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(a) Original (https://xkcd.com/2122/)
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(b) Reconstructed using our method
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(c) Well-matched result using our method

Fig. 1: Venn diagrams are often used to highlight complex interactions of sets. This example from xkcd.com shows which adjectives
can be used in combination (a). Using our method, we can recreate this manually created Venn diagram (b). Here, the diagram
contains empty intersections. In these cases, Euler diagrams (c) provide a more faithful representation of the data.

Abstract—Creating comprehensible visualizations of highly overlapping set-typed data is a challenging task due to its complexity. To
facilitate insights into set connectivity and to leverage semantic relations between intersections, we propose a fast two-step layout
technique for Euler diagrams that are both well-matched and well-formed. Our method conforms to established form guidelines for
Euler diagrams regarding semantics, aesthetics, and readability. First, we establish an initial ordering of the data, which we then use
to incrementally create a planar, connected, and monotone dual graph representation. In the next step, the graph is transformed
into a circular layout that maintains the semantics and yields simple Euler diagrams with smooth curves. When the data cannot be
represented by simple diagrams, our algorithm always falls back to a solution that is not well-formed but still well-matched, whereas
previous methods often fail to produce expected results. We show the usefulness of our method for visualizing set-typed data using
examples from text analysis and infographics. Furthermore, we discuss the characteristics of our approach and evaluate our method
against state-of-the-art methods.

Index Terms—Euler diagrams, Venn diagrams, set visualization, layout algorithm

1 INTRODUCTION

Set-typed data is ubiquitous across many different research areas, such
as multi-label classification [48] in machine learning, RNA and DNA
sequencing [14,20,34] in computational biology, and topic modeling [6]
in natural language processing. There are two prominent methods to
visualize set relations. Venn diagrams [46] show all possible relations
between sets. In contrast, Euler diagrams [16] only depict non-empty
relations. Many special-purpose visualizations have been developed for
set-specific tasks [2]. Still, traditional Venn and Euler diagrams remain
an essential tool for showing set intersections because they are easy to
read, familiar to most users, and can incorporate data points directly.
As such, they are often part of larger systems, such as UpSet [24].

Due to their combinatorial nature, the construction of Venn diagrams
is straightforward. However, automatically creating Euler diagrams of
high quality remains a challenging task, in particular for highly inter-
secting datasets. An Euler diagram should only include relations that
are present in the data and avoid introducing superfluous areas. Further,
the diagram should be monotone [8]. We call Euler diagrams that ad-
here to these properties semantics-preserving, following the definition
of semantics in the domain of linguistics. Accordingly, representing the
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data faithfully and preserving neighbourhood relations are a part of se-
mantics, as how a set intersection is read depends on its neighbours. An
example result of our method and the impact of the above-mentioned
properties is shown in Fig. 1c. The Euler diagram on the right has lost
the symmetry of the Venn diagram (Fig. 1b) but represents the data
faithfully.

First, we introduce and formalize the properties of Euler diagrams.
Next, we propose a two-step algorithm for constructing such diagrams
efficiently. The first step computes the Euler dual, a graph representa-
tion of the diagram. The second step creates the Euler diagram, whose
curves follow guidelines [5] for creating intuitive Euler diagrams. We
show the usefulness and characteristics of our algorithm on three exam-
ples from different domains and compare our method to previous work.
In summary, the main contributions of this paper are:

• SPEULER, a novel method for constructing semantics-preserving
Euler diagrams that yield fast and reliable results.

• Extensive analysis of existing construction methods and how
they relate to properties of the Euler diagrams.

• Three examples from different domains that show the character-
istics and potential of our approach.

• An extensive evaluation based on established guidelines of Euler
diagrams and direct comparison to state-of-the-art methods.

2 CHARACTERISTICS OF EULER DIAGRAMS

Before we go into the previous work that is related to our method, we
want to introduce important properties and concepts of Euler diagrams
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that will help to understand the subsequent sections. Formally, an Euler
diagram is a set of smooth, closed Jordan curves that represent the
different sets [12]. Together, these curves comprise various areas in the
drawing that represent the intersections of the sets. All set relations that
exist in the data can be described by the abstract description—a list of
the existing intersections. Euler diagrams can exhibit several different
properties that directly influence their appearance and effectiveness
in visualizing information. The two most important properties are
well-formedness and well-matchedness, as defined by Chow [12].

Properties An Euler diagram is well-formed, if it is simple (i.e. at
most, two curves meet at any given point and there is no concurrency),
and exactly a single curve represents each set. In a well-matched Euler
diagram, all intersections are correctly represented, thereby retaining
the semantics from the original data: each intersection is represented
only once, and the diagram does not contain areas of intersections that
are not part of the abstract description. Alsallakh et al. [2] discuss dif-
ferent properties of algorithms for Euler diagrams and their connection
to well-formedness. However, there is no such discussion for the well-
matchedness and the interplay between both properties, which plays a
big role in the effectiveness of the diagram [19]. The two properties are
visualized in Fig. 2, which shows a Venn diagram with 4 curves and
their 16 intersections. We use uppercase letters to refer to a curve or all
nodes that participate in a set, and lowercase letters to refer to specific
intersections, which are faces (also called zones) in the diagram. We
will revisit this simple example throughout the next sections to help
showcase our method. Fig. 2 shows the visual differences of adhering
to only one or both of these two properties for the same data. Each
zone is marked with its respective intersection. As can be observed in
Fig. 2a, all four curves intersect on the lower-left corner, resulting in
concurrent lines. By creating a well-matched and well-formed diagram,
this can be avoided (Fig. 2b). It is important to note that many abstract
descriptions exist, for which both properties cannot be satisfied at the
same time, requiring a trade-off. However, as analyzed by Chow [12],
it is currently not possible to infer for a given abstract description if it is
possible to maintain both properties. If a trade-off has to be made, we
adhere to the guidance of the work by Chapman et al. [10], which con-
cludes that users prefer well-matched diagrams over well-formed ones.
As a result, in these cases, our algorithm always produces well-matched
diagrams while minimizing the violations of well-formedness.

Euler Dual A key concept that frequently shows up in construction
algorithms is modeling the Euler diagram as a graph. Instead of thinking
about the Euler diagram as a set of curves, it can be modeled directly
as an edge-labeled graph, called the Euler graph. In this representation,
each intersection of the curves is represented by a node, and each
curve segment is represented by a link, labeled with the respective
curve of the underlying original Euler diagram. Instead of creating the
Euler diagram directly from the data using curves, it is also possible
to indirectly create it by constructing the Euler dual of the Euler
graph. Each node in the Euler dual represents a face of the Euler graph,
and neighboring zones are represented by linked nodes in the Euler
dual. However, in theory, all nodes that differ by one set could be
linked in the dual—a graph that contains all possible links is therefore
called the super dual. The rank of a node in the Euler dual equals the
number of sets participating in that intersection. We can find an ordered
representation of the Euler dual by grouping all nodes of the dual that
have the same rank. The resulting graph is the rank-based Euler dual.
Fig. 2c and Fig. 2d show the respective rank-based duals of Fig. 2a and
Fig. 2b—the non-pairwise intersection of Fig. 2a is equal to the face
ABCD in Fig. 2c. In comparison, all the faces of Fig. 2d are quads—we
will explain what this means for the diagram in Section 5.

3 RELATED WORK

Many set visualization approaches have been proposed in the past.
Good starting points are the survey of Venn diagrams by Ruskey and
Weston [39], or Rodgers [35], who focuses on Euler diagrams. Alsal-
lakh et al. [2] offer a comprehensive survey of set visualizations and
group the techniques based on their best-suited tasks: Element tasks,
set relation tasks, and element attributes tasks.
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Fig. 2: (a) A well-matched diagram and (b) an additionally well-formed
diagram. Well-matched diagrams may exhibit concurrent curves and
points where more than two curves intersect, e.g., the intersection of
curves ABCD. On the other hand, well-formed diagrams do not have
these problems and only have pairwise intersections, e.g., AB. (c) and
(d) show the ranked-based duals for (a) and (b). The concurrency
surfaces as face ABCD in (c). The well-formed diagram instead only
contains faces with 4 surrounding links. We will explain the impact of
this in Section 5.

3.1 General Set Visualization
Alternative approaches to visualize set-typed data are matrix and
aggregation-based techniques, such as UpSet [24] or RadialSets [1].
These are usually very well suited for element and element attribute
tasks. However, they can be verbose to show all set relations at once
when the data is complex.

For spatial data, such as maps, there are also techniques that focus
on highlighting the connections between sets, such as BubbleSets [13]
or KelpFusion [28]. Most methods are not able to directly encode
information of the original data points in a unified visualization. For this
task, Venn and Euler diagrams are especially well suited and therefore
have been combined with glyphs [29], and graphs [32, 40]. Finally,
Jacobsen et al. [22] propose using the metro map metaphor to visualize
set relations in their MetroSets technique. The visualization can show
individual data points for each set relation, and the layout can be fine-
tuned according to different optimization strategies.

3.2 Constructing Venn and Euler Diagrams
Venn diagrams always show all possible set relations, with many differ-
ent methods for their construction [3, 15, 35, 38, 46]. Euler diagrams
are more flexible in this regard, but many construction algorithms are
limited to specific abstract descriptions and might produce unexpected
results [12, 17, 30, 36, 42].

Inductive methods construct diagrams by adding one curve at a time.
Venn himself proposed an inductive method to create diagrams for any
amount of curves. Edwards later proposed an alternative inductive con-
struction method that creates diagrams by projecting the curves onto a
sphere [15]. This method always creates diagrams that are well-formed
and well-matched. However, for a larger number of sets, the result
becomes hard to understand as the area of new zones becomes smaller
and smaller. Other methods focus on the creation of simple, convex
Venn diagrams, e.g., Mamakani et al. [26], which are aesthetically more
pleasing. Ruskey et al. [38] use a general Venn construction method to
analyze methods that create symmetric Venn diagrams. nVenn [33], a
recently developed area-preserving Euler-like visualization technique,
allows users to get a compact overview, even for larger set counts. They
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Table 1: Details of different construction methods for any amount of curves and their properties.

Method Construction
Any

relation
Well-

matched
Well-

formed Monotonicity simple
Duplicate

curves
Non-pairwise
intersections

SCD [38] / nVenn [33] Euler dual yes no no yes no no yes
Stapleton [44]/ Rodgers [37] direct yes no no yes yes yes no

Venn [46] direct yes no yes yes yes no no
Edwards [15] direct yes no yes yes yes no no
vennEuler [49] direct no no yes yes yes no no
eulerr [23] direct no no yes yes yes no no

Chow-Ruskey [11] Euler dual yes yes no yes no no yes
Simonetto [43] Intersection graph yes yes no yes yes yes no
MetroSets [22] hypergraph yes yes no no - - yes

Flower [17, 18]* Euler dual no yes yes yes yes yes no
Our method Euler dual no yes yes yes yes yes no

*Note: The authors only provide a rough sketch of their method.

use a conventional Venn construction algorithm [38] as its initial layout
and adapts it using a force-directed optimization. It heavily relies on
the initial positioning and parameters of the force-directed strategy.

If the given dataset does not cover all possible set relations, Venn
diagrams produce additional (unwanted) zones, and the diagram is
not well-matched. For diagrams that are not well-matched, there is
a discrepancy between the semantically correct representation of the
abstract description and the visualization. Oftentimes, this problem is
solved using shading to mark such additional faces [44,46]. In any case,
this encodes unnecessary information that the reader has to process. A
solution to this mismatch is well-matched Euler diagrams.

By design, methods that create Euler diagrams are usually well-
matched. Their drawback, however, is that they often cannot make
any guarantee about the aesthetics of the diagrams, i.e., their well-
formedness. Results might contain crossings, concurrent curves, and
non-smooth shapes. To alleviate this problem, Stapleton et al. [44]
proposed an inductive method to create (semi) well-formed Euler di-
agrams using circles. Such diagrams weaken the constraints of the
well-formedness and allow curve labels to be used multiple times. A
current hindrance in the application of Euler diagrams is that most
methods only produce expected results for certain datasets. Users do
not know beforehand which method will produce well-formed or well-
matched diagrams or if it will produce a valid result at all. Existing
implementations often fail silently without producing any results or
create unwanted zones without communicating this to the user.

It is challenging to create a well-formed and well-matched diagram
for any abstract description because of the intricate interplay between
the different properties. Therefore, many construction methods that
only optimize for one property often cannot make guarantees for the
others. This can be seen in Table 1. Usually, an Euler diagram is either
directly constructed via curves or indirectly through an intermediate
representation, which is then transformed into the Euler diagram. Ex-
amples are constructions using the Euler dual, Euler graph, connectivity
graph, closeness graph, or intersection graph. Based on the surveys by
Ruskey [39], Rodgers et al. [35], and Alsallakh et al. [2], we created
Table 1, in which we compare different properties of Euler and Venn
construction methods.

It should be noted that the properties of the final Euler diagram highly
depend on the used construction steps as well as the properties of the
intermediate representations. As we can observe from the table, direct
construction methods usually produce well-formed diagrams, as they
directly model the curves. This means the produced curves are usually
constrained heavily, for example, by only using circles. As a trade-off,
they only produce Venn diagrams or introduce unwanted zones for
higher set counts. Alternatively, indirect methods only create the exact
intersections needed and then transform the graph to the diagram but
fail to create well-formed diagrams from them. Some methods try
to transform non-well-formed diagrams into more aesthetic ones, but
doing this in hindsight is often not possible. Examples can be found
in [36, 43–45]. There is only a single approach that allows for the

creation of Euler diagrams of any amount of curves that are both well-
matched and well-formed. Flower et al. [17] propose an initial sketch
of a solution but do not propose a general implementation. They resort
to heuristics to create solutions for less than 5 curves. There are two
main differences between our algorithm and the approach by Flower et
al. [17]: They do not use the rank-based dual as an intermediate, and
they cannot fall back to a sub-optimal solution when no well-formed
and well-matched result exists.

3.3 Evaluation of Euler Diagrams

As mentioned previously, the properties of Euler diagrams can be
generally divided into well-matched and well-formed diagrams. How-
ever, there are many more properties that influence the semantics (e.g.,
monotonicity) and the aesthetics (e.g., shape, color, and symmetry). A
general overview is given by Blake et al. [5], which introduces different
guidelines that good Euler diagrams should adhere to. They directly
compare real-word examples with adapted diagrams, which follow
their proposed guidelines. Comparing both, such diagrams improve
user comprehension. However, it is still unknown which of the guides
might have a larger impact, and how they might influence each other.
There are several studies that analyze the readability of well-matched vs.
well-formed diagrams [10, 47]. Chapman et al. [10] compare various
types of set diagrams and found that linear diagrams outperform all
other methods, followed by unshaded Euler diagrams. They explain
their results by the well-matchedness of those approaches, combined
with well-formedness as a secondary influence. Rodgers et al. [37]
evaluate methods that combine the Euler diagram with a graph of the
datapoints. As their results are not consistent with previous studies of
the same methods, they suggest that this might be due to them using
datapoint specific tasks, whereas the previous studies used intersection
related tasks. They conclude that for graph specific tasks, the properties
that we summarize as “semantics preserving” may explain why some
methods perform better than others. Wallinger et al. [47] compare Euler
diagrams with MetroSets and LineSets for set-related tasks.

To conclude: it is still an open problem to design and implement
an algorithm that produces well-matched and well-formed Euler di-
agrams for any amount of curves if the abstract description allows
for it. Generating Euler diagrams with specific properties was also
identified as an open problem by Alsallakh et al. [2]. Depending on
the existing relations in the data, some properties are impossible to
guarantee. We therefore propose a semantics-preserving construction
method that generates Euler diagrams for any amount of curves. It
creates well-matched and well-formed diagrams if allowed for by the
data. If not, we retain the well-matchedness and relax as few individual
properties as possible that infringe the well-formedness.

4 OVERVIEW

Our method constructs Euler diagrams for a given list of sets and their
intersections—the abstract description. For example, the three sets
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Fig. 3: Overview of our method: After finding all set intersections that exist in the dataset (a), the rank-based Euler dual is created from the
abstract description (b). The graph is then transformed to be circular, and nodes are arranged in a well-distributed manner across several rings (c).
In (d) we create the final curve for each set using splines.

{A,B,C} can have relations { /0,a,b,c,ab,bc,ac,abc}, where we ab-
breviate the zone A∩B∩C with abc. However, in real-world data
usually not all intersections are realized, for example, the intersection
ac could be missing. For some abstract descriptions, it is possible to
find well-matched and well-formed diagrams. However, there are also
many configurations where this is not possible—in these cases our algo-
rithm yields well-matched diagrams, while minimizing the violations
of the well-formedness property. We provide further discussion on the
influence of the abstract description on these properties in Section 8.

Our algorithm consists of four main steps, see also Fig. 3. Starting
from the abstract description (Fig. 3a), we first find the appropriate
order in which we place each set. Our algorithm then iteratively grows
the graph based on this order while ensuring that new nodes conform
to the well-formed property. After finding the connected, planar rank-
based Euler dual (Fig. 3b), our algorithm arranges the nodes in a
circular layout (Fig. 3c), which we then use to draw the curves that
correspond to each set. Because of the properties of the dual, it is
possible to generate a planar Euler diagram (Fig. 3d) from this circular
layout. We use smooth curves to create compact and simple shapes. In
contrast to other techniques, we guarantee a semantic match between
the data and the final diagram. In addition, by creating mostly simple
set curves and diagrams, we support the readability of the diagram,
avoiding unnecessary crossings and concurrency of curves.

To demonstrate the usefulness and evaluate the characteristics of our
algorithm, we implemented a prototype in JavaScript and D31. This
implementation also allows stepping through the individual steps of
our algorithm. The prototype shows exemplary abstract descriptions
that can be found in the paper, as well as different interactions that
support set-related tasks such as visual identification of subsets and
hovering. The implementation of our prototype, together with the
example datasets, can be found online2.

5 RANK-BASED EULER DUAL

We already introduced the rank of an intersection in Section 2, which
is the number of its involved or participating sets. In the context of the
Euler dual, we will call these intersections nodes. For example, the
node a has rank 1, while node ab has rank 2. In the rank-based Euler
dual, there can only be a link from a node with rank r to a node with
rank r+1. This means that with each link, an additional set gets added
to the intersection. In the example above, this is the set b, which we
call the color of a link. By definition, a link always has a single distinct
color. Accordingly, we color the links in the figures containing Euler
duals throughout this paper.

Our goal is to draw Euler diagrams with minimal violations of the
well-formedness property. As we create our diagram using the dual,
we need to find the equivalent property in the dual that guarantees a
well-formed result—the faces of the dual. A face in the Euler dual

1D3: https://www.d3js.org
2https://github.com/RKehlbeck/spEuler

Algorithm 1: Dual construction algorithm

1 function createDual(nodes[])
2 G← group nodes by extended set and rank
3 G← sort G by rank(Gi0) and len(Gi)
4 forall S in G do
5 R← group S by rank
6 forall r of R do
7 cos← Calculate COs for r
8 r← sort r by len(cos) and dist twin
9 forall n of r do

10 list← []
11 forall co of cosn do
12 forall possible position p of co do
13 pp←{len(co),#mono,#cross}
14 list.push(pp)
15 end
16 end
17 sort list to maximize monotone faces
18 insert node(list[0])
19 remove crossings()
20 end
21 end
22 end

is an area that is enclosed by links and nodes. Monotone faces are
enclosed by exactly four links that have two alternating colors. It is also
important to note that by this definition, monotone faces always span
exactly three ranks in the Euler dual. Monotone faces are essential for
well-formedness, as they limit how many curves can intersect at a given
face—this directly corresponds to how simple the final Euler diagram
will be. Fig. 2 shows an example of a monotone and a non-monotone
face. Our goal is therefore to remove possible links and reorder the
nodes across all ranks until we are left with a connected, crossing-free
and monotone version of the dual. Computing the rank-based dual can
be structured into three parts: First, we group the nodes and decide in
which order these groups should be placed (lines 2–3). Second, we
look at each of the groups and sort the nodes by rank, and improve the
sorting using consecutive ones sequences (Section 5.2) and distance
to the previous set group (lines 5–8). Finally, we place each node so
that it maximizes the number of monotone faces while linking them to
the already existing nodes in the graph, removing unwanted crossings
(lines 13–19).

5.1 Grouping by Participating Sets

As described in the previous section, each node has one or more par-
ticipating sets. To create the dual, we start by separating these nodes
into groups (line 13). We first sort the sets by the lowest rank of each

4
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Fig. 4: Creating the Euler dual: (a) shows the initial order of nodes and their respective groups. (b) Simply inserting the nodes with this initial
order results in a dual that is non-planar. (c) We first remove crossings by changing the insertion order. (d) We finalize the graph by choosing the
consecutive ones sequence which does not destroy monotone faces. The final result is a planar graph.

set, and the number of nodes they participate in (line 18). In practice,
this means that sets that contain nodes with lower ranks such as a are
considered first. We then iterate over the individual sets and group
nodes that extend the nodes of the previous set with the current set (set
extension) in the previously computed order. An example of this can be
seen in Fig. 4a: Nodes are arranged vertically by rank and the different
colors represent the resulting groups from each extension step. The
numbers for each node describe the order in which nodes are added to
the groups. Grouping the nodes using the extension of each set gives
us a general order in which nodes are inserted into the dual graph. For
each group, nodes are inserted in a rank-based order. Meaning nodes
that have a lower rank are placed first. However, this on its own is not
enough. If we were to insert the nodes in the order determined only
by their rank and grouping order, the resulting dual will not be planar.
This can be seen in Fig. 4b. Here, we are currently inserting the nodes
from the red set with rank 2. If we naively insert and connect nodes,
each node of the rank is connected to all nodes in the rank above using
all possible links. Therefore, we need to establish the correct order for
the nodes within a group, and the correct subset of links, which we will
discuss next.

5.2 Consecutive Ones Sequences

To determine the order of nodes within a group we need to introduce
the concept of consecutive ones (CO). Imagine the following scenario:
Given an adjacency matrix of a graph, this graph has the consecutive
ones property, if we can reorder the rows of the adjacency matrix so
that all 1s in the columns are consecutive. This property was defined
by Booth, and is true for graphs that have a planar embedding [7]. A
consecutive ones sequence is then a group of consecutive nodes. As we
want to create planar duals, we can use this property in our construction
algorithm. Remember our goal is to insert nodes into the Euler dual so
that as many monotone faces as possible are created. We do not need to
realize all possible links between nodes. The only thing that we need
to ensure is that the resulting graph is planar and connected. In the
rank-based dual, it suffices to ensure the CO property for neighboring
ranks. As there are more links in the abstract description than we need
for the Euler dual, there are also multiple potential CO sequences, from
which we choose the CO sequence that maximizes the number of
monotone faces.

If we think back to the overall goal, which is to maximize monotone
faces, we can see that the longer the consecutive ones sequence is,
the more monotone faces are closed and created, when inserting the
corresponding node. Therefore, we change the order of the nodes on
each rank, so that nodes with longer CO sequences are placed before
nodes with shorter consecutive ones sequences. If the length of COs is
equal, we further sort the nodes by their respective twins in the previous
group, without the current set, and sort them by their distance to the
closest CO sequence of length 1 of the current group in the rank above
(dist twin in line 8) In the example of Fig. 4c, we can see that by
reordering the nodes so that we first place node 12 and 9 , and then

node 10 , the nodes 12 and 9 will not produce crossings anymore.
However, as shown in Fig. 4c, some crossings still remain. To adhere

to the CO property, all possible CO sequences of a node have to be
reduced to a single CO sequence. For example node 10 has two possible
parents nodes in the rank above—nodes 2 and 8 . The latter two are
not adjacent, as they generate two CO sequences. So, to insert 10 , we
have to choose one of the two.

For each CO sequence and for each possible position in the current
rank, we calculate a set of attributes that helps to make the decision
where to place it. These attributes consider the length of the CO
sequence, and the change in #monotone Faces and #crossings (line 8).
We collect these attributes across the CO sequences and the possible
positions of the node in a list. As an example, a new node might destroy
an existing face, if we place it inside the face. Because the newly
inserted node has to be connected to the next rank, a crossing will
appear, and the #monotone faces decreases. After we have sorted the
list accordingly, we insert the node at the current best position (line 18),
resolve crossings (line 19), and move on to the next node.

Returning to our previous example, which can be observed in Fig. 4d,
the CO sequence d is chosen, because this way no previously created
face is destroyed. This is because the node 8 has already been inserted
in the rank above, and has created an open space between the nodes 12

and 9 . We therefore insert the node 10 into this open space, keeping
existing monotone faces intact.

Once all nodes of the current rank have been placed, we continue
on to the next rank. If we have placed all nodes of the current group,
we move on to the next set, get all its nodes, sort the nodes on each
rank, and insert the nodes, rank by rank. Using this method, it is
possible to create Euler duals that are connected, planar and contain
only monotone faces. We will discuss problematic cases, where this is
not possible, in Section 8.

6 CIRCULAR LAYOUT OF THE EULER DIAGRAM

Based on the rank-based Euler dual, we can create the curves of the
final Euler diagram. We do this by first removing the empty set and
then arranging the nodes in a circular layout (Fig. 3c). At the center
of this layout is the intersection with the largest rank, which is usually
the full-set. The other nodes are placed on rings around the center,
depending on their rank. Using this layout, we then devise a strategy to
draw smooth curves that result in the final diagram (Fig. 3d).

6.1 Circular Layout
To guarantee a good distribution of nodes on each ring, we need to
place the nodes at well-defined distances to each other. The rank with
the largest number of nodes—usually the middle rank—is placed first
to guarantee an overlap-free and well-distributed result. Rings are then
placed outwards and inwards of this rank. The radii are chosen so that
there is still enough space in the inner rings for all nodes, while the outer
rings are not too distant from each other. Distributing nodes evenly on
each ring can result in clutter in the ranks above and below. Therefore,
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we place nodes so that enough space is reserved for their children and
parents. Accounting for this, nodes with many children require more
space compared to nodes with only a few children. This approach is
similar to the layout of radial trees, but with the tree growing in both
directions. The circular layout is then used to create the final Venn
diagram. Fig. 5a shows the circular distribution of the Euler dual from
Fig. 2c. On each ring, the nodes are well-distributed.

6.2 Drawing Curves
To create an Euler diagram from the dual, the simplest approach would
be to use the convex hull of the nodes for each set to create a closed
shape. However, such a curve would not consider the nodes outside of
the current set. This results in closed curves that create many unwanted
zones and a very uneven distribution of areas across the faces. This is
clearly not well-matched and decreases readability.

Therefore, we developed an approach to directly control the curve
of each set by introducing additional virtual nodes that act as control
points for its shape. We call these nodes gate nodes. They lie on the
same circular path as the intersection nodes but are distributed so that
they always lie at the midpoint between two nodes on the ring (Fig. 5b,
dark gray circles). When we move between ranks, we cross different
circular paths in the circular layout, depending on the ranks of the
current and following link. As we want to control the shape, we define
where this crossing is allowed to happen: only at a gate node position.
Due to the properties of the circular graph, which is still a dual of the
Euler diagram, we can then create a set curve by finding the order of
the links of each set and connecting the midpoints of the links with
the gate nodes. This generates a path that moves between the rings,
“cutting” the dual graph into two disconnected components.

Using the gate nodes in combination with the midpoints of the
links in their respective link order, we create a mostly compact, closed
curve for each set. Additionally, we can control the shape of the curve
by using different interpolation strategies and adapting the link-mid
point. We achieved the best curve results using Catmull-Rom splines.
Fig. 5b shows a circular graph with the shape of a set defined by
intersection link midpoints and gate nodes. Even though we use splines
in our approach to maximize the smoothness, it would be possible to
constrain the curve further to generate curves that can only use diagonal,
rectangular, or octagonal lines.

6.3 Concurrency
Euler duals that only consist of monotone faces will only have pairwise
crossings in the diagram. However, if we have a non-monotone face,
this is not the case. Instead, we will create non-pairwise crossings.
Curves that use the same gate nodes to cross a ring will produce a
concurrent curve segment. To retain a well-matched diagram, we
control the curves, which avoids creating unwanted zones. This means
that for concurrent segments, each curve is offset according to the
order in which they enter the concurrent segment. As the Catmull-Rom
interpolation cannot handle straight line segments easily, we instead
split the curve into different segments and add additional points to
create segments that are concurrent. This can be observed in the bottom
left part of Fig. 5b. If the concurrency is not a straight line but instead
happens on the outside of the diagram, we create the curve normally
but offset the curves as previously explained. These are then combined
with normal curve segments to create the final closed smooth shape for
each set.

7 EVALUATION

We directly compare our method to several other state-of-the-art ap-
proaches across three different datasets. Many older set visualization
techniques are not made publicly available [43,47], so it is not possible
to compare ourselves directly to them, or they only work on a very
limited amount of set curves [31]. We evaluate our method against ven-
nEuler [49], EulerR [23], SetNet [37], nVenn [33], and MetroSets [22].
vennEuler, EulerR, and SetNet only allow circles as curves, whereas
nVenn allows for arbitrarily shaped curves. MetroSets are conceptually
different from the other techniques as they only produce the Euler graph
as an output. Therefore, we only compared them based on criteria that
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Fig. 5: To define the shape of the Euler diagram, we order the links for
each set along the circles and shape them with gate nodes—shown here
as grey dots—between the intersection nodes. This enables us to fine
tune their shapes.

can be applied to the lines of the graph, such as line intersections,
concurrency and overall compactness. Some of these approaches also
have an additional weight parameter for each intersection that is used
to create area-proportionate diagrams. Because such factors skew the
comparison, we used an equal weight for all set intersections in these
methods to unbias the individual areas. MetroSets allow to directly
show data points—examples can be seen in Fig. 7b and Fig. 6f. This
is not supported by other methods, including ours. To overcome this,
the datapoints in Fig. 7 and Fig. 1 were added manually. As datasets,
we chose three examples from different domains: topic modeling and
info-graphics. These datasets show a wide variety in their structure,
as well as the kind of datapoints that can be overlayed on top of the
diagram. We will discuss the results according to well-matchedness,
well-formedness, as well as additional properties that we are going to
introduce in the next section.

7.1 Guidelines for Euler diagrams
We base our evaluation on the guidelines proposed by Blake et al. [5].
They define 10 different measures which can be used to judge the
quality of Euler diagrams, ranked by their importance. There are three
properties that we will not discuss in detail: Diverging lines, orientation,
and color. Diverging lines are not applicable, and orientation is not
considered by any method presented. It can also easily be changed by
rotating the visualization. In order to strengthen the comparability of
the methods we changed the color and style of all evaluated works to
match ours. As Blake et al. [5] found that only outlines are preferred,
we refrain from filling the curves. Some of the measures, such as
well-matchedness (P1) and well-formedness (P2), have already been
defined in Section 2. The others will be described briefly. They all
relate to the form of the diagram but are not captured in the notion of
well-formedness.

Curve Guidelines The Compactness (P3) defines how close a
shape is to a perfect circle. Blake et al. [5] call this property shape, as
they only consider circles. This is closely connected to the convexity of
a shape, and there are further studies on the general understanding of
convex vs. non-convex shapes [4,21,41]. In general, they conclude that
convexity allows users to finish set-related tasks faster, albeit it might
make individual curves harder to distinguish. Smooth curves (P4) are
preferred by users and result in diagrams that are easier to read.

Diagram Guidelines Symmetry (P5) can also be beneficial if
the curves are as symmetric as possible while retaining the features
that distinguish individual faces. This property measures the similarity
across all shapes in a uniform way. Circular approaches will always
retain perfect symmetry, while more relaxed shapes might produce sym-
metric, pseudo-symmetric, or non-symmetric results. If the diagram is
symmetric, finding a given intersection face can be challenging because
many faces will have a similar shape. Therefore shape discrimina-
tion (P6) is another important property, which defines the uniqueness
of individual faces, and allows for effective search tasks. Zone area
equality (P7) measures the area of each face in relation to the other
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Fig. 6: Comparing relevant previous works for Euler diagrams of a topic modeling dataset. Problems in the results are marked: these can either be
not well-formed (P2), not well-matched (P1), or create zones that only have very little area (P7). Our method produces a result that does not
destroy the well-formed and well-matched properties. The areas of the zones are distributed evenly and the shape is compact.

faces. In general, for Euler diagrams that are not area-preserving, the
area of each zone should be as similar as possible. Area-preserving
Euler diagrams, in contrast, try to adapt the size of faces to be equal to
a property, for example, to the number of contained data points (car-
dinality). Infringing this property means that users might misinterpret
the difference in size as a difference in the cardinality of the face.

7.2 Topic Modeling

Using latent Dirichlet allocation [6], a common topic modeling al-
gorithm, we extracted 5 topics from a political debate. The result of
such a topic modeling algorithm is usually a list of keywords that de-
scribe each topic, together with their probability of belonging to said
topic. We filter keywords to retain words for many combinations of
topics while still creating an interesting abstract description that has a
well-matched and well-formed diagram.

One common problem of topic modeling results is that it is very hard
to visually compare them just using their descriptive keywords. Often
words are attributed to multiple topics, but just representing them as a
list, one cannot easily discern this. These words, however, might be of
special interest to the user. They might describe all the topics very well,
in which case the topics might be very similar to each other, or they
might be general ”common” words that should not be considered by
the topic model algorithm, as they reduce the descriptiveness. In this
section, we only show the resulting curves; the full diagram including
the words can be found in the supplemental material.

Fig. 6 shows the results for the above dataset across all methods. For
easier comparison, we have highlighted problematic zones in the respec-
tive diagrams, which result from infringements of the well-matchedness
(P1), well-formedness (P2), and area-equality (P7) properties. Only a
subset of the infringements is shown, as the diagrams might otherwise
become unreadable. Some approaches are very similar (vennEuler and
EulerR), while others diverge substantially.

Most methods preserve the abstract description faithfully (P1). How-

ever, both EulerR and nVenn create intersections that do not appear in
the abstract description. nVenn even realizes some relations with multi-
ple faces, that appear in different parts of the visualization. Regarding
well-formedness (P2), we can observe that all circular visualizations
(b-d) are simple. However, this comes at a cost: SetNet creates dupli-
cate curves for E, while the other two approaches are not well-matched.
nVenn and MetrosSets are not simple, as they contain non-pairwise
crossings and concurrency. vennEuler, SetNet, and EulerR use circles
and are therefore perfectly compact (P3). But nVenn also produces
relatively compact shapes. MetroSets, on the other hand, produce a
very spread out intersection graph that does not fit into a compact shape.
All results that produce Euler diagrams create smooth curves (P4).
Symmetry is not considered in any of the related work (P5). Circular
methods create zones that are easily distinguishable, whereas the zones
produced by nVenn are very similar to each other. As MetroSets only
create intersection nodes, no real shape is created that can be considered
here (P6). All of EulerR, VennEuler, SetNet, and nVenn create very
small zones that are difficult to recognize (P7).

Our method produces a both well-matched (P1) and well-formed
(P2) result. The resulting shapes are mostly compact (P3). As we
use curve interpolation, the produced curves are smooth (P4). In our
method, some curves retain their symmetry at least partly (P5). How-
ever, because of this, the zones are also more similar, affecting how easy
they are to distinguish (P6). The area of the zones remains relatively
equal across all ranks (P7). In summary, our method retains the guide-
lines better than all other related works, except for zone discrimination,
where we lie between nVenn and vennEuler/EulerR. Most important,
the result is a well-matched and well-formed diagram.

7.3 Size Venn Diagram
As a second example, we show a Venn diagram published on
xkcd.com3 in Fig. 1a, that describes possible combinations of words

3By RANDALL MUNROE at https://xkcd.com/2122cbn
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(a) Original (b) MetroSets (c) SetNet (d) Our method

Fig. 7: Here, we show a dataset of infographics concerning different supranational Caribbean bodies and their contained countries (a). While
MetroSets is well-matched, the visualization requires a lot of space to show all the data points (b). Therefore, we introduced a discontinuity
between Costa Rica and Colombia. SetNet introduces unwanted zones, as a does not contain any data points (c). Our diagram has only a
single concurrency and is well-matched (d).

in combination with five different adjectives: little, large, small, great,
and big. The original visualization uses a 5-Venn diagram to show
which words can occur together with these adjectives. However, there
are some combinations for which no words were specified, such as
little, large and great.

We can recreate the symmetric 5-Venn diagram used by the author
using our algorithm, as can be seen in Fig. 1b. The words for each
relation are added manually on top of the generated layout. This gives
us the direct equivalent to the hand-made Euler diagram by the author.
Then, we can remove the empty intersections and instead create a well-
matched (P1) Euler diagram. In this case, the result is not well-formed
(P2), so we retain minimal concurrency as well as one non-pairwise
intersection. The resulting curves are mostly compact (P3) and smooth
(P4). As only a few relations are empty, the diagram retains its high
symmetry (P5), but in turn, many zones are similarly shaped (P6). The
area is evenly distributed across the zones (P7). A comparison across
the related works can be found in the supplemental material.

7.4 Supranational Caribbean Bodies

We recreate another info-graphic visualization published on Wikipedia
commons4, where countries are grouped by organizations. In this case,
we look at all Caribbean countries that are contained in Supranational
Caribbean Bodies. There are three different bodies: the Association of
Caribbean States, the Caribbean Community, and the Organization of
Eastern Caribbean States. However, not all intersections between the
three exist, as there are no countries for some relations. The original
visualization uses a 3-Venn diagram to visualize the relations. Existing
relations are filled with flags that represent each country. This makes
the visualization quite large, as a lot of space is needed to visualize the
empty intersections, even though no data is shown.

As an additional comparison, we show how SetNet and MetroSets
visualize this data set. In Fig. 7c, we can observe that SetNet does not
always preserve well-matchedness (P1), as an empty zone is created.
SetNet handles this by placing red dots inside faces that are part of the
abstract description. Since we already show the flags of the countries
that belong to each intersection directly, we chose to omit this in our
recreation. MetroSets (Fig. 7b) shows all the data points, in this case
countries, directly in the visualization. However, the visualization needs
a lot of space, as lines extend outwards, resulting in a non-compact
shape (P3).

Using our technique, we can visualize the relations as a well-matched
(P1) Euler diagram. The diagram has concurrency, as some bodies do
not contain countries that are only in this body, and is therefore not
well-formed (P2). Curves are compact (P3) and smooth (P4). The
symmetry is limited (P5), but still the zones are similar (P6). The area
is evenly distributed across the zones (P7). Our visualization allows
the reader to immediately see that there are four relations in total. The
central intersection is shared for all three bodies, while there is a single
relation that has outer concurrency.

4By WDCF at https://w.wiki/39HJcba

{}

ac

abc

cb

ab

(a) non-monotone faces

{}

c

bc

b

ab

a

ac

(b) no common sink

Fig. 8: Examples with problematic abstract descriptions: (a) non-
monotone faces will result in complex Euler diagrams. (b) If there is
no shared intersection on the highest rank, a non-pairwise intersection
will appear in the center of the diagram.

8 DISCUSSION AND FUTURE WORK

First, we will discuss runtime, problematic abstract descriptions, and
alternative construction methods. Then we will further analyze the
influence of design decisions on the aesthetics of the visualization.

8.1 Runtime
We performed experiments to compare the runtime of our approach to
two other state-of-the-art methods. Because of its optimization strategy,
MetroSets does not scale well with the number of nodes and increases in
quadratic time [22]. SetNet extends the iCircles [44] algorithm and runs
in polynomial time. For lower node counts, our algorithm has similar
runtime (n = 64, 0.072s) to SetNet (n = 64, 0.14s), whereas MetroSets
is a bit slower (n = 64, 2s)5. For larger number of intersection nodes,
we can still achieve fast results (n = 1024, 27.48s). Our approach is
a greedy algorithm that uses grouping and reordering to reduce the
search space of possible positions for a new node. This allows us to
avoid complex optimization strategies, making the output deterministic.
From our experiments, we expect our algorithm to run in polynomial
time with the grouping of nodes (Section 5.1) as the limiting factor.
However, we hope to prove stronger bounds for this in future work.

8.2 Problematic Abstract Descriptions
As we have discussed before in Section 2, the layout of an Euler
diagram strongly depends on the abstract description, and in particular,
if there exists a well-formed solution for it. Our method handles this by
relaxing the well-formedness properties if otherwise no such diagram
can be found while guaranteeing the well-matchedness property. In
contrast, other related works, such as eulerR, vennEuler, nVenn, or
sometimes even SetNet, fail silently for these abstract descriptions or,
arguably worse, create diagrams that are not well-matched. As we
rate well-matchedness above all other attributes, this usually means
for problematic abstract descriptions that we create non-monotone
faces. An example of this is shown in Fig. 8. If there is no common
intersection for all sets, all sets will intersect in the center of the diagram

5All experiments were run on a desktop PC with an Intel i5-8400 CPU.
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and cause a non-pairwise intersection(Fig. 8b). If there is no monotone
connection between the empty set and the lowest-ranked nodes, the
outer curve will have concurrent curves, as can be seen in Fig. 7d.

There is one aspect of abstract description that we have not consid-
ered so far: In some cases, it can happen that the resulting diagram as a
whole could be disconnected, or only some sets will have a disconnect,
meaning nodes cannot be connected via a strong monotone link to at
least one parent node and one child node. These datasets can currently
not be visualized in our tool. We plan to remove this limitation in future
work, by having special solutions for these disconnected components,
for example, separation of the nodes so that each disconnected compo-
nent is visualized by its own curve or concurrency on the rings, similar
to the method of collapsing faces by Chow [11].

Finally, we want to point out that although our algorithm always
produces a valid well-matched result, so far we have not proven that
this result is optimal with respect to minimal violations of the well-
formedness property. We also aim to pursue this in future work.

8.3 Alternative Construction Methods
Initially, we also tried alternative construction methods for Euler di-
agrams. We adapted the backtracking algorithm that Mamakani et
al. [26] proposed for finding symmetric Venn diagrams to handle arbi-
trary Euler diagrams. The basic idea behind this technique is to find
suitable crossings by permuting the order of curves. We used this ap-
proach to investigate the proportion of abstract descriptions for which
well-formed diagrams exist. The number of possible intersections
grows drastically with each additional set: For n = 4 there are 65K+
combinations—for n = 5 there are already 4M+ possible combinations.
Furthermore, we only consider descriptions where each node has at
least one incoming and one outgoing link, all sets have a common
source as well as sink, and the empty set always exists. As described in
Section 8.2, these are the abstract descriptions for which the diagram is
connected and monotone. This lowers the combinations significantly
to 3152 for n = 4. Using the modified backtracking, we found that for
n = 4, only 125 out of the 3152 combinations have monotone diagrams
(3,96 %). In the rest of the cases, the backtracking approach would
find no solution at all. The reason for this is simple: Backtracking
cannot readily find sub-optimal solutions, which motivates our pro-
posed method. By allowing non-monotone faces as the last resort, our
approach always yields a valid Euler diagram.

8.4 Design Considerations
Curves When we create the diagram using our method, we use

customized splines to create a single, smooth curve for each set. We
have also performed experiments using convex hulls and linear poly-
hulls for drawing curves, but these approaches cannot guarantee well-
formedness, which is why we chose Catmull-Rom curves. In particular,
we segment the curve into parts and use different strategies depending
on what kind of curve segment occurs. There are three different types of
segments: regular segments, U-turn segments, and concurrent segments.
This differentiation allows us to be flexible in our choice of interpolation
strategies, and we can control the smoothness of the curve by adapting
the number of control points. For instances where concurrency cannot
be avoided, we tried different approaches to mitigate it, e.g., concurrent
lines or thinner lines so that equal line width is retained. Another
approach would be dashed stroke segments with alternating colors.

Another interesting consideration is how to visualize the individual
intersections. We show the curves without filled-in areas [5]. The
problem with filling the areas of the curves is that, because of blending,
each intersection will have a unique color that is not part of the original
color set. With increasing number of sets, the visual difference between
these colors decreases, which makes it hard to distinguish the intersec-
tions. Methods have been developed to alleviate these effects [2], but
we consider their application out of the scope for this paper.

A limitation of using Catmull-Rom curves is that for large abstract
descriptions, curves might become complex and non-convex, which
might have a negative impact on the readability of the diagram. This
effect can already be observed Fig. 1c, and it increases for highly-
intersecting datasets, which can also be seen in the supplementary.

Solutions to this problem could either be to directly adapt the Euler
dual by reordering nodes, or to post-process the faces of the diagram
by optimizing the convexity of their outline.

Area-proportionate Diagrams Cardinality is an important char-
acteristic that is inherent to the data, if it exists in a given dataset.
Currently, our method does not incorporate information about the car-
dinality of set intersection nodes. In the future, we plan to integrate a
method to adapt the zones to given data point weights, creating area-
proportionate diagrams, and fill these zones automatically with data
points. This will also remove a current limitation of our tool, as it does
not scale with large number of datapoints in a single zone.

Symmetry Another factor that influences the aesthetics of the
diagram is symmetry, which many approaches do not retain. However,
we believe that symmetry is an important aspect to investigate with
regard to user engagement. Symmetric objects are often perceived as
more aesthetic [9], especially so rotational symmetry [25]. However,
striving for symmetry goes against the guidelines by Blake et al. [5],
which we introduced in Section 7.1, as symmetry leads to zones that are
visually very similar to another. These violate the shape discrimination
property (P6) and can hinder user-understanding. An extreme example
of this is nVenn. Ultimately, we believe that this is a trade-off that has
to be made depending on the goal of the visualization. For efficiency,
the diagram should be simple and easy to read. If, on the other hand,
the goal is to achieve an aesthetic representation, a more symmetric
result can be chosen, based on user preference. By default, our method
creates well-matched diagrams. Depending on the task, it can also
make sense to draw empty intersections to emphasize the absence of
instances. An example of this can be seen in Fig. 1b.

Using our method, it is also possible to create well-matched and
well-formed Venn diagrams for any number of curves very fast. This is
because of the inductive nature of Venn diagrams. Because each new set
in a Venn diagram doubles the number of nodes, we can simply for each
rank inverse the order of the nodes in the rank before, extend the nodes
using the new set, and insert the nodes and links. However, currently
some artifacts appear at higher set counts (n≥ 8). This is because the
space of the individual faces is compressed a lot. We plan to improve
our curve interpolation to handle Venn diagrams with more curves. The
current problems can be observed in the supplementary material. A
more difficult problem is creating symmetric Venn diagrams. Currently,
we are able to create symmetric Venn diagrams for 5 and 7 sets by
constricting the number of children a node can have. This influences
the insertion strategy so that CO sequences are preferred that have
fewer children while still maximizing monotone faces. It is still an open
problem to find simple symmetric Venn diagrams for any prime number
of sets, and the largest to be produced is a 13-Venn diagram [27].

9 CONCLUSION

We have presented SPEULER, a novel approach to create well-matched
Euler diagrams that focuses on creating mostly simple, planar, and
connected solutions. The visualization of highly connected sets is a
challenging problem, as the number of possible intersections increases
exponentially with the number of sets. Our solution is fast and can
scale to a large number of intersection nodes. We imagine our technique
and accompanying visualization to be used as a part of larger a system
that gives a brief and intuitive overview of set-typed data.
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