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Abstract—We propose a novel method for exploring the dynamics of physically based animated characters, and learning a task-

agnostic action space that makes movement optimization easier. Like several previous article, we parameterize actions as target

states, and learn a short-horizon goal-conditioned low-level control policy that drives the agent’s state towards the targets. Our novel

contribution is that with our exploration data, we are able to learn the low-level policy in a generic manner and without any reference

movement data. Trained once for each agent or simulation environment, the policy improves the efficiency of optimizing both

trajectories and high-level policies across multiple tasks and optimization algorithms. We also contribute novel visualizations that show

how using target states as actions makes optimized trajectories more robust to disturbances; this manifests as wider optima that are

easy to find. Due to its simplicity and generality, our proposed approach should provide a building block that can improve a large variety

of movement optimization methods and applications.

Index Terms—Movement optimization, trajectory optimization, policy optimization, hierarchical reinforcement learning, action space

Ç

1 INTRODUCTION

MOVEMENT optimization of physically simulated charac-
ters is common in robotics and computer animation.

Although previous work has shown that a wide variety of
movements can be generated through optimization, both in
trajectory and policy optimization settings [1], [2], [3], [4],
[5], optimization is still prohibitively slow for many applica-
tions. This is largely due to the high dimensionality of the
state and action spaces, as well as the complexity of move-
ment dynamics plagued with contact discontinuities, which
prohibits closed-form solutions.

One way to make movement optimization easier is by
using novel action parameterizations. Previous work has
shown that the choice of action space can have a significant
impact on the performance of movement optimization [6].
Learned or designed action spaces can also capture the
task-invariant behavioral representations that can be re-
used across different tasks, speeding up the problem solv-
ing process [7]. This idea has been long studied in the con-
text of Hierarchical Reinforcement Learning (HRL), which
has shown promising results in physically based character
control [8], [9], [10]. In HRL, the actions output by a high-
level controller (HLC) are converted into low-level simula-
tion or robot actuation commands using a low-level

controller (LLC). For example, the muscle-actuated human
simulation system of Lee et al. [10] optimizes controls in the
space of joint target accelerations, which are then converted
to muscle actuations by a separately trained neural network.
However, learning such control hierarchies can be computa-
tionally expensive and they are typically problem-depen-
dent. A question remains whether there are truly generic
action parameterizations or LLCs that would only need to be
trained once, but would still make movement optimization
and learning easier across a wide range of tasks.

In this paper, we investigate a promising candidate for a
generic task-agnostic action space: We define HLC actions as
target states to be reached by an LLC. This poses no limitations
on the optimized movements, as any movement can be
described as a sequence of state variables such as body poses
and root translations and rotations. This can also be moti-
vated through human visuomotor control and movement
pedagogy, as complex movement skills such as gymnastics
are typically taught through demonstrations—visualizations
of target state sequences—instead of explaining movements
through low-level actions such as which muscles to contract
and when. Hence, reaching and maintaining desired state
variable values can be considered a central human meta-
learning or “learning to learn” skill. Furthermore, recent
research indicates that parameterizing actions as target states
can improve both convexity and conditioning of movement
optimization [11]. However, the analysis of [11] was limited
to an inverted pendulum, in which case a simple P-controller
suffices as the LLC. Generalization of the results to neural
network LLCs and more complex agents was not demon-
strated, calling for further research.

This paper makes the following contributions:

� We propose a novel random exploration scheme for
generating highly diverse training data for task-
agnostic state-reaching LLCs, without dependencies
on pre-recorded reference data. This makes our
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approach suitable for a wide variety of simulated
characters and movements.

� Through extensive simulation experiments, we show
that our LLCs improve movement optimization
across multiple complex agents and multiple opti-
mization methods including offline trajectory opti-
mization, online trajectory optimization, and
reinforcement learning (policy optimization). Our
data also indicates that LLCs trained with the pro-
posed exploration approach perform better than
LLCs trained with simple random exploration data.

� We visualize the resulting optimization landscapes
with and without the LLC, extending the investiga-
tion of [11] to complex agents and learned LLCs. Our
results provide support for the improved convexity
and conditioning suggested by [11].

An overview of our system and approach is shown in
Fig. 1. To augment the quantitative data presented in Section 7,
examples of the exploration behaviors andmovement optimi-
zation results are included in the supplemental video1. To the
best of our knowledge, no previous work has conducted such
comprehensive experiments on a task-agnostic action space
that helps both trajectory and policy optimization. Our results
indicate that an LLC like ours should provide a useful basis
for building any system that utilizes movement optimization.
All of the implementations used in this work can be found at
https://github.com/donamin/llc.

2 RELATED WORK

Below, we review relevant previous work in the related
areas of action space engineering, trajectory optimization,
reinforcement learning, and movement exploration.

2.1 Action Space Engineering

One of the earliest successful examples of efficient action
spaces is the Simple Biped Locomotion Control (SIMBI-
CON) [12]. The control strategy of SIMBICON includes a

Finite State Machine (FSM) whose states correspond to dif-
ferent phases of a biped walking cycle. This controller is
able to produce robust locomotion movements using a small
number of parameters, which can be tuned either manually
or using motion capture data. This action parameterization
has shown to be expressive enough to synthesize novel
movements through interpolation and extrapolation [13].
SIMBICON’s control strategy has also been extended to
muscle-based control settings to synthesize high-quality
locomotion gaits for bipedal creatures [14]. The latter uses
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [15] to optimize the controller parameters.

2.2 Trajectory Optimization

Parameterizing action sequences as splines is a modified
action space common in synthesizing physically-based
movements through trajectory optimization, i.e., optimizing
actions to maximize or minimize an objective function that
encodes movement goals as a function of both the action
sequence and the resulting state-space movement trajectory.
A spline parameterization reduces the problem dimension-
ality by expressing a long action sequence using only a few
control points and interpolating between them. Plus, it
enforces coordination across body joints (similar to SIMBI-
CON [12]), which leads to more natural and smooth
movements.

In offline settings, spline parameterization has been used
in Contact-Invariant Optimization (CIO), a method that
simultaneously optimizes the contact and behavior in differ-
ent phases of the movement [16]. In another work, it has
been used for building a low-level controller that uses
CMA-ES for synthesizing humanoid wall climbing move-
ments [17].

In online settings, splines and sequential Monte Carlo
sampling have been used for synthesizing interactive
humanoid movements [18]. In a similar work, CMA-ES
empowered by two seeding techniques was used to gener-
ate interactive martial arts movements for upper-body
humanoid characters [19].

Fig. 1. The system pipeline consists of three main steps: 1) collecting random exploration data to discover feasible states and actions of the simula-
tion environment; 2) using the exploration data to train low-level controller; and 3) movement optimization using either offline/online trajectory optimi-
zation or reinforcement learning. The first two steps are task-agnostic and only need to be completed once for each environment.

1. https://youtu.be/s8VARNpBpSg
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2.3 Reinforcement Learning

Finding novel action spaces is more widely studied in rein-
forcement learning than in trajectory optimization. This
dates back at least to the early 1990s with Feudal Reinforce-
ment Learning, that proposed solving the RL problem in
multiple resolutions simultaneously [20]. The idea was then
extended to temporally extended sequence of actions, also
known as the Options framework [21]. The more general
form is now known as Hierarchical Reinforcement Learning
(HRL) [22]. In HRL, a Low-Level Controller (LLC) is used
for handling atomic actions, and policy optimization is
applied to produce a High-Level Controller (HLC) that con-
trols the agent via interaction with the LLC. The LLC can be
either designed or built using reinforcement learning or
other optimization methods.

Inspired by SIMBICON [12], phase-based FSMs are one
of the most popular action parameterizations in reinforce-
ment learning. They have been used to learn dynamic ter-
rain traversal policies for various 2D characters [23]. The
same approach has been extended to Mixture of Actor-
Critic Experts (MACE) to increase the training speed and
enable expert specialization [24].

Another HRL approach is to define HLC as a gating net-
work whose job is to choose among a number of low-level
primitive controllers. In this setting, each primitive control-
ler is specialized in performing a specific behavior (e.g.,
walking forward) or controlling a specific subset of joints
(e.g., upper body). This approach has been used in [25],
where Deep Q-Learning [26] is used to learn a scheduler
(i.e., HLC) that chooses one of the many control fragments
(i.e., LLCs) to control the character for the next 0.1 seconds.
Another similar work, called Multiplicative Compositional
Policies (MCP), first trains several LLCs to imitate several
short motion capture clips, and then trains a HLC to, at each
timestep, compute a weighted composition of the LLCs’
outputs [27].

In some HRL studies, the HLC is used to specify the
long-term high-level goals that the LLC needs to achieve. A
good example in this category is called DeepLoco, where
the HLC is responsible for planning next footsteps and the
LLC applies necessary low-level actions for satisfying the
plan [8]. Another work has used end-to-end representation
learning to find near-optimal goal spaces for continuous
tasks [28].

A popular HRL approach is to use a LLC that approxi-
mates inverse dynamics, i.e., outputs low-level actions
required to take the agent to some desired state. Hindsight
Experience Replay (HER) [29] and its recent hierarchical
extension [9] use this idea by augmenting the experience
replay dataset such that all reachable states can be consid-
ered as potential goal states. Another example is HIRO, a
method that trains both HLC and LLC concurrently using
off-policy experiences [30].

Several studies use reference animations to train robust
control policies that demonstrate natural movement. One
study uses adversarial imitation learning to train the LLCs,
which are then used in RL settings to produce human-like
motions [31]. A similar approach is used to learn control
policies for quadruped characters [32]. In another study,
LLC policies are trained to replicate short movement primi-
tives of length 0.1 to 0.3 seconds, and then a HLC is trained

to select among those LLCs based on visual input [33]. In a
similar study, a single LLC is built by training an autoen-
coder on multiple expert policies [34]. Another study trains
general control policy by compressing a large number of
expert policies that replicate motion capture moves [35]. A
recent work uses a large corpora of motion capture clips to
learn a low-level stochastic embedding space, which is then
used in different tasks [36]. A recent stream of research
trains a kinematic motion generator on top of a state-reach-
ing LLC to synthesize high-quality humanoid animation
[3], [5], [37]. However, these systems need motion capture
data for training and the synthesized movements are goal-
conditioned variations of the data. In contrast, our focus is
on training the LLCs and optimizing movement without
reference data, using a simple but efficient and task-agnostic
exploration method. At least in principle, this should
impose less limitations on the creativity and diversity of the
results.

It should be noted that reinforcement learning and trajec-
tory optimization can also be combined. For example, [38],
[39], [40] use trajectory optimization to guide the training of
a neural network policy. Trajectory optimization can also be
used to generate states and actions for initializing an RL
algorithm [41] or to synthesize reference movement trajecto-
ries for imitation learning using RL [42].

2.4 Exploration

Using exploration to handle the uncertainty is one of the
building blocks of optimal control [43]. In order to train a
goal-conditioned low-level controller, one needs a proper
dataset that includes the movements of interest and covers
relevant regions of the state space. In the absence of a super-
vised dataset, the only way is to use some exploration
approach to create one. Such random exploration is com-
mon in model-based reinforcement learning, where the
exploration data is used to learn a forward dynamics model
[44], [45], [46].

Exploration is typically formulated as an intrinsically
motivated optimization/learning problem, with a reward
function that simulates the psychological mechanisms driv-
ing learning and exploration in biological agents, e.g., a
drive to seek and experience novel or unpredictable stimuli.
One implemention of this is to maximize the undiscounted
information gain [47]. Another example is called TEX-
PLORE-VANIR, a method whose reward encourages explo-
ration when the model is uncertain or a novel experience is
possible [48]. A pseudo-count model based on density esti-
mation has also been proposed to measure the novelty of
encountered states in Atari 2600 environments [49]. In a
more recent work called Dreamer, exploration is done
through imagination using a learned world model of latent
state space [50]. In this paper, we propose a simple random
exploration approach that does not need novelty or density
estimates, but still achieves much better coverage of possi-
ble agent states and produces more capable LLCs than naive
exploration with random actions.

Recently, Sekar et al. [51] have also conducted experi-
ments in improving movement exploration, but using an
approach largely orthogonal to ours. They proposed to train
a world model using data produced through maximizing
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the disagreement among an ensemble of one-step forward
models. Such forward models map an observation and
action to the next observation, allowing model-based or
“imagination-based” planning. In contrast, we learn inverse
models that allow control optimization to operate in the
space of the next observation(s). In addition, Sekar et al. [51]
focused on reinforcement learning and relatively simple
agents like 2D HalfCheetah and Pendulum, whereas we
investigate both RL and trajectory optimization and include
a 3D humanoid model in our experiments.

3 PRELIMINARIES

Before going into the details of our approach, the following
reviews the optimization methods and problem definitions
we utilize.

3.1 Trajectory Optimization

Trajectory optimization denotes the process of searching for
an optimal sequence of actions, which produce some
desired movement trajectory when applied to a dynamical
system. With differentiable dynamics, trajectory optimiza-
tion can utilize gradient information [1], which is however
unreliable with complex contact discontinuities. This can be
overcome by sampling-based trajectory optimization [18],
[52] which works with any black-box dynamics simulator.
The latter is the setting explored in this paper.

The core of sampling-based trajectory optimization con-
sists of a simple iteration loop: 1) sample a number of ran-
dom action trajectories and use them to simulate the state
trajectories, 2) evaluate them using some cost or reward
function, 3) use the best scoring trajectories to refine the
sampling distribution for the next iteration. Finally, the best
found trajectory is picked as the solution.

Trajectory optimization can be done offline or online. In
the offline case, the starting state is fixed and the target is to
find a single trajectory to achieve some goal. In online opti-
mization case, also known as Model Predictive Control
(MPC), when a trajectory is found, the simulation pro-
gresses by one timestep and the optimizer is asked to gener-
ate another trajectory starting from the next timestep. In
other words, only the first action in the trajectory is actually
executed and the rest is only used to compute the cost func-
tion and updating the sampling distribution.

We simulate each sampled trajectory until a time horizon
T and the cost function is defined as the sum of costs over
all timesteps. Suppose the character’s state at the beginning
of optimization is st 2 S (t ¼ 0 in the case of offline optimi-
zation). Forward simulating a sequence of actions at; atþ1f
; . . . ; atþT�1g 2 AT results in a trajectory st; at; stþ1; atþ1; . . . ;ð
stþT�1; atþT�1; stþTÞ. Then, the problem will be to find the
action sequence that minimizes the following accumulative
cost:

XtþT�1

i¼t
CA aið Þ þ CS siþ1ð Þ½ �;

where CA and CS are functions for computing the action
and state costs, respectively. CS usually encodes some infor-
mation about the target movement. For example, if the goal
is to produce walking movement, CS can penalize the

difference between the current and desired velocities, and
CA can penalize the amount of torques used in the simula-
tion. This setup will encourage the character to move with
the desired velocity while avoiding extreme movements
[53].

3.2 Reinforcement Learning

In reinforcement learning, the learning process involves an
agent interacting with an environment by observing a state,
applying an action, and receiving a reward. The goal is to
repeat this process and learn a policy—a mapping of
observed states to actions—that maximizes the accumulated
reward over time [54]. Hence, the terms policy optimization
and reinforcement learning are often used interchangeably.

In each timestep, the agent observes the current state st 2
S and executes an action at 2 A using a stochastic policy
at � pu at j stð Þ, where u denotes policy parameters. In our
case, the policy is a neural network and u denotes network
weights. After that, the agent observes a scalar reward rt
along with the new state stþ1. The goal is to find the optimal
policy pu� at j stð Þ that maximizes the expected return,
defined as follows:

Et�pu a j sð Þ
XT

t¼0
gtrt

" #
;

where t ¼ s0; a0; s1; a1; . . . ; sT�1; aT�1; sTð Þ is a trajectory gen-
erated by starting from s0 (drawn from an initial state distri-
bution) and following the policy pu a j sð Þ afterwards. A
discount factor g 2 0; 1½ � is used to ensure finite rewards as
T !1.

In the case of continuous action spaces, policy gradient
methods are a common optimization approach. At each
optimization iteration, a number of episodes (simulated
movement trajectories) are run up to the time horizon T or
until encountering a terminal state. The resulting states,
actions, and rewards are then used to compute Monte Carlo
gradient estimates, and gradient ascent is used to update
the policy to improve the expected return.

In this paper, we evaluate our proposed action spaces
using three popular policy gradient methods called Proximal
Policy Optimization (PPO) [55], Soft Actor-Critic (SAC) [56],
and Twin-Delayed Deep Deterministic Policy Gradient
(TD3) [57]. PPO is an on-policy method—i.e., the episode
actions are sampled from the policy being optimized—that
uses the so-called clipped surrogate loss function or a KL-
divergence penalty to allow large but stable policy updates
per iteration. SAC is an off-policy method that tries to maxi-
mize the expected return while also maximizing policy
entropy. TD3 is another off-policy algorithm that improves
upon Deep Deterministic Policy Gradient (DDPG) [58] by
using two value predictors, updating the policy less fre-
quently than the value predictors, and adding noise to the
target actions. PPO, SAC, and TD3 have shown to produce
excellent results in computer animation and robotics [56],
[57], [59] and are now widely used in popular machine
learning frameworks [60], [61], [62], [63].

Advantage Estimation. A concept central to PPO is advan-
tage estimation, which we modify in the PPO variant we
use for LLC training (Section 5.3). The advantage of an
action a in state s denotes how much the action improves
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the expected return, Apða; sÞ ¼ Qpða; sÞ � V pðsÞ, where
V pðsÞ is the value function or expected return from state s
following policy p, and Qpða; sÞ ¼ rða; sÞ þ gV pðs0Þ is the
expected return of taking action a and then following the
policy. The s0 denotes the next state resulting from taking
action a from state s. PPO and other advantage-based policy
gradient methods adjust the policy parameters to increase
the probability of positive advantage actions, and decrease
the probability of negative advantage actions. To compute
the advantages, one usually trains a separate neural net-
work to predict V pðsÞ. This inevitably causes some bias,
which is why PPO uses Generalized Advantage Estimation
(GAE) [64], a simple procedure that allows trading bias for
variance.

4 SIMULATION ENVIRONMENT

We base our experiments on four challenging MuJoCo [65]
environments (agents) in OpenAI Gym [66]: HalfCheetah-v2,
Walked2d-v2, Hopper-v2, and Humanoid-v2. The details of
these environments are shown in Table 1. In order to show
how a trained LLC can work across tasks, we defined the
following six tasks for each of the environments:

1) Default: The default locomotion task in OpenAI Gym
MuJoCo environments, where agent receives
rewards proportional to speed.

2) Slow walk: A locomotion task where the agent is
rewarded for staying close to a standing pose while
reaching a target velocity of 1m=s along the x axis.

3) Run: Similar to slow walk, but with a target velocity of
4m=s.

4) Back walk: Similar to slow walk, but using a target
velocity of �1m=s.

5) Balance: Similar to slow walk, but with the target
speed of zero.

6) Stand up: The characters begin fallen on the ground,
and the goal is to stand up.

For tasks 1-5, we utilize the default OpenAI Gym termi-
nation criteria: Agents except HalfCheetah-v2 are consid-
ered to fail if they fall down, which causes an episode to
terminate without reward. Task 6 episodes only terminate
after a time limit of 10 seconds.

Task 1 uses the default OpenAI Gym reward function.
For tasks 2-6, we define the reward function as

r ¼ � sr � gr
�� ��2�0:01� ak k2

NDOF
;

where sr; gr are subsets of current and target states used for
the reward computation, and a 2 RNDOF denotes the low-

level action (a vector of joint torques) applied in state s. The
full agent state s observed by RL algorithms comprises root
vertical position, root velocity, root angular velocity, and
joint angles and angular velocities. The subsets sr; gr used
for the reward computation comprise root velocity and joint
angles. The target joint angles correspond to a default stand-
ing pose. This form of penalizing the deviation from a
default pose is a common technique for preventing unnatu-
ral movements in optimization-based motion synthesis
(e.g., [19], [53]). We believe that these tasks, despite their
similarities, provide a wide range of challenges for move-
ment optimization. Similar tasks have also been used in pre-
vious work on meta learning [67], [68].

Although the simulation timesteps dt for common
MuJoCo environments vary, we use a fixed action fre-
quency of fa ¼ 10 Hz in all experiments, repeating each
low-level action for 1=ðfadtÞ simulation steps.

5 LOW-LEVEL CONTROLLER

We train the LLCs in two steps. First, we use a novel con-
tact-based random exploration method to discover the feasi-
ble states and actions of the simulation environment. Then,
we utilize an iterative process of value estimation and LLC
training. One of the key ideas behind our exploration
scheme is resetting the simulation to diverse initial states.
This utilizes the fact that in computer animation, as opposed
to robotics, manipulating the states can be done without any
extra cost. A good example of using this property, which
also inspired our episode initialization, is Reference State
Initialization of DeepMimic [4]. However, while DeepMimic
uses randomly selected states from a motion capture data-
base, our initialization is designed to cover all feasible
movement states, without any need for motion data.

5.1 Contact-Based Exploration

Problem Definition. We define the LLC training data genera-
tion as an exploration problem: collect data of states,
actions, and resulting next states such that: 1) the data cov-
ers the joint space of states and actions as completely as pos-
sible, and 2) the data enables learning an LLC that allows
the agent to efficiently actuate itself to transition between
states. Since we are aiming to build task-agnostic LLCs, we
refrain ourselves from using any task-dependent reward
signals during exploration.

Design Rationale. Our proposed solution focuses on dis-
covering diverse contact configurations. This is crucial because
a character without an actuated root—e.g., a biped or a
quadruped, as opposed to a robot arm mounted on a pedes-
tal—can only affect its environment and actuate its center of
mass through contacts. Although contacts are essential for
balance and controlled motion, contact discontinuities are
what makes learning, and modeling the dynamics hard
[16]. Thus, our working hypothesis is that an exploration
method designed to discover diverse contact configurations
should allow learning better LLCs.

Exploration Algorithm. Our exploration method is detailed
in Algorithm 1. The method uses simple random actions
while still achieving diverse exploration through the follow-
ing two principles:

TABLE 1
Details of the OpenAI Gym Environments Used in the

Experiments

Environment Bones State variables Action variables

HalfCheetah-v2 7 17 6

Walker2d-v2 7 17 6

Hopper-v2 4 11 3

Humanoid-v2 13 45 17
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1) The exploration episodes are short (K ¼ 5, corre-
sponding to 0.5 seconds of simulation time) to reduce
bias towards dynamics attractors such as falling down.

2) The initial state of each episode is randomized to
maximize the diversity of contact configurations
while ensuring physical plausibility.

Algorithm 1. Contact-Based Random Exploration

1: function EXPLORE(K)
2: Input: Rollout horizonK
3: Output: Exploration buffer B
4: Initialize exploration buffer B  fg
5: while iteration budget N not exceeded do
6: r Random number in ½0; 1�
7: if r < pfree then
8: dground  Random number in ½0; hfree�
9: else
10: if r < pfree þ pclose then
11: dground  Random number in ½0; hclose�
12: else
13: dground  0
14: end if
15: end if
16: Reset simulation to a random state and locate the char-

acter so that it is dground units above the ground
17: for t ¼ 0; 1; . . . ;K � 1 do
18: Observe current state st
19: Sample random action at
20: stþ1  Simulateðst; atÞ
21: B  B [ ½st; at; stþ1�f g
22: end for
23: end while
24: return B
25: end Function

The initial state randomization proceeds as follows: First,
a distance from ground dground is randomly determined such
that the character is either in the air at height hfree with
probability pfree, or close to the ground at height less than
hclose with probability pclose, or on the ground otherwise
(Lines 6-15). We use hfree ¼ 1, hclose ¼ 0:05, pfree ¼ 0:1, and
pclose ¼ 0:4 to bias the initialization towards states where the
character is in contact with ground or likely to make contact
with ground in the next few simulation steps. The rest of
the initial state variables are chosen by uniformly selecting
the rotation, velocity, and angular velocity, as well as joints
angles and angular velocities (Line 16), and adjusting char-
acter vertical position so that the distance to ground
matches dground. The valid range for the joint angles and
angular velocities is precomputed by keeping the character
in the air and actuating the joints with random actions. As
humans and many other moving agents spend most of their
lives upright and in relatively slow movement, we bias the
sampled root rotations and velocities by linearly interpolat-
ing towards a default upright pose by a uniformly sampled
amount. Examples of the state initialization are shown in
the supplementary video, available online.

5.2 State Space Coverage

In order to analyze how our contact-based exploration
method in Algorithm 1 covers the state space, we compared

it against a naive random exploration baseline, where epi-
sodes are initialized using the default OpenAI Gym state ini-
tialization (an upright pose with zero intial velocity plus
some random noise), and episodes are longer (K ¼ 100) to
make it possible for the initially non-moving agent to gain
velocity and reach diverse states. Such a random exploration
approach is used inmany recent papers [46], [69], [70], [71].

Fig. 2 shows scatter plots of the visited states using both
methods in HalfCheetah-v2, Walked2d-v2, and Hopper-v2
environments. The plots visualize the x velocity, rotation,
and y position of the root in 100000 visited states. Upright
and fallen states are shown in light and dark, respectively.
Fig. 2 indicates that the naive random exploration achieves
poor state space coverage, with the agent to wasting simula-
tion budget in fallen states. In contrast, our contact-based
exploration enables the agent to visit more diverse states.

5.3 Training the Low-Level Controller

We use the exploration data to train a state-reaching LLC,
denoted by the policy pH ajs;Gð Þ that allows sampling and
action a � pH ajs;Gð Þ for driving the agent to follow a trajec-
tory of desired next states G of duration H from the current
state s. Later in Section 7, we also study the casewhereG only
specifies a single target state that is H steps into the future.
However, our results show that the former is superior; thus
throughout the text G is assumed to be a state trajectory,

Fig. 2. Scatter plots of visited states when using naive exploration (left)
and the proposed contact-based exploration (right). Standing and fallen
states are shown in light and dark, respectively. Almost immediately after
an episode starts, naive exploration causes the agents to fall down. Con-
tact-based exploration however, uses short-length episodes with ran-
domized state initialization to visit a more diverse set of states.
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unless otherwise specified. Also note that in case ofH ¼ 1, the
LLC can be considered as an inverse dynamics controller.
During LLC training, we use a task-agnostic reward that com-
putes the negated squared deviation from the desired state(s).

We implement the LLCs using multi-layer perceptron
(MLP) neural networks that take s;G as input, and output a
mean and a diagonal covariance matrix for sampling the
actions a from a Gaussian distribution conditioned on s;G.
We train a separate network for each H ¼ 1; 2; . . . ; Hmaxf g,
which we found to be more robust than using H as an addi-
tional network input. We use Hmax ¼ 5, corresponding to
maximum target trajectory length of 0.5 seconds.

Overview. Our LLC training approach is a variant of the
Proximal Policy Optimization (PPO) [55] designed accord-
ing to the following principles:

� To prevent out-of-distribution problems and make
LLC robust to anything an HLC might output (e.g.,
in initial HLC training when the target states output
by the HLC may be random and infeasible), we ini-
tialize the LLC training episodes using our diverse
exploration data, and use a mixture of both feasible
and infeasible target state sequences.

� We train the LLC and run our experiments using
multiple values for H, assuming that there exists a
tradeoff between LLC simplicity and robustness:
Low H should allow easier learning and smaller
LLC networks, but also reduces the set of states that
the LLC can reach. We investigate the effect of H in
our experiments in Section 7.

� In training for multiple H values, we assume that a
target trajectory of H states can be followed by tak-
ing a single action using pH , and then continuing
with pH�1. As detailed below, this allows us to sim-
plify PPO and estimate advantages without a value
predictor network.

The LLC training process is detailed in Algorithm 2. The
main part is the TrainLLCs() function, which successively
trains LLCs for H ¼ 1; 2; . . . ; Hmax. We train each new LLC
in M ¼ 500 iterations, with the simulation budget of N ¼
15000 actions per iteration (7:5M actions in total).

Supervised Pretraining. For each trained LLC pH , we first
pretrain in a supervised manner so that action mean and
variance approximate the exploration data (Line 7). The pre-
training uses all subsequences of H þ 1 states of each explo-
ration episode, using the first subsequence state as the
current state, first action as the “ground truth” correct
action, and the rest of the states as the target sequence.

Episodic Training. After the pretraining, we continue with
PPO, running on-policy episodes of H actions. For each epi-
sode,we sample an initial state from the exploration data (Line
10), and target sequence of H states (Line 11). The target state
sequence sampling is designed to mostly provide feasible tar-
gets from the exploration data, but also include completely
random targets to make the LLC robust for anything the HLC
outputs and thus prevent out-of-distribution problems. More
specifically, we use amixture of three distributions:

� With probability pe, we use the state sequence fol-
lowing the initial state in the exploration data. We
use pe ¼ 0:8.

� With probability pl, we uniformly sample a final tar-
get state within the state variable ranges in the explo-
ration data, and linearly interpolate the target
sequence between the initial and the final state. We
use pl ¼ 0:1.

� Otherwise, we use a constant target state sampled
uniformly between the minimum and maximum of
each state variable in the exploration data.

Appendix E, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2021.3100095, provides an ablation study
that compares the above to using only feasible target state
sequences, i.e., pe ¼ 1:0; pl ¼ 0.

Algorithm 2. Training Low-Level Controllers (LLC)

1: function TRAINLLCS(Hmax)
2: Input: LLC horizonHmax

3: Output: The LLC policies p1:Hmax

4: B  Explore(Hmax) ⊳ Algorithm 1
5: Initialize p1:Hmax

6: forH ¼ 1; 2; . . . ; Hmax do
7: Pretrain pH ajs;Gð Þ using exploration buffer B
8: for iteration¼ 1; 2; . . . ;M do
9: while iteration budget N not exceeded do
10: Sample state s from B
11: Sample target state trajectoryG1:H

12: for value sample i ¼ 1; 2; . . . ; Nadv do
13: ai; Qi  CalcQðs; H;G1:H;p1:HmaxÞ
14: end for
15: Estimate state value V  Meanð Qif gÞ
16: for value sample i ¼ 1; 2; . . . ; Nadv do
17: Estimate the advantages Ai  Qi � V
18: end for
19: end while
20: Update pH using advantages Aif g and PPO
21: end for
22: end for
23: return p1:Hmax

24: end Function
25:
26: function CalcQ(s; H;G1:H;p1:Hmax )
27: Input: Current state s, LLC horizon H, target state tra-

jectoryG1:H , LLC policies p1:Hmax .
28: Output: First executed action a when using p1:Hmax to

reachG1:H from s, action value Q s; að Þ
29: Sample action a � pH ajs;G1:Hð Þ
30: s0  Simulateðs; aÞ
31: Compute the reward r � s0 �G1k k2
32: ifH > 1 then
33: a0; Q0  CalcQðs0; H � 1;G2:H;p1:HmaxÞ
34: Q rþQ0

35: else
36: Q r
37: end if
38: return a; Q
39: end Function

Modified Advantage Estimation. As the target sequence
length decreases over the episode steps, only the first epi-
sode action is actually sampled from the pH being trained,
and the rest are determined by the previously trained
shorter-horizon LLCs. As a consequence, only the first
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action of the episode is used for updating pH , and the rest of
the episode only affects the advantage estimate of the first
action. For the first action, we can also directly compute the
advantages as Aða; sÞ ¼ Qða; sÞ � V ðsÞ: We runNadv ¼ 4 epi-
sodes from each initial state (lines 12-14), using the episode
return as a single-sample Monte Carlo estimate of Q,
returned by the CalcQ() function, which recursively sam-
ples the actions and collects rewards using the previously
trained LLCs until episode end (Line 13). The rewards are
calculated as the negated squared deviation from the target
state (Line 31). The mean of the episode returns is used as
the Monte Carlo estimate of V ðsÞ (Line 15). Thus, we do not
need to train a value predictor network with the episode
returns, simplifying the PPO algorithm.

When using a value predictor network, we experienced
PPO diverging. A plausible explanation for this is that the
highly diverse and sometimes infeasible target states can
cause a high variance in the episode returns, which may
make the value predictor network unreliable. We further
regularize the training by only using actions with positive
advantages [72], [73].

6 MOVEMENT OPTIMIZATION USING LOW-LEVEL
CONTROLLERS

The training procedure of the previous section produces a
set of Hmax LLCs that can be used in movement optimiza-
tion. This means the the action space becomes the space of
target state trajectories of length H � Hmax. This action
space is generic and can be used in offline/online trajectory
optimization as well as reinforcement learning, as detailed
below.

Offline Trajectory Optimization. In offline trajectory opti-
mization settings, we optimize a trajectory of 4 seconds
using CMA-ES [15], i.e., every CMA-ES sample defines a
trajectory of T ¼ 40 target states. In order to simulate each
trajectory, at each timestep we use the next H target states
in the trajectory to query the LLC, which computes the low-
level action. Similar to the other configurations, each low-
level action is repeated for 0.1 seconds. For the last H � 1
target states, the target state sequences will be shorter than
H steps, and LLCs with smallerH have to be used.

Online Trajectory Optimization. We use a simplified ver-
sion of Fixed-Depth Informed MCTS (FDI-MCTS) [53], that
performs a number of simulation rollouts from the current
state using randomly sampled action trajectories of 2 sec-
onds (i.e., trajectory length T ¼ 20). The rollout actions are
drawn randomly from a Gaussian distribution, with mean
equal to the actions of the best trajectory of the previous
timestep. For the last rollout action, the previous best trajec-
tory is not available, and the action is sampled uniformly
within the action space bounds.

The exploration noise of the rollouts is proportional to
the rollout index: ss2 ¼ iþ1

N ðM �mÞI, where i is the current
rollout index, N is the total number of rollouts, m and M
are the actions’ minimum and maximum values, and I is
the identity matrix. The rationale for this is that an online
optimizer should both try to refine the current best solution
and keep exploring with a large variance, in order to be able
to adapt to sudden changes.

The rollouts are simulated forward from the current state
in parallel, using multiple threads. After each timestep,
badly performing rollouts are terminated, and the simula-
tion resources are reassigned by forking a randomly chosen
non-terminated rollout. In effect, the rollouts perform sim-
ple tree search. After simulating the rollouts up to the plan-
ning horizon, the first action of the best rollout is returned
as the approximately optimal action.

Reinforcement Learning. For reinforcement learning, we
use Proximal Policy Optimization (PPO) [55], Soft Actor-
Crit (SAC) [56], and Twin-Delayed Deep Deterministic Pol-
icy Gradient (TD3) [57], three popular RL algorithms for
continuous control.

Implementation Details. For the LLCs we used multi-layer
perceptron (MLP) neural networks using Tensorflow [74]
and the Swish activation function [75]. For HalfCheetah-v2,
Walked2d-v2, and Hopper-v2, the LLC policies had 2 hidden
layers of 64 neurons, and for Humanoid-v2 we used larger
policies with 3 hidden layers of 128 neurons. While building
the exploration buffer and training the low-level controllers,
we bypassed the default termination conditions defined in
OpenAI Gym to make sure that the exploration is diverse
and task-agnostic. The RL training uses PPO, SAC, and TD3
implementations from the stable-baselines repository [76].
The hyperparameters used in the experiments are given in
Appendix A, available in the online supplemental material.

7 EXPERIMENTS

This section empirically compares the different action
spaces discussed above. To reiterate, we compare the
following:

� Baseline: The default action space without using low-
level controllers, i.e., joint torques.

� LLC[Naive]: The action space posed by the LLCs
trained using the naive exploration approach with
less diverse episode initialization.

� LLC[Contact-Based]: The action space posed by the
LLCs trained using our proposed contact-based
exploration approach.

The LLCs are queried with a sequence of target states, H
states in total. For completeness, we also tested a version
where a single target state was given to be reached H steps
in the future. However, as detailed in Appendix B, available
in the online supplemental material, this results in overall
worse performance.

The experiments below are designed to answer the fol-
lowing research questions:

� RQ1: Which action space works best, on average?
Does using the LLC and training with the proposed
contact-based exploration method improve optimi-
zation efficiency?

� RQ2: How does the LLC planning horizon H affect
the optimization? WhichH should one use?

� RQ3: How consistent are the results across the vari-
ous tasks, agents, and optimization approaches?

� RQ4: How does using the LLC affect the optimiza-
tion landscape? Why does it make optimization
easier?
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To ensure that the results are generalizable, the experi-
ments are performed across the four agents and six tasks
described in Section 4 as well as the four different optimiza-
tion approaches described in Section 6.

7.1 Comparing Action Spaces

Fig. 3 shows the benchmark results using normalized aggre-
gate scores (higher is better) that measure the overall perfor-
mance of each action space and optimization method across
all agents and tasks. Using the LLC generally leads to signif-
icantly better results than the baseline, except with SAC and
TD3, where the improvement is only marginal. Further-
more, LLCs trained with contact-based exploration in Algo-
rithm 1 mostly outperform the ones trained using naive
exploration.

To obtain the results, we performed 10 independent opti-
mization runs with different random seeds for each combi-
nation of agent, task, optimizer, action space, and LLC
horizon H. In total, this yields almost 20000 optimization
runs. The simulation budget used in reinforcement learning
using PPO, SAC, and TD3 is 10M simulation timesteps for
Humanoid-v2 and 1M simulation timesteps for the other
three environments. After all runs, the mean episode
returns of the final iterations were normalized over each
agent-task pair so that the worst run had score 0 and the
best run had score 1. The scores in Fig. 3 are averages of the
normalized returns over all tasks and agents, i.e., a total of
10� 4� 6 ¼ 240 runs per cell, which should yield reason-
ably reliable results.

7.2 Effect of H

RQ2 concerns the LLC horizon H, which is the most impor-
tant tuning parameter in our approach and also determines
the number of LLCs to be trained in Algorithm 2.

As it can be seen in Fig. 3, three out of five approaches
(offline/online trajectory optimization and PPO) work bet-
ter with higher H values, i.e., H ¼ 4 and H ¼ 5. In contrast,
SAC and TD3 score highest with H ¼ 1 and their perfor-
mance declines consistently whenH grows. We did not per-
form an exhaustive evaluation using H > 5, as in our early
experiments, further increasing H did not improve the
results with any of the optimization approaches.

7.3 Consistency Across Tasks and Agents

The aggregate scores in Fig. 3 do not allow comparing the
consistency and variability of the results. Thus, to answer
RQ3, we also scrutinized the performance of each agent and
task. We simplified the investigation by only considering
the best-performing H, i.e., H ¼ 4 for offline trajectory opti-
mization, H ¼ 5 for online trajectory optimization and PPO,
andH ¼ 1 for SAC and TD3.

We outline the findings below, and Fig. 4 shows example
convergence plots from the Hopper-v2 environment. Full
results of all environments can be found in Appendix C,
available in the online supplemental material.

Offline Trajectory Optimization. Both LLC versions are
clearly better than the baseline in all tasks except for the
stand up task. However, even in this case the final perfor-
mance is comparable to the baseline. Overall, the contact-
based exploration clearly surpasses the naive version.

Online Trajectory Optimization. The results are consistent
with those obtained in offline trajectory optimization: Both
LLC-based approaches improve over the baseline, except in
the stand up task. Again, the version with the contact-based
exploration beats the one with naive exloration.

Reinforcement Learning Using PPO. Again, LLC with con-
tact exploration performs best in all tasks, including the
stand up task, but the difference is less pronounced with
the humanoid agent.

Reinforcement Learning Using SAC. In this configuration,
all action spaces perform roughly similarly, except for a few
tasks. LLC yields significant gains in the hopper default and
humanoid stand-up tasks, but performs worse in the
humanoid default task.

Reinforcement Learning Using TD3. Similar to SAC, there
are no major differences between the action spaces.

The overall worse results of the LLC with the humanoid
agent—while still providing significant gains with PPO and
offline trajectory optimization—are likely due to both the
higher state dimensionality and the aggressive episode ter-
mination whenever the agent starts to fall down. The high
dimensionality makes the exploration data more sparse,
and because the termination limits the agent to a small sub-
region of the state space, the contact-based diverse explora-
tion can be expected to yield less gains. Fittingly, the LLC
performs best with SAC in the stand up task which does not
use termination.

To summarize the findings in Fig. 4, our approach is par-
ticularly effective in both offline and online trajectory opti-
mization settings as well as reinforcement learning using
PPO.

7.4 Effect of LLC on the Optimization Landscape

So far, our results show a clear advantage of using the LLC,
but the data is insufficient for analyzing the underlying rea-
sons. A plausible explanation for trajectory optimization is
that when not using the LLC and using control torques as
actions, a small change to a single action can cause a large
divergence in the rest of the trajectory, e.g., making a
bipedal character fall. Furthermore, as pointed out in the
case of a simple inverted pendulum in [11], the sum of
rewards or costs over the trajectory is more sensitive to the

Fig. 3. Comparing different action spaces (baseline versus LLC versions) and H values in terms of normalized average episode/trajectory returns
(higher is better) in the four optimization approaches. Overall, using an LLC outperforms the baseline, and LLCs trained using our contact-based
exploration outperform LLCs trained using naive random exploration.
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first actions, which makes the optimization ill-conditioned,
exhibiting elongated optima where an optimizer slowly zig-
zags between the cost function walls, or along a reward
function ridge. In contrast, when using the LLC, perturbing
the action of a single timestep—i.e., a single target state in a
sequence—has only a small effect on states and rewards of
the other timesteps.

In light of the above, optimizing without LLC should
exhibit much narrower and/or elongated optima which
slow down the convergence. This is a hypothesis we can
test using the random 2D landscape slice visualization
approach of [77], also applied to movement optimization by
[11]. This means that a multidimensional objective function
is characterized by plotting it around the found optimum
along a 2D slice of the parameter space defined by a pair of
random orthogonal 2D subspace basis vectors. Fig. 5 shows
such 2D slices of offline trajectory optimization of the hop-
per balance and walker run tasks. As can be seen in the
figure, using low-level controllers leads to smoother optimi-
zation landscapes with large and less ill-conditioned high-
return basins. A similar visualization in the case of rein-
forcement learning can be found in Appendix D, available
in the online supplemental material.

8 LIMITATIONS AND FUTURE WORK

Considering the results, a clear limitation of our approach is
that although we are able to improve the efficiency of trajec-
tory optimization as well as on-policy RL using PPO, the
improvements are only marginal in off-policy RL using
SAC and TD3. When using SAC or TD3 and the best-per-
forming choice for H, the compared action spaces yield
approximately similar results in almost all the tasks. Future
work is needed to investigate why this is the case. We

hypothesize that RL algorithm differences in value estima-
tion and learning play a role. In PPO, this is based on epi-
sode returns, which are more sensitive to small action
perturbations when not using the LLC, similar to the trajec-
tory returns of trajectory optimization. SAC and TD3’s Bell-
man backup using the twin Q networks might be less
affected by the choice of action space.

In trajectory optimization, the stand up task did not ben-
efit from using the LLC. One explanation for this is that the
task requires more aggressive movement than the other
tasks, using the LLC appears to bias the agent’s initial
movement exploration towards smooth and continuous
movements. On the other hand, the problem does not per-
sist in policy optimization.

A further limitation is that we assume a full target obser-
vation is known for the LLC. Learning an HLC or directly
using an LLC—e.g., for keyframe animation purposes—
could be easier if one could also express the importance of
each target observation variable. For example, one could
produce locomotion by specifying a desired root rotation
and velocity, and leave the other degrees of freedom to be
decided by the LLC. We are currently investigating this,
e.g., through the incorporation of recent machine learning
models that can infer any number of unspecified variables
[78]. Another potential topic for future work could be to use
our contact-based exploration method in offline RL methods
such as conservative Q-learning (CQL) [79]. The added sta-
bility provided by an LLC could make it easier to learn
from limited data.

Finally, future work is needed to extend the initial state
randomization of our contact-based exploration algorithm
to object manipulation tasks, and improve the robustness of
the LLCs. In the current version, the environment is
assumed to be static, which is not valid for, e.g., real-world

Fig. 4. Results of offline/online trajectory optimization and reinforcement learning (using PPO , SAC, and TD3) in the Hopper-v2 environment. Each
row corresponds to a different movement optimization approach, and each column corresponds to a different movement task.
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robotic manipulation tasks. Our LLCs are also not
robust enough for following any target trajectory without
errors, and the HLC has to compensate for the LLC’s
imperfections.

9 CONCLUSION

We have proposed a hierarchical movement control
approach where a low-level controller (LLC) is trained to
follow target state trajectories, and movement optimiza-
tion—including both trajectory optimization and reinforce-
ment learning—can then operate in the space of target
states instead of low-level actions such as control torques.
Through extensive experiments across multiple agents,
tasks, and optimization methods, we have shown that our
LLCs improve movement optimization convergence and
the attainable objective function values. This can be
explained by the LLC making state-space movement trajec-
tories less sensitive to small changes of the actions, which
results in wider optima that are easier to find.

In contrast to previous work that trains LLCs using
motion capture data and is thus limited in terms of sup-
ported agents and movements, we have proposed a simple

contact-based exploration method to synthesize diverse,
task-agnostic LLC training data for a variety of agents that
depend on contact forces for actuation, e.g., bipeds and
quadrupeds. Our experiments also indicate that LLCs
trained with our exploration data perform better than LLCs
trained with baseline random exploration data. We believe
our work provides a building block towards a general solu-
tion to the movement optimization problem, improving a
wide range of movement optimization applications.
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