdhar and Kumar [1].

1.3 3-D Mesh

A mesh is a set of polygonal faces, and the goal is to
form an approximation of a real 3-D object. A polygonal
mesh has three different combined elements: vertices, edges,
and faces; a mesh can also be taken as the combination of
geometry connectivity, where the geometry provides the 3-D
positions of all its vertices, and connectivity, which provides
the information hidden between different adjacent vertices.
Mathematically, a 3-D polygonal mesh M containing V
vertices and F faces can be formed as a set M = {V,F},
where

V = {vi}i=1,2,...,V ,

F = {fi}i=1,2,...,F , fi ∈ V × V × V
(1)

in the Cartesian coordinate system and F is the face set. In
addition, the edge set E is defined as

E = {ei}i=1,2,...,E , ei ∈ V × V. (2)

The geometric embedding of a triangular mesh into R3 is
determined by connecting the 3-D position pi to each vertex
vi ∈ V [24]:

P = {p1, . . . ,pV } ,
pi : = p (vi) = [x (vi) , y (vi) , z (vi)]

T ∈ R3.
(3)
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TABLE 1
Indexed face-set data structure for triangle meshes (Figure 1).

Vertex list Face list
Index of
vertex x-axis y-axis z-axis Index of

face
Elements in

each face

1 x1 y1 z1 1 (17, 1, 2)
2 x2 y2 z2 2 (3, 2, 17)
3 x3 y3 z3 3 (4, 3, 18)
4 x4 y4 z4 4 (5, 4, 19)
5 x5 y5 z5 5 (6, 5, 20)
6 x6 y6 z6 ... ...
... ... ... ... 16 (31, 17, 1)
17 x17 y17 z17 17 (18, 17, 31)
18 x18 y18 z18 ... ...
19 x19 y19 z19 241 (17, 18, 3)
20 x20 y20 z20 ... ...
... ... ... ... ... ...
31 x31 y31 z31 ... ...
... ... ... ... ... ...

The list of mesh faces is often determined by some
algorithms aiming to facilitate the speed of geometric and
topological operations on a given mesh. Fig. 1 shows an ex-
ample of a 3-D mesh, and Table 1 shows the corresponding
file formats. As shown in the enlarged view, the degree of a
face is the number of its component edges, and the valence
of a vertex is defined as the number of its incident edges.
Faces are usually composed of triangles (triangle meshes),
quadrilaterals (quads), or other simple convex polygons (n-
gons). Since the triangle mesh is the current mainstream
mesh, this paper considers only triangle meshes.

1.4 Outline
The structure of this paper is as follows. Section 2 introduces
the basic concepts, including the basic model of steganogra-
phy and steganalysis, some standard evaluation metrics for
the quantitative assessment of security, and the 3-D mesh
structure. Section 3 presents the 3-D mesh steganographic
techniques. Four main methods are described: two-state
steganography, LSB steganography, permutation steganog-
raphy and transform steganography. Section 4 introduces
the 3-D mesh steganalysis technology, which includes uni-
versal steganalysis and specific steganalysis. Section 5 re-
veals the experimental results. Section 6 discusses open
problems and some interesting research topics. Section 7
offers the conclusions of our work.

2 FUNDAMENTAL CONCEPTS

2.1 Basic Model
As shown in Fig. 2, the problem of steganography and
steganalysis is usually modeled as a prisoner’s problem [25]
related to three parties. In this problem, Alice and Bob
are regarded as two prisoners who jointly work out an
escape plan while Wendy, a warden, oversees their commu-
nications. With the data embedding function Emb(·), Alice
utilizes the secret key k1 to hide the secret information m in
a cover object c and generates an innocuous-looking stego
object s [26]:

Emb(c,m, k1) = s. (4)

On the receiving side, the object represented by s ob-
tained by Bob is subjected to the data extraction method

Emb(·)Cover 𝐜

Key 𝑘ଵ

Message 𝐦

Ext(·)

Key 𝑘ଶ

Message 𝐦

Channel
𝐬 𝐬

Steganalysis

Fig. 2: A diagram of steganographic communication and steganalysis.

Ext(·), which is used to extract the embedded data m with
the key k2:

Ext(s, k2) = m. (5)

Although in some papers the symmetric key steganographic
scheme is utilized, the most common assumption is to adopt
the private key steganographic scheme of k1 = k2 in a
steganographic system. If Wendy can distinguish s from c,
the steganographic scheme is regarded as invalid. It should
be noted that this example is utilized only to interpret
the fundamental concept of steganography and steganalysis
and does not fully explain the actual implementation.

2.2 Evaluation Metrics
To fairly evaluate the performance of various stegano-
graphic and steganalytic methods, it is vital to define some
standards that most people can accept. In addition, some
evaluation criteria can help us to improve the techniques in
the right direction.

2.2.1 Criteria for Steganography
Three general requirements, i.e., security, capacity and ro-
bustness, are utilized to evaluate the steganographic perfor-
mance:

• Security. If the existence of secret information can be
estimated only with a probability no higher than a
random guess in the steganalytic system, steganogra-
phy can be considered perfectly secure in this stegan-
alytic system. In fact, the security level is evaluated
by the anti-steganalysis performance. The definition
of security is discussed further in subsection 2.2.2.

• Capacity. To be useful in transmitting secret mes-
sages, the hiding capacity provided by steganogra-
phy should be as high as possible. This capacity can
be provided by an absolute metric (such as the size
of the secret message) or a relative payload (called
the embedding rate, e.g., bits per vertex (bpv)).

• Robustness. Although most steganographic meth-
ods do not aspire to be robust, in some practical
applications, due to the limited network traffic, band-
width and processing capacity of smart devices, com-
munication channels are lossy, resulting in reduced
performance of the transmitted media.

2.2.2 Criteria and Typical Classifiers for Steganalysis
The main goal of steganalysis is to determine whether a
suspicious medium is embedded with secret data, in other
words, to determine whether the test medium belongs to
the cover class or the stego class. If a certain steganalytic
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method is utilized to detect suspicious media, there are four
possible results:

• True positive (TP), which means that the stego
medium is correctly classified as stego.

• False negative (FN), which means that the stego
medium is incorrectly classified as cover.

• True negative (TN), which means that the cover
medium is correctly classified as cover.

• False positive (FP), which means that the cover
medium is incorrectly classified as stego.

Confusion Matrix. The steganalytic results of mixing
cover and stego data can form a 2× 2 confusion matrix [27],
which represents the configuration of the instances in the
collection. Based on this, several evaluation metrics can be
defined:

TP Rate =
TPs

TPs + FNs
,

FP Rate =
FPs

TNs + FPs
,

Accuracy =
TPs + TNs

TPs + FNs + TNs + FPs
,

Precision =
TPs

TPs + FPs
.

(6)

Receiver Operating Characteristic (ROC) Curve. The
performance of a steganalytic classifier can be visualized by
the ROC curve [27], where the true positive rate is plotted on
the vertical axis and the false positive rate is plotted on the
horizontal axis. If the area under the curve (AUC) is larger,
the performance of the steganalytic method is better.

Below, we introduce two typical supervised classifiers
for training feature vectors extracted from the data.

Support Vector Machine. A support vector machine
(SVM) constructs a set of hyperplanes in a high-dimensional
space, which is used for classification, regression and other
tasks such as outlier detection. A fine separation is achieved
by the hyperplane whose distance (i.e., margin) from the
nearest training data of any class is the largest. In general,
the larger the margin is, the lower the generalization error
of the classifier. The linear, polynomial and Gaussian ker-
nels vary when making the hyperplane decision boundary
between the classes. The kernel functions are utilized to
map the original features into a higher-dimensional space
to create a linear dataset. Usually, linear and polynomial
kernels are less time consuming and provide less accuracy
than Gaussian kernels.

However, as the dimension of the feature space and the
number of training samples increase, the complexity and
memory requirements of SVMs also increase rapidly. There-
fore, to deal with high-dimensional steganalytic features, an
ensemble classifier for steganalysis is utilized.

Ensemble Classifier for Steganalysis. Ensemble learn-
ing is a way of producing diverse base classifiers from which
a new classifier is derived that performs better than any
individual classifier. In the task of steganalysis, an ensemble
classifier for steganalysis [28] is built as random forests by
fusing decisions of weak and unstable base learners into
a Fisher linear discriminant. Notably, this is a commonly
used tool for steganalysis, since the computational cost of
an SVM is much higher than that of an ensemble classifier

when dealing with more than 500-D features (e.g., 686-D
SPAM [29] and 34671-D SRM [30]). Moreover, ensemble
classifiers yield lower detection errors than do SVMs.

Specifically, for each payload, a separate FLD-ensemble
is trained on the original features and on the stego features.
The testing error is evaluated using the minimal total error
probability under equal priors, i.e.,

PE = min
PFP

1

2
(PFP + PFN), (7)

achieved on a test set averaged over ten 50/50 splits of
the database. The symbols PFP and PFN stand for the false
positive and false negative rates, respectively.

3 3-D MESH STEGANOGRAPHY TECHNIQUES

In this section, we categorize the steganographic techniques
into four domains, i.e., two-state domain, LSB domain,
permutation domain and transform domain, and elaborate
on the development of each.

Before introducing each technique, we list some typical
3-D mesh digital operations below, which can be regarded
as attacks, as they may invalidate the correct extraction of
embedded watermark messages:

• Affine transform (including translation, rotation and
scaling). These operations are basic techniques used
to understand a 3-D object by moving it or the
camera, and they can be expressed by homogeneous
transformation matrices.

• Vertex reordering. Reordering does not change the
topology of the mesh; it changes only the storage
layout of the vertices and gives them new indices.
It is commonly used for mesh optimization effi-
ciency [31], cache coherency [32], etc.

• Noise addition. Measured mesh models often con-
tain noise, introduced by the scanning devices and
digitization processes.

• Smoothing. The aim of this operation is to generally
remove certain high-frequency information in the
mesh.

• Simplification. This is carried out to transform a
given 3-D mesh into another complexity-reduced
mesh with fewer faces, edges, and vertices.

3.1 Two-State Domain
In the early research on 3-D mesh data hiding, steganogra-
phy and watermarking were regarded as the same technique
by researchers. A large number of steganography schemes
for meshes create multiple two-state domains and embed
messages by aligning together the state information and
message bit.

3.1.1 MEP-based method
Cayre and Macq [33] proposed a 3-D mesh steganography
scheme. Geometrically, it is a quantization index modulation
scheme that extends to the edge of a triangle. As shown
in Fig. 3(a), the macro embedding procedure (MEP) is a
spatial substitutive procedure. The global core is to treat
the triangle as a two-state geometrical object, meaning that
by orthogonally projecting the position of the vertex vi
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Fig. 3: (a) Diagram of the MEP. The triangle is viewed from the topology
perspective, with the entry edge (vjvk) related to the current message
bit to be inserted and the two candidate exit edges (vivj and vivk).
The exit edges are ordered in a clockwise manner. (b) A polygonal
mesh, shown with the TSPS path (gray). Each face represents a one-bit
message, with the MEP shown in black. Figure from [33].
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Fig. 4: (a) Extending domain of the MLEP. (b) Rotating domain of the
MLEP. Figure from [34].

onto the edge vjvk, the edge can be partitioned into “0”
and “1” states. Depending on the message bits, vi remains
unchanged or moves to v′i. Fig. 3(b) shows the establishment
of the triangle processing list. The so-called triangle strip
peeling sequence (TSPS) algorithm inserts message bits as it
moves along the mesh.

In summary, the method is robust to affine transfor-
mations and vertex reordering. Its theoretical upper-bound
capacity is 1 bit per vertex. However, the algorithm has
neither a large enough capacity nor computational efficiency
because it has visible embedding modifications and requires
too much preprocessing time to create the stencil. Because
of the large modifications, it cannot resist steganalysis.

3.1.2 MLEP-based method

Wang and Cheng [34] proposed an efficient steganographic
technique based on a substitutive blind procedure in the
spatial domain. To quickly obtain the processing order of
vertices, they created a hierarchical data structure based
on the kd-tree and an advanced jump strategy. They also
proposed the multilevel embed procedure (MLEP), which
includes sliding, extending, and rotating domains to embed
messages based on the geometric properties of the message
vertices.

Fig. 4(a) is a diagram of the extension domain. Let a
vertex vl and the line defined by vl and vk be orthogonal
to the line vjvk. The state of the triangle depends on
the orthogonally projected location of the vertex vi onto
the virtual edge vlvk. Depending on the message bits, vi
remains unchanged or moves to v′i. Fig. 4(b) is a diagram
of the rotation domain. The message is embedded in the
angle between two triangular planes. vl is the reference
vertex obtained by the barycenter of the initial triangle. The
message is embedded by adding or subtracting the angle φ.

𝑣௜ାଵ

𝑣௜

𝑣௜ାଵᇱ

𝑣௜ାଶ

𝑥௜ 𝑥௜ାଶ

𝑥௜ାଵ 𝑥௜ାଵᇱ

Symmetry axis

0 1
First principle axis

Fig. 5: An interval xixi+2 is divided into two subintervals for embed-
ding data. Figure from [35].

In summary, this method is also robust to affine trans-
formations and vertex reordering. It increases the capacity
up to 6 bits per vertex and reduces the calculation time, but
the embedding capacity is still very low. Moreover, it also
cannot resist steganalysis.

3.1.3 Point-sampled-geometry-based method

Wang et al. [35] proposed the first steganographic method
for point-sampled geometry. It is based on principal com-
ponent analysis (PCA) of the vertex permutation-invariant
method, which can convert the original vertex coordinates
into a new coordinate system. The method builds a list of
intervals for each of xyz-axes and embeds a bit in each
interval by changing the position of the vertex. As shown
in Fig. 5, each interval (consisting of two values xi and
xi+2 on the x-axis) is regarded as a two-state object. The
authors used the x-coordinate xi+1 of the vertex vi+1 to
define the state of the interval and partitioned the line
segment xixi+2 into two sets S0 and S1. If xi+1 ∈ S0,
the interval is considered to be in the “0” state; otherwise,
it is xi+1 ∈ S1, and the interval is in the “1” state. To
embed data, if the embedded message is equal to the state,
then no modification is required; otherwise, the subinterval
boundary must be utilized as the symmetry axis to move
vi+1 toward v′i+1.

In addition, they located the list of macro embedding
primitives and embedded up to 6 bits at each macro em-
bedding primitive to increase the capacity. In summary,
the upper-bound capacity of the method is 6/2 = 3 bpv.
Additionally, this method is robust to affine transformations
and vertex reordering. The method is easy to attack by
PCA transform-targeted steganalysis, as stated in subsec-
tion 4.2.1.

3.1.4 Multilayer-based method

As in [35], Chao et al. [36] transform the coordinate system
through PCA. The two most extreme vertices that fall on
the first principal axis are regarded as the end vertices vj
and vk. The interval vjvk is evenly partitioned into two-
state region sets in an interleaved manner (for example,
010101...), expressed as S0 and S1, as shown in Fig. 6. The
region, in which vertex vi is located, can be calculated using
the following equations:

di/I = qi...ri,

qi = ddi/Ie,
ri = di%I,

(8)
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Fig. 6: Diagram of the state region qi and its changed and unchanged
regions. During the data-embedding period, vertices are moved into
change regions while no vertices are moved into unchanged regions.
Figure from [36].

where ... is the modulo operation, di is the projection
distance between vertex vi and end vertex vj of the x
component. I indicates the width of the interval in the state
region. qi represents the state region to which the vertex vi
belongs, and ri represents the position of the vertex in the
state region qi. There are two cases of embedded message
bits:

Case 1. qi ∈ Sk and bit(i) = k, k = 0 or 1: No
modification.

Case 2. qi ∈ Sk and bit(i) 6= k, k = 0 or 1: Move the
vertex vi to the adjacent change region in qi. If di%I ≤
I/2, shift vi to the range [0, n]; if not, shift vi to the range
[I − n, I]. The offset δi = min(ri, I − ri)(1− 2n/I), and the
new position is acquired by

d′i =

{
di − δi, if ri ≤ I/2
di + δi, if ri > I/2

. (9)

In addition, by moving the state regions in even layers
by 1

2I , one can achieve multilayered high-capacity steganog-
raphy. In the first layer, n = 1

4I , and the change region is
[0, 14I] ∪ [ 34I, I]. Iteratively, for the second layer, n = 3

8I ,
and the change region is [0, 38I] ∪ [ 58I, I]. Thus, in the n-
th layer, the change region is [0, 2

n−1
2n+1 I] ∪ [ 2

n+1
2n+1 I, I]. Since

the precision of a single floating point is 2−23, the distance
between the two boundaries has to be larger than the
precision, i.e., 2n+1

2n+1 I − 2n−1
2n+1 I ≥ 2−23. Thus, the limitation

of n ≤ log2 I + 23.
In summary, when I = 1, considering the x, y, z-

coordinates, the method has a theoretical upper-bound ca-
pacity of 69 bpv, and it can resist vertex reordering and
affine transform attacks. However, it can be easily attacked
via PCA transform-targeted steganalysis.

3.1.5 Static-arithmetic-coding-based method
Itier and Puech [37] constructed Hamiltonian paths on the
entire vertex graph without using connectivity information.
The Hamiltonian path is a uniquely traversed path of all
the vertices starting from the one selected by the secret
key. For each stage, the nearest neighbor vertex vi+1 of the
present vertex vi is selected. As a matter of fact, the message
is embedded with its synchronization with the message
sequence guaranteed. Once the vertex vi+1 is added to the
path, the message can be embedded by changing the relative

location of the vertex vi+1 to its predecessor vi. To achieve
a high embedding capacity, the vertex moves along three
coordinate components in the spherical coordinate system.

In addition, the algorithm divides the edge vector into
multiple intervals for each coordinate, and these intervals
correspond to different message bits. Specifically, static
arithmetic coding is utilized to embed messages, which first
slices subintervals while taking into account the value distri-
bution of all the messages and then associates the embedded
bits with the corresponding subinterval. Then, the vertex is
moved to the new subsegment within the segment to embed
the message bit. The check phase is performed to retain
the created Hamiltonian path and message synchronization
process during steganography. The method can achieve a
maximum capacity of 24 bits per vertex.

Later, Li et al. [38] reconsidered the method to improve
its resistance to steganalysis. The original steganography
method [37] embeds data into all three coordinate compo-
nents of the edge vector in the spherical coordinate system.
However, changes in polar and azimuthal coordinates have
a greater impact on steganalytic features (such as LFS76 [39])
than in the radial coordinate system. Therefore, they im-
proved the method by resisting against steganalysis through
modification of only the radial component represented by
the edge vector in the spherical coordinate system. There-
fore, the upper-bound embedding capacity is only 8 bits per
vertex.

In summary, the method of Itier and Puech [37] has a
maximum capacity of 24 bpv but cannot resist steganalysis.
The method of Li et al. [38] has a maximum capacity of 8
bpv and can resist steganalysis effectively.

3.1.6 Statistical-embedding-based method

Cho et al. [40] proposed a blind watermarking scheme that
uses the distribution of vertex norms to embed data. First,
the vertices are divided into multiple bins according to the
distances from the vertices to the center o of the mesh:

o =

∑
vi∈V A(vi)pi∑
vi∈V A(vi)

, (10)

where A(vi) represents the area of all faces containing
vertex vi. For a given vertex vi and its distance to the
center ρi = ‖pi − o‖, we obtain ρmin = minvi(ρi) and
ρmax = maxvi(ρi) and evenly group vertices according to
the segmentations between ρmin and ρmax. For a normal
mesh, the distribution of the statistical variable of the bin
is usually close to a uniform distribution, for example,
the expected average value of the statistical variable is
1/2. Therefore, if the message is 0 or 1, the watermark is
embedded by moving the statistical variable to 1/2 + ε or
1/2− ε. In short, the embedding capacity is directly related
to the number of bins.

Bors and Luo [41] extended the statistical watermark
embedding method to preservation of the mesh surface.
The surface preservation function includes the distance from
the vertices shifted to the original surface by watermarking,
the distance to the surface of the watermarked object, and
the actual vertex shift, and the sum of these Euclidean
distances are minimized using Levenberg-Marquardt opti-
mization [42], [43] in a spherical coordinate system.
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In summary, since the method is based on statistical
shifting, it is robust to additive-noise attacks, Laplacian-
smoothing attacks and mesh-simplification attacks. It is
worth mentioning that there have been some steganalytic
methods for detecting watermarks [44], [45], [46]. In addi-
tion, the optimization process hinders the speed of water-
mark embedding. Due to the limited number of positions,
the embedding capacity is still very low. Moreover, because
of the large modification, it cannot resist steganalysis.

3.2 LSB Domain
LSB steganography first embeds data on the LSB layer and
then embeds it on the LSB layer of the remaining bitplanes
of the object iteratively until all data are embedded.

3.2.1 Gaussian-curvature-constraint-based method
Yang et al. [47] designed a data hiding algorithm that bal-
ances a high embedding capacity and low embedding dis-
tortion. A simplified Gaussian curvature κi, as the smooth-
ness of the mesh at vertex vi, is defined as:

κG(vi) = 2π −
∑

vj∈N1(vi)

θj , (11)

where N1(vi) is the one-ring neighbor of vertex vi and θj
represents the angles of the incident triangles at vertex vi.
|κG(vi)| could reflect the smoothness of the local region of
the i-th vertex. Based on κG(vi), a vector of quantization
levels for each vertex is calculated. Since visual distortion is
closely related to normal degradation, the least significant
bit (LSB) replacement is used [48] (which embeds data by
replacing the lowest bit with the message bit) to inform the
capacity under a given distortion tolerance.

Each vertex coordinate is in the 32-bit IEEE 754 single
precision standard format. Apart from the top bit, which
indicates whether the coordinate is positive or negative,
the remaining 31 bits can be embedded with the messages.
Considering the x, y, z coordinates altogether, each vertex
has a maximum 93-bit capacity.

In summary, this method can achieve a high capacity (93
bpv) and low distortion, but when the amount of embedded
noise becomes larger, the error will greatly increase. This
method is robust to the vertex reordering attack but is fragile
against PCA transform-targeted steganalysis.

3.2.2 Adaptive-steganography-based method
Zhou et al. [50] proposed an adaptive steganography tech-
nique to resist steganalysis. Unlike previous schemes (be-
longing to the nonadaptive mode) that shift the vertex co-
ordinates to embed messages without considering steganal-
ysis, this technique provides vertices with various costs for
determining the probability of modification.

Considering the storage form of the uncompressed
mesh, each vertex coordinate is usually specified as a 32-
bit single precision pattern, where the significant precision
number is 23 bits [36]. These coordinates are converted into
multiple binary bitplanes [51]. Considering that steganog-
raphy in a low-level bitplane causes fewer artifacts in the
overall coordinates, the data are first embedded into the
low-level bitplane and then iteratively embedded into the
high-level bitplane. These bitplanes are embedded by LSB
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Fig. 7: Schematic diagram of steganography and message extraction of
vertex index embedding by rearranging vertex indexes.

replacement, except for the highest bitplane determined by
the message.

The operation of the top biplane is as follows. Since
the steganographic security performance is primarily de-
pendent on several effective steganalytic features, the var-
ious submodels of steganalytic features are independently
evaluated, and the vertex normal feature is found to have
the best discriminability over the cover and stego meshes.
To compete with these subdetectors, the authors designed
vertex distortions based on vertex normals. The cost value
ρi was designed as:

ρi =
1

ln(‖n(vi)− n(v′i)‖2 + 1) + ε
, (12)

where n(v′i) comes from the Laplacian-smoothed mesh.
Using syndrome-trellis codes (STCs) [52] or steganographic
polar codes (SPCs) [53], steganography can be well imple-
mented. A larger distortion cost means a smaller modifica-
tion probability. A better designed distortion function could
effectively withstand steganalysis.

In summary, the method has a maximum capacity of 69
bpv, but it is fragile against the existing attacks, including
affine transform, vertex reordering, noise addition, smooth-
ing and simplification. However, it is strong enough to
contend against existing steganalysis when the embedding
payload is low.

3.3 Permutation Domain

Permutation steganography [54] hides data in the order of
the set elements. We can map each permutation of the set
to an integer and encode the message into the cover object
by altering the element order in the set. The 3-D mesh
contains a group of rearrangeable vertices and triangles,
which provides space for permutation-based steganography
without changing the geometry of the mesh.

Given n elements, assuming that they are rearrangeable,
the embedded data can be encoded by arranging elements
related to the known reference order. With n! possible
orders, the standard permutation steganography is able to
encode no more than log2 (n!) = O(n log n) bits of the
optimal message capacity at the cost of a computational
complexity of Ω(n2 log2 n log logn).

The specific implementation of the optimal permutation
steganography algorithm is described below. Let m repre-
sent the secret data. m comprises multiple consecutive 0s
and 1s and can be regarded as a long integer m. The core
purpose is to obtain the replacement π related to the value
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of m on V recursively. For the i-th iteration step, the i-
th element of the permutation is determined as the m/bi-
th residual element of a reference ordering of P , in which
bi = (i− 1)! is regarded as the factorial basis; in addition, m
is updated using m%bi. Through this processing, the mes-
sage is embedded by arranging π. To accurately recover m
from π on the receiver side, some methods for the canonical
traversal of meshes are usually utilized to determine the
unique reference order of P [55]. This simple method is
illustrated in Fig. 7.

In summary, owning to the fact that the reference or-
dering is obtained by traversing via the mesh compression
algorithm called “Edgebreaker” [55] based on the mesh
connectivity only, permutation steganography is robust and
resistant to geometric affine transformation attacks. How-
ever, due to the integer algorithm, this algorithm has a
very large runtime complexity, which makes it difficult to
use the standard permutation steganography method for a
large number of elements. Therefore, various variants of the
method are put forward to find a feasible trade-off between
embedding capacity and computational complexity. Because
the adjacent correlation is broken, this method is fragile
to permutation-targeted steganalysis, as stated in subsec-
tion 4.2.2.

3.3.1 Order-encoding-based method
Bogomjakov et al. [56] proposed a permutation steganog-
raphy algorithm, which can be efficiently implemented.
The idea is to maximize the length of the bitstream while
encoding each embedded message with the larger index
of an embedding value in the reference ordering as much
as possible. Specifically, instead of dividing the two long
integers, this method utilizes the next k = blog2 ic-bit data
to select the (n − i)-th element in the permutation π. To
enlarge the capacity, Bogomjakov et al. used a special trick
to encode one more bit of data: when the next k + 1-bit
data point is selected, if the decimal integer is smaller than
i but greater or equal to 2k, the element is able to encode
k + 1 bits. Otherwise, the element can encode only a k-bit
message and use the decimal integer to choose the correct
element. Obviously, all the bitstreams of maximum length
have the most significant bit “1”. The expected capacity (in
bits) is calculated by

E1(Ci) = (ki + 1)
i− 2ki

2ki
+ (ki)

2ki − i
2ki

. (13)

In summary, the encoder and decoder have a compu-
tational complexity of O(n), being more efficient than the
optimal permutation steganography method. The upper
bound of the embedding capacity is 1

V

∑V
i=1 blog2 ic bpv.

The compact and simple computation of the method is
efficient in implementation and loses only one bit per vertex
compared with the optimal one regarding capacity. In ad-
dition, this method is fragile against permutation-targeted
steganalysis.

3.3.2 Enhanced-order-encoding-based method
Huang et al. [57] proposed a permutation steganographic al-
gorithm with high efficiency, which can increase the capacity
to an amount closer to the optimal case while maintaining
the same time complexity. The next k-bit data are chosen,

and if their decimal integer is less than i − 2k, then the
element can encode the k + 1-bit message; otherwise, only
the k-bit message can be encoded. The expected capacity (in
bits) is calculated as

E2(Ci) = (ki + 1)
i− 2ki

2ki+1
+ (ki)

2ki+1 − (i− 2ki)

2ki+1
. (14)

Because E2(C) =
∑
E2(Ci) > E1(C) =

∑
E1(Ci), the

expected capacity of the algorithm is closer to the optimum
capacity than [56], i.e., the lower bound is 1

V

∑V
i=1 blog2 ic

bpv. In addition, the same runtime complexity of O(n) is
achieved. Moreover, the method is fragile to permutation-
targeted steganalysis.

3.3.3 Binary-tree-based method
Tu et al. [58] improved the method of Bogomjakov et al. [56]
by adopting a complete binary tree to embed and extract
data, which doubles the probability of encoding the addi-
tional bit-length message. This method does not directly
interpret the primitive indexes in the reference order as
encoding/decoding bits but makes some modifications to
the mapping. The number of different k + 1 bits is twice
the difference between n and the highest 2k less than n (i.e.,
(i−2k)×2). If the primitive is less than 2(i−2k), the method
will peek at the next k+1-bit data. Otherwise, only the k-bit
data can be encoded, and the offset i − 2k is added to the
value of these original bits, which is then interpreted as an
index.

In summary, compared with the algorithm of [56], this
method doubles the chance of encoding additional bits and
increases the average capacity by 0.63 bits per vertex. In
short, this scheme has the same minimum and maximum
capacity, and the average embedding rate is still one bit
per vertex less than the optimum. In addition, the method
has the same embedding capacity (the upper bound is
1
V

∑V
i=1 blog2 ic bpv) and computational complexity O(n)

as those of [57] and is fragile against permutation-targeted
steganalysis.

3.3.4 Coding-tree-based method
Tu and Tai [59] established a left-biased binary coding tree
for embedding bitstrings into primitives. The core operation
of the method constitutes two parts: the left-skewed subtree,
which extends the bitstring, and the right subtree, which is
a complete binary tree.

In summary, the minimum capacity of the method re-
mains the same as that of the complete binary tree. The
scheme has a computational complexity of O(n log (n)). In
addition, this method increases the embedding capacity of
each vertex by 0.63 bits compared with [56], i.e., the upper
bound is 1

V

∑V
i=1 blog2 ic+ 0.63 bpv. Moreover, the method

is fragile to permutation-targeted steganalysis.

3.3.5 Maximum-expected-level-tree-based method
When embedding and extracting a certain vertex, Tu et
al. [60] established a maximum expected level tree for the
remaining vertices in the reference order. At each level, the
number of leaf vertices in the subtree is determined by the
probability of the next message to be embedded. In this
way, the distance between the root node and the leaf vertex
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TABLE 2
Comparison of steganographic methods in terms of distortion, capacity and security. “

√
” indicates that the steganographic method is secure

against all steganalysis methods, and “×” indicates that the method is fragile to at least one steganalysis method.

Category (domain) Method Distortion Security

Two-state

MEP [33] Large ×
MLEP [34] Medium ×

Point-sampled geometry [35] Medium ×
Multilayer [36] Medium ×

Static arithmetic coding [37], [38] Medium
√

Statistical embedding [40], [41] Medium ×

LSB Gaussian curvature constraint [47] Small ×
Adaptive steganography [50] Small

√

Permutation

Order encoding [56] Null ×
Enhanced order encoding [57] Null ×

Binary tree [58] Null ×
Coding tree [59] Null ×

Maximum expected level tree [60] Null ×
One-ring neighborhood [61] Null

√

Transform Mesh spectrum analysis [64] Large ×
Wavelet transform [62] Large ×

can be as long as possible. Messages are represented by
traversed paths. Given the message to be embedded, the
message probability model of the 0-bit and 1-bit run-length
histograms needs to be updated after each embedding or
extraction. In the message extraction process, one needs to
extract the message histogram from the stego model first
and then extract the message from the histogram.

In summary, the capacity of this method is related to
the run-length histograms of the embedded data, and it has
a lower-bound capacity of 1

V

∑V
i=1 blog2 ic + 0.63 bpv. The

computational complexity of the method varies from O(n2)
to O(n log n) since it is directly correlative to the height
of the constructed maximum expected level tree. Therefore,
this method is analytically slower. In addition, this method
is fragile against permutation-targeted steganalysis.

3.3.6 One-ring-neighborhood-based method
Previous permutation-based methods utilize the encoding
capabilities of vertex and face lists to embed data. Although
the vertex ordering is initially configured regularly and the
order of the vertices is directly related to the surface nor-
mals, the permutation operation will destroy the correlation
of the adjacent vertices and obfuscate the triangle normals.

To avoid bringing about global changes, Wang et al. [61]
proposed to embed secret messages into the local neighbors
of each vertex. In each embedding round, the 1-ring neigh-
bor of the current vertex is utilized to carry the next few
bits. In some cases, the vertices of the neighbor have already
been utilized; thus, among all unused vertices, the method
selects the vertex that appears first in the reference order
and assigns an alias to it. Then, all the vertices not picked
by i are cascaded in clockwise order. According to the next
blog2 ic bit value, the corresponding vertex is selected.

In summary, the embedding capacity of the method is
much smaller than 1

V

∑V
i=1 blog2 ic bpv, but its security

level is high since it can withstand permutation-targeted
steganalysis and universal steganalysis.

3.4 Transform Domain
Many transform-domain-based methods [62], [63], [64],
[65], [66], [67] are watermarking-based algorithms. In some

Wavelet 
Transform

WCV

watermark

Inverse
Wavelet 

Transform

Modified
WCV

Fig. 8: Outline of the embedding process of the wavelet-based water-
marking method. WCV represents the wavelet coefficient vector.

steganographic applications, to avoid varying attacks in the
lossy communication channels, robustness is a necessary
property. Therefore, we summarize the transform-domain-
based methods below.

3.4.1 Mesh-spectrum-based method
Ohbuchi [64] proposed a spectral watermarking algorithm
based on mesh spectral analysis. The mesh spectrum is ob-
tained from a Laplacian matrix derived from connectivity of
a 3-D mesh. The watermarking method embeds data into the
mesh shape by modifying its mesh spectral coefficients. An
inverse transformation converts the watermarked spectral
coefficients back into the original mesh whose vertex co-
ordinates are slightly altered. Since only the low-frequency
end of the spectrum is modulated, the watermark is less
perceptible and the watermarked mesh can become resilient
against attacks including similarity transformation, random
noise addition and smoothing.

3.4.2 Wavelet-transform-based method
Kanai et al. [62] proposed a nonblind watermarking al-
gorithm, which takes advantage of the wavelet transform
and the multiresolution representation of the mesh. As
shown in Fig. 8, watermarks are embedded in the vectors
of several large wavelet coefficients acquired in different
resolution levels, which makes the embedded watermarks
imperceptible and invariant to affine transformation. This
also makes it reliable for controlling geometric errors caused
by the watermarking.
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TABLE 3
Comparison of steganographic methods in terms of robustness. “

√
” indicates that the steganographic method is robust against the specified attack

(affine transform, vertex reordering, noise addition, smoothing and simplification), and “×” indicates that the method is fragile to the attack.

Category
(domain) Method Affine transform Vertex reordering Noise addition Smoothing Simplification

Two-state

MEP [33]
√ √

× × ×
MLEP [34]

√ √
× × ×

Point-sampled geometry [35]
√ √

× × ×
Multilayer [36]

√ √
× × ×

Static arithmetic coding [37], [38]
√ √

× × ×
Statistical embedding [40], [41]

√ √ √ √ √

LSB Gaussian curvature constraint [47] ×
√

× × ×
Adaptive steganography [50] × × × × ×

Permutation

Order encoding [56]
√

×
√ √

×
Enhanced order encoding [57]

√
×

√ √
×

Binary tree [58]
√

×
√ √

×
Coding tree [59]

√
×

√ √
×

Maximum expected level tree [60]
√

×
√ √

×
One-ring neighborhood [61]

√
×

√ √
×

Transform Mesh spectrum analysis [64]
√ √ √ √

×
Wavelet transform [62]

√ √
× × ×

In summary, the method has neither a large enough ca-
pacity nor computational efficiency. In addition, the method
is a nonblind watermarking method, which requires the
original mesh to detect the watermark. Because of the large
modification, it cannot resist steganalysis.

3.5 Summary

Table 2 presents and compares the previously discussed
steganographic methods in terms of distortion and secu-
rity. Specifically, when the steganographic method is secure
against all steganalysis methods, then we call it secure;
otherwise, the method is not secure. Capacities are not
compared, because some methods have tight upper bounds,
some have approximated upper bounds and some do not
have upper bounds. For two-state domain and LSB domain,
most of the methods have tight upper bounds, which imply
that they cannot embed more than the upper bounds. For
permutation domain, the existing upper-bound capacities
are the estimated ones, which can be approximated but can
be barely reached, thus they are not tight. Table 3 presents
the robustness of different steganographic methods against
various digital attacks such as affine transformation, vertex
reordering, noise addition, smoothing and simplification.
The steganographic papers we have reviewed are classified
in the taxonomy shown in Fig. 9.

4 3-D MESH STEGANALYSIS TECHNIQUES

In this section, we divide the steganalysis techniques into
two categories: universal steganalysis and specific steganal-
ysis. Universal blind steganalysis can detect embedded
messages independent of steganographic algorithms and is
more frequently used in practical applications. This tech-
nique is very important because it is flexible and can quickly
adapt to new unknown steganographic methods [76]. Spe-
cific steganalysis is designed for a specified type of stegano-
graphic method. The development history of each group is
elaborated below.

4.1 Universal Steganalysis

Universal steganalysis aims to detect steganographic arti-
facts by designing features based on the differences be-
tween the mesh object and its smoothed object. The ste-
ganalysis performance is evaluated by machine learning
classifiers [77], [78]. In the following, we first provide a
framework for 3-D mesh steganalysis and then introduce the
existing 3-D mesh steganalysis algorithms according to the
date of publication. In addition, the notations of elements
(vertex, edge, face, normal, etc.) are illustrated in Fig. 10.

4.1.1 Framework of universal steganalysis
Fig. 11 is a flowchart of the universal 3-D mesh steganaly-
sis. The framework is essentially based on the learning of
residual feature statistics and classification, which includes
calibrating the original mesh to a canonical version, Lapla-
cian smoothing, extracting features, and mapping features.
Before feature extraction, the vertices are preprocessed into
a canonical version by rotating the object and aligning its
coordinates with the three principal directions collected by
PCA. Then, the object is scaled to fit inside a unit cube.

Motivated by the steganalysis of digital images, the
difference between the stego image and its smoothed image
is more significant than the difference between the cover
and its smoothed image [80], [81]; similarly, it is expected
that the differences relating to 3-D steganalysis comply with
the same rules. By applying a unified Laplacian smoothing
process to the original mesh M for one iteration, we can
obtain a smoothed mesh M′, which moves the current
vertex pi to its one-ring average as follows [82]:

pi ← pi +
τ∑

vj∈N1(vi)
wij

∑
vj∈N1(vi)

wij(pj − pi), (15)

where τ is a scalar term and wij is a weighting term. Li et
al. [79] analyzed the effect of τ on 3-D mesh smoothing and
feature extraction.

Usually, ensemble classifiers [28] are trained for steganal-
ysis. The core task of designing effective steganalyzers is
feature design; hence, we introduce different features below.
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Fig. 9: Our proposed taxonomy for 3-D mesh steganography and steganalysis.
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Fig. 10: Notations of elements in a local region, which include vertices
(vi, vi+1, vi+2), edges (ek), faces (fj ), normal vectors (n(vi), n(fj),
n(ek)) and dihedral angles (θ(ek)).

4.1.2 YANG208 features
Yang and Ivrissimtzis [68] proposed the first 208-D steganal-
ysis features of 3-D meshes. The absolute values of the 3-D
coordinate difference between M and M′ are calculated,
and then the vector length of each for each vertex vector is
determined. For example, the feature of the x-component is:

φ1(i) = |x(vi)− x(v′i)| . (16)

The Laplacian coordinates of M and M′ are calculated
as p̄i = [x̄(vi), ȳ(vi), z̄(vi)]

T and p̄′i = [x̄(v′i), ȳ(v′i), z̄(v
′
i)]

T ,
where they are the outcome of the Cartesian coordinates
multiplied by the Kirchhoff matrix [83] of the 3-D mesh. The
other four vectors, including the three absolute values of
the difference between each of the three coordinates compo-
nents ofM andM′ and the `2 norm of the coordinates, are
calculated by the same absolute differences under Laplacian
coordinates. The above computations are made separately
on vertices whose valence is less than, equal to or greater
than 6, excluding all boundary vertices, which make up 24
features.

Then, the absolute difference between the dihedral an-
gles θ(ei) of the adjacent faces in the vertical plane con-
nected by the common edge ei is calculated:

φ2(i) = |θ(ei)− θ(e′i)| . (17)

For mesh faces, the change in local surface direction
is acquired by measuring the angle between the surface

normal n(fi) of the original object and the corresponding
n(fi)

′ of the smoothed 3-D mesh:

φ3(i) = arccos
n(fi) · n(f ′i)

‖n(fi)‖ · ‖n(f ′i)‖
. (18)

Based on each of the above 26 vectors, the components
of the eight feature vectors are calculated, thereby acquiring
a vector of 208 dimensions expressed as Φ208. Suppose φ
is one of these 26 vectors and the first four components
are constructed from the differences between the adjacent
histogram bins of φ. The remaining four components are
the mean, variance, skewness, and kurtosis of logarithm
log(|φ|+ ε).

In summary, though the computational cost of YANG208
is not large, the feature number is relatively large, and its
discriminability is weaker than that of other features (see
below), which implies that a few features in YANG208 are
noneffective. Moreover, the classification accuracy on differ-
ent payloads is inconsistent, which indicates that YANG208
is not robust enough.

4.1.3 YANG40 features
Li and Bors [69] proposed YANG40, which consists of 40-D
features, i.e., the most effective features in YANG208. The
first 6 features are the absolute distance calculated along
the 3-D axis between the vertex positions of M and M′,
considered in both the Cartesian and Laplacian coordinate
systems.

Moreover, the two variations measured by the `2 norm
of the vertex vectors (from the mesh center to the vertex
position) are calculated in the Cartesian and Laplacian coor-
dinate systems, respectively.

φ2 and φ3 from YANG208 are regarded as two addi-
tional feature vectors. From each of the above 10 vectors,
4 components (mean, variance, skewness and kurtosis) are
calculated. These components form a vector of dimension
40, which is represented as Φ40.

In summary, compared with YANG208, YANG40 does
not calculate feature vectors separately based on vertex
groups with different valence, thereby reducing the overall
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Fig. 11: The 3-D mesh steganalysis framework based on learning from statistics of residual features and classification. Figure from [79].

feature dimension while still maintaining good steganalysis
performance.

4.1.4 LFS52 Features
Li and Bors [69] proposed features based on the 52-D local
feature set (LFS), including YANG40 and 12 local shape
features. The first designed feature is calculated as the angle
between the normal vectors of two specified vertices, in
which the vertex normal vector is calculated as the weighted
sum of the normal vectors of the triangles related to the
vertex:

n(vi) =

∑
fj∈N1(vi)

A(fj)n(fj)∥∥∥∑fj∈N1(vi)
A(fj)n(fj)

∥∥∥ , (19)

where N1(vi) is the one-ring neighboring face of vi and
A(fj) is the area of triangle fj . Therefore, the absolute value
of the angle between the two vertex normals n(vi) and n(v′i)
is regarded as the designed feature.

The local shape curvature measures the surface smooth-
ness of the 3-D mesh, where the principal curvatures κ1(vi)
and κ2(vi) reflect the bending degree of the local surface in
the orthogonal direction at vertex vi.

The Gaussian curvature [84] is calculated as the prod-
uct of the minimum and maximum principal curvatures:
κG(vi) = κ1(vi) · κ2(vi). The second feature is calculated
as the absolute difference between the two Gaussian curva-
tures κG(vi) and κG(v′i).

The curvature ratio is obtained by taking the ratio of the
minimum to the maximum principal curvature:

κr(vi) =
min (|κ1(vi)| , |κ2(vi)|)
max (|κ1(vi)| , |κ2(vi)|)

, (20)

and the corresponding feature is obtained by taking the
absolute differences of the two curvature ratios κr(vi) and
κr(v′i).

In summary, compared with the features based on co-
ordinates and face normals, features containing vertex nor-
mals and curvatures own better discriminability.

4.1.5 LFS64 features
Kim et al. [70] extended LFS52 and considered the edge
normal vector, mean curvature and total curvature together,
forming a 64-D feature vector. The edge normal vector
n(ei) is defined as the weighted sum of the triangle normal
vectors connected by a common edge:

n(ei) =

∑
fj∈N1(ei)

A(fj)n(fj)∥∥∥∑fj∈N1(ei)
A(fj)n(fj)

∥∥∥ , (21)

and the absolute value of the angles between the two
edge normal vectors n(ei) and n(e′i) is calculated, which
is regarded as the feature.

The mean curvature κm(vi) = (κ1(vi) + κ2(vi))/2 and
the total curvature κt(vi) = |κ1(vi)| + |κ2(vi)| contribute
two additional features. The difference between κm(vi) and
κm(v′i) and that between κt(vi) and κt(v

′
i) are regarded as

new features.
In summary, the method outperforms LFS52 greatly

because of its three features: edge normal vector, mean
curvature and total curvature.

4.1.6 LFS76 features
Li and Bors [39] extended LFS52 and proposed features
based on the spherical coordinates (R, θ, ϕ), thus forming a
76-D feature vector. They provided a simple representation
of the distance from the mesh center to each vertex position
on the sphere, including the Euclidean norm R, azimuth θ
and elevation ϕ from a fixed origin. The absolute difference
between each coordinate and its corresponding smoothed
coordinate is taken as the new feature.

The edge length in spherical coordinates is considered as
the feature extraction element. ei is the edge that connects vj
and vk, and the edge vector e(ei) = [pj ,pk] (which will be
used in the next subsection). For example, the R component
is acquired by

φ4(i) = ||R(vj)−R(vk)| − |R′(vj)−R′(vk)|| . (22)

In summary, in terms of steganalytic discriminability,
the 6 new features do not improve the steganalysis perfor-
mance.

4.1.7 LFS124 features
Li et al. [71] extended LFS76, proposed an extended local
feature set using edge vectors for steganalysis, and finally
formed a 124-D feature vector. First, in the Cartesian coor-
dinate system, the absolute difference of the edge length of
the 3-D component of the vector is calculated. For example:

φ5(i) =
∣∣|x(vj)− x(vk)| − |x(v′j)− x(v′k)|

∣∣ . (23)

Second, the difference norm between the two vectors e(ei)
and e(ei) is calculated, and another two features made up
of the absolute differences between them and the angle
between them are obtained.

Based on the Laplacian coordinate system, another six
features are calculated in the same manner, all of which
constitute 12 features.
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In summary, LFS124 is efficient in implementation and
performs better than former steganalytic features including
LFS52 and LFS76, indicating that the edge vector plays a
vital role in steganalysis.

4.1.8 NVT+ features
Zhou et al. [72] proposed 100-D steganalytic features using a
tensor voting model, which gathers the local shape context.
First, three normal voting tensors (NVTs) based on each face
or vertex are extracted. The normal voting tensor Ti for
vertex vi is defined as the sum of the weighted covariance
matrix of its adjacent faces [85]:

Ti =
∑

fj∈N1(vi)

µijn(fj) · n(fj)
T , (24)

where the weighting term µij depends on the ratio of the
area between neighboring faces to the distance between each
triangle’s barycenter c(fj) and its vertex:

µij =
A(fj)

max (A(N1(vi))
exp

(
−
‖c(fj)− pi‖2

1/3

)
. (25)

In addition, the unit normals of the triangle fi define two
other NVTs with different neighbors:

Ti =
∑

fj∈N (fi)

µijn(fj) · n(fj)
T . (26)

Second, three eigenvalues (λ1, λ2, λ3) are obtained from
the eigendecomposition of each tensor:

T = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3 , (27)

where (e1, e2, e3) are the corresponding eigenvectors.
Eigenvalues reflect the shape of patches on local surfaces,
such as corners, sharp edges, or planes. Therefore, the
absolute value of the difference between eigenvalues is
considered as a feature. For example:

φ6(i) = |λ1 − λ′1| . (28)

The NVT constitutes a total of 9 × 4 = 36 features.
By combining the NVT features and LFS64 features, the
dimension of NVT+ can be as high as 100.

In summary, NVT+ offers an obvious improvement in
classification accuracy, which indicates that the distribution
of a local region’s face normals is an effective indicator for
detecting stego meshes. However, the calculation cost of this
method is very high because it is very time consuming to
calculate each feature of the adjacent face.

4.1.9 WFS228 features
Li and Bors [73] proposed using multiresolution 3-D wavelet
analysis as a new set of 228-D steganalysis features. The
features are originally designed to detect messages embed-
ded in watermarks based on the 3-D wavelet algorithm,
and for most steganographic methods, they are effective for
boosting steganalysis.

By using 3-D lazy wavelet decomposition [86] and the
Butterfly scheme [87], wavelet coefficient vectors (WCVs)
are used to associate the given mesh representation with
different graph resolutions. Because most of the wavelet-
related embedding methods embed messages by modifying
both the WCVs and edges obtained from the low-resolution

version of the 3-D mesh, it is helpful to find and use these
features in 3-D mesh steganalysis. In addition, the vertices
of the high-resolution 3-D mesh are acquired by analyzing
the larger vertex neighbors of the original 3-D mesh, which
shows that the geometric features of the high-resolution 3-D
mesh are more sensitive to changes in the original mesh.

In summary, based on these analyses, the authors pro-
posed features based on the edge vector, WCVs and their
variants at three resolutions for 3-D mesh steganalysis.
Their method outperforms LFS76 by a large margin, yet its
computational complexity is also very high because of the
search for local vertices.

4.1.10 Feature-selection-based method

In real scenarios, training and testing sets are not from the
same distributions. This is a challenging task for the exist-
ing steganalyzers, called the cover source mismatch (CSM)
problem, which is caused by the limited generalizability of
steganalyzers.

Li and Bors [74], [75] proposed a feature selection
method that takes the robustness and correlation of features
into consideration to alleviate the mesh steganalysis CSM
problem. Specifically, to test a steganalytic method in the
CSM scenario, Li and Bors first applied transformations in-
cluding mesh simplification and noise addition to the orig-
inal 3-D meshes and treated the transformed 3-D meshes
as the cover meshes for steganography. Then, by evaluating
the effectiveness of separating the cover meshes from the
stego meshes between the generated sets of objects, they
selected the feature subset. Finally, they used the mutual
information criterion and Pearson correlation coefficient to
select the appropriate features.

In summary, this method deals with the cover source
mismatch problem of 3-D steganalysis and provides several
robust features. Its limitation is that the selection of features
is restricted to transformations only. A promising improve-
ment would be to experiment on a set of transformed objects
originating from completely different cover sources.

4.2 Specific Steganalysis

In this subsection, we discuss two specific steganal-
ysis methods: PCA transform-targeted features and
permutation-targeted features.

4.2.1 PCA transform-targeted features

The defect of steganography methods based on the PCA
transform [35], [36] is noted by Zhou et al. [50]: the prepro-
cessing procedures lead to a location distinction between
the cover meshes and the stego meshes, which can be easily
attacked by specially-designed detectors.

The vertices falling on the two ends of the first principal
axis are taken as the end vertices vi and vj . Similarly, the
vertex falling on the farthest end of the second principal
axis is taken as the third end vertex vk. Then, the cover 3-D
mesh is transformed to align the unit vectors −−→vivj , −−→vivk and
−−→vivj × −−→vivk with the x-axis, y-axis and z-axis, respectively.
Therefore, the transformation matrix T is defined as

T = [−−→vivj ,−−→vivk,−−→vivj ×−−→vivk]. (29)
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Since the first and second principle axes of the stego mesh
are near the x-axis and y-axis, respectively, this operation
with behavior disorder will cause attackers to be suspicious,
and the one-dimensional feature is calculated as the `1 norm
between the above two matrices:

φ7 = ‖T− I‖1 , (30)

where I is the identity matrix.
In summary, although this method is efficient, it is only

effective in detecting PCA-transform-based steganographic
methods.

4.2.2 Permutation-targeted features
Wang et al. [61] proposed the first steganalytic method to
break permutation steganography. They found that there
are significant differences in the topological distance dis-
tribution of consecutive mesh elements between cover and
stego meshes. They designed effective steganalytic features
by measuring the order of the vertex and triangle lists.

As we all know, for clean meshes, the vertex lists are rel-
atively orderly, while for stego meshes, they have high ran-
domness. Therefore, they utilized the distance term D(P) to
measure the order of the vertex list P :

D(P) =
1

n− 1

n−1∑
i=1

d(pi,pi+1), (31)

where d(pi,pi+1) is the shortest Euclidean distance be-
tween pi and pi+1. In most cases, D(P) is very small for
cover meshes, where consecutive vertices are close to each
other, while for stego meshes, most consecutive vertices are
not close to each other, and D(P) may be very large. The
order of the face list is similarly designed.

In summary, this method is universal and does not
require any prior knowledge, for instance, the concrete
steganographic method and embedding payload.

4.3 Summary
We summarize all the features in Table 4. The steganalysis
papers we reviewed are classified into the taxonomy shown
in Fig. 9.

5 EXPERIMENTAL RESULTS

5.1 Datasets
The Princeton Segmentation Benchmark 1 is a mesh seg-
mentation dataset with 354 objects [88] splitting into 260
training cover objects and 94 testing cover objects. Given a
steganographic algorithm, we generate the corresponding
stego object of each cover object. Finally, we have 260 pairs
of cover objects and corresponding stego for training and 94
pairs for testing.

The Princeton ModelNet 2 includes 12,311 mesh objects
with 40 categories. 50% of the mesh objects are taken as the
training cover set (6,156), and the remaining are taken as
the cover testing set (6,155). Similarly, each object has the
corresponding stego object, forming the training set or the
testing set.

1. http://segeval.cs.princeton.edu/
2. http://modelnet.cs.princeton.edu/

5.2 Comparison among the steganographic algorithms
In this subsection, a comparison of the steganographic meth-
ods is given (see Table 2 and Table 3).

First, from the distortion perspective, when embedding
low payloads, the two-state domain and transform domain
steganography methods modulate vertices by a large mar-
gin; thus, they have medium or large geometric distortions.
The LSB domain methods first embed messages on the least
significant bit; thus, they have low distortions. The permu-
tation domain methods do not change vertex coordinates;
thus, they have no distortions.

Second, from the capacity perspective, only the multi-
layer [36], Gaussian curvature constraint [47], and adaptive-
steganography-based methods have high capacity. Regard-
ing the permutation-domain-based methods, except for
the one-ring neighborhood method [61], they have similar
medium embedding capacities.

Third, from the security perspective, only the static
arithmetic coding method [41], adaptive steganography [50]
and the one-ring neighborhood method [61] can survive all
steganalytic detection attempts.

Fourth, from the robustness perspective, the statistical-
embedding-based methods [40], [41] are the most robust
ones, as they can withstand all existing attacks. For permu-
tation domain steganography, all are robust against affine
transformation, noise addition, and smoothing but are frag-
ile to vertex reordering and simplification. Most of the two-
state domain methods can survive the affine transformation,
vertex reordering, noise addition, and smoothing attacks but
not the simplification attack.

5.3 Comparison among the steganalytic algorithms
In this subsection, comparisons of the universal steganalytic
methods are given (see Fig. 12, Fig. 13 and Fig. 14).

First, to explore the classification performance of each
steganalytic method, as shown in Fig. 12, we consider two
classic high-capacity steganographic methods [36], [50] for
generating the two stego mesh sets, respectively. As can be
concluded from the two figures, the performance of stegana-
lytic features follows the rule PE(NVT+) < PE(WFS228) <
PE(LFS124) ≈ PE(LFS76) ≈ PE(LFS64) ≈ PE(LFS52) ≈
PE(YANG208). In addition, the testing errors on the Prince-
ton ModelNet dataset are lower than those on the Princeton
Segmentation Benchmark dataset, which can be attributed
to the data sources. The former are crafted by CAD tech-
niques, while the latter are reconstructed from natural 3-
D objects, which means that the former have less local
complexity and can be easier for steganalyzers to model.

Second, to explore the effectiveness of each subfeature,
we train each one grouped by the system of Table 4 and im-
plement steganalysis, as shown in Fig. 13 (a). We conclude
that eigenvalues of the normal voting tensor are the most
effective subfeatures, while edge vectors and WCVs are the
second-best steganalytic features. In Fig. 13 (b), we compare
the complexity of each testing procedure and conclude that
the feature extraction complexity of both eigenvalues of the
normal voting tensors and edge vectors with WCVs make
them more time consuming than the other features.

Third, in Fig. 14, we analyze the generalizability of
trained steganalyzers from the perspective of different em-
bedding payloads and datasets to explore the robustness
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TABLE 4
Basic feature elements of all steganalytic methods. Features are extracted by taking the absolute difference between two values or by taking the
cosine distance between two vectors.

Index Features Dim YANG208 YANG40 LFS52 LFS64 LFS76 LFS124 NVT+ WFS228

1 3-D coordinates and norm
with different valence 24

√

2 Face normals 1
√ √ √ √ √ √ √

3 Dihedral angles 1
√ √ √ √ √ √ √

4 3-D coordinates and norm 8
√ √ √ √ √ √

5 Vertex normals 1
√ √ √ √ √

6 Gaussian curvature 1
√ √ √ √ √

7 Curvature ratio 1
√ √ √ √ √

8 Edge normal 1
√ √

9 Mean curvature 1
√ √

10 Total curvature 1
√ √

11 Spherical coordinates 3
√ √

12 Edge angles of spherical coordinates 3
√ √

13 Edge vectors 12
√ √

14 Eigenvalues of normal voting tensor 9
√

15 Edge vectors and WCVs
in multiresolutions 45

√
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(a) The Princeton Segmentation Benchmark dataset.
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(b) The Princeton ModelNet dataset.

Fig. 12: 3-D mesh steganalytic performance comparison.

of the source models. Fig. 14 (a) shows a heatmap of the
testing errors achieved by LFS76 [39] when detecting the
steganographic method [50] under different payloads. The
detectors are trained with one of the cover-stego pairs given
a targeted embedding payload listed in the rows and tested
against one another listed in the columns. The more distant
the payloads of the testing meshes from those of the training
meshes are, the weaker the generalizability of the source
models. Fig. 14 (b) and Fig. 14 (c) show the heatmaps
of testing errors achieved by LFS76 [39] and NVT+ [72]
when detecting the steganographic method [50] on different
datasets, respectively. It can be concluded that the model
trained on the Princeton Segmentation Benchmark has bet-
ter robustness in detecting the Princeton ModelNet than
does the reverse setup.

6 CHALLENGES AND TRENDS

Below, we give several challenges and trends and present
some potential solutions.

6.1 Open Problems for 3-D Mesh Steganography

Achieving higher steganographic security is the ultimate
goal of 3-D mesh steganography. Below are two ideas to-
ward stronger security.

6.1.1 Combining the permutation domain and LSB domain
One way to achieve stronger security is to combine the per-
mutation domain and LSB domain by distributing message
bits over the two domains. When the number of vertices of a
mesh is 5000, the maximum embedding rate of permutation
steganography reaches 11 bit per vertex, which can be
considered a large embedding rate. The embedding capacity
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Fig. 13: (a) Average testing error estimates for the multilayer-based
method and adaptive-steganography-based method, both of which are
operated with 5 bpv embedding payloads on the Princeton Segmenta-
tion Benchmark dataset. (b) The corresponding testing time.
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(a) Testing error of LFS76 [39] when detecting the steganographic
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when detecting [50] with a 5 bpv
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Fig. 14: The generalizability of trained steganalyzers in terms of differ-
ent embedding payloads and datasets. The lower the testing error is,
the stronger the robustness of the detector.

increases, yet it is inevitable to consider the universal ste-
ganalysis and permutation-targeted steganalysis together.
The key point lies in devising an optimal message allocation
scheme that achieves the optimal steganographic security
under the same embedding rate.

6.1.2 Designing spatial steganographic models
Recent developments of adaptive steganography have veri-
fied that by designing nonadditive distortion functions, the
steganographic security can be improved further by taking
advantage of the mutual impact of modifications among
local cover pixels [89], [90]. In the work of Zhou et al. [50],
they allocate message bits evenly on the xyz-axes without
considering the embedding effects on each other. It is sug-
gested to design a joint distortion for a triple unit (a vertex
consisting of three components), to utilize the DeJoin [91]
scheme to allocate message bits and to implement STCs [52]
to embed data.

Additionally, inspired by the success of adversarial at-
tacks in computer vision, adversarial steganography [92],
[93], [94] has been proposed based on generative adversarial
networks (GANs) to deceive CNN-based image steganalyz-
ers. It is vital to design adversarial steganography based on
deep generative models to deceive mesh steganalyzers.

6.1.3 Designing steganalysis-resistant permutation
steganographic methods
Wang et al. [61] proposed a neighborhood embedding
scheme that utilizes the next blog2 ic bits in messages to
select from the i unpicked vertices of the 1-ring neighbor of
the current vertex. It has been verified that 1 ≤ i ≤ 11 and,
in most cases, i = 6 [51], and the average embedding rate is
nearly 2 bit per vertex, which is too small for steganography.
Moreover, rigorous experiments on steganalytic security
are missing from the work of Wang et al. [61], and it is
expected to design a multiple-ring-neighbor-based permu-
tation steganography to boost the embedding rate.

6.1.4 Designing 3-D mesh batch steganography methods
Batch steganography and pooled steganalysis [95] have
generalized the problems of data embedding and steganal-
ysis to more than one object. It is speculated that, given
images with uniform embedding capacity and a steganalytic
scheme satisfying certain assumptions, “secure” stegano-
graphic capacity is proportional to the square root of the
input image number [96]. It is therefore an interesting and
challenging problem for researchers to explore the relation-
ship between capacity and the number of vertices of 3-D
meshes and to design a strategy to allocate messages among
cover meshes.

6.1.5 Designing 3-D-printing-material-based robust
steganography methods
Since DNA storage offers substantial information density
and exceptional half-life, Koch et al. [97] proposed a “DNA-
of-things” (DoT) storage architecture to produce materials
with immutable memory. They applied the DoT to 3-D
print a Stanford bunny that contained a 45 kB digital DNA
blueprint for its synthesis. Specifically, they stored a 1.4
MB video in its DNA in the plexiglass spectacle lenses and
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Fig. 15: Diagram of local feature set for building tensors: (left) vertex
norm, (middle) edge norm and (right) edge vector.

retrieved it by excising a tiny piece of the plexiglass and
sequencing the embedded DNA. The DoT could be applied
to store electronic health records in medical implants, to
hide data in everyday objects and to manufacture objects
containing their own blueprint, which can be regarded as
robust steganography since they can withstand physical-
world attacks such as physical damage. However, the ex-
traction side is expensive and time consuming. Therefore,
how to design an efficient decoder is a future research
direction.

6.2 Open Problems for 3-D Mesh Steganalysis

6.2.1 Designing rich steganalytic features for universal
blind steganalysis

Since the steganalysis performance is poor under the
low embedding rate of two-state domain and LSB do-
main steganography, there is much room for improve-
ment in steganalysis. Inspired by the SRM of Fridrich and
Kodovskỳ [30], who designed 34,671-D quantized noise
residual features acquired by multiple linear and nonlinear
high-pass filters, it is possible to take advantage of more
than one mesh smoothing technique, including denoising
and fairing [24], to extract steganographic residuals. Ad-
vanced surface smoothing methods include anisotropic dif-
fusion flow [98], bilateral filtering [99], nonlinear smooth-
ing [100], [101] and neural-network-based filtering [102].

In addition, it may be effective to design more features
to boost steganalysis. For example, tensors are helpful fea-
ture extractors for a set of locally independent vectors. For
instance, tensors based on the vertex normal, edge normal,
and edge vector can also reflect the local smoothness, as
shown in Fig. 15. Another option is to consider the n-ring-
neighborhood-based features (n > 1) to scale up areas for
feature extraction.

Furthermore, the currently used statistical moments for
dimensionality reduction may excessively discard informa-
tive features. We find that the dimension of features is equal
to the number of vertices, edges or faces; thus, we believe
that training discriminative models for each of the three and
reasonably ensembling them may improve the steganalysis
performance.

It is worth mentioning that, in addition to the above
points, the runtime of the feature extraction of 3-D meshes is
much greater than that of images. Engineering development
of 3-D mesh steganalysis should also be considered, such
as the use of parallel processing or advanced techniques
to resolve the large time consumption of adjacent vertex
searching.

6.2.2 Designing deep-learning-based steganalysis meth-
ods
The existing methods are all handcrafted features. Note
that the designs of these features are cumbersome, and
it has been recognized that deep learning has superior
performance on classification tasks. These deep neural
networks (DNNs), such as convolutional neural networks
(CNNs) [103], graph convolutional networks (GCNs) [104]
and MeshNet [105], are able to classify testing samples with
high accuracy. In addition, CNN-based image steganalyzers
such as XuNet [106], YeNet [107] and SRNet [108] that use
deep models to classify cover images from stego images
are maturing fast. The intrinsic topological property of 3-D
meshes conforms to GCNs and MeshNet; thus, one possible
solution is to design an end-to-end modified MeshNet with
steganalytic network structures and train it with a back-
propagation algorithm to improve the 3-D mesh steganalytic
performance.

6.2.3 Designing a finer distance metric to improve the ste-
ganalysis of permutation steganography
Aiming at the detection of permutation steganography,
Wang et al. [61] proposed a theoretical analysis based on
the correlation between consecutive mesh elements, but the
research is preliminary and quantitative results were not
given; thus, there is room for further research. We believe
that the distance between two adjacent vertices from the
vertex list P is inadequate for steganalysis and can be
improved by calculating the Euclidean distance of adjacent
vertices in the permuted order.

6.2.4 Cover source mismatch problem
As mentioned before, when a steganalyzer trained on one
data source is applied to 3-D meshes from a different source,
in general, the detection error will increase because of the
mismatch between the two different sources, which is rec-
ognized as the CSM problem. In fact, CSM hinders the ad-
vancement of steganalysis from the laboratory environment
to the real world. One possible solution is to use simple
measures, such as by using several steganalyzers trained
on several different sources and testing on a steganalyzer
trained on the closest source or by increasing the training
data diversity.

7 CONCLUSIONS

Three-dimensional (3-D) mesh steganography is an inter-
esting and promising research area, with potential practical
applications such as covert communications. In this paper,
we gave an overview of 3-D mesh steganography and
steganalysis. First, we described our motivation for writing
this paper and introduced the development history. Then,
we outlined the principle framework of steganography and
steganalysis, the evaluation metrics and the structure of 3-D
meshes. Afterwards, we introduced the 3-D mesh steganog-
raphy techniques in detail, including two-state domain, LSB
domain, permutation domain and transform domain tech-
niques. Next, the 3-D mesh steganalysis techniques, divided
into two categories, were described in detail, i.e., universal
steganalysis and specific steganalysis. After that, the exper-
imental performances of these representative methods were
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compared. Finally, we discussed some valuable problems
in the field and provided several interesting directions that
may be worth exploring in the future.
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[65] K. Wang, G. Lavoué, F. Denis, and A. Baskurt, “Robust and blind
mesh watermarking based on volume moments,” Computers &
Graphics, vol. 35, no. 1, pp. 1–19, 2011.

[66] S. Zafeiriou, A. Tefas, and I. Pitas, “Blind robust watermarking
schemes for copyright protection of 3d mesh objects,” IEEE
Transactions on Visualization and Computer Graphics, vol. 11, no. 5,
pp. 596–607, 2005.

[67] Y.-P. Wang and S.-M. Hu, “A new watermarking method for
3d models based on integral invariants,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 2, pp. 285–294,
2008.

[68] Y. Yang and I. Ivrissimtzis, “Mesh discriminative features for
3d steganalysis,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 10, no. 3, p. 27, 2014.

[69] Z. Li and A. G. Bors, “3d mesh steganalysis using local shape
features,” in IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2016, pp. 2144–2148.

[70] D. Kim, H.-U. Jang, H.-Y. Choi, J. Son, I.-J. Yu, and H.-K. Lee, “Im-
proved 3d mesh steganalysis using homogeneous kernel map,”
in International Conference on Information Science and Applications.
Springer, 2017, pp. 358–365.

[71] Z. Li, D. Gong, F. Liu, and A. G. Bors, “3d steganalysis using
the extended local feature set,” in IEEE International Conference on
Image Processing. IEEE, 2018, pp. 1683–1687.

[72] H. Zhou, K. Chen, W. Zhang, C. Qin, and N. Yu, “Feature-
preserving tensor voting model for mesh steganalysis,” IEEE
Transactions on Visualization and Computer Graphics, 2019.

[73] Z. Li and A. G. Bors, “Steganalysis of meshes based on 3d wavelet
multiresolution analysis,” Information Sciences, 2020.

[74] ——, “Selection of robust features for the cover source mismatch
problem in 3d steganalysis,” in IEEE International Conference on
Pattern Recognition. IEEE, 2016, pp. 4256–4261.

[75] ——, “Selection of robust and relevant features for 3-d steganal-
ysis,” IEEE Transactions on Cybernetics, 2018.

[76] J. Fridrich and M. Goljan, “Practical steganalysis of digital im-
ages: State of the art,” in Security and Watermarking of Multimedia
Contents IV, vol. 4675. International Society for Optics and
Photonics, 2002, pp. 1–13.

[77] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intelligent Systems and their
applications, vol. 13, no. 4, pp. 18–28, 1998.
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