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Abstract— Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional
data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods
provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target,
such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new
DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes,
discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative
analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive
visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to
show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.
Index Terms—Dimensionality reduction, discriminant analysis, contrastive learning, comparative analysis, interpretability, visual analytics.

1 INTRODUCTION

The comparison of two or more groups of datasets is a common analysis
task to identify factors that make the groups different from or similar to
each other. For example, by comparing gut microbiota between cohorts
of colorectal cancer patients and healthy subjects, we can identify which
bacteria composition highly contributes to inducing cancer formation
or keeping a healthy gut environment [42, 85]. Also, when analyzing
the general public’s political opinions, political scientists may want to
find unique characteristics in some political party’s supporters when
comparing them with others [27,38]. This type of comparative analysis
is universal and can be found in numerous domains, such as researches
in healthcare [35, 51], biomedicine [61, 96], and sociology [41, 71].

Various approaches are available for comparison tasks, including
statistical hypothesis tests [20] and visual comparison [32, 33]. Among
others, dimensionality reduction (DR) methods, such as principal
component analysis (PCA) [43, 54] and linear discriminant analysis
(LDA) [47], play an important role for comparative analysis, especially
when datasets have a large number of attributes [65]. From many at-
tributes, DR generates a small number of latent features, with which
the similarities of data points across groups can be represented as their
spatial proximities in a lower-dimensional (or embedding) space. By re-
ferring to the “similarity≈ proximity” [92] relationship, we can visually
identify useful patterns, including subgroups and outliers, while con-
sidering the combinational effects from multiple attributes. Also, linear
DR methods (e.g., PCA), which provide a linear mapping from the orig-
inal attributes to latent features, produce interpretable axes in the em-
bedding space. By interpreting the axes, we can further identify highly
influential attributes on, for example, differences among groups [11, 26].

However, existing DR methods provide limited capability and flex-
ibility for comparative analysis. General-purpose DR methods that
produce embeddings without group information (e.g., PCA) do not
prioritize extracting patterns that highly relate to group differences or
similarities, which is vital for comparative analysis. Only a handful of
DR methods such as LDA and contrastive PCA (cPCA) [2] are specifi-
cally designed for comparative analysis; however, even these methods
are only tailored for a narrow analysis target (e.g., LDA is for finding
factors that most differentiate groups). Additionally, these DR methods
do not provide the functionality that allows analysts to perform hypo-
thetical changes on an embedding result (e.g., changing data points’
positions) and then link these changes to the parameters of the DR algo-
rithms in order to produce a new result that resembles the hypothetical
changes [22]. This functionality is important to interactively adjust an
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embedding result to intuitively find certain patterns of analysts’ target
interest while actively involving human-in-the-loop [63].

To address the aforementioned problems, we introduce a novel visual
analytics framework for comparative analysis, which consists of a new
DR method, called ULCA (unified linear comparative analysis), an
interactive parameter optimization algorithm, and a visual interface.
ULCA is an exploratory data analysis tool that unifies two DR schemes,
discriminant analysis and contrastive learning, to support comparisons
that cannot be achieved when using only one of these schemes. More
specifically, ULCA is a linear DR method that not only comprises the
functionalities of PCA, cPCA, and LDA but also fills the gaps among
analysis targets of these methods. For instance, unlike ordinary LDA,
ULCA can be used to find latent features that distinguish multiple
groups while, at the same time, producing a higher variance for a
particular group. In this way, we can, for example, find a political
stance that clearly separates the supporters of each political party while
still encompassing the diverse opinions of the supporters of a certain
party. ULCA also provides detailed control of each group’s contribution
to the embedding, which allows flexible comparisons based on the
analyst’s interest. Additionally, to help analysts intuitively adjust the
related parameters, we develop a backward optimization algorithm that
updates the embedding result by finding optimal parameters to achieve
the analyst’s demonstrated changes in the embedding result.

Within our framework, we develop a visual interface that provides
the essential functionalities to visualize, interpret, and interact with the
results of ULCA. To support the wide, ever-changing analysis needs,
rather than developing a tool supporting all possible analysis tasks,
we design our interface to be easily integrated with existing analysis
and visualization libraries. Specifically, our interface can be directly
used with Python and the Jupyter Notebook [60] (which supports the
interactive execution of Python scripts), resulting in broader and easier
adoptions. Consequently, analysts can effortlessly apply any analytical
processing (e.g., normalization) with existing libraries before applying
ULCA or even utilize the interactively refined ULCA result for further
analysis (e.g., reuse of obtained latent features for other data).

To demonstrate the efficiency of the algorithms of ULCA and
the backward optimization, we conduct a performance evaluation.
The results show that the algorithms have a reasonable computa-
tional cost for interactive use. Also, the results guide appropriate
settings for the backward optimization based on a desirable balance
of latency and accuracy. We also demonstrate the effectiveness of
our framework with multiple case studies using publicly available
datasets. We provide source code of the framework, a demonstration
video of the interface, and a comprehensive qualitative comparison
between ULCA and other DR methods in the supplementary material
at https://takanori-fujiwara.github.io/s/ulca/.

In summary, our main contributions include:
• A new linear DR method, ULCA, which unifies and enhances

two DR schemes, discriminant analysis and contrastive learning.
• A backward optimization algorithm that converts a manipulation

on an embedding result into ULCA’s parameters to produce a
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new embedding similar to the manipulated result.
• A visual interface that allows analysts to not only visualize and

interact with a ULCA result but also to use ULCA with existing
analysis environments and visualization libraries.

• Performance evaluation and case studies with real-world datasets
to assess the efficacy of our framework for comparative analysis.

2 BACKGROUND AND RELATED WORK

We provide the relevant background and works in DR methods and
their enhancement in interactive usage.

2.1 Dimensionality Reduction Methods
DR is an essential tool to analyze high-dimensional data [67, 81] as
it can provide a succinct low-dimensional overview while preserving
the essential information of the original data (e.g., data variance when
using PCA [43, 54]). DR methods can be categorized as either linear or
nonlinear DR based on how they produce embeddings. Linear DR, such
as PCA and classical multidimensional scaling (MDS) [86], can be de-
fined as DR that produces a linear transformation matrix (or projection
matrix) M ∈ Rd×d′ where d and d′ are the numbers of dimensions in
original and embedding spaces [17]. A projection matrix M is derived
by solving each DR’s optimization problem. By using M, from the
original dataset X ∈ Rn×d (n is the number of data points), a linear
DR method can produce an embedding result Z ∈ Rn×d′ with Z =
XM. When the use of Z aims for exploratory data analysis, linear DR is
sometimes called projection pursuit (PP) [45, 55]. For PP, the optimiza-
tion problem is finding an embedding space that captures structures of
the user’s interest. For example, PCA can be considered a PP method
that shows directions containing high data variance [55]. Several meth-
ods have been developed under the concept of PP [75, 76, 97].

While linear DR can only preserve the linear structure of X in Z,
nonlinear DR aims to capture the nonlinear structure of X. For ex-
ample, many nonlinear DR methods used for visualization, such as
t-SNE [88] and UMAP [69], aim to preserve local neighborhoods for
each data point, which is often difficult when relying only on a linear
transformation. These methods first generate a neighbor graph where
each edge represents a dissimilarity of nodes (i.e., data points); then,
they maximally preserve local neighborhoods of each data point in an
embedding space. While nonlinear DR has the advantage to capture
the nonlinear structure, many nonlinear DR methods do not provide a
parametric mapping from X to Z. Consequently, the interpretation of
embedding results is often difficult [26]. On the other hand, embedding
results by linear DR can be interpreted from M, which shows how em-
bedding axes are derived from the original dimensions. Comprehensive
information of DR methods can be found in several surveys [17,23,89].

Several DR methods can be used for comparative analysis of multiple
groups of data points. Discriminant analysis [40, 47, 70], such as LDA,
is designed to differentiate multiple groups by finding an embedding
space where the separation of each group is maximized. Canonical
correlations analysis (CCA) [44,95] finds latent features for each of two
different datasets such that the correlation between each latent feature
is maximized. The result informs which combination of attributes
can better explain the relationships between two datasets. Recently,
contrastive learning [99] is introduced to find salient patterns in one
dataset compared to another. For example, cPCA [2,30] is the extended
version of PCA for contrastive learning and produces an embedding
space where one group has a high variance but another group does not.

For comparative analysis, our work utilizes linear DR as the inter-
pretability of the embedding result is vital to support human-in-the-loop
analysis [63] for gaining new insights through interactive analysis. We
introduce a new linear DR method, ULCA, which unifies and enhances
LDA and cPCA to perform flexible comparative analysis.

2.2 Interactive Dimensionality Reduction
Researchers have studied how effectively DR methods can be used
with interactive visualizations [50, 72, 81]. A comprehensive survey of
the related studies is provided by Sacha et al. [81]. The survey also
reveals common interaction scenarios, such as refinement of DR results
by tuning parameters or selecting a subset of data. Here, we focus on

discussing interactive DR using parametric interaction and observation-
level interaction [83]. Self et al. [83] defined that parametric interaction
is to directly adjust parameters of a DR method while observation-
level interaction is to manipulate data points in an embedding result
(e.g., changing their positions) and interpret the semantic meaning of
manipulation in order to update the embedding result accordingly.

As parametric interactions, for example, iPCA [48] supports adjust-
ment of each attribute’s contribution to a PCA result. Pérez et al. [74]
enabled de-cluttering DR results by controlling how strongly DR places
data points close to their cluster centers. Wang et al. [91] visualized an
LDA result with star coordinates [57] and allowed analysts to update
each attribute’s contribution to the LDA result by interactively adjusting
the length of the star coordinate axes. Coimbra et al. [16] developed
enhanced star coordinates to help understand a 3D embedding result.
With their method, analysts can find an optimal viewpoint, with which
the distribution of selected attributes can be easily observed. Johans-
son and Johansson [52] designed a quality measure that consists of
a weighted combination of correlation, outlier detection, and cluster
detection qualities. Analysts can adjust the weights and extract a set of
attributes that maximizes the defined quality measure. Explainers [31]
also generate projection functions based on the user-defined tradeoffs
among correctness, simplicity, and diversity of resultant projections.

Observation-level interactions are often designed to manipulate a
few data points’ positions in an embedding result. For instance, En-
dert et al. [22] introduced user-guided weighted MDS (WMDS). This
method automatically updates its algorithm parameters based on the re-
arranged data points’ positions. Dis-function [12] and Andromeda [84]
employ similar approaches with the user-guided WMDS. Joia et al. [53]
and Mamani et al. [68] also utilizes user-specified data points as control
points to generate desired DR results [53, 68]. SIRIUS [19] extends the
user-guided WMDS to handle the manipulation of both data points and
attributes. Pollex [94] supports a cluster-centric interaction to change a
cluster assignment by moving a data point from a current cluster to the
other. A few methods such as InterAxis [59] and AxiSketcher [62] take
an approach that generates embedding axes by directly indicating how
data points should be arranged along the axes.

Unlike the above works, our work focuses on the usage of para-
metric and observation-level interactions for comparative analysis. In
addition, while the existing observation-level interactions are designed
for manipulating individual data points, we provide interactions that
can be performed on a group of data points.

3 ANALYSIS WORKFLOW AND EXAMPLE

We introduce a typical comparative analysis workflow (Fig. 1-left)
with our framework while demonstrating it with an analysis example.
Here, we analyze the Wine dataset [21] by using Python scripts and
our framework in the Jupyter Notebook. The dataset includes 178 data
points/wines with 13 attributes (e.g., alcohol percentage) and consists
of three predefined groups (corresponding to three different cultivars).

The workflow starts from (1) data preparation and preprocessing,
such as the assignment of data groups, data cleaning, and normaliza-
tion [29]. For example, we load the Wine dataset and their predefined
group information, and apply normalization to each attribute. Then, we
can (2) apply DR using ULCA, which we introduce in Sect. 4, to the
processed dataset to find latent features that capture characteristics spe-
cific to each group or similar to each other. For this analysis example,
to know whether or not there exist differentiating factors among the
groups, we apply ULCA to the dataset with parameters that produce the
same result when applying LDA, as shown in ‘In [4]’ in Fig. 1-right.

For the following steps (3–5), we can utilize the visual interface.
We can first (3) visualize the DR result. In Fig. 1-right, we invoke the
visual interface in ‘In [5]’, and ‘Out [5]’ shows the ULCA result.
Afterward, we can (4) explore and interpret the DR result. For example,
based on the embedding result in Fig. 1b, we can find the three groups
(Labels 0–2) are well separated. Additionally, to understand factors
related to this separation, we review the information of x- and y-axes in
Fig. 1c, where the bar charts show a linear mapping from the original
attributes to each axis. As the absolute value of the bar chart approaches
1, the corresponding attribute has a higher influence on the axis. From
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Fig. 1: A typical comparative analysis workflow with our framework (left). Following the analysis workflow, the analyst is analyzing the Wine
dataset [21] with our framework in the Jupyter Notebook (right). The result produced with ULCA is visualized with the UI of our framework. (a) The
parameter view shows the used parameters. The analyst can interactively adjust parameters with this view. (b) The embedding result view depicts a
lower-dimensional representation of the dataset. The ellipse represents each group’s confidence ellipse [54] (by default, 50% confidence ellipse).
The analyst can directly manipulate the centroid or scatteredness of each group by moving or scaling the corresponding confidence ellipse to trigger
the backward parameter selection. (c) The component view informs a numerical mapping from the original attributes to each component (i.e., the
axis in the embedding result view). (d) The analyst can store the current state of visualizations and parameters by using a saving function.

Fig. 2: The ULCA result after the backward parameter selection.

Fig. 3: The ULCA result after the parameter adjustment using Fig. 1a.

Fig. 1c, we can expect that the three groups have clearly different values
in, for example, flavanoids (x-axis) and proline (y-axis).

Lastly, to refine the DR result or analyze the data from a different
perspective, we can (5) interactively set different parameters using
sliders in Fig. 1a or changing a group’s position or scatteredness in
Fig. 1b. The change triggers rerunning of ULCA. Also, we can utilize
the gained knowledge and DR results for the next analysis loop (the
backward arrows in Fig. 1-left). For example, as we have already
identified the differentiating factors of the groups, we next want to
know factors common between Labels 1 and 2 but different from Label
0. In Fig. 1b, by dragging the confidence ellipse of Label 2 (shown as
a red ellipse), we place a centroid of Label 2 to a close position of a
centroid of Label 1. The backward parameter selection we introduce
in Sect. 4.3.2 finds parameters to resemble the indicated change, and
updates the result, as shown in Fig. 2. ULCA has successfully produced

an embedding result where the points in Labels 1 and 2 are placed close
to each other but Label 0 is placed far away from the others. By
looking at the axis information in Fig. 2, we notice that proline and
flavanoids (annotated with purple) have strong influences on x-axis.

We further want to know factors that wines in Label 2 have a high
variety than the others. To achieve this, we update parameters with the
sliders in Fig. 1a so that the variance of Label 2 is maximized while
minimizing the variances of Labels 0 and 1. The result is instanta-
neously updated, as shown in Fig. 3, where we can see Label 2 has a
much higher variance than the others along x-axis. From Fig. 3, we ob-
serve that color intensity has a prominent influence on x-axis; thus,
Label 2 seems to consist of the wines with various color brightness.

The above analysis with the typical workflow presents that our frame-
work provides flexible analysis and helps identify multiple character-
istics of groups. Such flexibility and capability are not supported by
existing methods, such as LDA and cPCA.

4 METHODOLOGY

This section introduces the design and derivation of ULCA in detail.
Table 1 summarizes the notations used throughout the paper.

4.1 Existing Linear DR Used for Comparative Analysis
Since ULCA unifies several linear DR methods, we start from a brief
introduction to the related methods, specifically, PCA, cPCA, and LDA.
PCA. PCA [43] finds latent features which maximally capture the vari-
ance of a whole dataset in an embedding space. The optimization to iden-
tify such d′ latent features from d attributes (d′≤d) can be written as:

max
M>M=Id′

tr(M>CM) (1)

where C ∈ Rd×d is a covariance matrix of the original data X ∈ Rn×d

(n: the number of data points) and M ∈ Rd×d′ is a projection matrix
(note: Id′ is a d′×d′ identify matrix). This optimization is often solved
with singular value decomposition, eigenvalue decomposition (EVD),
or manifold optimization [4] (we describe the details in Sect. 4.2.4).
cPCA. cPCA [2, 30] is a variant of PCA for contrastive learning. Con-
trastive learning [99] aims to find salient features in one group (target
group) by comparing it with another group (background group). Within
this scheme, cPCA specifically finds latent features, with which a target
group has a high variance but a background has a low variance (i.e., the

3



Table 1: Summary of notation.
n, d, d′, c # of data points, original attributes, latent features, groups/classes.

X, y, Z Original dataset, group labels of data points, embedding result.
M Projection matrix.

Cwi j , Cbw j j-th group’s within-class and between-class covariance matrices.
wtg, wbg, wbw Weights for target, background, between-class covariance matrices.

α Trade-off parameter (or contrast parameter).

saliency is identified in variance). This optimization can be written as:
max

M>M=Id′
tr
(
M>(Ctg−αCbg)M

)
(2)

where Ctg, Cbg ∈ Rd×d are covariance matrices of target and back-
ground groups Xtg ∈ Rntg×d , Xbg ∈ Rnbg×d , respectively (ntg, nbg: the
number of data points in each group). α (0≤ α ≤ ∞) is a hyperparam-
eter, called a contrast parameter, which controls the trade-off between
having a high target variance and a low background variance. When
α = 0, cPCA only maximizes the variance of Xtg (i.e., PCA on Xtg).
As α increases, cPCA more focuses on reducing the variance of Xbg.

cPCA is used for finding patterns hidden by dominant variance from
features that do not relate to analysis interests (examples are provided
by Abid and Zhang et al. [2]). In addition to this original usage (i.e.,
eliminating the influence from uninterested variations), cPCA can be
used to compare two groups and to find more variety patterns in one
group, such as political opinions diverse in supporters of a certain
political party but uniform in the other supporters [27].
LDA. LDA [47] uses predefined group/class information to find an em-
bedding that maximizes separation among groups. To do so, LDA min-
imizes data variance within each group while maximizes the separation
of each group’s centroid. The optimization of LDA can be written as:

max
M>M=Id′

tr(M>CbwM)

tr(M>CwiM)
(3)

where Cwi and Cbw are within-class and between-class covariance ma-
trices. These are computed with Cwi = n−1

∑
n
i=1(xi−µµµyi

)(xi−µµµyi
)>,

Cbw = n−1
∑

n
i=1(µµµyi

−µµµ)(µµµyi
−µµµ)>where xi ∈ Rd is the i-th row of

the input data X, µµµ ∈ Rd is the column means of X, and µµµyi
∈ Rd is

the column means of data points in a class that xi belongs to. Here,
yi ∈ {1, . . . ,c} (c: the number of classes or groups) is the i-th element
of y, a vector containing a group label for each data point.

4.2 Unified Linear Comparative Analysis (ULCA)

Here, we introduce ULCA, which unifies and enhances cPCA and LDA.
ULCA embraces functionalities of various linear DR methods, includ-
ing PCA, cPCA, LDA, among others. As the intermediate product of
ULCA, we introduce a generalized version of cPCA (gcPCA), which
enables analysts to apply cPCA to any number of groups.

4.2.1 Generalization of cPCA
We generalize cPCA, which originally compares only two groups. As-
sume we have c groups and let Cwi j be a covariance matrix of data
points in group j, i.e., Cwi j = (∑n

i=1 δ
j

yi)
−1

∑
n
i=1 δ

j
yi(xi−µµµyi

)(xi−µµµyi
)>

where δ
j

yi = 1 when yi = j, otherwise δ
j

yi = 0. With weights wtg and
wbg, of which j-th elements wtg j

and wbg j
(0≤ wtg j

,wbg j
≤ 1) repre-

sent contributions of group j’s covariance to target and background
variances, the optimization problem of gcPCA can be written as:

max
M>M=Id′

tr
(

M>
( c

∑
j=1

wtg j
Cwi j −α

c

∑
j=1

wbg j
Cwi j

)
M
)
. (4)

Using wtg and wbg, gcPCA allows any groups to be target or back-
ground. For example, when c = 2, wtg = (1,0), and wbg = (0,1), Eq. 4
reduces to cPCA (Eq. 2), where groups 1 and 2 are target and back-
ground, respectively. It is noteworthy that when c = 2, wtg = (1,1),
and wbg = (0,1), Eq. 4 reduces to ccPCA [26], which is an enhanced
version of cPCA developed for characterizing clusters identified in
the DR result. Moreover, with decimal weights, gcPCA can precisely
control the effect from each group variance to an embedding.

4.2.2 Trace-Ratio Form of gcPCA
LDA and gcPCA have a different form of the optimization problem
with each other (refer to Eq. 3 and Eq. 4). To enable integration of
gcPCA and LDA, we introduce the trace-ratio form [49] of gcPCA.

As shown in Eq. 2 and 4, cPCA and gcPCA’s optimization problems
are written as the trace-difference problem (i.e., maximizing the dif-
ference of matrix traces) [49]. As discussed by Fujiwara et al. [28],
when we want to maximize the variance of the target matrix while
simultaneously minimizing the variance of the background matrix, the
optimization problem of cPCA can be converted into the maximization
of tr(M>CtgM)/tr(M>CbgM), which is the trace-ratio problem (i.e.,
maximizing the ratio of matrix traces). Similarly, for the same purpose,
gcPCA can be written as the following trace-ratio problem:

max
M>M=Id′

tr
(

M>
(
∑

c
j=1 wtg j

Cwi j

)
M
)

tr
(

M>
(
∑

c
j=1 wbg j

Cwi j

)
M
) . (5)

As proved by Guo et al. [37], the optimization problem of Eq. 5 is
equivalent to find α that produces zero as the optimum value of Eq. 4.
We describe an algorithm to find such α in Sect. 4.2.4. Here, we want
to note that we can regard gcPCA with Eq. 4 as a relaxed problem
that finds M with the user-specified α . Now, we can handle both LDA
(Eq. 3) and gcPCA (Eq. 5) as the trace-ratio problem.

4.2.3 Integration of gcPCA and LDA
We introduce the optimization problem of ULCA by integrating gcPCA
and LDA. By comparing Eq. 3 and Eq. 5, we can see that gcPCA and
LDA share the same denominator when wbg j

= 1 for all j. However,
gcPCA and LDA have slightly different numerators, where gcPCA
and LDA have within-class and between-class covariance matrices,
respectively. We can fill the gap between gcPCA and LDA by setting
the following optimization problem:

max
M>M=Id′

tr(M>C0M)

tr(M>C1M)
, (6)

C0 =
c

∑
j=1

wtg j
Cwi j +

c

∑
j=1

wbw j Cbw j + γ0Id , (7)

C1 =
c

∑
j=1

wbg j
Cwi j + γ1Id . (8)

where Cbw j is a between-class covariance matrix related to group j, i.e.,
Cbw j = (∑n

i=1 δ
j

yi)
−1

∑
n
i=1 δ

j
yi(µµµyi

−µµµ)(µµµyi
−µµµ)>; wbw j (0≤ wbw j ≤ 1) is

the j-th element of a vector wbw; γ0 and γ1 are non-negative numbers.
We use γ0 and γ1 to avoid the case where either matrix trace of C0

or C1 is always zero. While ULCA uses γ0 = 0 and γ1 = 0 by default,
γ0 = 1 is used when ∑

c
j=1 wtg j

Cwi j +∑
c
j=1 wbw j Cbw j = 0 and γ1 = 1 is

used when ∑
c
j=1 wbg j

Cwi j = 0. With this way, Eq. 6 can handle either
case where both wtg and wbw are zero vectors or wbg is a zero vector.
For example, when wtg = (1,0, . . . ,0), wbg = 0, wbw = 0, Eq. 6 only
maximizes the within-class variance of group 1 (i.e., PCA to group 1).
We use γ0 and γ1 mainly for the above purpose; however, similar to
regularized LDA [36], these values can be used to add regularization
terms for the case when Cwi is (close to) singular, which is usually
caused when n≤ d. Similar to other machine learning algorithms (e.g.,
linear regression), γ0 and γ1 can be used to add the bias into C0 and C1
to avoid overfitting.

By using ULCA, we can perform comparative analysis utilizing
the strengths of both discriminant analysis and contrastive learning.
For example, when wtg = (1,0,0), wbg = (0,1,1), and wbw = (1,1,1),
ULCA produces the result where group 1’s variance and a distance
between each group are maximized while the other groups’ variances
are minimized. We demonstrate concrete analysis examples in Sect. 7.

Similar to the discussion in Sect. 4.2.2, a relaxed ULCA, where M
is found with the user-specified α , also can be written as:

max
M>M=Id′

tr
(
M>(C0−αC1)M

)
. (9)

After obtaining M by solving Eq. 6 or Eq. 9, embedding result Z can
be generated from the original dataset X with Z = XM.

In summary, the optimization problems in Eq. 6 and 9 are designed
for ULCA, where the problems of gcPCA and LDA are integrated. Con-
sequently, ULCA encompasses functionalities of PCA, cPCA, ccPCA,
gcPCA, and (regularized) LDA while enabling flexible comparative
analysis using discriminant analysis and contrastive learning together.
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4.2.4 Optimization
We explain two approaches to solve Eq. 6 and 9: using eigenvalue
decomposition (EVD) and manifold optimization [87].
EVD-based approach. EVD is commonly used to solve the trace-
difference problem [49]. M that satisfies Eq. 9 can be obtained by first
applying EVD to (C0−αC1) and then taking the top d′ eigenvectors.

To heuristically solve the trace-ratio problem of Eq. 6, we can use an
iterative algorithm due to the work by Dinkelbach [18]. The algorithm
consists of two steps. Given Mt at iteration step t, we perform

Step1. αt ←
tr(M>t C0Mt)

tr(M>t C1Mt)
, (10)

Step2. Mt+1← arg max
M>M=Id′

tr(M>(C0−αtC1)M). (11)

At t = 0, because the computed M0 does not exist, we self-define
α0 = 0 as a default solution to Step 1. As demonstrated, αt in Eq. 10
is an objective value of Eq. 6, which is computed with the current
Mt . The second step (Eq. 11) is to derive Mt+1 for the next iteration.
This step just solves the relaxed problem (Eq. 9) based on the current
parameter αt with EVD. With this iterative algorithm, αt monotonically
increases till ‘maxtr(M>(C0−αtC1)M)’ reaches approximately zero
and usually converges quickly (e.g., in less than 10 iterations) [28, 49].
Manifold-optimization-based approach. Another way to solve Eq. 6
and Eq. 9 is using a generic solver designed for optimization over
manifolds (or often called manifold optimization) [4]. According to
Cunningham and Ghahramani [17], linear DR can be considered as
solving a manifold optimization problem. We can also directly solve
both Eq. 6 and Eq. 9 with a manifold optimization solver available
in existing libraries, such as Manopt [10]. More specifically, using
the Riemannian Trust Regions (RTR) method [3] over the Grassmann
manifold can be used as a solver to achieve the best performance due
to the evaluation by Cunningham and Ghahramani [17]. Refer to their
work [17] for details of manifold optimization and solvers.

When compared with the EVD-based approach, manifold optimiza-
tion has two main benefits. First, manifold optimization is generic for
linear DR methods, including methods that cannot be represented as
the trace-ratio or trace-difference problem. As a result, when adding
some enhancement to ULCA in the future, we just need to design a
new optimization problem and do not need to find a solution specific to
the new problem. Also, while EVD captures more information in the
top eigenvectors than others (e.g., the first eigenvector preserves the
original data variance than the second eigenvector), manifold optimiza-
tion equally treats each embedding axis. This is especially beneficial
when we use DR for a visualization purpose as we can fully utilize a 2D
space to convey the preserved information. Therefore, our implemen-
tation of ULCA, by default, uses manifold optimization with the RTR
method [3] while we provide the EVD-based approach as an option.

ULCA’s embedding axes (i.e., columns of M) obtained via manifold
optimization are always orthogonal but could have a different rotation
at every execution (even with the same dataset and parameters). To
produce consistent axes, by default, we apply the varimax rotation [56]
to M. This rotates M to minimize the number of attributes that have a
high contribution to the axes; thus, it can also improve the interpretabil-
ity of axes, as often used in factor analysis [54]. However, the varimax
rotation still does not produce consistent axes in terms of their order
and sign. Thus, we adjust the signs to make each column sum of M
positive, and reorder the axes by the maximum column value of M.

4.3 Parameter Selection
ULCA allows analysts to adjust multiple important parameters: wtg,
wbg, wbw, and α . Here, we provide general guidance on how to chose
desired parameters. Also, as a convenient way to select parameters,
we introduce the backward parameter selection, which finds the best
parameters to resemble the changes indicated in an embedding result.

4.3.1 General Guidance
A general rule of parameter selection is simple. When we want to
observe higher variances in some groups, for the corresponding groups,
we should set larger weights in wtg and smaller weights in wbg, and vice
versa. When we want to increase a distance between groups, we should

Fig. 4: Parameter adjustment examples with the Wine dataset. The
updated parameters in each embedding are highlighted in red.

assign larger values to the corresponding weights in wbw. α can be
selected automatically by solving Eq. 6. However, as demonstrated in
the analyses using cPCA by Abid and Zhang et al. [2], using a different
α in Eq. 9 may lead to the discovery of latent patterns that could not be
found with an automatically selected α value. α can be used to control
how much the background variance should be reduced in an embedding
result (i.e., larger α , smaller background variance).

In Fig. 4, we demonstrate several examples using different parame-
ters. Fig. 4a uses parameters that produce the same result with LDA
and α is automatically selected. From Fig. 4a, for example, by decreas-
ing wbg2

, we can weaken the reduction of the orange group’s variance
relative to others, as shown in Fig. 4d. Another example in Fig. 4b
is generated by reducing wbw1 and wbw2 ; consequently, only the red
group has clear separation from others. Fig. 4e uses smaller α than
Fig. 4b, and it changes the variance relationships. In Fig. 4c, wtg3

is
increased and wbg3

is reduced. As a result, the red group gets a much
larger variance. Lastly, we set small wbg2

relative to wbg1
in Fig. 4f.

The orange group’s variance is now larger than that of the blue group.

4.3.2 Backward Parameter Selection
As discussed above, once we know how each parameter influences an
embedding result, it is not difficult to select proper parameters based
on analysis purposes. However, to further aid parameter selection,
we develop a backward algorithm that finds parameters to resemble a
user-demonstrated change in a visualized result [82]. The backward
algorithm supports two types of changes or interactions: (1) moving
a group centroid and (2) scaling a group variance in an embedding
result. These two interactions are closely connected to possible user
intents [83, 84, 93] in comparative analysis. The first interaction infers
that the analyst wants to change distance relationships among groups,
for example, to find better group separation. With the second interac-
tion, the analyst intends to change relative variances among groups, for
example, to increase a certain group’s variance relative to the others.

Fig. 5 shows examples of the backward parameter selection when
the two interactions are performed. For scaling of a group variance, in-
stead of adjusting each group variance directly, we change the variance
through uniform-scaling of the confidence ellipse as it is commonly
used to visualize the scatteredness of data points. After either interac-
tion is performed, the backward algorithm should find parameters so
that both relative centroid distances and relative variance differences
of each group in the demonstrated changes (e.g., Fig. 5a2, b2) are
preserved as much as possible. Such optimization can be written as:

min
θ

rlJl(θ)+ raJa(k,θ) (12)

Jl(θ) =

√
∑

1≤i, j≤c
(l′i, j− l̂i, j)2

/
∑

1≤i, j≤c
l′i, j

2 (13)

Ja(k,θ) =
1
c

c

∑
i=1

(∣∣∣a′k
a′i
− âk

âi

∣∣∣∣ /a′k
a′i

)
(14)
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Fig. 5: Backward parameter selection on the Wine dataset when moving
a group centroid (a1–a3) and scaling a confidence ellipse (b1–b3).

where θ consists of parameters, wtg, wbg, wbw, and α; Jl(θ) and
Ja(k,θ) (0≤ Jl(θ),Ja(k,θ)≤ 1) are cost functions related to the
distance and variance relationships, respectively; k is a label of
moved/scaled group (1≤ k ≤ c); rl and ra (rl + ra = 1, rl ,ra ≥ 0) are
parameters that control the weights of Jl(θ) and Ja(k,θ) to the total
cost. And, 0≤ rlJl(θ)+ raJa(k,θ)≤ 1.

Jl(θ) can be computed with the user-indicated centroid distances l′i, j
(i, j = {1, . . . ,c}) and new centroid distances l̂i, j, which are generated
with parameters θ . As shown in Eq. 13, we follow classical MDS’s
strain [86] to design Jl(θ), where the root sum squared (RSS) of
distance differences is computed and scaled to a range of [0,1]. We
compute Ja(k,θ) with a′i (i = {1, . . . ,c}), the areas of the user-indicated
confidence ellipses, and âi, the areas of the confidence ellipses in a new
embedding space. In Eq. 14, we first compute a′k/a′i and âk/âi (the
moved/scaled group’s area ratios to the other) and then take their sum
of absolute differences (SAD). Afterward, we scale the SAD to a range
of [0,1]. From Jl(θ) and Ja(k,θ), we compute the total cost with rl and
ra. We can set different rl and ra for each interaction. When moving a
centroid, we expect that the analyst mainly wants to refine the distance
relationships, and thus, we use rl = 0.8 and ra = 0.2 by default. On the
other hand, for the scaling, we use rl = 0.2 and ra = 0.8.

Now, we need to solve Eq. 12 to find the optimal θ . Since l̂i, j and
âi are obtained after solving Eq. 9, this problem is optimizing θ over
the optimization of Eq. 9. As a result, it may be difficult to find a direct
solution, such as using EVD, or to derive a gradient. Thus, we use a
generic gradient-free solver. Also, we need to constrain all the weights
of wtg, wbg, wbw within a range of [0,1] and α within [0,∞). To satisfy
these requirements, we select COBYLA (or constrained optimization
by linear approximations) [77]. For each iteration of the optimization
with COBYLA, we solve Eq. 9 with given θ and compute the cost in
Eq. 12. Then, COBYLA selects a new θ from a trust region for the
next iteration. COBYLA keeps iterating these steps until reaching the
convergence or specified maximum number of iterations. We provide
an evaluation of the optimization using COBYLA in Sect. 6.

4.4 Complexity Analysis
We first analyze the time complexity of ULCA when using the EVD-
based approach. If c� n,d, which is a reasonable assumption for a
practical usage, the relaxed version of ULCA in Eq. 9 has two major cal-
culations: covariance matrix calculation (O(nd2)) and EVD (O(d3)).
Thus, the relaxed version of ULCA has O(nd2 +d3) time complexity,
which is compatible with PCA and cPCA. As mentioned, solving Eq. 6
with the iterative algorithm converges quickly. Thus, the complexity of
the non-relaxed version of ULCA is similar to O(nd2 +d3) .

After the covariance matrix calculation (O(nd2)), the manifold-
optimization-based approach iteratively solves Eq. 6 or Eq. 9 with a
manifold optimization solver. Each iteration performs matrix multipli-
cation of M and covariance matrices, which has the time complexity of
O(d′d2), and then computes partial derivatives for the next iteration.
When using the RTR method [3], at each iteration, the second-order

partial derivatives (or the Hessian matrix) are computed with O(d′2d2)
time complexity. When d′� d, we can consider both of the above time
complexities areO(d2). Now, the time complexity depends on the num-
ber of iterations till the convergence. Based on the performance evalua-
tion by Cunningham and Ghahramani [17], the manifold optimization
runtime for various linear DR methods follows approximately three
orders of d. From this, we can consider that the manifold-optimization-
based approach practically has a similar runtime to the EVD-based
approach. However, in the worst case, as studied by Boumal et al. [9],
the RTR method needs to iterate O(1/ε3) where ε (0≤ ε ≤ 1) is the
convergence threshold. To avoid a numerous number of iterations, we
can also set the maximum number of iterations. For example, to com-
plete the optimization in similar runtime with the EVD-based approach,
we can use d as the maximum number of iterations.

The backward parameter selection in Sect. 4.3.2 solves Eq. 9 at each
iteration with parameters θ selected by COBYLA [77]. Thus, the time
complexity is the multiplication of the user-specified maximum number
of iterations and ULCA’s time complexity.

5 VISUAL INTERFACE

Our framework provides a visual interface to visualize and interact
with a ULCA result. As shown in Fig. 1, the interface provides three
views with simple visualizations: (a) a parameter view, where bar
charts display parameters of wtg, wbg, wbw, and α; (b) an embedding
result view, where a scatterplot depicts an embedding result with the
confidence ellipse of each group; (c) a component view, where bar
charts show the information of the axes of the embedding result view.
All views are fully linked, and each is updated based on an interaction
performed in the other views.
Supported interactions. In the parameter view (Fig. 1a), the analyst
can adjust each parameter by changing the corresponding bar length.
This interaction instantly reruns ULCA in Eq. 9. In the embedding
result view (Fig. 1b), the analyst can move each group’s centroid and
scale each confidence ellipse by dragging the corresponding confidence
ellipse’s center and outline, respectively. These changes induce the
backward parameter selection. The analyst also can draw a new axis,
as demonstrated with axis 1© in Fig. 1b, to see how each attribute con-
tributes to directions of interest. A linear mapping from the original at-
tributes to the new axis can be computed with Mv/||v|| where v is a vec-
tor of the new axis. Then, this information is added to the component
view. When hovering over a certain attribute name in the component
view (Fig. 1c), to see the distribution of the attribute values, each point’s
size in the embedding result view is updated based on its attribute value.
Mental map preservation. When updating an embedding, linear DR
methods that use EVD or manifold optimization, including ULCA,
cause arbitrary sign flipping and rotations of embedding axes [25].
Thus, an embedding result would be drastically changed, and it would
be difficult to follow the changes as the analyst easily loses their mental
map [78]. To mitigate this problem, we take an approach similar to one
developed to use linear DR in a streaming setting [25] (note that several
works addressed mental map preservation for nonlinear DR [13, 80]).
We use the rotation matrix obtained through the Procrustes analysis [34]
of the previous and new embedding results. This rotation matrix adjusts
the new embedding axes’ signs and rotations to minimize the difference
of data positions from the previous result. Furthermore, we animate the
changes in each view to help the analyst maintain their mental map.
Provenance support. During the interactive analysis, the analyst may
find interesting patterns and may want to record the (intermediate)
analysis results to further investigate the results by comparing with
other results later, apply the obtained embedding to other data, or share
the results with others. To help the analyst keep the history of changes
during the analysis (or called provenance [79]), we provide a saving
function. The analyst can name the result and save it through the text
input field and the ‘save’ button placed at Fig. 1d. This function saves
all necessary information to recover both visualizations and ULCA
results. The analyst can go back to the saved result by selecting the
corresponding name from the drop-down list of the saved names (the
left side of Fig. 1d). Also, the saved results can be directly referred
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Fig. 6: The system architecture of the framework. The yellow boxes are
the implemented modules for the framework.

from Python and the Jupyter Notebook due to the seamless integration
of the interface with them, as described below.

5.1 Implementation
The knowledge discovery process often requires many different analyti-
cal components [24, 58]. To allow for use of ULCA together with all
necessary algorithms, visualizations, and interactions, we design the
visual interface to be seamlessly used with Python and the Jupyter Note-
book [60]. In this way, when analyzing datasets with our framework,
the analyst can utilize various existing analysis and visualization li-
braries, such as scikit-learn [73] (for machine learning), Matplotlib [46]
(for visualization), or their own analysis methods. Also, the analyst
can employ various analytical processing, such as assigning new labels
to data points and sorting the attributes in the component view based
on their contributions to each embedding axis. In Fig. 1, we visualize
the result obtained by applying ULCA to the processed dataset in the
Jupyter Notebook, interact with the result in the visual interface, and
access the information gained through interactive analysis.

Fig. 6 shows our framework’s system architecture. While the front
end is implemented as a web-based application with JavaScript and
D3 [8], the other parts are implemented with Python. For the implemen-
tation of optimization solvers, the framework uses Pymanopt [87] and
SciPy [90]. To make the front end callable from the Jupyter Notebook’s
code cells where we can write and run Python scripts, we implement a
plotting module that consists of a controller, servers, and the front end.

The analyst can use the controller to adjust settings and call the
visual interface, as demonstrated in ‘In [5]’ code cell in Fig. 1. Then,
the controller starts HTTP and WebSocket servers in localhost to es-
tablish communications. Afterward, the visual interface is shown by
using an HTML inline frame, as shown in ‘Out [5]’ in Fig. 1. All
the information shown in the visual interface is stored in the plotting
module as Python objects, and can be accessed via the controller. For
example, ‘In [6]’ in Fig. 1 refers to x-axis information of the current
result shown in ‘Out [5]’ and that of the saved result named with ‘PCA
on Label 1’. The controller provides an option to show the visual in-
terface in an individual webpage (the dashed lines and boxes in Fig. 6).
The framework also can be used without using the Jupyter Notebook.

6 PERFORMANCE EVALUATION

We evaluate the performance of ULCA and the backward parameter
selection. As an experimental platform, we use the MacBook Pro (16-
inch, 2019) with 2.3 GHz 8-Core Intel Core i9 and 64 GB 2,667 MHz
DDR4. The experiment details are available online [1].
Data. We generate datasets with various numbers of data points, at-
tributes, and groups. From the documents (i.e., data points) in the 20
Newsgroups dataset [21], we extract arbitrary numbers of topics (i.e.,
attributes) by utilizing the Latent Dirichlet Allocation [6]. To obtain
various numbers of data points and groups, we randomly sample docu-
ments and apply k-means clustering [39] to the sampled documents.
Evaluation of ULCA. We evaluate the efficiency of the relaxed (Eq. 9)
and non-relaxed (Eq. 6) versions of ULCA, using EVD (EVD) and
manifold optimization (Man). For each different combination of the
numbers of data points (n) and attributes (d), we execute ULCA 10
times with random values of wtg, wbg, wbw and compute the average
completion time. We use a fixed number of groups (c = 3) because it
does not have a strong influence on the computational cost. For the
relaxed version of ULCA, we use α = 1. The result is shown in Fig. 7.
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Fig. 7: Completion time of the relaxed (a) and non-relaxed (b) versions
of ULCA, using EVD (EVD) and manifold-optimization (Man) approaches.
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Fig. 8: Completion time (a) and accuracy (b) of the backward parameter
selection with the manifold-optimization-based approach.

From Fig. 7, no matter what version and approach are used, the
completion time mainly depends on the number of attributes. However,
even for a large number of attributes, ULCA can be solved quickly. For
example, the relaxed and non-relaxed versions are solved about 1 sec-
ond when d = 1,000 and d = 500, respectively. From the comparison
of EVD and Man, EVD is faster when the number of attributes is relatively
small while Man becomes similar or faster than EVD after d = 500. This
tendency is more apparent in Fig. 7b. As described in Sect. 4.4, EVD’s
time complexity heavily depends on the number of attributes (scale of
d3). Man is less sensitive to it (scale of d2). One notable point is the
dramatic time increase when n = 1,000 and d = 1,000 for both EVD
and Man in Fig. 7b. We consider that this is due to the instability of
LDA’s optimization when n≤ d, as studied by Guo et al. [36]. Since
ULCA inherits the characteristics of LDA, ULCA also suffers from the
same problem. Consequently, the iterative steps used in both EVD and
Man cannot reach the convergence quickly. To avoid this, similar to the
work by Guo et al. [36], we can apply regularization with γ0 and γ1.
Evaluation of the backward parameter selection. We test the com-
pletion time and accuracy of the backward parameter selection. We
use only the manifold-optimization-based approach and a fixed number
of data points (i.e., n = 1,000) but various values for the maximum
number of iterations for COBYLA (here, we represent it with m), num-
ber of groups c, and number of attributes d. Other parameters are set
with default values. For each setting, we generate an initial embedding
result with α = 1 and random values of wtg, wbg, wbw. Then, we
mimic the user-demonstrated change in the initial embedding result
by randomly selecting a group and an interaction (e.g., moving group
1’s centroid to coordinate (0.2,0.8) or expanding group 2’s confidence
ellipse 1.2 times) and the backward parameter selection is performed
for this mimicked change. We generate 500 sets of changes for each
setting and compute the average completion time and accuracy. The
accuracy is calculated with (einit− e)/(einit− eopt) where einit, eopt,
and e are the cost of Eq. 12 when using the initial embedding, fully
optimized parameters, and parameters produced with m, respectively.
We set the objective value obtained with m = 1,000 as eopt. The case
where eopt = einit indicates there is no way to refine the embedding;
thus, we discard such cases. The result is shown in Fig. 8.

From Fig. 8a, the completion time linearly increases by m. In Fig. 8b,
the accuracy is clearly improved till m reaches 20 or 40; however, after-
ward, clear improvement cannot be seen. From this, we can consider
that the optimization can often produce a sufficient solution at around
40th iterations. Also, the optimization is finished within about 1 second
when m≤ 20 and 2 seconds when m≤ 40. Thus, we can set m about
20 when we need more interactivity, otherwise, we can set it about 40.
However, when the number of groups is large (e.g., c = 6), the accuracy
could be low (e.g., 0.6), as shown in Fig. 8b. In such cases, we can
consider using larger m while sacrificing the interactivity.

In summary, our evaluation shows the high efficiency of ULCA:
the completion time is about 1 second even when n = 10,000 and
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Fig. 9: Case Study 1. Each of the results (a–c) is generated with the parameters listed at the bottom. The size of each point represents an answer for
the question annotated with the purple box (big circle: ‘yes’, small circle: ‘no’).

d = 1,000. Thus, we can instantaneously update ULCA when adjusting
parameters in the visual interface. The background parameter selection
also can provide a sufficient result in a considerably short time (e.g.,
80% of accuracy in 2 seconds). The results guide selection of solvers
(e.g., EVD vs Manopt) and parameters (especially, the maximum number
of iterations in COBYLA) for better performance and interactive usage.

7 CASE STUDIES

We have demonstrated the usefulness of our framework by analyzing the
Wine dataset [21] in Sect. 3. With publicly available data, we perform
two additional case studies. All detailed information of the data (e.g.,
details of the survey questions in Sect. 7.1), analysis processes, used
parameters, and results are available at our website [1].

7.1 Case Study 1: Analysis of Political Groups
We analyze the PPIC Statewide Survey, October 2018 [5]. This survey
contains California residents’ political opinions on, for example, polit-
ical parties and expansion of the Mexico-U.S. barrier. By comparing
groups within this dataset, such as supporters of different political par-
ties, we can identify their opinion differences or reveal subgroups within
each group. As a representative analysis, we look for a subgroup within
the Democrat supporters (Dem) by comparing them with the Republican
supporters (Rep), and review the characteristics of the subgroup.

In the Jupyter Notebook, we first preprocess the dataset to select data
points (i.e., residents) and attributes (i.e., survey questions) of interest,
discard missing values, and apply normalization to each attribute. Note
that while most of the attributes are either binary, ordinal, or numerical,
we drop nominal data because it is not suitable to be analyzed with
ULCA. In the end, 548 data points and 27 attributes remain.

We then use ULCA with parameters that produce the same result
when applying cPCA to Dem and Rep as target and background groups,
respectively. This setting reveals opinions that are varied in Dem but
uniform in Rep. With the visual interface, we initially display the ULCA
result with α = 0, and interactively increase the value until we find
interesting patterns, resulting Fig. 9a where α = 20. In Fig. 9a, Dem is
separated into both left and right sides, while Rep is mostly placed at the
right-hand side. As shown in the component view, x-axis is dominantly
constructed from Q30, which asks if they have a favorable impression of
the current Democrat party. By hovering over Q30 in the view, we can
see that Dem has both supporters who do and do not have a favorable
impression of the Democrats. Note that we easily found this result
because of exploratory data analysis using DR. For example, the Mann-
Whitney U rank test on Dem and Rep for each question reveals that most
questions (20 of 27) have a statistically significant difference. This
information is not useful to find the subgroups of Dem. Also, without
interactively adjusting α and looking at Fig. 9a, finding the Dem’s
subgroup overlapping with Rep is difficult.

To investigate more of the residents who support the Democrats but
do not have a favorable impression, we write a script in the Jupyter
Notebook to separate Dem based on the answer for Q30: Dem(+) (the
answer is ‘yes’) and Dem(-) (‘no’), and drop Q30 from the attributes.
Then, we apply ULCA with parameters that highlight opinions that are
more varied in Dem(-) than Dem(+) and Rep. The result in Fig. 9b suc-
cessfully reveals such opinions (i.e., Dem(-) has a higher variance than

others). Unlike Fig. 9a, many attributes significantly contribute to the
axes, such as Q1 (whether Jerry Brown’s performance as the California
governor is appropriate or not) and Q25 (whether the gun restriction
should be more strict or not). As an example, we select Q1 in Fig. 9b,
where Dem(+) (blue) and Rep (red) have almost uniform opinions on
Brown’s performance (Dem(+): positive, Rep: negative opinions) while
Dem(-) consists of both opinions. Through this analysis, we can ex-
pect that those in Dem(-) have objections to some Democrats’ policies,
leading to an unfavorable impression of the current party.

Next, we identify political opinions that can clearly distinguish
Dem(+) and Rep but are diverse within Dem(-). To achieve this, we
interactively move away Rep and Dem(+)’s centroids from each other
in the interface. The backward parameter selection then automatically
finds the proper parameters to refine the result, as shown in Fig. 9c.
At this time, Q20 (annotated with a purple box) and Q21a (orange
box) most contribute to x- and y-axes, respectively. Q20 asks if they
approve of Donald Trump’s performance as the president while Q21a
is about their opinion on Trump’s nomination of Brett Kavanaugh to
the U.S. Supreme Court. Thus, both questions are highly related to
how the residents think about Donald Trump. We select Q20 from the
component view. As shown in Fig. 9c, the majority of Dem(+) does
not approve Trump’s performance. However, a considerable amount of
people in Dem(-) appreciate the work by Donald Trump.

7.2 Case Study 2: Characterizing Handwritten Digits
We analyze the MNIST handwritten digits dataset [64]. This dataset
contains 70,000 handwritten digits (i.e., data points) stored in 28×28
pixels (i.e, 784 attributes). Here, we review each digit’s characteristics
by comparing it to other digits. More specifically, we compare digits 0,
6, and 9, all of which have a similar rounded structure.

We first sample 500 images for each digit to moderate visual clutter
in a resultant embedding space. To understand the various structures that
people write for 6 and 9 but not for 0, we use ULCA to maximize 6 and
9’s variances while minimizing 0’s variance in the embedding space.
The result in Fig. 10a shows that digit 9 has a much higher variance than
6. This implies the embedding mainly captures the information related
to 9. To produce similar variances for both 6 and 9, we interactively
reduce 9’s weight in wtg. In Fig. 10b, when we halve the corresponding
weight, digits 6 and 9 achieve a similar variance. Also, we can see that
9 and 6 are widely distributed along x- and y-axes, respectively.

To understand structures highly related to the spread along each axis,
we refer to each pixel’s contribution to the construction of each axis.
However, since we have many pixels and want to see the contribution
information in the context of digit shapes, the component view is
not suitable for this analysis. As we can seamlessly access all the
information in the visual interface, we extract the axis information and
depict it in 2D heatmaps (the right side of Fig. 10b) with an external
visualization library. From the heatmaps, we can see how people tend
to write each digit differently. For example, as annotated with 1© and
2©, digit 9 is written typically in two ways with a straight line, which

cannot be seen in digit 0. For digit 6, we observe that people tend to use
either of the strokes annotated with 3© and 4© to make 6 different from
0. However, 6 is overlapped with 0 at the bottom left in the embedding
space, where we expect 6 is written with the stroke annotated with 3©.
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Fig. 10: Case Study 2. Each of the results (a–d) is generated with the parameters listed at the bottom. In (b) and (c), we use 2D heatmaps to show
each pixel’s contribution to each axis. Dark blue and red pixels highly contribute to the negative and positive directions of the axes, respectively.

Fig. 11: LDA and cPCA results of the dataset used in Case Study 2.

We move on to finding strokes that clearly differentiate 6 and 9 from
0 but are still written variously for 6 and 9. These strokes characterize
the uniqueness of 6 and 9 relative to 0. To see if we can separate 0
from the others in the embedding, we set 1 to 0’s weight in wbw. Then,
by gradually increasing α , we find the desired embedding (Fig. 10c),
where 0 has almost no overlap with the others. As seen in the heatmaps
in Fig. 10c, while the new x-axis is similar to the previous one, the new
y-axis is highly influenced by the pixels annotated with 5©. This implies
that the corresponding pixels tend to be used only when writing digit 6
or 9, but the amount of these pixels used for 6 or 9 differs by person.

Lastly, because we expect that the strokes annotated with 1© and 2©
are also used for other digits, such as 1, 4, and 7, we are interested in
whether the patterns similar to 9 can be found (or not found) for these
other digits. By using the projection matrix used for Fig. 10c, we plot
the sampled 500 data points of digit 7 onto the same embedding space.
From the result shown in Fig. 10d, we can see that 7 has a similar
distribution as 9 along x-axis in general; however, 7 is clustered more
on the left-hand side of the embedding space, as annotated with yellow.
This annotated part tends to use the diagonal stroke 1© in Fig. 10b.
Thus, when writing 7, people often use the diagonal stroke 1© more
and the vertical stroke 2© less when compared to writing 9.

This case study demonstrates how the embedding results can guide
the analysis (e.g., the parameter adjustment after looking at the variance
difference between 6 and 9 in Fig. 10a) and how the component/axis
information can help analysts find patterns rooted in the combination
of multiple attributes (e.g., the strokes shown in Fig. 10b).

8 DISCUSSION

We demonstrate the usefulness of our framework for comparative anal-
ysis with our case studies, where we use the collective power of dis-
criminant analysis, contrastive learning, and interactive refinement of
DR results. These demonstrative analyses highlight the potential us-
age of our framework for a variety of applications. The patterns found
in the case studies are difficult to identify with other DR methods,
such as PCA, LDA, and cPCA. For example, as shown in Fig. 11, while
applying LDA and cPCA to the dataset used in Case Study 2 can reveal
clusters for digits 0, 6, and 9, we cannot find interesting patterns from the
information of components unlike what ULCA provides. We provide a
comprehensive comparison among ULCA and other methods in the sup-
plementary material [1]. Our algorithms’ performance is also discussed
in Sect. 6. Here, we further discuss other aspects of our framework.
Visualization design. The design of our visual interface aims to keep
visualizations as simple as possible and only use visualizations that
most analysts are likely to be familiar with. However, at the same time,
this design choice may cause problems, such as visual scalability. For
example, in the parameter view, we assign an individual bar chart for

each group’s weight and a different color for each group; consequently,
the related visualizations are not scalable to a large number of groups.
Similarly, the component view is not scalable for a dataset with a large
number of attributes. However, due to the seamless integration with
Python, we can easily use alternative visualizations, as demonstrated in
the case study. Ideally, the visual interface should allow the analysts
or visualization developers to customize views based on their analysis
needs. We plan to extend our implementation to be applicable to any
visualizations developed with D3 into the visual interface.
Parameter suggestion. The backward parameter selection finds param-
eters that resemble the user-demonstrated change as close as possible.
However, the analyst may try infeasible refinements. For example, they
might try to increase some group’s variance even when its variance
is already maximized. To avoid this, similar to the feasibility map by
Cavallo and Demiralp [14], we could precompute embeddings derived
with various potential interactions and inform which interactions are
feasible. However, this approach has a drawback in its computational
cost as we need to check the feasibility from the wide searching space.
Another interesting approach is suggesting which parameter values can
result in significantly different embedding results when compared to
other cases. For this approach, we can employ several existing meth-
ods [2,66]. For example, for cPCA, Abid and Zhang et al. [2] suggested
a small set of contrast parameter α values (e.g., 4 values) by applying
spectral clustering to the embedding results generated with many α

values (e.g., 40 values). This approach, though, also would have a large
computational cost as ULCA has many adjustable parameters. We will
investigate how we can achieve the recommendation of interactions or
parameters to find interesting embedding patterns in the future.
Characteristics of ULCA. ULCA is a tool for exploratory data anal-
ysis. Similar to the discussion on cPCA by Abid et al. [2], while
ULCA uses group labels for embedding, ULCA is different from
other supervised learning methods that focus on a task of classifi-
cation/regression and multi-group statistical hypothesis tests whose
primary goal is identifying an attribute that has a significantly different
statistic value (e.g., mean) in each group. ULCA is a linear DR method,
which can extract a latent linear structure from high-dimensional data.
ULCA benefits from the linearity to provide interpretable embed-
ding axes; however, the linearity also might limit ULCA’s capability
to find patterns when analyzing complex data. We plan to investi-
gate how to extend ULCA to a nonlinear DR method while retain-
ing interpretability. Another limitation of ULCA is interpreting the re-
sult could be still difficult when analyzing a dataset with a very large
number of attributes (e.g., 1,000 attributes) even with the axis informa-
tion. When applying ULCA to such a dataset, many of the attributes
(e.g., 100 attributes) could significantly contribute to embedding axes.
To avoid using many attributes when constructing the embedding axes,
various sparse DR methods, such as sparse PCA [98], sparse LDA [15],
and space cPCA [7], have been developed. These methods produce a
sparse projection matrix by penalizing a case where an embedding uses
many attributes. We also plan to extend ULCA to a sparse DR method.

9 CONCLUSION

We have developed an interactive DR framework by introducing a new
DR method, ULCA, which uses the collective capability of discriminant
analysis and contrastive learning. The framework further supports
interactive analysis with a visual interface that can be seamlessly used

9



with existing analysis libraries and also with an optimization algorithm
that can interactively refine ULCA results. This new DR framework
makes a tangible contribution to comparative analysis.
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[60] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Fred-
eric, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Ab-
dalla, C. Willing, and J. development team. Jupyter notebooks - a publish-
ing format for reproducible computational workflows. In F. Loizides and
B. Scmidt, eds., Positioning and Power in Academic Publishing: Players,
Agents and Agendas, pp. 87–90. IOS Press, 2016.

[61] V. M. Kvam, P. Liu, and Y. Si. A comparison of statistical methods for
detecting differentially expressed genes from RNA-seq data. Am. J. Bot.,
99(2):248–256, 2012.

[62] B. C. Kwon, H. Kim, E. Wall, J. Choo, H. Park, and A. Endert.
AxiSketcher: Interactive nonlinear axis mapping of visualizations through
user drawings. IEEE Trans. Vis. Comput. Graph., 23(1):221–230, 2017.

[63] I. Lage, A. Ross, S. J. Gershman, B. Kim, and F. Doshi-Velez. Human-in-
the-loop interpretability prior. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Proc. NIPS, vol. 31,
2018.

[64] Y. LeCun, C. Cortes, and C. J.C. Burges. The MNIST database of handwrit-
ten digits. http://yann.lecun.com/exdb/mnist/, 1999. Accessed:
2021-3-21.
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