

Delft University of Technology

An Efficient Dual-Hierarchy t-SNE Minimization

van de Ruit, Mark ; Billeter, Markus; Eisemann, Elmar

DOI
10.1109/TVCG.2021.3114817
Publication date
2021
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Visualization and Computer Graphics

Citation (APA)
van de Ruit, M., Billeter, M., & Eisemann, E. (2021). An Efficient Dual-Hierarchy t-SNE Minimization. IEEE
Transactions on Visualization and Computer Graphics, 28(1), 614-622. Article 9552856.
https://doi.org/10.1109/TVCG.2021.3114817

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVCG.2021.3114817
https://doi.org/10.1109/TVCG.2021.3114817

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

An Efficient Dual-Hierarchy t-SNE Minimization

Mark van de Ruit, Markus Billeter, and Elmar Eisemann

Fig. 1: Our method leverages a pair of spatial hierarchies over the embedding (center right) and a field (far right) over the embedding
space to accelerate t-SNE minimization. Progression of minimizations (left) using these hierarchies is shown for a 60K point MNIST
dataset (top) and a 1.2M point ImageNet dataset (bottom). The hierarchies are visualized for the last iteration of minimization.

Abstract— t-distributed Stochastic Neighbour Embedding (t-SNE) has become a standard for exploratory data analysis, as it is capable
of revealing clusters even in complex data while requiring minimal user input. While its run-time complexity limited it to small datasets in
the past, recent efforts improved upon the expensive similarity computations and the previously quadratic minimization. Nevertheless,
t-SNE still has high runtime and memory costs when operating on millions of points. We present a novel method for executing the
t-SNE minimization. While our method overall retains a linear runtime complexity, we obtain a significant performance increase in the
most expensive part of the minimization. We achieve a significant improvement without a noticeable decrease in accuracy even when
targeting a 3D embedding. Our method constructs a pair of spatial hierarchies over the embedding, which are simultaneously traversed
to approximate many N-body interactions at once. We demonstrate an efficient GPGPU implementation and evaluate its performance
against state-of-the-art methods on a variety of datasets.

Index Terms—High dimensional data, dimensionality reduction, parallel data structures, dual-hierarchy, GPGPU

1 INTRODUCTION

The exploration of high-dimensional data has received significant in-
terest. Non-linear dimensionality reduction techniques have made it
possible to visualize structures in large-scale high-dimensional datasets,
leading to discoveries in many different domains, such as immunol-
ogy [23] and forensic analysis [13]. The ability to successfully preserve
local structures in the data is especially important. The t-Distributed
Stotachstic Neighbour Embedding (t-SNE) algorithm [25] achieves this
goal by matching pairwise similarity distributions, representing the
original data in the high-dimensional space and a possible embedding
in a low-dimensional space. The algorithm consists of two phases.
First, a similarity distribution is constructed over the high-dimensional
data. Second, a minimization is performed using the Kullback-Leibler
(KL) divergence [9] between this distribution and a low-dimensional
distribution, which is initially constructed over a random embedding.

• Mark van de Ruit is with the Delft University of Technology.
E-mail: m.vanderuit-1@tudelft.nl.

• Elmar Eisemann is with the Delft University of Technology.
E-mail: e.eisemann@tudelft.nl.

• Markus Billeter is with the University of Leeds.
E-mail: m.billeter@leeds.ac.uk.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Both phases of the t-SNE computation are costly operations, becom-
ing impractical for very large datasets. While significant effort has
been invested into lowering the computational cost of the similarity
computations [12,18,19,22,24], the minimization remains costly. Here,
efforts have focused on efficiently mapping the minimization to GPU
hardware [2, 7] or on reducing the O(N2) runtime complexity; the
commonly used Barnes-Hut t-SNE (BH-SNE) [24] initially obtained a
O(N logN) runtime complexity, and O(N) complexities were achieved
afterwards by both Linderman et al. [11] and Pezotti et al. [20]. While
effective for smaller 2D embeddings, millions of points remain costly
and there is a significant overhead in 3D.

Our work introduces a pair of sparsely constructed spatial hierarchies
to accelerate the t-SNE minimization. The first hierarchy is constructed
over the embedding, and the second over a discretization of the embed-
ding’s space. We approximate N-body computations, a costly part of
the t-SNE minimization, by computing interactions between the two
hierarchies using a dual-hierarchy traversal. During traversal, we elimi-
nate the majority of these interactions using an improved formulation
of the BH-SNE approximation [24]. While our minimization retains
a O(N) runtime complexity, the number of considered interactions is
significantly reduced. As N-body computations previously dominated
the runtime of t-SNE for two- and especially three-dimensional em-
beddings, our method provides a strong improvement, significantly
outperforming the state-of-the-art while generating high-quality em-
beddings. Further, our method is designed with GPGPU programming
in mind, leveraging the compute capabilities of modern GPUs.

We first formally introduce t-SNE (Sect. 2) and related work (Sect. 3).

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

We then cover our method (Sect. 4), its implementation details (Sect. 5),
and evaluation (Sect. 6), before concluding (Sect. 7).

2 T-SNE
t-SNE models a dataset of points X = x1, . . . ,xN in a high-dimensional
space through pairwise similarities, represented as a symmetric joint
probability distribution P. Likewise, a randomly initialized embedding
of low-dimensional points Y = y1, . . . ,yN is represented in a similarity
distribution Q. The goal of t-SNE is to minimize the difference between
P and Q according to a cost function.

The distribution P, defined over the high-dimensional data points,
represents the joint similarity pi j between all pairs xi and x j. This
similarity can be interpreted as the probability of these data points being
near to each other in high-dimensional space. In a similar manner, the
similarity between representative low-dimensional embedding points
yi and y j is represented as qi j. To minimize the difference between P
and Q, the cost function C is used

C(P,Q) = KL(P ‖ Q) =
N

∑
i=1

N

∑
j 6=i

pi j ln(
pi j

qi j
), (1)

which is the KL-Divergence between P and Q. During minimization the
positions of embedding points are updated to minimize this cost. The
joint similarity pi j is modeled through centering of a pair of Gaussian
kernels on either high-dimensional data point as

pi j =
pi| j + p j|i

2N
, (2)

where

p j|i =
exp(−(‖xi− x j‖2)/(2σ2

i))

∑
N
k 6=i exp(−(‖xi− xk‖2)/(2σ2

i))
(3)

and variance σi is defined according to the local density in the high-
dimensional space around xi. As p j|i acts on a local neighbourhood
outside of which influence diminishes rapidly, the effective number of
considered points is typically much lower than N. It is instead based
on a user-controlled perplexity value µ , and σi is then chosen such that

µ = 2−∑
N
j p j|i log p j|i (4)

holds for each i. For the low-dimensional similarity qi j, a Student’s
t-Distribution with one degree of freedom is used instead of a Gaussian
distribution. qi j is defined as

qi j =
(
(1+

∥∥yi− y j
∥∥2
)Z
)−1

, (5)

where

Z =
N

∑
k=1

N

∑
l 6=k

(
1+‖yk− yl‖2

)−1
. (6)

Intuitively, to ensure that distribution Q closely represents P, their local
neighbourhoods should match each other. Hence, the algorithm itera-
tively moves randomly-initialized embedding points around to match
this criterion. This movement stems from a gradient descent applied to
C. In each iteration, the gradient is computed and subsequently used to
update the positions of the embedding points relying on its analytical
formulation over yi:

δC
δyi

= 4(Z
N

∑
j 6=i

pi jqi j(yi− y j)−
N

∑
j 6=i

q2
i jZ(yi− y j)) (7)

= 4(Fattr
i −Frep

i). (8)

As shown, the gradient is decomposed into Fattr and Frep, which al-
lows for a potential reformulation as an N-body problem, where each
of the N embedding points exerts attractive and repulsive forces on sur-
rounding points. As is typical for N-body problems, the computational
complexity is O(N2).

3 RELATED WORK

After the introduction of t-SNE [25], Barnes Hut SNE (BH-SNE) [24],
reduced the runtime complexity to O(N logN), and memory complex-
ity to O(N). It models the similarity computation in Equation 3 as a
k-nearest-neighbour (KNN) graph problem, computed using Vantage
Point trees [28]. In addition, a Barnes-Hut approximation [1], previ-
ously used in physics calculations, significantly reduces the number of
force computations in the N-body problem.

More recent developments can be divided into two areas: improving
similarity computations and improvements/replacements of the mini-
mization algorithm. Early on, Approximated tSNE (A-SNE) [19], relied
on principles of Progressive Visual Analytics [16, 21] to selectively
refine parts of approximate embeddings during the optimization, while
replacing a precise KNN-graph with an approximate graph relying on a
forest of randomized KD-trees. A similar approach was demonstrated
with LargeViz [22], which instead leverages randomized projection trees
to obtain similarities. In addition, it links the minimization’s objective
function to a probabilistic graph-visualization model, which is opti-
mized through an asynchronous stochastic gradient descent. A rather
different approach is Uniform Manifold Approximation and Projection
(UMAP) [12], which instead performs a minimization between topo-
logical representations of the high-dimensional and low-dimensional
spaces. While it provides superior performance to all t-SNE variants
described so far, it has been shown to suffer from many of the same
downsides [8]. Despite the improvements, current available imple-
mentations are orders of magnitude slower than more recent GPGPU
solutions.

A fast GPU-based approach is CUDA-SNE [2]. The method ap-
proximates KNN in a manner similar to A-SNE [19] with the GPU-
based FAISS library [6], and maps the BH-SNE [24] optimization to a
GPGPU programming environment. Although this approach achieves
good performance on large datasets, it largely relates to engineering
optimizations and remains bound by O(N logN) runtime complexity.

More recently, linear runtime complexity was reached by
Fast Fourier transform accelerated interpolation-based t-SNE (FIt-
SNE) [11], demonstrated with a CPU-based implementation. It uses
an alternative approximation for computing repulsive forces by redefin-
ing them in terms of a convolution over an equispaced grid, which is
subsequently interpolated to recover repulsive forces.

A similar GPU-based approach was developed by Pezotti et
al. [20], named GPGPU linear complexity t-SNE (L-SNE). The au-
thors rewrite Equation 8 as a function of scalar and vector fields —
continuous functions assigning scalar or vector values to positions in
space — which are then approximated in a discrete format using a GPU
texture in O(FN) time (where F is the size of the discrete texture).
Afterwards, force components are recovered through texture interpo-
lation, which is highly efficient on GPUs. The method’s runtime is
dominated by the computation of this field texture, which suffers from
scaling in either F or N and is particularly inefficient for 3D embed-
dings. In the following, we briefly cover this field-based formulation
before presenting our approach, which avoids these shortcomings.

Given are the scalar and vector fields S : Rd→R and V : Rd→Rd ,
d being the dimensionality of the embedding, typically 2 or 3. At an
arbitrary position p the fields are defined as

S (p) =
N

∑
i

(
1+‖yi− p‖2

)−1
, (9)

V (p) =
N

∑
i

yi− p(
1+‖yi− p‖2

)2 (10)

Based on the Student’s t-distribution, S represents the effective density
of the embedding space, while V represents the gradient of the repul-
sive forces applied. Assuming for now that these fields are available,
attractive forces can be approximated in a restricted neighbourhood as

F̂attr
i = Ẑ ∑

`∈kNN(i)
pi`qi`(yi− y`), (11)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

as seen in BH-SNE [24]. The normalization factor Ẑ is now approxi-
mated in linear time by consulting the scalar field:

Ẑ =
N

∑
`=1

(S (y`)−1). (12)

The repulsive force for a single point is approximated as

F̂rep
i = V (yi)/Ẑ. (13)

Computing an approximate gradient now requires linear runtime, as
the fields are queried in constant time, approximated in a discrete
texture format, and separately computed through a summation of the
contributions of all embedding positions. Formally, positions in the
fields sum kernels S and V as follows:

S (p) =
N

∑
i

S(yi− p), S(t) =
(

1+‖t‖2
)−1

, (14)

V (p) =
N

∑
i

V (yi− p), V (t) = t
(

1+‖t‖2
)−2

. (15)

While this leads to a linear runtime, there are two observations. The
kernels S and V are again based on a Student’s t-distribution and have
limited effects on far-away positions, but are applied to all positions
with full accuracy. In addition, as the kernels have a fixed support in the
embedding space, the field’s discrete representation must grow with the
embedding as the minimization progresses, gradually becoming larger.
Pezotti et al. [20] propose that F � N generally holds. However, while
the texture grows slowly in two dimensions, the addition of a third di-
mension (which implies a cubic scaling of F) strongly reduces potential
effectiveness. While theoretically of linear runtime, the solution is not
optimal when F becomes large.

4 DUAL-HIERARCHY T-SNE MINIMIZATION

Here, we present our approach to an efficient t-SNE minimization
using the field-based formulation [20]. Our approach reduces the field
texture’s construction time, which dominates the original runtime and
renders the solution impractical for higher embedding dimensionalities.
We observe that this discrete representation in form of a texture requires
evaluating many small regions with varying local interactions, but
similar global interactions. We propose to represent both the embedding
and the discrete field as spatial hierarchies, henceforth referred to as the
embedding hierarchy and the field hierarchy respectively. We perform
a dual traversal over these hierarchies, during which we employ an
improvement of the approximation criterion used in BH-SNE [24]
to selectively compute interactions between hierarchy nodes, which
represent large regions in the embedding and the field (Fig. 2). These
interactions between the regions are not directly transferred to data
points but are first stored in the hierarchy itself; specifically, for a region,
the interaction is added to its corresponding node of the hierarchy.
Hereby, we benefit from both hierarchies. After dual traversal, we
accumulate these interactions that are stored throughout the hierarchy
to form a complete, yet sparsely-computed approximated field. In this
way, we improve upon the original O(FN) complexity of the field
computation, as our cost approaches O(N). We provide a proof in the
supplementary material, but suggest to first follow the algorithm in this
section to ease understanding. Fig. 3 shows an overview of our method,
divided into three steps: hierarchy construction, dual traversal, and
field accumulation. We detail each step in the following.

4.1 Hierarchy Construction
We construct hierarchies over the embedding and field (Fig. 3, first
part). Meyer et al. [14] showed that a careful choice of the spatial
hierarchy provides performance improvements to BH-SNE [24]. We
choose our structures with efficient execution on the GPU in mind.

As embedding hierarchy, we select an implicit linear bounding vol-
ume hierarchy (BVH), constructed in linear time on the GPU (Sect. 5).
In a BVH, each node stores an axis-aligned bounding box (AABB)

Fig. 2: We use embedding and field hierarchies (top), comparing their
nodes to compute interactions between many points and large portions
of the field in a single step (bottom left). Where refinement is necessary,
we descend one or both hierarchies (bottom mid), continuing until
points interact with a full-resolution field (bottom right).

Fig. 3: We generate embedding and field hierarchies, and dual traverse
these using a work queue. When a numeric approximation of the
interactions suffices, we cull node pairs. Further, we evaluate and
store interactions at different levels of detail in the hierarchies. A final
traversal constructs the field used in the t-SNE minimization.

encompassing the child-node bounding boxes, while leaf nodes directly
contain one or more objects (i.e., embedding points). BVHs provide
a close fit around contained data, and allow for refitting of AABBs
without fully rebuilding the hierarchy. The latter is an important cost-
saving measure, made possible because embedding positions move
slowly during the minimization. As with BH-SNE [24], nodes in the

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

embedding hierarchy track their center of mass, defined as the average
of the contained embedding points. The center of mass ci of a node ei
with mass mi is simply

ci =
1
mi

∑
j∈emb(ei)

y j, (16)

where emb(ei) defines the indices of the points in the node.
Observing the discrete grid nature of the field texture, we select a

sparse implicit quad-/octree for the field hierarchy. We mark cells of
interest in the grid that we build our hierarchy upon. This is done in
O(F logN) time, but marking costs are negligible in practice (< 1% of
total compute time). For each grid cell, we descend the previously gen-
erated embedding hierarchy to determine if the cell overlaps or borders
embedding points. We then construct the sparse field hierarchy with
the marked cells as leaf nodes. Computing the field for these locations
suffices, as it will only be accessed here during the minimization. Each
node f j in the hierarchy has scalar and vector field entries Ŝ j and V̂ j,
which are initialized as 0 at the start of every iteration of the minimiza-
tion and used as intermediate storage during traversal. Contrary to the
embedding hierarchy, nodes in the field hierarchy represent regions and
their center of mass c j is simply their region’s geometric center.

4.2 Dual Traversal
With both hierarchies available, we perform a dual traversal (Fig. 3,
second part), formulated as a top-down breadth-first traversal of a
single, larger tree. This tree consists of nodes representing node pairs
(ei, f j), where ei and f j are respectively nodes in the embedding and
field hierarchies. Each node pair represents a potential interaction
between the embedding points and field regions described by the two
contained nodes. We model traversal using a work queue, in which we
store node pairs in the dual hierarchy that still have to be traversed. At
the start of traversal, a root node pair, i.e. (e0, f0), is pushed on the
queue. During traversal, a node pair is popped from the queue, and
is subsequently subdivided. We descend one level in both hierarchies
under each node if possible. If both nodes are leaves, we compute the
underlying interactions directly. Otherwise, the different possible pairs
of child nodes from both hierarchies are tested via an approximation
criterion (Sect. 4.3), to determine if they represent interactions with
a sufficient accuracy. If this criterion fails for a child node pair, it is
pushed on the work queue for further subdivision. If it holds, we will
not further descend into the dual hierarchy underneath this child node
pair but process them directly.

To process a node pair, we compute the interactions by using an
approximation of the kernels in Equation 14 and Equation 15:

Ŝ (ei, f j) = mi S(ci− c j), (17)

V̂ (ei, f j) = mi V (ci− c j). (18)

Both values are computed once and will be used for all mi points in
the embedding node and all regions under the field node instead of
evaluating mi values for potentially many field cells. These values are
atomically added to Ŝ j and V̂ j in the field node f j.

Traversal is finished once the work queue is empty. We purposefully
subdivide node pairs before testing an approximation criterion — as
opposed to the inverse — for implementation reasons (Sect. 5).

4.3 Barnes-Hut Approximation
We modify the dual-hierarchy approximation criterion of BH-SNE [24]
to determine whether a node pair can be processed. Originally, given
lengths ri,r j of the diagonals of two nodes’ AABBs, and node centers
ci,c j, the following term is evaluated:

max(ri,r j)

‖ci− c j‖
< θ . (19)

The parameter θ defines a maximum allowed ratio, interpreted as
the tangent of an angle in a triangle whose opposite and adjacent

Fig. 4: Simple modification to Barnes-Hut approximation [1]. Instead
of constant radii based on bounding box diagonals, we reproject diago-
nals, handling irregular bounding boxes regardless of their respective
positions to each other.

Fig. 5: The field hierarchy is ascended from leaf nodes (L0) and inter-
mediate values in consecutive smaller levels (L1, L2, . . .) are added,
resulting in an approximate field. A sparse vector field is visualized,
red and green colors marking x- and y-directions of the vectors.

edges have lengths max(ri,r j) and ‖ci− c j‖ respectively. A larger θ

means larger bounding boxes closer to each other pass the test, leading
to earlier processing in the hierarchy (faster traversal) but a coarser
approximation. Similarly, if θ = 0, the hierarchies are traversed fully,
leading to an inefficient but accurate computation. For single-hierarchy
traversals, θ typically lies between 0.1 and 0.5 [24]. The condition is
simple as it is evaluated many times, assuming that all bounding boxes
in both hierarchies have regular sides (as is the case for quad-/octrees).

Hierarchies such as a linear BVH tend to produce irregular bounding
boxes that closely fit the contained data. Here, the Barnes-Hut criterion
is suboptimal, as it considers a bounding box based on its diagonal,
which is not a good representative of all sides when having a highly
irregular bounding box. Hence, we modify Equation 19 to project the
diagonals di,d j of the nodes’ bounding boxes so the approximation cri-
terion accurately matches this irregularity, leading to projected diagonal
lengths r′i,r

′
j. We visualize our approach in Fig. 4.

To obtain projected diagonal lengths, we first compute a unit vector
t̂ along the difference ci− c j, but reflected across axes so it is near-
orthogonal to the diagonals. In two dimensions, this is simply:

t̂ =
∣∣∣∣ ci− c j

||ci− c j||

∣∣∣∣[−1
1

]
. (20)

A suitable length is then obtained through vector rejection as:

r′i = ‖di− t̂ (di · t̂)‖. (21)

We compute r′j in the same manner and use max(r′i,r
′
j) for the compar-

ison in Equation 19. We evaluate this criterion in Sect. 6.

4.4 Field accumulation
After dual traversal, we collect the approximate interactions stored in
the hierarchies (Fig. 3, third part). In particular, field hierarchy nodes
now store intermediate parts of the actual fields in Ŝ j and V̂ j. As
in [20], we want to interpolate the discrete field to obtain approximate
field values at embedding positions, which is difficult in a hierarchy.
Hence, we flatten it to recover a coarsely approximated texture, i.e.,
we ascend the field hierarchy upwards once for each non-empty leaf
node, accumulating encountered field scalar and vector values and
storing their sum in the respective texture position of said leaf node.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

This requires O(F logF) time when gathering upwards from a leaf to
the root. Performing the operation in reverse leads to O(F) time, but
becomes less practical on GPU hardware. Afterwards, the field can be
queried for interpolated scalar and vector field values per point. Fig. 5
displays an accumulation of different levels of the field hierarchy.

5 IMPLEMENTATION

Our technique is implemented using a GPGPU approach. We develop
our implementation in a combination of the OpenGL 4.6 API and
CUDA 11, although the concepts we described can be applied on other
APIs. Our implementation is available online.1

Mirroring the algorithmic description, our t-SNE implementation
consists of two parts. We first generate the joint similarity distribution
P in the same manner as Chan et al. [2], using approximate KNN infor-
mation with k = 3µ obtained through the GPU-based FAISS library [6].
The formulation of the distributions remains the same as BH-SNE [24].
Second, we mirror the matrix-based minimization used by Pezotti et
al. [20]. During the minimization, we invest time at the start of each
iteration to rebuild or refit our spatial hierarchies, and then perform a
dual-hierarchy traversal, replacing the expensive field computation.

5.1 Hierarchy Construction
As mentioned, we implement the embedding hierarchy as an implicit
linear BVH, constructed on the GPU in O(N) time. We outline the
general method, but refer the reader to Lauterbach et al. [10] for a full
description. In short, the linear BVH method reduces BVH construc-
tion to a single sorting operation (Fig. 6). Each of the N embedding
points is assigned a Morton code based on their discretized position
in 2D/3D space. Based on these codes, the points are bucketed in leaf
nodes, which are subsequently arranged along a space-filling z-order or
Morton curve in a O(N) parallel radix sort, using the Morton codes as
keys. After sorting, levels of the hierarchy are constructed iteratively
by grouping nodes which share the same high order bits in their re-
spective Morton codes. Our implementation adopts the work-queue
based approach of Garanzha et al. [5]. Faster and more recent construc-
tion algorithms can be used at the cost of increased code complexity.
For a parallel radix sort, we leverage the implementation available in
the CUDA-based CUB library [17], which can access specific buffer
objects in OpenGL through the included interoperability library.

We implement the field hierarchy as a sparse implicit quad-/octree
due to the discrete nature of the field texture. As nodes in this hierarchy
are regular, we do not store bounding box information, instead deriving
these from node indices when necessary. The only information we store
in a node is its type and the mentioned intermediate scalar and vector
values used during traversal.

Although the embedding changes rapidly during early iterations,
changes are less pronounced later on. Early iterations of t-SNE, typ-
ically the first 250, use early exaggeration, multiplying pi j by some
scalar to aggressively separate clusters. We use this to our advantage
to reduce hierarchy-construction costs significantly. While we rebuild
hierarchies on every iteration during early exaggeration, we only do
so at regular intervals after. We can often simply refit bounding boxes
around the newly updated positions, avoiding costly sorting. As the
number of leaves in the field hierarchy can change at each iteration —
leading to a substantially different spatial hierarchy — we include the
cells bordering embedded points as leaves, which enables a reuse.

5.2 Dual Traversal
As described in Sect. 4, dual-hierarchy traversal is formulated as a
breadth-first traversal, in which node pairs are read, subdivided, and
tested for further traversal. We leverage a pair of work-queues to track
traversal. At the start of traversal, an initial set of node pairs (matching
to root nodes) is written to the first, or primary work-queue. During
a single step of traversal, all node pairs on the primary work-queue
are subdivided and tested for Equation 19. Node pairs which fail
the approximation criterion are pushed on the secondary work-queue,
which is subsequently swapped with the primary work-queue for the

1https://www.github.com/markvanderuit/dual_hierarchy_tsne

Fig. 6: Linear BVH [10] construction: points are discretized and as-
signed Morton codes, after which they are sorted along a spatial curve.
Sorted points are then subdivided into a hierarchy based on their codes.

next traversal step. We repeat this process until the primary work-queue
is empty or the leaf levels are reached, at which point traversal has
completed.

As root nodes encompass the entire embedding, they will always
be subdivided. As an optimization, we start traversal at a lower level
in both hierarchies by pushing all pairs corresponding to the selected
levels on the work-queue (we use levels 3/2 for a 2D/3D embedding,
leading to 4096 node pairs for hierarchies with fan-outs 4/8).

To optimize subdivision, we leverage local cross-communication
capabilities of modern GPUs (subgroups in OpenGL/GLSL, warps in
CUDA) to test multiple combinations of node pairs per GPU thread
(invocation) while minimizing memory operations. To subdivide a
single node pair on both sides, we use two threads (four for quadtrees,
eight for octrees), having each thread load a single child node from
both sides of the hierarchies. The total number of node pairs that must
be tested (four for binary trees, 16 for quadtrees, 64 for octrees) can be
obtained by rotating the child nodes on one side of the hierarchy along
the 2/4/8 threads, using the subgroup capabilities.

5.3 Single-Hierarchy Fallback

As described in Sect. 3, the discrete field grows in size as the minimiza-
tion progresses. At its start, the small discrete field implies few regions
of interest require computation, leading to a sparse hierarchy. In this
scenario, a dual traversal is inefficient as the field hierarchy’s levels
have too few nodes to fully occupy the GPU. We establish a maximum
positive difference in depths de,d f between the embedding and field
hierarchies (i.e., de− d f ≤ dmax) to determine when dual hierarchy
traversal is used. We empirically established dmax = 4 as a suitable
threshold. Whenever we forego a dual-hierarchy traversal, we only
construct the embedding hierarchy, and depth-first traverse it for the
entire field in O(F logN) time.

6 EVALUATION

We first evaluate specific choices of our method, and afterwards com-
pare against state-of-the-art solutions in terms of computational cost
and embedding quality. All experiments run on a particular dataset use
the same configuration and parameters. Further, all experiments are
conducted on a single machine with an Intel Core i7-9900 (16 logical
threads @3.1 GHz), 16 GB of DDR4 RAM and a GeForce RTX 2080 Ti
GPU with access to 11 GB VRAM. For each experiment, we record the
minimization runtime and resulting KL-divergence as a direct measure
of how far a specific minimization has progressed. As KL-divergence
is directly coupled to minimization, we additionally consider an unre-
lated metric, selecting Nearest-Neighbourhood-Preservation (NNP) as
described by Venna et al. [26]. It measures how well local neighbour-
hoods in the low-dimensional embedding preserve characteristics of
their high-dimensional counterparts. In order to obtain correct results
for NNP, the gradient descent must be (mostly) converged. Hence, we
use a larger number of iterations for larger datasets.

6.1 Datasets

We select four datasets that are frequently applied in the evaluation
of dimensionality reduction algorithms such as t-SNE. As different
datasets typically differ in size, dimensionality, and structure, we select

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

https://www.github.com/markvanderuit/dual_hierarchy_tsne

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

Table 1: Time and space complexities for the different stages of our method compared to other methods. N is input size, K is restricted
neighbourhood size, and F is field size used by our method and L-SNE [20]. Nint and p are parameters of FIt-SNE [11]: Nint represents a discrete
grid size, and p represents the number of equispaced points over parts of said grid. Note that F , Nint and p are independent of N.

Ours L-SNE [20] FIt-SNE [11] BH-SNE [24]

Component Time comp. Space comp. Component Time comp. Space comp. Component Time comp. Space comp. Component Time comp. Space comp.

Hier. construction O(F logN +F +N) O(F +N)

Dual traversal O(max(F,N)) O(F +N) Point-grid interaction O(pN) O(pNint +N)

Field accumulation ** O(F logF) O(F) Field computation O(FN) O(F +N) Grid-grid interaction O(pNint log pNint) O(pNint) Hier. construction O(N) O(N)

Frep lookup * O(N) O(F +N) Frep lookup * O(N) O(F +N) Frep computation O(pN) O(pNint +N) Frep computation O(N logN) O(N)

Fattr computation O(KN) O(KN) Fattr computation O(KN) O(KN) Fattr computation O(KN) O(KN) Fattr computation O(KN) O(KN)

Apply forces * O(N) O(N) Apply forces * O(N) O(N) Apply forces * O(N) O(N) Apply forces * O(N) O(N)

* Component has negligible computational runtime (Fig. 11). ** Can be performed in O(F) time (Sect. 4.4).

Table 2: The numbers of points and dimensions, number of minimiza-
tion iterations, and selected perplexity µ for each dataset.

Dataset Points Dims. Iters. µ

MNIST 60000 784 1000 50
Fashion 60000 784 1000 50

ImageNet 1250000 128 4000 10
Word2Vec 3000000 300 4000 5

Quad-/Octree BVH BVH, 4 iters BVH, 8 iters

20 40 60 80 100

100

120

140

160

Rel. 2D runtime (%)

R
el

.2
D

K
L

-d
iv

.(
%

)

MNIST

0 20 40 60

100

120

140

160

Rel. 3D runtime (%)

R
el

.3
D

K
L

-d
iv

.(
%

)

5 10 15

100

120

140

160

Rel. 2D runtime (%)
R

el
.K

L
-d

iv
.(

%
)

ImageNet

0 2 4 6 8

100

120

140

160

Rel. 3D runtime (%)

R
el

.3
D

K
L

-d
iv

.(
%

)

Fig. 7: Comparison of a BVH with/without refitting and a quad-/octree
as a spatial hierarchy over 2D/3D embeddings of the MNIST and
ImageNet datasets. We minimize for increasing numbers of iterations
and plot the resulting relative runtime and KL-divergence. Baseline
results are established with GPGPU linear complexity t-SNE [20].

separate iterations and perplexity µ for each dataset. Specific sizes and
parameters selected for each dataset are displayed in Table 2.

The commonly-used MNIST dataset consists of labeled 28×28px
grayscale images of handwritten digits, each represented as a vector
storing an image’s pixel values. MNIST is often used for this kind of
evaluation as it contains 10 clearly-defined classes corresponding to 10
different digits. The similar Fashion-MNIST [27] contains images of
10 different types of clothing, instead of digits, which are sometimes
closely related but harder to separate into clusters with an algorithm
such as t-SNE. For this reason, we included it in our evaluation.

The ImageNet dataset [3] stores approximately 1000 categories of
random images of objects at varying resolutions. We use a reduced and
formatted version previously published by Fu et al. [4], processed such
that each vector in the dataset has a dimensionality of 128.

The GoogleNews dataset stores a collection of three million words,
each represented as a vector generated by Word2Vec [15]. This tool
consumes a text corpus — in this case originating from Google News
— and assigns words in the corpus a representative vector in such a way
that words are closely related if they share a similar context.

6.2 Hierarchy Evaluation
We first evaluate our choice of spatial hierarchy. Although our method
works with different hierarchies, we focus on the implicit linear
BVH [10]. Use of alternatives such as a quad-/octree is possible. How-

Table 3: Compared runtimes of different methods for a 2D minimization
using the full datasets listed in Table 2.

Dataset CUDA-SNE L-SNE Ours

MNIST 5.86s 1.70s 1.36s
Fashion 5.74s 1.83s 1.40s

ImageNet 94.12s 346.94s 51.10s
Word2Vec 94.90s 212.11s 86.90s

Regular Modified

65 70 75 80

100.2

100.4

100.6

100.8

2D Relative runtime (%)

2D
R

el
at

iv
e

K
L

-d
iv

.(
%

)

MNIST

20 40 60 80

100.2

100.4

100.6

3D Relative runtime (%)

3D
R

el
at

iv
e

K
L

-d
iv

.(
%

)

10 11 12

100

100.2

100.4

100.6

100.8

2D Relative runtime (%)

2D
R

el
at

iv
e

K
L

-d
iv

.(
%

)

ImageNet

5 10 15

100.1

100.2

100.3

3D Relative runtime (%)

3D
R

el
at

iv
e

K
L

-d
iv

.(
%

)

Fig. 8: Comparison of our modified Barnes-Hut approximation and the
regular form for generation of 2D/3D embeddings over the MNIST and
Imagenet datasets. We minimize for differing θ ∈ [0.2,0.6] and plot
the resulting relative runtime and KL-divergence. Baseline results are
established with GPGPU linear complexity t-SNE [20].

ever, BVHs have several benefits: they fit the contained data closely,
and their bounding volumes can be refitted when data changes. Refit-
ting instead of rebuilding provides a significant reduction in runtime
over consecutive iterations. We compare minimizations of MNIST
and ImageNet in four cases: using quad-/octrees, using a BVH rebuilt
every iteration, and using BVHs that are rebuilt after four or eight iter-
ations of refitting. No refitting is performed in the first 250 iterations
as early exaggeration takes place. Results are displayed in Fig. 7. The
quad-/octree has to be rebuilt every iteration. It only matches the BVH
performance when the latter is always rebuilt. The benefit of the BVH
becomes apparent when refitting is used, e.g., during four iterations.
However, this degrades BVH quality, and refitting for too many itera-
tions results in unpredictable runtimes. This is seen in the ImageNet
minimization for 8 iterations of refitting, where the embedding still
undergoes significant changes after the early exaggeration phase. Here,
refitting degrades the hierarchy quality. We show iteration runtimes in
Fig. 12, where these effects are visible. In practice, we employ four
consecutive iterations in all other examples.

6.3 Barnes-Hut Evaluation
Next, we evaluate our modified Barnes-Hut approximation criterion
in conjunction with a BVH. This criterion handles irregular bounding
volumes, which occur in a BVH, better than the original. We compare
minimizations of MNIST and ImageNet with our criterion and the

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

Rel. runtime Rel. KL-div.

MNIST

Fashion

ImageNet

Word2Vec

0 0.2 0.4 0.6
0

20

40

60

80

100

θ

R
el

. r
un

tim
e

(%
)

2D

0 0.2 0.4 0.6

100

100.5

101

101.5

R
el

.K
L

-d
iv

.(
%

)

0.2 0.4 0.6
0

20

40

60

80

100

θ

R
el

. r
un

tim
e

(%
)

3D

0.2 0.4 0.6

100

100.5

101

R
el

.K
L

-d
iv

.(
%

)

Fig. 9: Evaluation of θ for generation of 2D/3D embeddings. We show the resulting relative runtime and KL-divergence of three datasets.
Baseline results (θ = 0) are 100% and are established with GPGPU linear complexity t-SNE [20]. In larger datasets and small θ < 0.2, 3D
minimizations may exceed the memory capacity of our GPU and are not shown.

DH-SNE (Ours, 2D) DH-SNE (Ours, 3D) L-SNE (2D) L-SNE (3D) FIt-SNE (2D)

0

2

4

6

2D
ru

nt
im

e
(s

)

MNIST

0

2

4

6

Fashion

0

100

200

300

ImageNet

0

100

200

Word2Vec

0

2

4

6

3D
ru

nt
im

e
(s

)

0

2

4

6

200

400

200

400

600

103 104

0.5

1

Points

K
L

-d
iv

er
ge

nc
e

103 104

0

0.5

1

Points
105 106

1

2

3

Points
105 106

2

3

4

5

Points

0.4 0.6 0.8 1

0

0.2

0.4

Precision

R
ec

al
l

0.4 0.6 0.8

0

0.2

0.4

Precision
0.4 0.6 0.8

0

0.1

0.2

0.3

Precision
0.2 0.4 0.6

0.1

0.2

Precision

Fig. 10: Comparison of linear complexity tSNE [20], a CUDA-SNE [2] implementation of FIt-SNE [11], and our method (DH-SNE). The first
row shows minimization runtimes for 2D embeddings over increasingly large subsets of data. The second row repeats this experiment for 3D. The
third row shows evolution of KL-divergence over the same subsets. Horizontal axes for the first three rows are logarithmic. The fourth row shows
NNP in the form of precision/recall curves. Our method outperforms the state-of-the-art on large datasets in terms of runtime for 2D and 3D. In
addition, it retains a similar quality to linear tSNE [20] in terms of KL-divergence and NNP. 3D embeddings are consistently of higher quality.

2D

3D

0 1 2 3

Apply forces
Attractive forces

Hierarchy traversal

Hierarchy constr.
Similarities

KNN

2 ·10−2

3 ·10−2

0.38
0.38

0.23
1.5

0.38
0.4

0.31
0.31

2.84
2.86

Runtime (s)

MNIST

0 20 40 60

0.48
0.97

37.1
56.44

1.66
21.91

3.36
3.16

2.09
2.19

22.53
22.41

Runtime (s)

ImageNet

0 200 400 600 800

1.31
2.58

36.25
44.24

1.43
32.86

7.16
23.11

0.33
0.33

666.8
663.21

Runtime (s)

Word2Vec

Fig. 11: Comparison of the runtimes of the most expensive components of our method on three datasets of varying sizes, for 2D/3D embeddings.
The different perplexity values listed in Table 2 imply different local neighbourhood sizes, leading to varying attractive force computation costs
(Equation 11). As demonstrated, runtime is dominated by KNN and attractive force computations on larger datasets.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

BVH BVH, 4 iters BVH, 8 iters

0 1,000 2,000 3,000 4,000

5

10

15

20

25

Iteration
R

un
tim

e
(m

s)

3,750 3,800 3,850 3,900 3,950 4,000
9

10

11

12

Iteration

R
un

tim
e

(m
s)

Fig. 12: Influence of refitting a BVH during minimization of the Im-
ageNet dataset. We show runtime per iteration for all 4000 iterations
(top) and the last 250 iterations (bottom). Note the spike in runtime
after early exaggeration for 8 iterations of refitting.

regular criterion [1]. We test for differing θ ∈ [0.2,0.6] and record
resulting (relative) runtime and KL-divergence. Results are displayed
in Fig. 8. While the improvements are stronger for larger values of θ ,
the new criterion outperforms the regular criterion in all cases.

Larger θ leads to a coarser approximation and faster traversal as
nodes are culled earlier. While this parameter was evaluated in BH-
SNE [24] in the context of single-hierarchy traversal, the established
θ ≤ 0.5 does not hold for our method. In addition, the parameter’s
impact on traversal may vary across 2D/3D embeddings. We investigate
its effect in both scenarios in Fig. 9. We consider θ = 0.25 a good
tradeoff for 2D, and θ = 0.4 for 3D. There is a noticeable increase in
KL-divergence for larger θ across all datasets, which becomes visible as
grid-like patterns. The supplemental material shows generated 2D/3D
embeddings for different values of θ .

6.4 Comparative Evaluation

Finally, we compare with state-of-the-art techniques with linear runtime
complexity. First, we select the field-based L-SNE developed by Pezotti
et al [20], with which we generate both 2D/3D comparisons. This tech-
nique shows excellent performance on smaller datasets and provides
high quality embeddings in comparison with earlier techniques. We use
field scalings of 2.0 (2D) and 1.2 (3D) for measurement with both our
method and L-SNE. We also select a current version of CUDA-SNE [2]
which, instead of a Barnes-Hut approximation, recently adapted the
O(N) FIt-SNE [11] to the GPU. Although their approach incurs an
overhead for smaller datasets, it outperforms the original implementa-
tion due to a linear runtime. This implementation only generates 2D
embeddings, so we only compare it in this regard. Older BH-SNE [24]
or baseline O(N2) t-SNE algorithms [25] have been omitted, as their
practical performance is typically orders of magnitude slower.

As our technique uses a field similar to Pezotti et al. [20], we ex-
pect to produce similar embeddings at improved runtime performance.
With regards to FIt-SNE [11], we expect to reach similar or improved
performance on large datasets, while producing substantially differ-
ent embeddings, as our minimization differs from theirs by definition.
To correctly compare the different minimization methods, we ensure
they use identical KNN information and an identical joint similarity
distribution P. We further ensure all methods use an identical initial
embedding, and use identical parameters for their gradient descent. Dif-
ferences between methods then correspond solely to the differences in
their respective complexities. We provide an overview of the different
time/space complexities of each method in Table 1.

The first two rows of Fig. 10 show minimization runtimes for 2D/3D
embeddings separately. We run on increasingly large subsets of the
datasets to show how minimization progresses. A logarithmic scale is
used on horizontal axes to account for large dataset sizes. We list exact
runtimes of minimizations on the full dataset in Table 3.

Fig. 13: Embeddings of datasets (Table 2), generated by our method.

Our technique performs exceedingly well for sufficiently large
datasets; starting at approximately 27K points (indicated by a dotted
vertical line) it outperforms compared methods in both the relatively
small MNIST and Fashion datasets. On the full datasets, a 1000 itera-
tion minimization requires 1.36s, compared to 1.70s for L-SNE [20].
This gap widens significantly in the 1.2M point ImageNet dataset,
where our method completes a 4000 iteration minimization in 51.10s,
down from 346.94s. On the 3M point Word2Vec dataset, FIt-SNE [11]
performs a 4000 iteration minimization in 94.90s, while our method
requires 86.90s. Convergence between the methods on the Word2Vec
dataset is explained by attractive-force computations (Equation 11),
which become exceedingly expensive for denser local neighbourhoods.
For comparison: both existing methods perform relatively poorly on
the smaller ImageNet dataset, where a higher perplexity value leads to
larger neighbourhoods. To confirm this, we display runtimes of sepa-
rate components in our method in Fig. 11. Evidently, attractive-force
computation becomes a dominating factor in the minimization.

Observed scaling for 3D embeddings remains linear in all exper-
iments, though there is a runtime overhead compared to 2D embed-
dings. This is expected, given the computational overhead involved
in a third dimension. Linear complexity tSNE [20] is impractical for
large datasets, as runtime spikes around 100K points, while our tech-
nique is orders of magnitude faster and completes a full 4000 iteration
minimization on the 3M point Word2Vec dataset in 238.67s.

While our technique improves runtime, embedding quality is another
important metric. In the last two rows of Fig. 10, we examine KL-
divergence of generated embeddings for increasingly large subsets
of the datasets, in addition to computed NNP. The NNP metric is
displayed in the form of precision/recall plots. For this, we repeat
an experiment performed by Pezotti et al. [20]. For each point in a
dataset, we observe points in an increasingly large neighbourhood of a
size k based on perplexity. For every value from k = 1 to k = 3µ , we
compute T , defined as the accurate number of points belonging to both
points’ neighbourhoods. Precision is computed as T/k and recall is
computed as T/(3µ). By averaging generated curves for each point, a
representative curve is obtained for the entire dataset.

As demonstrated, our approximation has a minor impact on embed-
ding quality compared to linear complexity tSNE [20]. The CUDA-
SNE [2] implementation of FIt-SNE [11] interestingly delivers a lower

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114817, IEEE
Transactions on Visualization and Computer Graphics

quality of embeddings for the specified metrics. As explored by Lin-
derman et al. [11], FIt-SNE reaches comparable levels of quality to
BH-SNE [24], so these results are expected. The field-based approx-
imation used by Pezotti et al. [20] is established to be more accurate,
which is a quality our method mostly retains. We display embeddings
generated with our method in Fig. 13. Further, we show example
minimizations in a supplemental video.

7 CONCLUSION

We have presented a novel and improved minimization algorithm for
t-SNE, providing significant performance improvements above the
state-of-the-art, especially for large datasets and higher dimensional
embeddings. The latter point is a crucial step forward, as it can improve
embedding quality and could be of high relevance in many applications
relying on a 3D visualization. For this reason, we have made an
implementation of our method available (Sect. 5).

Our method illustrates that a field-based formulation of t-SNE, previ-
ously shown to have linear runtime, can still be significantly accelerated
via a dual-hierarchy traversal. This allows us to compute N-body inter-
actions efficiently, as is demonstrated in a GPGPU-based environment
on modern graphics hardware. Our experiments reveal significant
run-time improvements with regards to linear complexity t-SNE [20]
and FIt-SNE [2] for two- and three-dimensional embeddings, while
achieving comparable quality.

With these improvements, the t-SNE algorithm is, at this stage,
dominated by the required KNN and attractive force computations,
which are interesting challenges for future work.

REFERENCES

[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algo-
rithm. Nature, 324:446–449, 1986. doi: 10.1038/324446a0

[2] D. M. Chan, R. Rao, F. Huang, and J. F. Canny. T-SNE-CUDA: GPU-
Accelerated T-SNE and its applications to modern data. In 30th Interna-
tional Symposium Computer Architecture and High Performance Comput-
ing, pp. 330–338, 2018. doi: 10.1109/CAHPC.2018.8645912

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009. doi:
10.1109/CVPR.2009.5206848

[4] C. Fu, Y. Zhang, D. Cai, and X. Ren. AtSNE: Efficient and robust visual-
ization on GPU through hierarchical optimization. In 25th International
Conference on Knowledge Discovery & Data Mining, p. 176–186. Associ-
ation for Computing Machinery, 2019. doi: 10.1145/3292500.3330834

[5] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH
with work queues. In Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics, p. 59–64. Association for Computing
Machinery, 2011. doi: 10.1145/2018323.2018333

[6] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data, 2019. arXiv:1702.08734. doi:
10.1109/TBDATA.2019.2921572

[7] M. Kim, M. Choi, S. Lee, J. Tang, H. Park, and J. Choo. PixelSNE:
Pixel-aligned stochastic neighbor embedding for efficient 2D visualization
with screen-resolution precision. Computer Graphics Forum, 37:267–276,
2018. doi: 10.1111/cgf.13418

[8] D. Kobak and G. C. Linderman. UMAP does not preserve global structure
any better than t-SNE when using the same initialization. bioRxiv, 2019.
doi: 10.1101/2019.12.19.877522

[9] S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.
[10] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.

Fast BVH construction on GPUs. Computer Graphics Forum, 28:375 –
384, 2009. doi: 10.1111/j.1467-8659.2009.01377.x

[11] G. C. Linderman, M. Rachh, J. G. Hoskins, S. Steinerberger, and Y. Kluger.
Efficient algorithms for t-distributed stochastic neighborhood embedding.
CoRR, abs/1712.09005, 2017.

[12] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approxi-
mation and projection for dimension reduction. 2018. arXiv:1802.03426.

[13] B. Melit Devassy and S. George. Dimensionality reduction and visualisa-
tion of hyperspectral ink data using t-SNE. Forensic Science International,
311, 2020. doi: 10.1016/j.forsciint.2020.110194

[14] B. H. Meyer, A. T. R. Pozo, and W. M. N. Zola. Improving Barnes-
Hut t-SNE scalability in GPU with efficient memory access strategies.

In 2020 International Joint Conference on Neural Networks, 2020. doi:
10.1109/IJCNN48605.2020.9206962

[15] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Pro-
ceedings of the 26th International Conference on Neural Information
Processing Systems, vol. 2, p. 3111–3119, 2013. doi:
10.5555/2999792.2999959

[16] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Opening
the black box: Strategies for increased user involvement in existing algo-
rithm implementations. IEEE Transactions on Visualization and Computer
Graphics, 20(12):1643–1652, 2014. doi: 10.1109/TVCG.2014.2346578

[17] NVIDIA. CUB: Cooperative primitives for CUDA C++, 2010. Accessed:
2021-06-24. [Online]. Available: https://github.com/NVIDIA/cub.

[18] N. Pezzotti, T. Höllt, B. P. Lelieveldt, E. Eisemann, and A. Vilanova.
Hierarchical stochastic neighbor embedding. Computer Graphics Forum,
35(3):21–30, 2016. doi: 10.1111/cgf.12878

[19] N. Pezzotti, B. P. F. Lelieveldt, L. v. d. Maaten, T. Höllt, E. Eisemann, and
A. Vilanova. Approximated and user steerable tSNE for progressive visual
analytics. IEEE Transactions on Visualization and Computer Graphics,
23(7):1739–1752, 2017. doi: 10.1109/TVCG.2016.2570755

[20] N. Pezzotti, A. Mordvintsev, T. Höllt, B. P. F. Lelieveldt, E. Eise-
mann, and A. Vilanova. Linear tSNE optimization for the web. CoRR,
abs/1805.10817, 2018.

[21] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-
driven visual exploration of in-progress analytics. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1653–1662, 2014. doi:
10.1109/TVCG.2014.2346574

[22] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualization of large-scale and
high-dimensional data. CoRR, abs/1602.00370, 2016.

[23] V. v. Unen, T. Höllt, N. Pezzotti, N. Li, M. Reinders, E. Eisemann, A. Vi-
lanova, F. Koning, and B. P. Lelieveldt. Visual analysis of mass cytometry
data by hierarchical stochastic neighbour embedding reveals rare cell types.
Nature Communications, 8(1740), 2017. doi: 10.1038/s41467-017-01689-9

[24] L. van der Maaten. Accelerating t-SNE using tree-based algorithms.
Journal of Machine Learning Research, 15(93):3221–3245, 2014.

[25] L. van der Maaten and G. Hinton. Viualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[26] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information
retrieval perspective to nonlinear dimensionality reduction for data visual-
ization. Journal of Machine Learning Research, 11:451–490, 2010.

[27] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms. CoRR,
abs/1708.07747, 2017.

[28] P. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, vol. 93. Society for Industrial and
Applied Mathematics, 1993.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 07,2021 at 08:49:39 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1038/324446a0
https://doi.org/10.1038/324446a0
https://doi.org/10.1038/324446a0
https://doi.org/10.1109/CAHPC.2018.8645912
https://doi.org/10.1109/CAHPC.2018.8645912
https://doi.org/10.1109/CAHPC.2018.8645912
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3292500.3330834
https://doi.org/10.1145/3292500.3330834
https://doi.org/10.1145/3292500.3330834
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://arxiv.org/abs/1702.08734
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/https://doi.org/10.1111/cgf.13418
https://doi.org/https://doi.org/10.1111/cgf.13418
https://doi.org/https://doi.org/10.1111/cgf.13418
https://doi.org/10.1111/cgf.13418
https://doi.org/10.1101/2019.12.19.877522
https://doi.org/10.1101/2019.12.19.877522
https://doi.org/10.1101/2019.12.19.877522
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1111/j.1467-8659.2009.01377.x
http://arxiv.org/abs/1712.09005
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/https://doi.org/10.1016/j.forsciint.2020.110194
https://doi.org/https://doi.org/10.1016/j.forsciint.2020.110194
https://doi.org/10.1016/j.forsciint.2020.110194
https://doi.org/10.1109/IJCNN48605.2020.9206962
https://doi.org/10.1109/IJCNN48605.2020.9206962
https://doi.org/10.1109/IJCNN48605.2020.9206962
https://doi.org/10.1109/IJCNN48605.2020.9206962
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://doi.org/10.1111/cgf.12878
https://doi.org/10.1111/cgf.12878
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
http://arxiv.org/abs/1805.10817
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
http://arxiv.org/abs/1602.00370
http://arxiv.org/abs/1602.00370
https://doi.org/10.1038/s41467-017-01689-9
https://doi.org/10.1038/s41467-017-01689-9
https://doi.org/10.1038/s41467-017-01689-9
http://jmlr.org/papers/v15/vandermaaten14a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://dl.acm.org/doi/10.5555/1756006.1756019
https://dl.acm.org/doi/10.5555/1756006.1756019
https://dl.acm.org/doi/10.5555/1756006.1756019
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://dl.acm.org/doi/10.5555/313559.313789
https://dl.acm.org/doi/10.5555/313559.313789

