
Digital Object Identifier no. 10.1109/TVCG.2021.3114851

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022 227

Manuscript received 21 Mar. 2021; revised 13 June 2021; accepted 8 Aug. 2021.
Date of publication 29 Sept. 2021; date of current version 22 Dec. 2021.

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See https://www.ieee.org/publications/rights/index.html for more information.

COVID-view : Diagnosis of COVID-19 using Chest CT
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Fig. 1. An overview of the user interface and visualizations in our COVID-view system. (a) Snapshot of the user interface containing
2D and 3D views. (b) Results from our deep learning binary classifier showing COVID positive diagnosis. (c) Axial view with lesion
segmentation outlines (red) and Grad-CAM activation heatmap overlay for explainable classification results. Both heatmap and lesion
localization outlines point towards the interlobular septal thickening. (d) Clipped 3D view with lungs and vicinity context volume rendered
together showing the 3D rendering of the thick interlobular septation (pink surface-like structure in the right lung).

Abstract— Significant work has been done towards deep learning (DL) models for automatic lung and lesion segmentation and
classification of COVID-19 on chest CT data. However, comprehensive visualization systems focused on supporting the dual visual+DL
diagnosis of COVID-19 are non-existent. We present COVID-view, a visualization application specially tailored for radiologists to
diagnose COVID-19 from chest CT data. The system incorporates a complete pipeline of automatic lungs segmentation, localiza-
tion/isolation of lung abnormalities, followed by visualization, visual and DL analysis, and measurement/quantification tools. Our
system combines the traditional 2D workflow of radiologists with newer 2D and 3D visualization techniques with DL support for a more
comprehensive diagnosis. COVID-view incorporates a novel DL model for classifying the patients into positive/negative COVID-19
cases, which acts as a reading aid for the radiologist using COVID-view and provides the attention heatmap as an explainable DL
for the model output. We designed and evaluated COVID-view through suggestions, close feedback and conducting case studies of
real-world patient data by expert radiologists who have substantial experience diagnosing chest CT scans for COVID-19, pulmonary
embolism, and other forms of lung infections. We present requirements and task analysis for the diagnosis of COVID-19 that motivate
our design choices and results in a practical system which is capable of handling real-world patient cases.

Index Terms—Visual+deep learning diagnosis, COVID-19, chest CT, volume rendering, MIP, classification model, explainable DL

1 INTRODUCTION

The Coronavirus disease 2019 (COVID-19) is caused by the SARS-
CoV-2 virus and may lead to severe respiratory symptoms (e.g., short-
ness of breath, chest pain), hospitalization, ventilator support, and even
death. The real-time reverse transcriptase polymerase chain reaction
(RT-PCR) lab test is commonly used for screening patients and is con-
sidered the reference standard for diagnosis. However, none of the lab
tests, including RT-PCR, are 100% accurate. For example, sensitivity
of RT-PCR depends on the timing of specimen collection [43]. Chest
CT was found to have significant sensitivity for diagnosing COVID-
19 [18,33]. While the role of chest CT in diagnosis continues to evolve,
there is no universal consensus on its usage and recommendation. Med-
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ical practitioners often recommend a chest CT scan as a complement
diagnostic test to RT-PCR, or as clinical triage if the patient have severe
symptoms that require immediate attention. For example, chest CT can
help in ruling out pulmonary embolism (PE) [21] which has overlap-
ping symptoms with COVID-19. Consequently, chest CT remains an
important modality for diagnosis, as well as management and prognosis
of suspected COVID-19 cases that lead to hospitalization, intensive
care unit (ICU) admission, and ventilation.

Significant amount of research on automatic detection, segmentation,
and classification of various diseases (e.g., cancer) in medical imaging
have been driven by advances in deep learning (DL) and artificial
intelligence (AI). Similar approaches were also developed recently
for detection [47, 53, 67, 72] and segmentation [7, 16, 17] of COVID-
19 lesions on chest X-ray and CT images. However, these automatic
methods remain secondary to the expertise of an experienced radiologist
performing manual visual diagnosis on medical images. Very few
applications are currently available that are particularly tailored to
support visual diagnosis of COVID-19 that keeps the radiologists in the
loop and enhances their workflow. We have developed COVID-view,
an elaborate application for visual diagnosis of COVID-19 from chest
CT data that integrates DL-based automatic analysis with interactive
visualization. We incorporate a complete application pipeline from
automatic segmentation of lungs, localization of lung abnormalities,
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traditional 2D views, a suite of contemporary 3D and 2D visualizations
suitable for COVID-19 diagnosis, quantification tools that can help
in measuring the volume and extent of the lung abnormalities, and a
novel automatic classification model along with visualized activation
heatmap that act as a second reader of the CT scan.

Our contributions are as follows:
• A novel, automatic and effective DL classification model for

classifying patients into COVID positive or negative types with
good interpretability.

• A novel dual visualization-DL application, COVID-view, for the
diagnosis of COVID-19 using chest CT, above and beyond current
workflow of radiologists.

• Our COVID-view incorporates a comprehensive pipeline that in-
cludes automatic lung segmentation, lesion localization, novel
automatic classification, and a user interface for 2D and 3D visu-
alization tools for the analysis and characterization of lung lesions.

• COVID-view incorporates explainable DL and decision support by
overlaying the activation heatmap of our classification model with
the 2D views in the user-interface. It also includes quantitative
tools for volume and extent measurements of the lesions.

• COVID-view was designed through close collaboration between
computer scientists and an expert radiologist who has experi-
ence in diagnosing COVID-19 in chest CTs. Important feedback,
case-studies, evaluations and discussions with the experienced
radiologist regarding our design choices substantially influenced
the COVID-view development and implementation.

2 RELATED WORK

A comprehensive visual diagnostic pipeline includes indispensable com-
ponents such as the segmentation of relevant anatomy, detection and
segmentation of abnormalities, automatic characterization and analysis
of the abnormalities, and interactive visualization tools for qualitative
and quantitative analysis. Each components may use automatic or
semi-automatic methods based on desired accuracy, user control, and
availability of training data. Examples of applications include virtual
colonoscopy [19, 29, 30, 70], virtual bronchoscopy [23, 39], and virtual
pancreatography [13, 14, 34]. Here, we restrict our discussion to work
related to lungs segmentation, visualization and COVID-19 diagnosis.

2.1 Lungs Segmentation
Segmentation is a critical backend operation for visualization and di-
agnostic applications. Typically, transfer functions are effective only
locally and do not overcome global occlusion and clutter. Segmentation
of lungs [5] and its internal anatomical structures, such as the bronchial
tree [40,65] and blood vessels [74], can provide greater control over the
3D rendering and visual inspection tools. Techniques for vessel segmen-
tation in chest CT range from local geometry-based methods such as
vesselness filters [20,35] that utilize a locally-computed Hessian matrix
to determine the probability of vascular geometry, to more sophisticated
methods utilizing supervised DL. Some methods also attempt a hybrid
approach to combine vesselness filters and machine learning [41]. Lo
et al. [48] have conducted a comparative study of methods for bronchial
tree segmentation. Other methods focus on segmenting the entire lungs
and identifying the interior lobes [66]. Segmenting healthy lungs can
be easier than diseased lungs since the geometry of the lungs and its
internal features can change drastically with a disease.

Segmentation in chest CT plays an essential role in lesion quantifi-
cation, diagnosis and severity assessment of COVID-19 by delineating
regions of interest (ROIs) (e.g., lung, lobes, infected areas). Segmen-
tation related to COVID-19 from chest CT could be categorized into
two groups: lung segmentation and lesion segmentation. The popular
classic segmentation models including U-Net [56] and Deeplabv3 [8]
and their variants are widely used for COVID-19. Wang et al. [67]
have trained a U-Net using lung masks generated by an unsupervised
learning method and then used the pre-trained U-Net to segment lung
regions. Zhang et al. [73] have constructed a lung-lesion segmentation
framework with five classic segmentation models as the backbone to
segment background, lung fields, and five lesions. Fan et al. [17] have

developed a lung infection segmentation deep network (Inf-Net) for
COVID-19 and proposed a semi-supervised learning framework to
alleviate the shortage of labeled data. Hofmanninger et al. [28] have
compared four generic deep learning models (U-Net, ResU-Net, DRN,
Deeplab v3+) for lung segmentation using various datasets, and have
further trained a model for diseased lungs. We found this model to be
fairly robust for COVID-19 cases, and therefore, we have adapted this
model for our COVID-view application pipeline.

2.2 COVID-19 Classification
Computer-aided diagnosis (CAD) of COVID-19 can assist the radiolo-
gists, as it is not only instantaneous but also can reduce errors caused
by radiologists’ visual fatigue and lack of training. The rapid increase
in the number of suspected or known COVID-19 patients has posed
tremendous challenge to radiologists regarding the increasing amount
of work. CAD of COVID-19 can act as a second reader and thus help
the radiologists. A common problem for developing a CAD system is
weakly annotated data in CT images, where usually only patient-level
diagnosis label is available. Some studies developed their diagnosis
systems using the result of lesion segmentation [63,71,73]. They firstly
trained a lesion segmentation model and then input the segmented le-
sion to the classification model. However, manual annotation of lesion
masks for training the segmentation model is very expensive. Another
type of method is slice-based [4, 36, 50]. The slice-wise decisions
obtained by a 2D classification model are fused to get the final classi-
fication result for the CT volume. Similarly, the manual selection of
the infected slices among all the CT slices is of high cost. Some other
diagnosis techniques were developed with 3D convolutional neural
networks (CNNs) [24, 67]. While 3D CNN can capture the spatial fea-
tures, the complexity of the 3D convolution makes it harder to interpret.
Besides, 3D CNN usually requires more GPU memory, which makes it
difficult to be trained on machines with limited GPU memory size.

Here, we build a COVID-19 classification model based on deep
multiple instance learning (MIL) to address the problem of weakly an-
notated data in chest CT. Our COVID-view integrates this effective and
efficient model as a second reader to assist the radiologist. Furthermore,
it provides the class activation heatmap generated by Grad-CAM [62]
to visualize important regions used for the classification model deci-
sions, making it more transparent and explainable to the radiologists.

2.3 Visualization and Diagnostic Systems
Many visual diagnostic systems for lungs focus on the paradigm of
virtual endoscopy [23] and path planning and navigation [1, 39, 64].
Region-growing [5, 9, 10] has been proposed for isolating and visual-
izing the lungs and their internal features. Lan et al. [45] have used
the selection of voxels over intensity-gradient histograms and spatial
connectivity for visualizing lungs and their structures. Automatic se-
mantic labeling of bronchial tree [40, 65] can support further analysis
and visualization. Volume deformation [58] and context preserving
planar reformations [49] are deployed for managing occlusions, partial
abstraction or visual simplification. Wang et al. [69] have proposed DL
model for reconstruction of lungs 3D/4D geometry from 2D images
(e.g., X-Ray). Hemminger et al. [27] have developed a 3D lungs visual-
ization application for cardiothoracic surgical planning (e.g., for lung
transplant and tumor resection). To the best of our knowledge, there
are no COVID-19 oriented 3D visualization systems that focus on sup-
porting radiologists’ visual diagnosis workflow, such as COVID-view.
Some of the DL-based classification models only incorporate restricted
2D visualizations on CT or X-ray images, in the form of Grad-CAM
activation or localization heatmaps [53,72]. The Coronavirus-3D visual-
ization system [61] presents only a dashboard for tracking SARS-Cov-2
virus mutations and 3D structure analysis of related proteins.

Many general-purpose open source software (e.g., 3D Slicer [37,55],
ParaView [2], MeVisLab [26]) support image analysis and volume
visualization tasks. These in turn extend their abilities by building upon
or integrating open source libraries (e.g., VTK [59, 60], ITK [31]) that
provide an extensive breadth of image and geometry processing, and
rendering techniques. Our COVID-view is specifically designed with
chest CT inspection in mind. We implement COVID-view ground-up

Fig. 2. Prominent chest CT features for COVID-19: (a) GGO. (b) Consoli-
dations. (c) Interlobular septal thickening. (d) Vessel enlargement.

using VTK and Qt with a simplified and essential interface. It could
have also been implemented using other open source frameworks (e.g.,
ParaView, 3D Slicer, or MeVisLab). However, beyond implementing a
specialized application, our contributions in COVID-view are the selec-
tion and curation of essential tools and interface for chest CT inspection
through collaboration with expert radiologists who are experienced in
inspecting chest CT for COVID-19. Our pipeline also seamlessly in-
tegrates lungs and lesions automatic segmentation, novel COVID-19
classification, and incorporates appropriate results from these models
(classification probabilities, activation maps, automatic measurements)
that do not come out-of-the-box in general software frameworks.

3 COVID-19 BACKGROUND AND TASK ANALYSIS

While there is no universal consensus on the usage of chest CT for
COVID-19 diagnosis, some practitioners request chest CT for patient
management, both confirmed and unconfirmed cases, to complement
lab tests (RT-PCR) which suffer from inaccuracies. To improve the
accuracy of CT, various approaches have been reported. For instance,
Fan et al. [52] divided the course of COVID into four temporal stages
to account for differing CT findings. A recent report [57] shows that
lung involvement (lesion volume percentage with respect to the lungs)
is a good predictor of patient outcome in terms of ICU admission and
death. In this section, we discuss the manifestation and appearance
of COVID-19 lung abnormalities in chest CT as relevant to visual
diagnosis. However, these imaging features are not unique to COVID-
19 (not pathognomonic) and can be caused by other infections.

Particularly, our system design choices focus on four prominent
lung lesions: ground glass opacities (GGOs), consolidations, inter-
lobular septal thickening (IST), and vascular pathology (i.e., dilation
of blood and air vessels). There are numerous other reported abnor-
malities/lesions [15, 44], but they occur less frequently in COVID-19.
Apart from the lesion type, its locations, distribution, and left-right lung
symmetry are also critical in assessing the patients.

3.1 COVID-19 Chest-CT Imaging Features
Ground Glass Opacity (GGO): GGO is the most common chest CT
feature of COVID-19. It appears as low intensity regions (as compared
to lung vessels) around the lung vessels usually in the periphery of the
lungs. Fig. 2a shows an example axial image with GGO. Early stage
GGO is often unilateral (i.e., in one lung), whereas intermediate and
late stage GGOs often have peripheral and bilateral distribution.

Consolidations: Consolidations are formed when GGOs translate
into denser regions over time. They appear as solid mass on the CT im-
ages (see Fig. 2b). Similar to GGOs, they have peripheral distribution,
unilateral in early stage and bilateral in intermediate and late stage.

Interlobular Septal Thickening (IST): The septal walls between
lobes can thicken due to COVID-19. They are difficult to locate, as

they are very similar to blood vessels in the planar views (see Fig. 2c).
Vascular Pathology: Blood vessels within the lungs can show ab-

normalities such as enlargement or dilation (see Fig. 2d), particularly
within the neighborhood of other abnormalities (e.g., GGO). Similarly,
the bronchial tree vessels (air-ways) show abnormally thicker walls.
These imaging features are very subtle and not always discernible.

Additional imaging features related to COVID-19 include intralobu-
lar septal thickening which often appears as crazy paving pattern on
the planar images, and mixing of GGO and consolidation morphology
resulting in halo and reverse-halo signs. A comprehensive list of fea-
tures and their frequency of occurrences in COVID positive patients is
discussed by Homsi et al. [15] and by Kwee et al. [44].

3.2 Requirements and Task Analysis

We discuss here the conventional workflow of radiologists while diag-
nosing COVID-19 on chest CT scans, and determine high-level tasks
that are commonly performed. The analysis of 2D chest CT images fol-
lows a largely conventional workflow, though the tasks performed and
their order may vary between practicing radiologists. A chest CT scan
is ordered not only for the singular task of diagnosing COVID-19 and
its severity, but also due to other possible conditions that may require
urgent attention, such as pulmonary embolism (PE). Thus, apart from
examining the lungs, the radiologist often performs a holistic analysis
of other regions, such as the heart and vascular structures in the lungs
proximity, swelling of axillary lymph nodes, as well as searching for
the presence of other lesions and abnormalities throughout the CT scan.

In the conventional 2D workflow, the radiologist may begin with
identifying the range of slices (and extents within the slices) within
which the lungs are contained, by observing the extremities and lungs
boundary (Task T1). This task also includes inspection of the lung
boundaries for abnormal/stiffness of shape. The radiologist will also
adjust the gray scale map to improve contrast between the lungs back-
ground and the vascular structures such as the bronchial tree (Task T2),
the arteries, and the veins inside the lungs.

The radiologist then scans through the identified range of 2D axial
planes for lung abnormalities listed in Sec. 3.1, the most common of
which are GGOs and consolidations (Task T3). In addition, the radiolo-
gist will determine the location and distribution of these abnormalities
(Task T4). Peripheral and bilateral distributions are characteristic of
COVID-19 diagnosis. The radiologist will also look for more subtle
abnormalities, such as interlobular and intralobular septal thickening
and vascular enlargements (Task T5). Early stage abnormalities can be
subtle and hard to detect, which requires careful and comprehensive
inspection of the lungs. Furthermore, the radiologist may measure the
lesions (e.g., GGO) to determine the growth or severity of the disease
(Task T6), helping in patient management and prognosis. A radiologist
experienced in COVID-19 diagnosis confirmed these high-level tasks,
and that currently they do not use any 3D visualization tools.

While these tasks are identified in the conventional 2D workflow,
our design choices and visualization tools translate these tasks to in-
clude them in the combined 3D/2D workflow. 3D visualization of the
segmented lungs can provide a holistic view of lungs and lesions to
identify the distribution of affected areas. While a similar assessment
can also be made using 2D slice views, our 3D visualizations provide
an alternate viewpoint that can further inform the radiologist beyond
their usual workflow. As shown in our case studies (Case 3), 3D can
also make IST identification easier than in 2D views. Additionally,
it has been generally accepted that 3D visualizations can be better in
inspecting vascular structures such as bronchial trees and blood vessels
in the lungs and elsewhere. While GGO and consolidations are macro-
level structures easily seen in 2D slices, inspection of more subtle
abnormalities such as smaller opacity regions, vascular enlargements,
and septal thickening can benefit from 3D visualizations.

In addition to supporting these identified tasks, we design our system
to fully support their conventional 2D workflow. This also helps in
rare events when the system fails to compute the necessary information
such as the segmentation masks. In such cases, the radiologist can still
continue to analyze the case using their conventional 2D workflow.
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traditional 2D views, a suite of contemporary 3D and 2D visualizations
suitable for COVID-19 diagnosis, quantification tools that can help
in measuring the volume and extent of the lung abnormalities, and a
novel automatic classification model along with visualized activation
heatmap that act as a second reader of the CT scan.

Our contributions are as follows:
• A novel, automatic and effective DL classification model for

classifying patients into COVID positive or negative types with
good interpretability.

• A novel dual visualization-DL application, COVID-view, for the
diagnosis of COVID-19 using chest CT, above and beyond current
workflow of radiologists.

• Our COVID-view incorporates a comprehensive pipeline that in-
cludes automatic lung segmentation, lesion localization, novel
automatic classification, and a user interface for 2D and 3D visu-
alization tools for the analysis and characterization of lung lesions.

• COVID-view incorporates explainable DL and decision support by
overlaying the activation heatmap of our classification model with
the 2D views in the user-interface. It also includes quantitative
tools for volume and extent measurements of the lesions.

• COVID-view was designed through close collaboration between
computer scientists and an expert radiologist who has experi-
ence in diagnosing COVID-19 in chest CTs. Important feedback,
case-studies, evaluations and discussions with the experienced
radiologist regarding our design choices substantially influenced
the COVID-view development and implementation.

2 RELATED WORK

A comprehensive visual diagnostic pipeline includes indispensable com-
ponents such as the segmentation of relevant anatomy, detection and
segmentation of abnormalities, automatic characterization and analysis
of the abnormalities, and interactive visualization tools for qualitative
and quantitative analysis. Each components may use automatic or
semi-automatic methods based on desired accuracy, user control, and
availability of training data. Examples of applications include virtual
colonoscopy [19, 29, 30, 70], virtual bronchoscopy [23, 39], and virtual
pancreatography [13, 14, 34]. Here, we restrict our discussion to work
related to lungs segmentation, visualization and COVID-19 diagnosis.

2.1 Lungs Segmentation
Segmentation is a critical backend operation for visualization and di-
agnostic applications. Typically, transfer functions are effective only
locally and do not overcome global occlusion and clutter. Segmentation
of lungs [5] and its internal anatomical structures, such as the bronchial
tree [40,65] and blood vessels [74], can provide greater control over the
3D rendering and visual inspection tools. Techniques for vessel segmen-
tation in chest CT range from local geometry-based methods such as
vesselness filters [20,35] that utilize a locally-computed Hessian matrix
to determine the probability of vascular geometry, to more sophisticated
methods utilizing supervised DL. Some methods also attempt a hybrid
approach to combine vesselness filters and machine learning [41]. Lo
et al. [48] have conducted a comparative study of methods for bronchial
tree segmentation. Other methods focus on segmenting the entire lungs
and identifying the interior lobes [66]. Segmenting healthy lungs can
be easier than diseased lungs since the geometry of the lungs and its
internal features can change drastically with a disease.

Segmentation in chest CT plays an essential role in lesion quantifi-
cation, diagnosis and severity assessment of COVID-19 by delineating
regions of interest (ROIs) (e.g., lung, lobes, infected areas). Segmen-
tation related to COVID-19 from chest CT could be categorized into
two groups: lung segmentation and lesion segmentation. The popular
classic segmentation models including U-Net [56] and Deeplabv3 [8]
and their variants are widely used for COVID-19. Wang et al. [67]
have trained a U-Net using lung masks generated by an unsupervised
learning method and then used the pre-trained U-Net to segment lung
regions. Zhang et al. [73] have constructed a lung-lesion segmentation
framework with five classic segmentation models as the backbone to
segment background, lung fields, and five lesions. Fan et al. [17] have

developed a lung infection segmentation deep network (Inf-Net) for
COVID-19 and proposed a semi-supervised learning framework to
alleviate the shortage of labeled data. Hofmanninger et al. [28] have
compared four generic deep learning models (U-Net, ResU-Net, DRN,
Deeplab v3+) for lung segmentation using various datasets, and have
further trained a model for diseased lungs. We found this model to be
fairly robust for COVID-19 cases, and therefore, we have adapted this
model for our COVID-view application pipeline.

2.2 COVID-19 Classification
Computer-aided diagnosis (CAD) of COVID-19 can assist the radiolo-
gists, as it is not only instantaneous but also can reduce errors caused
by radiologists’ visual fatigue and lack of training. The rapid increase
in the number of suspected or known COVID-19 patients has posed
tremendous challenge to radiologists regarding the increasing amount
of work. CAD of COVID-19 can act as a second reader and thus help
the radiologists. A common problem for developing a CAD system is
weakly annotated data in CT images, where usually only patient-level
diagnosis label is available. Some studies developed their diagnosis
systems using the result of lesion segmentation [63,71,73]. They firstly
trained a lesion segmentation model and then input the segmented le-
sion to the classification model. However, manual annotation of lesion
masks for training the segmentation model is very expensive. Another
type of method is slice-based [4, 36, 50]. The slice-wise decisions
obtained by a 2D classification model are fused to get the final classi-
fication result for the CT volume. Similarly, the manual selection of
the infected slices among all the CT slices is of high cost. Some other
diagnosis techniques were developed with 3D convolutional neural
networks (CNNs) [24, 67]. While 3D CNN can capture the spatial fea-
tures, the complexity of the 3D convolution makes it harder to interpret.
Besides, 3D CNN usually requires more GPU memory, which makes it
difficult to be trained on machines with limited GPU memory size.

Here, we build a COVID-19 classification model based on deep
multiple instance learning (MIL) to address the problem of weakly an-
notated data in chest CT. Our COVID-view integrates this effective and
efficient model as a second reader to assist the radiologist. Furthermore,
it provides the class activation heatmap generated by Grad-CAM [62]
to visualize important regions used for the classification model deci-
sions, making it more transparent and explainable to the radiologists.

2.3 Visualization and Diagnostic Systems
Many visual diagnostic systems for lungs focus on the paradigm of
virtual endoscopy [23] and path planning and navigation [1, 39, 64].
Region-growing [5, 9, 10] has been proposed for isolating and visual-
izing the lungs and their internal features. Lan et al. [45] have used
the selection of voxels over intensity-gradient histograms and spatial
connectivity for visualizing lungs and their structures. Automatic se-
mantic labeling of bronchial tree [40, 65] can support further analysis
and visualization. Volume deformation [58] and context preserving
planar reformations [49] are deployed for managing occlusions, partial
abstraction or visual simplification. Wang et al. [69] have proposed DL
model for reconstruction of lungs 3D/4D geometry from 2D images
(e.g., X-Ray). Hemminger et al. [27] have developed a 3D lungs visual-
ization application for cardiothoracic surgical planning (e.g., for lung
transplant and tumor resection). To the best of our knowledge, there
are no COVID-19 oriented 3D visualization systems that focus on sup-
porting radiologists’ visual diagnosis workflow, such as COVID-view.
Some of the DL-based classification models only incorporate restricted
2D visualizations on CT or X-ray images, in the form of Grad-CAM
activation or localization heatmaps [53,72]. The Coronavirus-3D visual-
ization system [61] presents only a dashboard for tracking SARS-Cov-2
virus mutations and 3D structure analysis of related proteins.

Many general-purpose open source software (e.g., 3D Slicer [37,55],
ParaView [2], MeVisLab [26]) support image analysis and volume
visualization tasks. These in turn extend their abilities by building upon
or integrating open source libraries (e.g., VTK [59, 60], ITK [31]) that
provide an extensive breadth of image and geometry processing, and
rendering techniques. Our COVID-view is specifically designed with
chest CT inspection in mind. We implement COVID-view ground-up

Fig. 2. Prominent chest CT features for COVID-19: (a) GGO. (b) Consoli-
dations. (c) Interlobular septal thickening. (d) Vessel enlargement.

using VTK and Qt with a simplified and essential interface. It could
have also been implemented using other open source frameworks (e.g.,
ParaView, 3D Slicer, or MeVisLab). However, beyond implementing a
specialized application, our contributions in COVID-view are the selec-
tion and curation of essential tools and interface for chest CT inspection
through collaboration with expert radiologists who are experienced in
inspecting chest CT for COVID-19. Our pipeline also seamlessly in-
tegrates lungs and lesions automatic segmentation, novel COVID-19
classification, and incorporates appropriate results from these models
(classification probabilities, activation maps, automatic measurements)
that do not come out-of-the-box in general software frameworks.

3 COVID-19 BACKGROUND AND TASK ANALYSIS

While there is no universal consensus on the usage of chest CT for
COVID-19 diagnosis, some practitioners request chest CT for patient
management, both confirmed and unconfirmed cases, to complement
lab tests (RT-PCR) which suffer from inaccuracies. To improve the
accuracy of CT, various approaches have been reported. For instance,
Fan et al. [52] divided the course of COVID into four temporal stages
to account for differing CT findings. A recent report [57] shows that
lung involvement (lesion volume percentage with respect to the lungs)
is a good predictor of patient outcome in terms of ICU admission and
death. In this section, we discuss the manifestation and appearance
of COVID-19 lung abnormalities in chest CT as relevant to visual
diagnosis. However, these imaging features are not unique to COVID-
19 (not pathognomonic) and can be caused by other infections.

Particularly, our system design choices focus on four prominent
lung lesions: ground glass opacities (GGOs), consolidations, inter-
lobular septal thickening (IST), and vascular pathology (i.e., dilation
of blood and air vessels). There are numerous other reported abnor-
malities/lesions [15, 44], but they occur less frequently in COVID-19.
Apart from the lesion type, its locations, distribution, and left-right lung
symmetry are also critical in assessing the patients.

3.1 COVID-19 Chest-CT Imaging Features
Ground Glass Opacity (GGO): GGO is the most common chest CT
feature of COVID-19. It appears as low intensity regions (as compared
to lung vessels) around the lung vessels usually in the periphery of the
lungs. Fig. 2a shows an example axial image with GGO. Early stage
GGO is often unilateral (i.e., in one lung), whereas intermediate and
late stage GGOs often have peripheral and bilateral distribution.

Consolidations: Consolidations are formed when GGOs translate
into denser regions over time. They appear as solid mass on the CT im-
ages (see Fig. 2b). Similar to GGOs, they have peripheral distribution,
unilateral in early stage and bilateral in intermediate and late stage.

Interlobular Septal Thickening (IST): The septal walls between
lobes can thicken due to COVID-19. They are difficult to locate, as

they are very similar to blood vessels in the planar views (see Fig. 2c).
Vascular Pathology: Blood vessels within the lungs can show ab-

normalities such as enlargement or dilation (see Fig. 2d), particularly
within the neighborhood of other abnormalities (e.g., GGO). Similarly,
the bronchial tree vessels (air-ways) show abnormally thicker walls.
These imaging features are very subtle and not always discernible.

Additional imaging features related to COVID-19 include intralobu-
lar septal thickening which often appears as crazy paving pattern on
the planar images, and mixing of GGO and consolidation morphology
resulting in halo and reverse-halo signs. A comprehensive list of fea-
tures and their frequency of occurrences in COVID positive patients is
discussed by Homsi et al. [15] and by Kwee et al. [44].

3.2 Requirements and Task Analysis

We discuss here the conventional workflow of radiologists while diag-
nosing COVID-19 on chest CT scans, and determine high-level tasks
that are commonly performed. The analysis of 2D chest CT images fol-
lows a largely conventional workflow, though the tasks performed and
their order may vary between practicing radiologists. A chest CT scan
is ordered not only for the singular task of diagnosing COVID-19 and
its severity, but also due to other possible conditions that may require
urgent attention, such as pulmonary embolism (PE). Thus, apart from
examining the lungs, the radiologist often performs a holistic analysis
of other regions, such as the heart and vascular structures in the lungs
proximity, swelling of axillary lymph nodes, as well as searching for
the presence of other lesions and abnormalities throughout the CT scan.

In the conventional 2D workflow, the radiologist may begin with
identifying the range of slices (and extents within the slices) within
which the lungs are contained, by observing the extremities and lungs
boundary (Task T1). This task also includes inspection of the lung
boundaries for abnormal/stiffness of shape. The radiologist will also
adjust the gray scale map to improve contrast between the lungs back-
ground and the vascular structures such as the bronchial tree (Task T2),
the arteries, and the veins inside the lungs.

The radiologist then scans through the identified range of 2D axial
planes for lung abnormalities listed in Sec. 3.1, the most common of
which are GGOs and consolidations (Task T3). In addition, the radiolo-
gist will determine the location and distribution of these abnormalities
(Task T4). Peripheral and bilateral distributions are characteristic of
COVID-19 diagnosis. The radiologist will also look for more subtle
abnormalities, such as interlobular and intralobular septal thickening
and vascular enlargements (Task T5). Early stage abnormalities can be
subtle and hard to detect, which requires careful and comprehensive
inspection of the lungs. Furthermore, the radiologist may measure the
lesions (e.g., GGO) to determine the growth or severity of the disease
(Task T6), helping in patient management and prognosis. A radiologist
experienced in COVID-19 diagnosis confirmed these high-level tasks,
and that currently they do not use any 3D visualization tools.

While these tasks are identified in the conventional 2D workflow,
our design choices and visualization tools translate these tasks to in-
clude them in the combined 3D/2D workflow. 3D visualization of the
segmented lungs can provide a holistic view of lungs and lesions to
identify the distribution of affected areas. While a similar assessment
can also be made using 2D slice views, our 3D visualizations provide
an alternate viewpoint that can further inform the radiologist beyond
their usual workflow. As shown in our case studies (Case 3), 3D can
also make IST identification easier than in 2D views. Additionally,
it has been generally accepted that 3D visualizations can be better in
inspecting vascular structures such as bronchial trees and blood vessels
in the lungs and elsewhere. While GGO and consolidations are macro-
level structures easily seen in 2D slices, inspection of more subtle
abnormalities such as smaller opacity regions, vascular enlargements,
and septal thickening can benefit from 3D visualizations.

In addition to supporting these identified tasks, we design our system
to fully support their conventional 2D workflow. This also helps in
rare events when the system fails to compute the necessary information
such as the segmentation masks. In such cases, the radiologist can still
continue to analyze the case using their conventional 2D workflow.
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Fig. 3. The COVID-view application pipeline. The segmented lungs and lesion localization from the CT scan are processed by our COVID-19
classifier, which calculates the probability of COVID-19 positive/negative for the case, and generates an attention heatmap, as part of the explainable
DL, that is displayed along with other exploratory 3D/2D visualizations in the user interface.

4 THE COVID-view APPLICATION

We have designed the COVID-view application based on the require-
ments of the COVID-19 chest CT diagnosis and task analysis performed
in Sec. 3. The high-level pipeline of COVID-view is shown in Fig. 3,
and incorporates all the important components for such a visual diagnos-
tic system, including automatic lung segmentation, automatic lesions
and abnormalities segmentation, and novel ML model for classification
of cases into COVID-19 negative/positive. All the modules are inte-
grated into a single application and presented through a well-designed
user interface. Since the modules use fully-automatic methods, the
user does not have to interact with any of the pre-processing steps
before the dataset and the processed information is loaded into the
visualization interface. The lungs segmentation mask, lesion segmen-
tation, and classification results are computed only once when a new
dataset is loaded into the system. These results are then cached into the
hard drive so that future loading and analysis of the CT scans happens
faster, as re-computing these for every execution is time-consuming
and unnecessary. We discuss each of the COVID-view modules and its
user-interface and visualization tools in the following subsections.

4.1 Lungs Segmentation
Use of a segmentation mask in a 3D rendering pipeline can provide
significant control over the visualization process through deployment
of local transfer functions and multi-label rendering. Global transfer
functions have limited ability to control rendering occlusions and clutter
in complex datasets (e.g., chest and abdominal CT scans). Existing
visual diagnostic systems, such as virtual colonoscopy [29] and virtual
pancreatography [34] also incorporate organ segmentation methods.

In COVID-view, we incorporate Hofmanninger et al. [28] lungs
segmentation model that was trained on a large variety of diseased lungs,
encompassing different lesions and abnormalities with air pockets,
tumors, and effusions, and includes COVID-19 data. In our tests, we
found this model to be fairly robust on COVID-19 datasets. Particularly,
we did not find any cases where the segmentation outline deviated
significantly from the true boundary of the lungs. Any rare and minor
deviations did not degrade the utility of our analysis pipeline. This
incorporated automatic segmentation allows us to provide segmentation
outlines in 2D views, compute the lungs clipping box, and 3D render
the lungs anatomy in isolation, which supports Task T1 (see Sec. 3.2).
Hofmanninger et al. also provide a model for lungs lobe segmentation,
which is desirable for our system as it can support identification of
anatomical locations for the COVID-19 lesions. However, the model
was not found to be very robust on lungs with large COVID-19 lesions.
In case of significant GGO and consolidation, the model failed to
provide satisfactory segmentation of the lobes. Inaccurate segmentation
in a diagnostic application can lead to degraded 3D visualizations and
incorrect diagnosis. Thus, we prefer models that work more reliably
even though they may not provide further subdivision of structures.

4.2 Lesion Localization and Detection
Our system provides segmentation outlines in 2D views for identifying
and examining regions of abnormalities, drawing the radiologist’s atten-
tion to regions that should be examined more closely. Localization or
segmentation of COVID-19 lesions allows us to provide these outlines

in 2D views. The segmentation mask is also used to render the lesions
in 3D view and to highlight them along with the lungs surrounding
structures. We have adapted and integrated into our pipeline, a COVID-
19 lesion segmentation model by Fan et al. [17]. They provide a binary
segmentation model that segments overall lesions and abnormalities of
the lungs as well as a multi-class model that is trained to segment both
GGO and consolidation regions. We found that on our datasets, this
model worked more accurately to highlight the regions of abnormality,
which is consistent with the dice overlap numbers (0.739 and 0.458
for binary and multi-class models, respectively) reported by Fan et al.
The binary detection model that we utilize (Semi-Inf-Net) is trained
to identify lung abnormalities using COVID-19 chest CT images that
predominantly contain GGOs and consolidations, and is thus suitable
for our needs. After localization, the characterization of the lesions into
further sub-types is handled by the radiologist through examination
using the visualization tools provided in the user interface.

4.3 Classification

Multiple instance learning (MIL) is a kind of weakly supervised learn-
ing [76]. It was first formulated by Dietterich et al. [12] for drag activity
prediction and then widely applied to various tasks. In MIL, the training
set consists of bags, where each bag is composed of a set of instances.
The goal is to train a model to predict the labels of unseen bags. In
MIL, only the bag-level label is given, and the instance-level label is un-
known. This setting is particularly suitable for medical imaging, where
typically only image-level or patient-level label is given. According to
Amores’ taxonomy [3], MIL algorithms can be categorized into three
groups: Instance-Space (IS) paradigm, Bag-Space (BS) paradigm, and
Embedded-Space (ES) paradigms. The IS paradigm learns an instance-
level classifier and the bag-level classifier is obtained by aggregating
the instance-level response. The BS and the ES paradigms treat each
bag as a whole entity and learn a bag-level classifier by exploiting
global, bag-level information. The difference between both paradigms
is how the bag-level information is extracted. The BS paradigm im-
plicitly calculates the bag-to-bag similarity by defining a distance or
kernel function, while the ES paradigm explicitly embeds the bag into
a compact feature vector by defining a mapping function.

MIL pooling methods are used to represent the bag with the corre-
sponding instances. Popular methods include max, mean, and log-sum-
exp poolings [68]. However, they are non-trainable which may limit
their applicability. To address this, some methods such as noisy-and
pooling [42] and adaptive pooling [75] have been developed, but their
flexibility is restricted. Ilse et al. [32] have proposed an attention-based
pooling that is fully trainable and can weigh each instance for the fi-
nal bag prediction. Han et al. [22] applied this pooling [32] for bag
representation, and a 3D CNNs was designed by Wang et al. [67] as
deep feature generator in their COVID-19 CAD system. Here, we also
build our COVID-19 classification model based on this pooling method
[32] for its flexibility and interpretability. In addition, we propose a
regularization term composed of differences between learned weights
of adjacent slices to further smooth the attention weights and enhance
the connection between adjacent slices. Also, we use ResNet18 [25] to
transform each slice into feature vector for its strong feature extraction
ability, and thus each slice contains more information for diagnosis.

Our slice-based deep MIL method can thus generate the class activation
map with Grad-CAM [62] for each slice to increase our model inter-
pretability and decision support. Our classification model performance
is also superior due to the fact that each slice contains more information.
See Sec. 5.1 for quantitative results of our classification model.

In our COVID-19 DL classification, we denote each CT scan as a
bag-label pair {X ,Y}, where X = {x1, . . . ,xK} denotes the CT volume
containing K instances, instance xk denotes the slice, and Y ∈ {0,1}
denotes whether the patient is COVID-19 positive. K can vary for
different bags. We use a feature extractor parameterized by the CNNs
fψ (·) with parameters ψ to transform the instance xk into a low di-
mensional feature vector hk = fψ (xk) where hk ∈ RD. Here, we use
the ResNet18 as fψ (·) and D = 512. For the bag presentation, we use
the following attention-based pooling method [32] as the mapping
function in the Embedded-Space paradigm:
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∑
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where w ∈RL×1 and V ∈RL×D are parameters of a two-layered neural
network. Here we set the dimension (L) in V as 128. Let LCE denote
the binary cross entropy loss as follows:

LCE =− 1
N

N

∑
i=1

1

∑
c=0

p(Yi = c) log(q(Yi = c)) , (3)

where N is the batch size, p(Yi = c)∈ {0,1} is the true class probability
of Xi belonging to the class c and q(Yi = c) is the estimated class
probability of Xi belonging to the class c . The loss function is:

LTotal = LCE +λLAW , (4)

where:

LAW =
K

∑
i=2

(ai −ai−1)
2 (5)

and λ is a non-negative constant to balance LCE and LAW . Eqs. 4
and 5 are inspired by the similarity between adjacent slices. As two
adjacent CT slices are similar, their learned instance weights should also
be similar. Thus, the difference between two adjacent slices weights
should be very small. The proposed regularization term LAW facilitates
the attention-based pooling module assigns the weights to each instance
better, and thus can further improve the model performance on bag
prediction.
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Fig. 4. Architecture of our COVID-19 classification model.

As shown in Fig. 4, the classification model takes the preprocessed
CT volume as input (details later), and the feature extractor transforms
each slice into a low dimensional feature vector. All the feature vectors
are mapped into a semantic embedding representing the CT information
using the attention-based pooling method mentioned above. Then,

the embedding is further processed by a fully connected (FC) layer
and softmax function to output the probability of different classes
(COVID-19, non-COVID-19) for the CT volume. Eqs. 4 is used to
calculate the total loss LTotal and the model is trained end-to-end by
backpropagation.

Data prepossessing starts with the CT images extracted from the
DICOM files, and the CT volume is resampled to the same spacing of
1mm in the z-direction. We used the lung segmentation mask generated
by a pre-trained U-Net [28] to extract the lungs and remove the back-
ground. Then, a bounding box is calculated using the lung mask to crop
the lung region. The bounding box is padded to keep the width and
height of all CT images the same. The original CT intensity values are
clipped into [−1250,250] range and then normalized into [0,1]. Next,
the CT images are resized to T × 224× 224, where T is the number
of slices. To reduce overfitting, online data augmentation strategies,
including random rotation (−10 to 10 degrees) and horizontal/vertical
flipping with 50% probabilities are applied. For each training example,
the augmentation is the same for every slice in the volume.

We qualitatively compare our classification model with other ex-
isting COVID-19 detection algorithms. Unlike [4, 36, 50, 63, 71, 73]
requiring lesion segmentation or manual selection of infected slices,
our method only requires patient level weak label, which is much easier
to obtain. Li et al. [46] have proposed 2D CNNs to extract features
of each slice, then the slice-wise features were fused into CT volume-
level feature via a max-pooling layer. However, since max pooling is
non-trainable, its applicability is limited. Ilse et al. [32] have shown
that attention-based pooling outperforms max pooling in image classifi-
cation experiments. Besides, the attention weights for each slice makes
the model more interpretable. Thus, attention-based pooling used in
our model is more effective and interpretable than max pooling. Fur-
thermore, our proposed regularization term helps the attention-based
MIL pooling module to assign the weights to each instance better by
considering the similarity between adjacent slices, thereby can further
improve the model classification performance. There are also 3D CNNs
methods [24, 67], but, 3D CNNs usually require larger GPU memory.
Also, our framework can be used with widely available 2D CNNs
pretrianed on ImageNet [11], which makes the convergence of model
training faster and better. Furthermore, the quantitative weights learned
for each instance and Grad-CAM make our model more interpretable,
which is helpful for diagnosing and improving the model.

4.4 Visualization Tools and User Interface
The visualization interface of COVID-view integrates all the compo-
nents of our pipeline (Fig. 3) for the radiologist to access in different
modes. The interface allows the radiologist to visualize the chest CT
in different 2D and 3D views that support conventional 2D radiolo-
gists’ workflow and contemporary 3D visualization methods for better
discernment of lesions and their morphology for improved diagnosis.

2D Views: A snapshot of the user interface of COVID-view is shown
in Fig. 5a. The right-hand side displays the conventional 2D views of
axial, coronal, and sagittal planes. A range-slider immediately below
the 3D View is used for adjusting the gray-scale colormap in all the 2D
views. Similar action can also be performed using mouse left-click and
drag operation on the 2D views. This supports Task T2. These views
are indispensable as radiologists are trained to use them to examine
scans. We incorporate additional cues in the 2D views to highlight
the segmented lungs outline (in green) and COVID-19 lesions (in red),
which support Tasks T1 and T3, respectively. Thus, we support the
radiologists in their conventional workflow (Tasks T1 and T2) and
augment additional information to draw attention to abnormal regions
of the lungs that require special attention and characterization.

3D View: In Fig. 5a, the main canvas shows the 3D rendering
of the chest CT, utilizing multi-label volume rendering and applies
local transfer function to each segmentation label. The composite
segmentation mask used by the 3D rendering contains the segmented
lesions, segmented lungs, and the context volume outer region. Each
of the three regions use three separate transfer functions. Additionally,
the user can choose to hide/show each of these regions in the 3D view,
thereby allowing to create different visualization combinations for
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Fig. 3. The COVID-view application pipeline. The segmented lungs and lesion localization from the CT scan are processed by our COVID-19
classifier, which calculates the probability of COVID-19 positive/negative for the case, and generates an attention heatmap, as part of the explainable
DL, that is displayed along with other exploratory 3D/2D visualizations in the user interface.

4 THE COVID-view APPLICATION

We have designed the COVID-view application based on the require-
ments of the COVID-19 chest CT diagnosis and task analysis performed
in Sec. 3. The high-level pipeline of COVID-view is shown in Fig. 3,
and incorporates all the important components for such a visual diagnos-
tic system, including automatic lung segmentation, automatic lesions
and abnormalities segmentation, and novel ML model for classification
of cases into COVID-19 negative/positive. All the modules are inte-
grated into a single application and presented through a well-designed
user interface. Since the modules use fully-automatic methods, the
user does not have to interact with any of the pre-processing steps
before the dataset and the processed information is loaded into the
visualization interface. The lungs segmentation mask, lesion segmen-
tation, and classification results are computed only once when a new
dataset is loaded into the system. These results are then cached into the
hard drive so that future loading and analysis of the CT scans happens
faster, as re-computing these for every execution is time-consuming
and unnecessary. We discuss each of the COVID-view modules and its
user-interface and visualization tools in the following subsections.

4.1 Lungs Segmentation
Use of a segmentation mask in a 3D rendering pipeline can provide
significant control over the visualization process through deployment
of local transfer functions and multi-label rendering. Global transfer
functions have limited ability to control rendering occlusions and clutter
in complex datasets (e.g., chest and abdominal CT scans). Existing
visual diagnostic systems, such as virtual colonoscopy [29] and virtual
pancreatography [34] also incorporate organ segmentation methods.

In COVID-view, we incorporate Hofmanninger et al. [28] lungs
segmentation model that was trained on a large variety of diseased lungs,
encompassing different lesions and abnormalities with air pockets,
tumors, and effusions, and includes COVID-19 data. In our tests, we
found this model to be fairly robust on COVID-19 datasets. Particularly,
we did not find any cases where the segmentation outline deviated
significantly from the true boundary of the lungs. Any rare and minor
deviations did not degrade the utility of our analysis pipeline. This
incorporated automatic segmentation allows us to provide segmentation
outlines in 2D views, compute the lungs clipping box, and 3D render
the lungs anatomy in isolation, which supports Task T1 (see Sec. 3.2).
Hofmanninger et al. also provide a model for lungs lobe segmentation,
which is desirable for our system as it can support identification of
anatomical locations for the COVID-19 lesions. However, the model
was not found to be very robust on lungs with large COVID-19 lesions.
In case of significant GGO and consolidation, the model failed to
provide satisfactory segmentation of the lobes. Inaccurate segmentation
in a diagnostic application can lead to degraded 3D visualizations and
incorrect diagnosis. Thus, we prefer models that work more reliably
even though they may not provide further subdivision of structures.

4.2 Lesion Localization and Detection
Our system provides segmentation outlines in 2D views for identifying
and examining regions of abnormalities, drawing the radiologist’s atten-
tion to regions that should be examined more closely. Localization or
segmentation of COVID-19 lesions allows us to provide these outlines

in 2D views. The segmentation mask is also used to render the lesions
in 3D view and to highlight them along with the lungs surrounding
structures. We have adapted and integrated into our pipeline, a COVID-
19 lesion segmentation model by Fan et al. [17]. They provide a binary
segmentation model that segments overall lesions and abnormalities of
the lungs as well as a multi-class model that is trained to segment both
GGO and consolidation regions. We found that on our datasets, this
model worked more accurately to highlight the regions of abnormality,
which is consistent with the dice overlap numbers (0.739 and 0.458
for binary and multi-class models, respectively) reported by Fan et al.
The binary detection model that we utilize (Semi-Inf-Net) is trained
to identify lung abnormalities using COVID-19 chest CT images that
predominantly contain GGOs and consolidations, and is thus suitable
for our needs. After localization, the characterization of the lesions into
further sub-types is handled by the radiologist through examination
using the visualization tools provided in the user interface.

4.3 Classification

Multiple instance learning (MIL) is a kind of weakly supervised learn-
ing [76]. It was first formulated by Dietterich et al. [12] for drag activity
prediction and then widely applied to various tasks. In MIL, the training
set consists of bags, where each bag is composed of a set of instances.
The goal is to train a model to predict the labels of unseen bags. In
MIL, only the bag-level label is given, and the instance-level label is un-
known. This setting is particularly suitable for medical imaging, where
typically only image-level or patient-level label is given. According to
Amores’ taxonomy [3], MIL algorithms can be categorized into three
groups: Instance-Space (IS) paradigm, Bag-Space (BS) paradigm, and
Embedded-Space (ES) paradigms. The IS paradigm learns an instance-
level classifier and the bag-level classifier is obtained by aggregating
the instance-level response. The BS and the ES paradigms treat each
bag as a whole entity and learn a bag-level classifier by exploiting
global, bag-level information. The difference between both paradigms
is how the bag-level information is extracted. The BS paradigm im-
plicitly calculates the bag-to-bag similarity by defining a distance or
kernel function, while the ES paradigm explicitly embeds the bag into
a compact feature vector by defining a mapping function.

MIL pooling methods are used to represent the bag with the corre-
sponding instances. Popular methods include max, mean, and log-sum-
exp poolings [68]. However, they are non-trainable which may limit
their applicability. To address this, some methods such as noisy-and
pooling [42] and adaptive pooling [75] have been developed, but their
flexibility is restricted. Ilse et al. [32] have proposed an attention-based
pooling that is fully trainable and can weigh each instance for the fi-
nal bag prediction. Han et al. [22] applied this pooling [32] for bag
representation, and a 3D CNNs was designed by Wang et al. [67] as
deep feature generator in their COVID-19 CAD system. Here, we also
build our COVID-19 classification model based on this pooling method
[32] for its flexibility and interpretability. In addition, we propose a
regularization term composed of differences between learned weights
of adjacent slices to further smooth the attention weights and enhance
the connection between adjacent slices. Also, we use ResNet18 [25] to
transform each slice into feature vector for its strong feature extraction
ability, and thus each slice contains more information for diagnosis.

Our slice-based deep MIL method can thus generate the class activation
map with Grad-CAM [62] for each slice to increase our model inter-
pretability and decision support. Our classification model performance
is also superior due to the fact that each slice contains more information.
See Sec. 5.1 for quantitative results of our classification model.

In our COVID-19 DL classification, we denote each CT scan as a
bag-label pair {X ,Y}, where X = {x1, . . . ,xK} denotes the CT volume
containing K instances, instance xk denotes the slice, and Y ∈ {0,1}
denotes whether the patient is COVID-19 positive. K can vary for
different bags. We use a feature extractor parameterized by the CNNs
fψ (·) with parameters ψ to transform the instance xk into a low di-
mensional feature vector hk = fψ (xk) where hk ∈ RD. Here, we use
the ResNet18 as fψ (·) and D = 512. For the bag presentation, we use
the following attention-based pooling method [32] as the mapping
function in the Embedded-Space paradigm:
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where w ∈RL×1 and V ∈RL×D are parameters of a two-layered neural
network. Here we set the dimension (L) in V as 128. Let LCE denote
the binary cross entropy loss as follows:

LCE =− 1
N

N
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∑
c=0

p(Yi = c) log(q(Yi = c)) , (3)

where N is the batch size, p(Yi = c)∈ {0,1} is the true class probability
of Xi belonging to the class c and q(Yi = c) is the estimated class
probability of Xi belonging to the class c . The loss function is:

LTotal = LCE +λLAW , (4)

where:

LAW =
K

∑
i=2

(ai −ai−1)
2 (5)

and λ is a non-negative constant to balance LCE and LAW . Eqs. 4
and 5 are inspired by the similarity between adjacent slices. As two
adjacent CT slices are similar, their learned instance weights should also
be similar. Thus, the difference between two adjacent slices weights
should be very small. The proposed regularization term LAW facilitates
the attention-based pooling module assigns the weights to each instance
better, and thus can further improve the model performance on bag
prediction.
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Fig. 4. Architecture of our COVID-19 classification model.

As shown in Fig. 4, the classification model takes the preprocessed
CT volume as input (details later), and the feature extractor transforms
each slice into a low dimensional feature vector. All the feature vectors
are mapped into a semantic embedding representing the CT information
using the attention-based pooling method mentioned above. Then,

the embedding is further processed by a fully connected (FC) layer
and softmax function to output the probability of different classes
(COVID-19, non-COVID-19) for the CT volume. Eqs. 4 is used to
calculate the total loss LTotal and the model is trained end-to-end by
backpropagation.

Data prepossessing starts with the CT images extracted from the
DICOM files, and the CT volume is resampled to the same spacing of
1mm in the z-direction. We used the lung segmentation mask generated
by a pre-trained U-Net [28] to extract the lungs and remove the back-
ground. Then, a bounding box is calculated using the lung mask to crop
the lung region. The bounding box is padded to keep the width and
height of all CT images the same. The original CT intensity values are
clipped into [−1250,250] range and then normalized into [0,1]. Next,
the CT images are resized to T × 224× 224, where T is the number
of slices. To reduce overfitting, online data augmentation strategies,
including random rotation (−10 to 10 degrees) and horizontal/vertical
flipping with 50% probabilities are applied. For each training example,
the augmentation is the same for every slice in the volume.

We qualitatively compare our classification model with other ex-
isting COVID-19 detection algorithms. Unlike [4, 36, 50, 63, 71, 73]
requiring lesion segmentation or manual selection of infected slices,
our method only requires patient level weak label, which is much easier
to obtain. Li et al. [46] have proposed 2D CNNs to extract features
of each slice, then the slice-wise features were fused into CT volume-
level feature via a max-pooling layer. However, since max pooling is
non-trainable, its applicability is limited. Ilse et al. [32] have shown
that attention-based pooling outperforms max pooling in image classifi-
cation experiments. Besides, the attention weights for each slice makes
the model more interpretable. Thus, attention-based pooling used in
our model is more effective and interpretable than max pooling. Fur-
thermore, our proposed regularization term helps the attention-based
MIL pooling module to assign the weights to each instance better by
considering the similarity between adjacent slices, thereby can further
improve the model classification performance. There are also 3D CNNs
methods [24, 67], but, 3D CNNs usually require larger GPU memory.
Also, our framework can be used with widely available 2D CNNs
pretrianed on ImageNet [11], which makes the convergence of model
training faster and better. Furthermore, the quantitative weights learned
for each instance and Grad-CAM make our model more interpretable,
which is helpful for diagnosing and improving the model.

4.4 Visualization Tools and User Interface
The visualization interface of COVID-view integrates all the compo-
nents of our pipeline (Fig. 3) for the radiologist to access in different
modes. The interface allows the radiologist to visualize the chest CT
in different 2D and 3D views that support conventional 2D radiolo-
gists’ workflow and contemporary 3D visualization methods for better
discernment of lesions and their morphology for improved diagnosis.

2D Views: A snapshot of the user interface of COVID-view is shown
in Fig. 5a. The right-hand side displays the conventional 2D views of
axial, coronal, and sagittal planes. A range-slider immediately below
the 3D View is used for adjusting the gray-scale colormap in all the 2D
views. Similar action can also be performed using mouse left-click and
drag operation on the 2D views. This supports Task T2. These views
are indispensable as radiologists are trained to use them to examine
scans. We incorporate additional cues in the 2D views to highlight
the segmented lungs outline (in green) and COVID-19 lesions (in red),
which support Tasks T1 and T3, respectively. Thus, we support the
radiologists in their conventional workflow (Tasks T1 and T2) and
augment additional information to draw attention to abnormal regions
of the lungs that require special attention and characterization.

3D View: In Fig. 5a, the main canvas shows the 3D rendering
of the chest CT, utilizing multi-label volume rendering and applies
local transfer function to each segmentation label. The composite
segmentation mask used by the 3D rendering contains the segmented
lesions, segmented lungs, and the context volume outer region. Each
of the three regions use three separate transfer functions. Additionally,
the user can choose to hide/show each of these regions in the 3D view,
thereby allowing to create different visualization combinations for
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Fig. 5. Snapshot of COVID-view user interface. (a) The top panel of the user interface contains the central 3D view, visualization tools, and the
conventional 2D axial, sagittal and coronal views. Vertical panel on the left shows DICOM patient information. (b) The bottom panel of the user
interface provides widgets for controlling the 2D/3D visualizations, clipping, measurements, and access to classification model results and heatmap.

better understanding of the lungs and surrounding regions (Task T3).
For example, the user may choose to hide the context volume and only
render the lungs and internal lesions to get an occlusion-free view of
the lungs interior (Fig. 6a). As seen in the figure, we also allow the
user to render the lungs outline geometry as a translucent surface mesh.
This provides important context when rendering partial or restricted
volumes in the 3D view and also supports Task T1 for inspection of
lung geometry for stiffness or restrictions. As another example, the user
may choose to render all three regions and use one or more clipping
planes to control occlusion and get a look into the lungs/chest (Fig.
6b). The 2D views and the 3D view are linked to each other for easier
navigation, correlating features, and simultaneous lesion inspection
across views. Clicking on any one of the planes will steer the other
two planes to the clicked voxel, and a 3D cursor crosshair (3 black
orthogonal intersecting lines) will update its position in the 3D view
to the selected voxel position. Similarly, the user can directly select a
point in the 3D view by clicking twice from different viewpoints while
pressing the control key. This will update the 3D cursor, and the 2D
view points will automatically steer to the corresponding axial, coronal,
and sagittal planes that intersect with the selected voxel.

Fig. 6. Lungs multi-label 3D visualization. (a) Rendering lungs and
lesions as volume and lungs outline as surface. (b) Rendering lungs with
outer context volume and coronal clipping plane for managing occlusion.
The heart chambers and subcutaneous fat can be seen with the clipping.

Clipping Tool: As shown in Fig. 6b, we include a volume clipping
tool that works in tandem with the multi-label volume renderer, which
can render three different regions (context, lungs, lesions) with localized
transfer functions. The clipping tool uses three range sliders, one for
each axis, to control the six clipping planes (also covering Task T1).
The user can choose to move any single clipping plane at any given
time (e.g., Fig. 6b uses single coronal clipping plane), or both planes
of an axis by dragging the middle of the range sliders. This function of
dragging both minimum and maximum clipping plane of an axis allows
a visualization mode where a thick slab of the volume is rendered and

the slab can be moved along the axis for 3D inspection of the lung
slabs. This can be considered as the 3D extensions of the axial, sagittal
and coronal 2D views. The thick slab mode allows better discernment
of the local 3D structures and lesion morphology without significant
surrounding occlusion (Fig. 7). This can support task T5 for closer
inspection of lesion morphology and understanding subtle geometries.

Fig. 7. Thick slab mode can provide 3D extensions of the conventional
2D planar views. (a) Coronal view of slice 232. (b) Thick slab mode in
coronal view. 3D cursor cross-hair points to a GGO whose morphology
is clearly visible in 3D rendering along with neighboring vessels that
connect with it. (c) MIP view in coronal plane using 10 adjacent slices
around slice number 232. GGO lesions have a much larger footprint
in MIP view and hence are easier to spot. The single slice views (a)
only show fragments of the lesion and is difficult to judge the shape and
morphology of the lesion in conventional 2D views. (a, c) Comparison of
MIP mode with conventional 2D views for lesion visualization.

Transfer Function Design and Presets: COVID-view provides two
different ways to manipulate optical properties of 3D rendering: basic
mode, and advanced mode. In the basic mode, the user manipulates
two sliders: opacity and offset. The opacity slider modifies the global
opacity of a label (lungs, lesions, or context volume). Similarly, the
offset slider applies an offset to the local transfer function of the chosen
label. Specifically, the mapping between the transfer function and the
scalar range over which it is applied can be manipulated using this
slider. It offsets the transfer function mapping to lower or higher values
of intensity. This allows for easy manipulation and adjustment of the
preset transfer functions without the need to directly manipulate the
piece-wise linear color and opacity maps. In the advanced mode, the
user can choose the Transfer Function Tab in the Vis Tools (Fig. 5a)
to directly edit the transfer functions as a polyline on a 2D graph of
Intensity vs Opacity (Fig. 5b). We provide some well-designed preset
transfer functions that the user can directly choose for visualizing the
context volume, lungs, and the lesion volume. The user can also create
their own transfer functions and save them for future use. All saved

presets are automatically loaded into the COVID-view system during
future runs. Task T2 of manipulating the colormap in the conventional
workflow can be translated to the 3D view as manipulation and manage-
ment of optical properties or transfer functions. Therefore, this feature
of our user interface design accommodates abstract Task T2.

MIP Mode: Maximum intensity projection (MIP) mode creates 2D
projection of volumes by projecting the highest intensity voxels to the
foreground. This rendering is particularly useful for visualizing vascu-
lar structures, and consequently are suitable for lungs visualization. The
MIP mode can be activated in all three 2D views, and is applied within
the segmented lungs volume. This helps in overcoming any occlusion
caused by the context volume, and the radiologist can focus only on the
features internal to the lungs. Fig. 7c-d shows a comparison of MIP
mode with conventional 2D views for the visualization of COVID-19
chest CT lesions. The MIP mode also essentially supports Tasks T3 and
T5 of observing both vascular and GGO/consolidation abnormalities.

Explainable DL: As automatic classification and assessment mod-
els are developed and incorporated into medical diagnosis workflow,
it has become important to provide reliable and explainable results
to the users. We described our novel binary classification model for
COVID-19 in Sec. 4.3. The model executes automatically when a chest
CT is loaded into the COVID-viewṪhe results are presented in the form
of two percentage probabilities for the COVID negative and positive
classes, within a separate Classification tab of the Vis Tools. We also
provide the user with a checkbox to overlay the activation heatmap of
our classification model using an adaptation of the Gradient-weighted
Class Activation Mapping (Grad-CAM) [62] on the 2D axial, coronal,
and sagittal views. We incorporated this activation heatmap as a visual
overlay in our user-interface to improve the radiologists’ trust in the
output of our classification model. The activation heatmap is extracted
from our classification model without any external supervision and
allows the radiologist to evaluate what regions of the CT images trig-
gered the classifier results. This provides an explanation and insight
into our model results . Fig. 8 shows several examples of the activation
heatmap in our application for CT images of COVID-19 patients.

viridis colormap

Fig. 8. Representative examples of the class activation heatmap for the
CT images of COVID-19 patients.

Measurements: COVID-view provides quantification tools for mea-
suring lesions and tracking their growth. Linear measurements are
supported in all the 2D views. The user can select the Measurements
and Camera tab in the Vis Tools to show, hide, clear, or start linear
measurements. In addition, since we have a lesion segmentation model
integrated into COVID-view we also provide automatic volume mea-
surement of the lungs and lesions. Three values are presented: lungs
volume, lesions volume, and lesions percentage. Such volume mea-
surements can help the radiologist to assess the lesion severity and
distribution. As described earlier in Sec. 3, a recent study [57] has
shown that disease severity based on approximate lesion volume per-
centage is a promising predictor for patient management and prognosis.
Together, the linear and volume measurements support Task T6.

5 EVALUATION

In this section, we present a quantitative evaluation of our novel COVID-
19 classification model, and a qualitative evaluation of our visualization
system and user interface through expert feedback and case studies
performed using our system by collaborating radiologists.

5.1 Classification
Our classification model was developed, trained and evaluated on a total
of 580 CT volumes including 343 COVID-19 positive volumes and 237

COVID-19 negative volumes. The dataset size of our study is similar
to other studies [22, 67]. Since public datasets typically have some
limitations, such as only positive cases are available or the labels are
not RT-PCR-based [51], all our CT scans were collected in our own hos-
pital, as other studies did (e.g., [22, 46, 67]). Our 343 COVID-positive
volumes were from patients with RT-PCR positive confirmation for the
presence of SARS-CoV-2, and 202 COVID-negative volumes were col-
lected from trauma patients undergone CT exams before the outbreak
of COVID-19, and 35 COVID-negative volumes were collected in 2020
from patients without pneumonia. The model was implemented with
the PyTorch [54] framework. It was trained using Adam [38] optimizer
with the initial learning rate of 1e−5 for 100 epochs. We evaluated the
performance of the model using 5-fold cross-validation. For the detec-
tion of COVID-19, the accuracy and area under the receiver operating
characteristic (ROC) curve (AUC) are 0.952( 95% confidence interval
(CI): 0.938, 0.966) and 0.985 (95% CI: 0.981, 0.989), respectively. The
sensitivity and specificity are 0.953 (95% CI: 0.932, 0.974) and 0.949
(95% CI: 0.928, 0.97), respectively. The ROC curve of the COVID-19
binary classification results was shown in Fig. 9.

Fig. 9. ROC curve of our COVID-19 classification results.

5.2 Expert Feedback and Case Studies
We developed COVID-view through close collaboration between com-
puter scientists and a co-author expert radiologist (MZ). MZ provided
feedback on our design choices during multiple discussion sessions
through different development stages. We gathered a final round of
feedback on the design and utility of different tools of our completed
system from MZ, another radiologist Dr. Almas Abbasi (AA), and a
medical trainee Joshua Zhu (JZ). Both MZ and AA used COVID-view
on real-world patient cases over remote meetings before providing
qualitative feedback. MZ also performed case studies on multiple
real-world cases using the completed COVID-view. Following is a
description of the case studies and their diagnostic findings.

Case 1: The first case analyzed by the radiologist MZ is a 79 year
old female who had a chest CT scan with intravenous (IV) contrast (see
Fig. 10 Case 1). MZ inspected the case in both 2D views (particularly
using axial slices) and 3D visualization of the lungs. After glancing at
the 3D view of the lungs volume, MZ was quickly able to comment on
the distribution of the COVID-19 lesions. MZ pointed out that most
lesions proportion were posterior rather than anterior, and were in the
lungs dependent region. This may also happen due to the patient’s
supine pose as the lungs may collapse (sub-segmental atelectasis) due
to gravity, showing higher opacity in the lungs dependent region re-
gardless of whether the lungs are diseased. Another case for cause
of higher opacities in the lungs posterior region is pulmonary edema,
that is, accumulation of fluid in the lungs webbing. MZ observed an
asymmetry in the lesion mass between left and right lungs, which fa-
vors an infectious process in the right lower lobe, but was hesitant to
strongly classify it as COVID-19 related lesions due to the aforemen-
tioned possibility of atelectasis or pulmonary edema. MZ looked at the
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Fig. 5. Snapshot of COVID-view user interface. (a) The top panel of the user interface contains the central 3D view, visualization tools, and the
conventional 2D axial, sagittal and coronal views. Vertical panel on the left shows DICOM patient information. (b) The bottom panel of the user
interface provides widgets for controlling the 2D/3D visualizations, clipping, measurements, and access to classification model results and heatmap.

better understanding of the lungs and surrounding regions (Task T3).
For example, the user may choose to hide the context volume and only
render the lungs and internal lesions to get an occlusion-free view of
the lungs interior (Fig. 6a). As seen in the figure, we also allow the
user to render the lungs outline geometry as a translucent surface mesh.
This provides important context when rendering partial or restricted
volumes in the 3D view and also supports Task T1 for inspection of
lung geometry for stiffness or restrictions. As another example, the user
may choose to render all three regions and use one or more clipping
planes to control occlusion and get a look into the lungs/chest (Fig.
6b). The 2D views and the 3D view are linked to each other for easier
navigation, correlating features, and simultaneous lesion inspection
across views. Clicking on any one of the planes will steer the other
two planes to the clicked voxel, and a 3D cursor crosshair (3 black
orthogonal intersecting lines) will update its position in the 3D view
to the selected voxel position. Similarly, the user can directly select a
point in the 3D view by clicking twice from different viewpoints while
pressing the control key. This will update the 3D cursor, and the 2D
view points will automatically steer to the corresponding axial, coronal,
and sagittal planes that intersect with the selected voxel.

Fig. 6. Lungs multi-label 3D visualization. (a) Rendering lungs and
lesions as volume and lungs outline as surface. (b) Rendering lungs with
outer context volume and coronal clipping plane for managing occlusion.
The heart chambers and subcutaneous fat can be seen with the clipping.

Clipping Tool: As shown in Fig. 6b, we include a volume clipping
tool that works in tandem with the multi-label volume renderer, which
can render three different regions (context, lungs, lesions) with localized
transfer functions. The clipping tool uses three range sliders, one for
each axis, to control the six clipping planes (also covering Task T1).
The user can choose to move any single clipping plane at any given
time (e.g., Fig. 6b uses single coronal clipping plane), or both planes
of an axis by dragging the middle of the range sliders. This function of
dragging both minimum and maximum clipping plane of an axis allows
a visualization mode where a thick slab of the volume is rendered and

the slab can be moved along the axis for 3D inspection of the lung
slabs. This can be considered as the 3D extensions of the axial, sagittal
and coronal 2D views. The thick slab mode allows better discernment
of the local 3D structures and lesion morphology without significant
surrounding occlusion (Fig. 7). This can support task T5 for closer
inspection of lesion morphology and understanding subtle geometries.

Fig. 7. Thick slab mode can provide 3D extensions of the conventional
2D planar views. (a) Coronal view of slice 232. (b) Thick slab mode in
coronal view. 3D cursor cross-hair points to a GGO whose morphology
is clearly visible in 3D rendering along with neighboring vessels that
connect with it. (c) MIP view in coronal plane using 10 adjacent slices
around slice number 232. GGO lesions have a much larger footprint
in MIP view and hence are easier to spot. The single slice views (a)
only show fragments of the lesion and is difficult to judge the shape and
morphology of the lesion in conventional 2D views. (a, c) Comparison of
MIP mode with conventional 2D views for lesion visualization.

Transfer Function Design and Presets: COVID-view provides two
different ways to manipulate optical properties of 3D rendering: basic
mode, and advanced mode. In the basic mode, the user manipulates
two sliders: opacity and offset. The opacity slider modifies the global
opacity of a label (lungs, lesions, or context volume). Similarly, the
offset slider applies an offset to the local transfer function of the chosen
label. Specifically, the mapping between the transfer function and the
scalar range over which it is applied can be manipulated using this
slider. It offsets the transfer function mapping to lower or higher values
of intensity. This allows for easy manipulation and adjustment of the
preset transfer functions without the need to directly manipulate the
piece-wise linear color and opacity maps. In the advanced mode, the
user can choose the Transfer Function Tab in the Vis Tools (Fig. 5a)
to directly edit the transfer functions as a polyline on a 2D graph of
Intensity vs Opacity (Fig. 5b). We provide some well-designed preset
transfer functions that the user can directly choose for visualizing the
context volume, lungs, and the lesion volume. The user can also create
their own transfer functions and save them for future use. All saved

presets are automatically loaded into the COVID-view system during
future runs. Task T2 of manipulating the colormap in the conventional
workflow can be translated to the 3D view as manipulation and manage-
ment of optical properties or transfer functions. Therefore, this feature
of our user interface design accommodates abstract Task T2.

MIP Mode: Maximum intensity projection (MIP) mode creates 2D
projection of volumes by projecting the highest intensity voxels to the
foreground. This rendering is particularly useful for visualizing vascu-
lar structures, and consequently are suitable for lungs visualization. The
MIP mode can be activated in all three 2D views, and is applied within
the segmented lungs volume. This helps in overcoming any occlusion
caused by the context volume, and the radiologist can focus only on the
features internal to the lungs. Fig. 7c-d shows a comparison of MIP
mode with conventional 2D views for the visualization of COVID-19
chest CT lesions. The MIP mode also essentially supports Tasks T3 and
T5 of observing both vascular and GGO/consolidation abnormalities.

Explainable DL: As automatic classification and assessment mod-
els are developed and incorporated into medical diagnosis workflow,
it has become important to provide reliable and explainable results
to the users. We described our novel binary classification model for
COVID-19 in Sec. 4.3. The model executes automatically when a chest
CT is loaded into the COVID-viewṪhe results are presented in the form
of two percentage probabilities for the COVID negative and positive
classes, within a separate Classification tab of the Vis Tools. We also
provide the user with a checkbox to overlay the activation heatmap of
our classification model using an adaptation of the Gradient-weighted
Class Activation Mapping (Grad-CAM) [62] on the 2D axial, coronal,
and sagittal views. We incorporated this activation heatmap as a visual
overlay in our user-interface to improve the radiologists’ trust in the
output of our classification model. The activation heatmap is extracted
from our classification model without any external supervision and
allows the radiologist to evaluate what regions of the CT images trig-
gered the classifier results. This provides an explanation and insight
into our model results . Fig. 8 shows several examples of the activation
heatmap in our application for CT images of COVID-19 patients.

viridis colormap

Fig. 8. Representative examples of the class activation heatmap for the
CT images of COVID-19 patients.

Measurements: COVID-view provides quantification tools for mea-
suring lesions and tracking their growth. Linear measurements are
supported in all the 2D views. The user can select the Measurements
and Camera tab in the Vis Tools to show, hide, clear, or start linear
measurements. In addition, since we have a lesion segmentation model
integrated into COVID-view we also provide automatic volume mea-
surement of the lungs and lesions. Three values are presented: lungs
volume, lesions volume, and lesions percentage. Such volume mea-
surements can help the radiologist to assess the lesion severity and
distribution. As described earlier in Sec. 3, a recent study [57] has
shown that disease severity based on approximate lesion volume per-
centage is a promising predictor for patient management and prognosis.
Together, the linear and volume measurements support Task T6.

5 EVALUATION

In this section, we present a quantitative evaluation of our novel COVID-
19 classification model, and a qualitative evaluation of our visualization
system and user interface through expert feedback and case studies
performed using our system by collaborating radiologists.

5.1 Classification
Our classification model was developed, trained and evaluated on a total
of 580 CT volumes including 343 COVID-19 positive volumes and 237

COVID-19 negative volumes. The dataset size of our study is similar
to other studies [22, 67]. Since public datasets typically have some
limitations, such as only positive cases are available or the labels are
not RT-PCR-based [51], all our CT scans were collected in our own hos-
pital, as other studies did (e.g., [22, 46, 67]). Our 343 COVID-positive
volumes were from patients with RT-PCR positive confirmation for the
presence of SARS-CoV-2, and 202 COVID-negative volumes were col-
lected from trauma patients undergone CT exams before the outbreak
of COVID-19, and 35 COVID-negative volumes were collected in 2020
from patients without pneumonia. The model was implemented with
the PyTorch [54] framework. It was trained using Adam [38] optimizer
with the initial learning rate of 1e−5 for 100 epochs. We evaluated the
performance of the model using 5-fold cross-validation. For the detec-
tion of COVID-19, the accuracy and area under the receiver operating
characteristic (ROC) curve (AUC) are 0.952( 95% confidence interval
(CI): 0.938, 0.966) and 0.985 (95% CI: 0.981, 0.989), respectively. The
sensitivity and specificity are 0.953 (95% CI: 0.932, 0.974) and 0.949
(95% CI: 0.928, 0.97), respectively. The ROC curve of the COVID-19
binary classification results was shown in Fig. 9.

Fig. 9. ROC curve of our COVID-19 classification results.

5.2 Expert Feedback and Case Studies
We developed COVID-view through close collaboration between com-
puter scientists and a co-author expert radiologist (MZ). MZ provided
feedback on our design choices during multiple discussion sessions
through different development stages. We gathered a final round of
feedback on the design and utility of different tools of our completed
system from MZ, another radiologist Dr. Almas Abbasi (AA), and a
medical trainee Joshua Zhu (JZ). Both MZ and AA used COVID-view
on real-world patient cases over remote meetings before providing
qualitative feedback. MZ also performed case studies on multiple
real-world cases using the completed COVID-view. Following is a
description of the case studies and their diagnostic findings.

Case 1: The first case analyzed by the radiologist MZ is a 79 year
old female who had a chest CT scan with intravenous (IV) contrast (see
Fig. 10 Case 1). MZ inspected the case in both 2D views (particularly
using axial slices) and 3D visualization of the lungs. After glancing at
the 3D view of the lungs volume, MZ was quickly able to comment on
the distribution of the COVID-19 lesions. MZ pointed out that most
lesions proportion were posterior rather than anterior, and were in the
lungs dependent region. This may also happen due to the patient’s
supine pose as the lungs may collapse (sub-segmental atelectasis) due
to gravity, showing higher opacity in the lungs dependent region re-
gardless of whether the lungs are diseased. Another case for cause
of higher opacities in the lungs posterior region is pulmonary edema,
that is, accumulation of fluid in the lungs webbing. MZ observed an
asymmetry in the lesion mass between left and right lungs, which fa-
vors an infectious process in the right lower lobe, but was hesitant to
strongly classify it as COVID-19 related lesions due to the aforemen-
tioned possibility of atelectasis or pulmonary edema. MZ looked at the
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classification results which confirmed this case as COVID-19 positive
with 99% certainty. MZ also looked at the activation heatmap which
pointed to the same region in the patient’s lower right lung which MZ
also had identified as possible infectious region. Indeed, the ground
truth label also confirmed that the patient was COVID-19 positive.

Case 2: The second case is a 77 year old female who had a chest CT
without IV contrast (see Fig. 10 Case 2). MZ identified a pulmonary
nodule on the scan. The chest scan did not have any other visible
abnormalities. The classification module reported this case as COVID-
19 negative, and the lesion localization model also did not identify any
abnormalities on the chest volume. MZ was glad to see that the nodule,
which is not COVID-19 related, was not misidentified as a COVID-19
related lesion and the classification model was also able to correctly
report the case as a negative with 97.8% certainty.

Case 3: The third case is a 72 year old male who had a chest CT
with IV contrast (see Fig. 10 Case 3). MZ studied the patient through
the 2D views and the 3D lungs rendered in isolation with vessels and
lesions. They were able to identify IST in the right lung through the 3D
visualizations. MZ noticed that the lesion localization model showed
outlines on the 2D views for subtle abnormal regions that they would
not have noticed. The outlines in the 2D views were able to draw
the radiologist’s attention to subtle areas of GGOs, which they would
have otherwise missed. MZ explained that early stage COVID-19 lung
opacities can be more subtle as they have not fully developed. The
outlines in such cases can help in drawing attention to the lesions extent
and distribution and support a more thorough examination of the chest
CT. A radiology report will often describe the distribution and extent
of GGO in terms of how many lobes are covered.

Case 4: The fourth case is a 77 year old female who had a chest CT
without IV contrast (see Fig. 10 Case 4). MZ looked at the automatic
classification results and checked the correlation between the identified
lesions and the classification model activation heatmap. MZ found a
decent correlation between the two, but had questions regarding why
the lesion localization outlines didn’t accurately correspond with the
classifier activation heatmap. We explained that the lesion localization
model [17] was trained on manually segmented lesions and is specifi-
cally trained for segmentation tasks, whereas the activation heatmap
is part of model results explanation rather than an accurate segmen-
tation. MZ also expressed the desire to have some control over the
heatmap parameters such as the scaling and thresholding parameters of
the colormap, which could be used to identify multiple peak points of
the heatmap. MZ identified a lesion (GGO) in the right lung that was
not particularly highlighted by the heatmap but was identified by the
lesion segmentation model (red outlines in 2D views). The radiologist
then looked at the isolated lesion in 3D view along with the lungs sur-
face. MZ appreciated the 3D view as it was able to provide additional
information about the lesion shape and its location, for example, that
the lesion is peripheral and provides a general qualitative sense of the
lesion size with respect to surrounding features, such as vessels. MZ
mentioned that if a radiologist was in doubt about the lesion in 2D
views, the 3D views can provide additional qualitative information that
may be able to clear up the doubt. The radiologist also viewed the case
with context and lungs rendered in 3D with a coronal clipping plane,
as in Fig. 6b. MZ explored the visualization with provided transfer
function presets. They noticed the heart and the subcutaneous fat region
due to the color mapping. They opined that since COVID-19 diagnosis
and the causes of severity of illness are still being investigated and are
an active medical research, there is also some interest in correlating
body fat with the disease. Visualizing the fat region and perhaps even
quantifying it might be a useful for diagnosis and even for research.
Similarly, the rendering of the context volume and use of clipping tool
can help visualize the cardiac region. The cardiac region can be of
interest for investigating pulmonary embolism, and change in contour
of particularly the right heart chamber due to back pressure from the
lungs. This case demonstrates non-dependent areas of opacity (lesions).

Beyond the case studies, we had further discussions with both
radiologists (MZ and AA). They commented on each of the COVID-
view user interface and visualization component, and their qualitative
feedback is summarized below.

3D Visualizations: Overall, both radiologists were pleased with the
3D visualization capabilities. MZ mentioned that the vessels in the
lungs were clearly visible in 3D. AA was also able to quickly identify a
nodule and interlobular septal wall thickening in the scan using the 3D
views as compared to the 2D views. Both radiologists found that the 3D
view of the isolated lungs volume is helpful to quickly identify lesion
locations and characterize the distributions (e.g., bilateral/unilateral and
location in dependent or non-dependent regions) which is important
to identify infectious processes in the lungs. MZ mentioned that 3D
visualization of blood vessels could also be helpful since non-aerated
areas of the lungs get shunted out and blood tends to flow in regions
that are more oxygenated. The lungs outline rendered as translucent
surface provided critical context for understanding lesion distribution,
and may also help in visualizing stiffness in the lungs. Stiffness can
cause lungs to under-inflate and reduce oxygenation. Identifying these
regions can help the physicians for better patient’s management in
terms of hospitalization, ICU and appropriate ventilation.

Clipping Tool: 3D view of the context volume with clipping planes
is robust and provides additional look at the cardiac region and body fat
through suitable transfer function presets. The clipping tool was very
useful in localizing 3D ROIs. Both radiologists mentioned that they are
familiar with the bounding box based clipping. Such 3D visualizations
and interaction tools are not common in their workflow. They are more
common to specialized applications such as virtual colonoscopy and
virtual bronchoscopy. MZ also mentioned that for COVID-19 diagnosis,
virtual endoscopy style navigation would not be useful, and it was better
to have an outside rendering of the lungs, such as in COVID-view.

Transfer Function Design and Presets: MZ stated that they prefer
different color combinations than the color-maps we had used in the
provided presets. Therefore, they appreciated the facility to allow them
to create their own presets and personalize the TFs for different tasks.
AA liked the application of color presets in the 3D clipped (front plane)
view, which provided the view point for inspecting the heart region and
lungs blood vessels. AA stated that such renderings can be helpful in
assessing other conditions, such as pulmonary embolism.

MIP views: It is a well-known tool to radiologists and many find it
very helpful. Particularly, subtle GGOs and nodules are easily visible in
MIP views. AA suggested adding colors, such as application of transfer
functions for the MIP views, to further improve its utility.

COVID-19 Classifier: Both radiologists appreciated that we had
incorporated the novel automatic binary classifier into the system, and
that the pre-processing pipeline of the application was entirely auto-
matic. This greatly helps in the utility of the system in the field, since a
radiologist is unlikely to spend time interacting with semi-automatic
segmentation or classification. MZ noted that it is useful to have a
second reader and the activation heatmap provides explanation for the
classifier results and has the potential to improve COVID-19 detection.
They pointed out that the heatmap was generally activated heavily by
a singular region rather than being activated by every COVID related
lesion. We explained that the activation heatmap may rely heavily on
the most prominent lesion and may not get triggered by every lesion.

Measurement Tools: MZ explained that the 2D measurement tools
and automatic lungs and lesions volume measurements are indispens-
able for assessing the size and growth of lung opacities, and the quanti-
tative assessment of lesion volumes can help in patient management and
prognosis. Furthermore, both AA and MZ mentioned other scenarios
where COVID-view and its visualization capabilities can be useful, for
example, to inspect cases of pulmonary embolism and rib fractures in
trauma patients as those could be difficult to analyze in 2D axial views.
In addition, we demonstrated COVID-view to medical trainee JZ to
understand the perspective of medical students currently undergoing
training for reading CT images. Based on the automatic classification
capability, JZ stated that the COVID-view could be used as a second
reader to the radiologist that can provide additional data points for
diagnosis. JZ also stated that in their personal experience COVID-view
user interface and visualizations appear better than other software ap-
plications they have encountered in the hospital during their training,
and that they are interested in using the tool and learning more about
its capabilities. They also suggested that help documentation in the

Fig. 10. Case studies performed by our collaborating radiologist (MZ). Case 1: (a1) 3D view with lungs and context volume clipped by top and front
planes shows affected lower-posterior lungs regions. (a2) Lower posterior lung regions rendered in isolation. (a3) Axial view. (a4) Coronal view
showing opacities in the lungs dependent regions. Case 2: (b1) Axial view showing very little abnormality detected by lesion segmentation model.
(b2) Axial view showing nodule (red arrow) identified by radiologist. (b3) 3D view of isolated lungs volume. (b4) 3D clipped view of lungs and vicinity
context volume showing a nodule (red arrow). Case 3: (c1) 3D view of isolated lungs showing 3D structure of interlobular wall thickening. (c2) Axial
view with red arrows showing segmented lesions outlines. The radiologist noticed that these opacities were very subtle and they would have missed
them without the outlines drawing attention to them. (c3) Axial view with red arrow pointing to the septal thickening shown in 3D view. Case 4: (d1)
3D view with lungs outline rendered as translucent surface. The outline provides a good context to understand lesion locations and overall lungs
geometry (specially if diseased). Zoomed inset shows a closer look at GGO in right lung. (d2) Axial view with an overlay of the classification model
activation heatmap. The model detected COVID-19 on the scan with 99% certainty. (d3) Axial MIP view showing segmented lesion outlines in red.

form of tool-tips and question mark buttons should be embedded into
the system for easier adoption by new users.

6 CONCLUSION AND FUTURE WORK

We have developed a novel 3D visual diagnosis application, COVID-
view, for radiological examination of chest CT for suspected COVID-19
patients. It aims at supporting disease diagnosis and patient manage-
ment and prognosis decision making. While lab tests (RT-PCR) are
available for screening patients for COVID-19, our COVID-view vi-
sual+DL system provides a more comprehensive analytical tool for
assessing severity and urgency in case of hospitalized patients. It fur-
ther supports other analysis tasks (e.g., pulmonary embolism diagnosis)
by augmenting the conventional 2D workflow with 3D visualization of
not just the lungs but also the context volume of the lungs and heart.
We developed a novel DL classification model for classifying patients
as COVID-19 positive/negative, which has high accuracy and reliability.
It is integrated into our user interface as a second reader along with the
visualization system for visual+DL diagnosis. In addition, an activation
heatmap generated by our classification model can be overlaid on the
2D views as explainable DL and as visual+DL decision support.

Diagnosis and treatment of COVID-19 is an active on-going research.
We believe that a visual+DL system, such as COVID-view can play
a critical role in not only diagnosing and managing patients but also
supporting researchers in further understanding the disease through
3D lung exploration and visualization, 3D lesion morphology, lungs
exterior geometry, cardiac region, and full-body scans. It has been
suggested by our expert radiologists to expand our detection to other

forms of abnormalities and diseases, such as cancer lesions, nodules,
pulmonary embolism, and other forms of lung fibrosis due to various
pneumonia. This would expand our application to a more general chest
CT analysis utility, which we plan to pursue in the future.

We further plan to improve our application prototype by adding an
heart segmentation model to support additional analysis of the cardiac
region and the heart right chambers, and visualization and quantification
of body fat as additional measure. We will also apply other explainable
DL methods, such as network dissection methods [6], and compare
their performance to improve the classification model interpretability.
We will also explore the possibility of developing automatic viewpoints
for structures that are better viewed from specific orientations (e.g.,
IST). The data for our study was collected from a single hospital, as
is common in initial studies, especially in COVID-19 (e.g., [67]). We
will collaborate with other institutions and collect additional data from
different populations to perform cross-institution and cross-population
validation. While the incorporated lesion segmentation model by Fan
et al. [17] is useful in our current prototype, we plan to develop a more
accurate segmentation and lesion type classification models.
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classification results which confirmed this case as COVID-19 positive
with 99% certainty. MZ also looked at the activation heatmap which
pointed to the same region in the patient’s lower right lung which MZ
also had identified as possible infectious region. Indeed, the ground
truth label also confirmed that the patient was COVID-19 positive.

Case 2: The second case is a 77 year old female who had a chest CT
without IV contrast (see Fig. 10 Case 2). MZ identified a pulmonary
nodule on the scan. The chest scan did not have any other visible
abnormalities. The classification module reported this case as COVID-
19 negative, and the lesion localization model also did not identify any
abnormalities on the chest volume. MZ was glad to see that the nodule,
which is not COVID-19 related, was not misidentified as a COVID-19
related lesion and the classification model was also able to correctly
report the case as a negative with 97.8% certainty.

Case 3: The third case is a 72 year old male who had a chest CT
with IV contrast (see Fig. 10 Case 3). MZ studied the patient through
the 2D views and the 3D lungs rendered in isolation with vessels and
lesions. They were able to identify IST in the right lung through the 3D
visualizations. MZ noticed that the lesion localization model showed
outlines on the 2D views for subtle abnormal regions that they would
not have noticed. The outlines in the 2D views were able to draw
the radiologist’s attention to subtle areas of GGOs, which they would
have otherwise missed. MZ explained that early stage COVID-19 lung
opacities can be more subtle as they have not fully developed. The
outlines in such cases can help in drawing attention to the lesions extent
and distribution and support a more thorough examination of the chest
CT. A radiology report will often describe the distribution and extent
of GGO in terms of how many lobes are covered.

Case 4: The fourth case is a 77 year old female who had a chest CT
without IV contrast (see Fig. 10 Case 4). MZ looked at the automatic
classification results and checked the correlation between the identified
lesions and the classification model activation heatmap. MZ found a
decent correlation between the two, but had questions regarding why
the lesion localization outlines didn’t accurately correspond with the
classifier activation heatmap. We explained that the lesion localization
model [17] was trained on manually segmented lesions and is specifi-
cally trained for segmentation tasks, whereas the activation heatmap
is part of model results explanation rather than an accurate segmen-
tation. MZ also expressed the desire to have some control over the
heatmap parameters such as the scaling and thresholding parameters of
the colormap, which could be used to identify multiple peak points of
the heatmap. MZ identified a lesion (GGO) in the right lung that was
not particularly highlighted by the heatmap but was identified by the
lesion segmentation model (red outlines in 2D views). The radiologist
then looked at the isolated lesion in 3D view along with the lungs sur-
face. MZ appreciated the 3D view as it was able to provide additional
information about the lesion shape and its location, for example, that
the lesion is peripheral and provides a general qualitative sense of the
lesion size with respect to surrounding features, such as vessels. MZ
mentioned that if a radiologist was in doubt about the lesion in 2D
views, the 3D views can provide additional qualitative information that
may be able to clear up the doubt. The radiologist also viewed the case
with context and lungs rendered in 3D with a coronal clipping plane,
as in Fig. 6b. MZ explored the visualization with provided transfer
function presets. They noticed the heart and the subcutaneous fat region
due to the color mapping. They opined that since COVID-19 diagnosis
and the causes of severity of illness are still being investigated and are
an active medical research, there is also some interest in correlating
body fat with the disease. Visualizing the fat region and perhaps even
quantifying it might be a useful for diagnosis and even for research.
Similarly, the rendering of the context volume and use of clipping tool
can help visualize the cardiac region. The cardiac region can be of
interest for investigating pulmonary embolism, and change in contour
of particularly the right heart chamber due to back pressure from the
lungs. This case demonstrates non-dependent areas of opacity (lesions).

Beyond the case studies, we had further discussions with both
radiologists (MZ and AA). They commented on each of the COVID-
view user interface and visualization component, and their qualitative
feedback is summarized below.

3D Visualizations: Overall, both radiologists were pleased with the
3D visualization capabilities. MZ mentioned that the vessels in the
lungs were clearly visible in 3D. AA was also able to quickly identify a
nodule and interlobular septal wall thickening in the scan using the 3D
views as compared to the 2D views. Both radiologists found that the 3D
view of the isolated lungs volume is helpful to quickly identify lesion
locations and characterize the distributions (e.g., bilateral/unilateral and
location in dependent or non-dependent regions) which is important
to identify infectious processes in the lungs. MZ mentioned that 3D
visualization of blood vessels could also be helpful since non-aerated
areas of the lungs get shunted out and blood tends to flow in regions
that are more oxygenated. The lungs outline rendered as translucent
surface provided critical context for understanding lesion distribution,
and may also help in visualizing stiffness in the lungs. Stiffness can
cause lungs to under-inflate and reduce oxygenation. Identifying these
regions can help the physicians for better patient’s management in
terms of hospitalization, ICU and appropriate ventilation.

Clipping Tool: 3D view of the context volume with clipping planes
is robust and provides additional look at the cardiac region and body fat
through suitable transfer function presets. The clipping tool was very
useful in localizing 3D ROIs. Both radiologists mentioned that they are
familiar with the bounding box based clipping. Such 3D visualizations
and interaction tools are not common in their workflow. They are more
common to specialized applications such as virtual colonoscopy and
virtual bronchoscopy. MZ also mentioned that for COVID-19 diagnosis,
virtual endoscopy style navigation would not be useful, and it was better
to have an outside rendering of the lungs, such as in COVID-view.

Transfer Function Design and Presets: MZ stated that they prefer
different color combinations than the color-maps we had used in the
provided presets. Therefore, they appreciated the facility to allow them
to create their own presets and personalize the TFs for different tasks.
AA liked the application of color presets in the 3D clipped (front plane)
view, which provided the view point for inspecting the heart region and
lungs blood vessels. AA stated that such renderings can be helpful in
assessing other conditions, such as pulmonary embolism.

MIP views: It is a well-known tool to radiologists and many find it
very helpful. Particularly, subtle GGOs and nodules are easily visible in
MIP views. AA suggested adding colors, such as application of transfer
functions for the MIP views, to further improve its utility.

COVID-19 Classifier: Both radiologists appreciated that we had
incorporated the novel automatic binary classifier into the system, and
that the pre-processing pipeline of the application was entirely auto-
matic. This greatly helps in the utility of the system in the field, since a
radiologist is unlikely to spend time interacting with semi-automatic
segmentation or classification. MZ noted that it is useful to have a
second reader and the activation heatmap provides explanation for the
classifier results and has the potential to improve COVID-19 detection.
They pointed out that the heatmap was generally activated heavily by
a singular region rather than being activated by every COVID related
lesion. We explained that the activation heatmap may rely heavily on
the most prominent lesion and may not get triggered by every lesion.

Measurement Tools: MZ explained that the 2D measurement tools
and automatic lungs and lesions volume measurements are indispens-
able for assessing the size and growth of lung opacities, and the quanti-
tative assessment of lesion volumes can help in patient management and
prognosis. Furthermore, both AA and MZ mentioned other scenarios
where COVID-view and its visualization capabilities can be useful, for
example, to inspect cases of pulmonary embolism and rib fractures in
trauma patients as those could be difficult to analyze in 2D axial views.
In addition, we demonstrated COVID-view to medical trainee JZ to
understand the perspective of medical students currently undergoing
training for reading CT images. Based on the automatic classification
capability, JZ stated that the COVID-view could be used as a second
reader to the radiologist that can provide additional data points for
diagnosis. JZ also stated that in their personal experience COVID-view
user interface and visualizations appear better than other software ap-
plications they have encountered in the hospital during their training,
and that they are interested in using the tool and learning more about
its capabilities. They also suggested that help documentation in the

Fig. 10. Case studies performed by our collaborating radiologist (MZ). Case 1: (a1) 3D view with lungs and context volume clipped by top and front
planes shows affected lower-posterior lungs regions. (a2) Lower posterior lung regions rendered in isolation. (a3) Axial view. (a4) Coronal view
showing opacities in the lungs dependent regions. Case 2: (b1) Axial view showing very little abnormality detected by lesion segmentation model.
(b2) Axial view showing nodule (red arrow) identified by radiologist. (b3) 3D view of isolated lungs volume. (b4) 3D clipped view of lungs and vicinity
context volume showing a nodule (red arrow). Case 3: (c1) 3D view of isolated lungs showing 3D structure of interlobular wall thickening. (c2) Axial
view with red arrows showing segmented lesions outlines. The radiologist noticed that these opacities were very subtle and they would have missed
them without the outlines drawing attention to them. (c3) Axial view with red arrow pointing to the septal thickening shown in 3D view. Case 4: (d1)
3D view with lungs outline rendered as translucent surface. The outline provides a good context to understand lesion locations and overall lungs
geometry (specially if diseased). Zoomed inset shows a closer look at GGO in right lung. (d2) Axial view with an overlay of the classification model
activation heatmap. The model detected COVID-19 on the scan with 99% certainty. (d3) Axial MIP view showing segmented lesion outlines in red.

form of tool-tips and question mark buttons should be embedded into
the system for easier adoption by new users.

6 CONCLUSION AND FUTURE WORK

We have developed a novel 3D visual diagnosis application, COVID-
view, for radiological examination of chest CT for suspected COVID-19
patients. It aims at supporting disease diagnosis and patient manage-
ment and prognosis decision making. While lab tests (RT-PCR) are
available for screening patients for COVID-19, our COVID-view vi-
sual+DL system provides a more comprehensive analytical tool for
assessing severity and urgency in case of hospitalized patients. It fur-
ther supports other analysis tasks (e.g., pulmonary embolism diagnosis)
by augmenting the conventional 2D workflow with 3D visualization of
not just the lungs but also the context volume of the lungs and heart.
We developed a novel DL classification model for classifying patients
as COVID-19 positive/negative, which has high accuracy and reliability.
It is integrated into our user interface as a second reader along with the
visualization system for visual+DL diagnosis. In addition, an activation
heatmap generated by our classification model can be overlaid on the
2D views as explainable DL and as visual+DL decision support.

Diagnosis and treatment of COVID-19 is an active on-going research.
We believe that a visual+DL system, such as COVID-view can play
a critical role in not only diagnosing and managing patients but also
supporting researchers in further understanding the disease through
3D lung exploration and visualization, 3D lesion morphology, lungs
exterior geometry, cardiac region, and full-body scans. It has been
suggested by our expert radiologists to expand our detection to other

forms of abnormalities and diseases, such as cancer lesions, nodules,
pulmonary embolism, and other forms of lung fibrosis due to various
pneumonia. This would expand our application to a more general chest
CT analysis utility, which we plan to pursue in the future.

We further plan to improve our application prototype by adding an
heart segmentation model to support additional analysis of the cardiac
region and the heart right chambers, and visualization and quantification
of body fat as additional measure. We will also apply other explainable
DL methods, such as network dissection methods [6], and compare
their performance to improve the classification model interpretability.
We will also explore the possibility of developing automatic viewpoints
for structures that are better viewed from specific orientations (e.g.,
IST). The data for our study was collected from a single hospital, as
is common in initial studies, especially in COVID-19 (e.g., [67]). We
will collaborate with other institutions and collect additional data from
different populations to perform cross-institution and cross-population
validation. While the incorporated lesion segmentation model by Fan
et al. [17] is useful in our current prototype, we plan to develop a more
accurate segmentation and lesion type classification models.
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