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Geo-Context Aware Study of Vision-Based Autonomous Driving
Models and Spatial Video Data

Suphanut Jamonnak, Ye Zhao, Xinyi Huang, and Md Amiruzzaman

Fig. 1. Visual interface for geo-context aware analysis of prediction data from autonomous driving models. (A) Interactive map view
for deep learning model predictions and video data; (B) Autonomous driving model performance charts; (C) Trip filters based on
model performance metrics or spatial conditions; (D) Trip distribution charts of selected video trip data; (E) Model prediction view for
comparing multiple model predictions; (F) Street view thumbnails showing training video details at critical locations.

Abstract—
Vision-based deep learning (DL) methods have made great progress in learning autonomous driving models from large-scale crowd-
sourced video datasets. They are trained to predict instantaneous driving behaviors from video data captured by on-vehicle cameras. In
this paper, we develop a geo-context aware visualization system for the study of Autonomous Driving Model (ADM) predictions together
with large-scale ADM video data. The visual study is seamlessly integrated with the geographical environment by combining DL model
performance with geospatial visualization techniques. Model performance measures can be studied together with a set of geospatial
attributes over map views. Users can also discover and compare prediction behaviors of multiple DL models in both city-wide and
street-level analysis, together with road images and video contents. Therefore, the system provides a new visual exploration platform
for DL model designers in autonomous driving. Use cases and domain expert evaluation show the utility and effectiveness of the
visualization system.

Index Terms—Visualization System, Spatial Video, Autonomous Driving, Vision-based Deep Learning Models

1 INTRODUCTION

Deep learning (DL) in computer vision has achieved success in learning
autonomous driving models (ADM) from large-scale crowd-sourced
video datasets. The vision-based models are trained to predict instanta-
neous driving behaviors from spatial video data captured by on-vehicle
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cameras while moving vehicles traverse road networks in different
types of built environments. The massive video datasets present di-
verse visual appearances, dynamic traffic situations, and meanwhile
register realistic drivers’ behaviors along the trajectories. The datasets
are utilized for the development of DL models in autonomous driving.
Domain researchers and practitioners of autonomous cars are continu-
ously accumulating video data over multiple regions and cities. Many
datasets and models are publicly shared to promote research progress.

These data analytics topics are of interest and importance to users
including DL model designers and autonomous driving practitioners.
Due to the large volume, complexity, and heterogeneity of the data,
visual exploration techniques are demanded which can leverage the
emerging DL research products in autonomous driving within geograph-

1

ar
X

iv
:2

10
9.

10
89

5v
1 

 [
cs

.H
C

] 
 2

0 
A

ug
 2

02
1

https://doi.org/10.1109/TVCG.20xx.xxxxxxx


ical context. In this paper, we present a geo-context aware visualization
system for the study of predictions made by vision-based ADMs to-
gether with large-scale video data. The scope of work is mainly for
model performance comparison and analysis, and the target users are
researchers of the related application fields.

The system is built up based on an open repository of ADM videos
including real driver actions and predictions from three different DL
neural networks. A large number of video trips are processed and
matched to geographical locations in a big city by their trajectory foot-
print locations. In a spatial database, the heterogeneous data of videos,
images, DL model predictions are integrated with important attributes
including streets, regions, weather, and time periods, and realtime
queries are well supported using different conditions. Therefore, users
are enabled to overview, search, and explore the performance of ADMs
with geographical filters, and meanwhile, geographical locations with
specified ADM performances can also be easily studied. A set of vi-
sualizations are designed for interactive study in both coarse and fine
levels of geographical units. Video contents of traffic scenes are also
visualized for model prediction analysis. Moreover, differences and
similarities of three DL networks are classified and compared at loca-
tions, so that users can investigate specific model performances with
geographic cues.

In summary, the main contributions of this paper include:
• We develop visual analytics (VA) techniques and a prototype that

support domain users to study and compare multiple ADMs for their
prediction performance in both city and street levels.

• We present visual analysis functions that facilitate bidirectional data
analysis, either from spatial conditions to ADM prediction perfor-
mance or from model accuracy/perplexity to spatial attributes.

• We seamlessly integrate large-scale spatial video data and ADM
prediction data within efficient data management and interactive
geo-visualization interface.

A few case studies were conducted with the new VA system in a big
city area. Its utility and effectiveness were evaluated by domain experts.
They agreed that the system fills the gap between the emerging large-
scale ADM data and the analytical capability, which can be well utilized
in their fields.

2 RELATED WORK

2.1 Vision Based Autonomous Driving DL Model
Autonomous driving is an important developing technology that is use-
ful for improving traffic, reducing emission, and transforming driving
culture [60]. Vision-based autonomous driving technology achieves
fast and huge progress with DL models. Deep reinforcement learn-
ing [28, 38, 43] have been applied for motion control. The earliest
ALVINN [40] uses a 3-layer shallow network with simulated road im-
ages for action prediction. Later, a CNN is trained with road images
and steering angles like Nvidia PilotNet [11]. More recent works for
motion control are based on both CNN and RNN, where RNN is used
for handling temporal sequences in video streams. FCN-LSTM [58]
uses a fully-convolutional network together with an LSTM to learn
the visual and temporal information and make the decision on the ac-
tion of motion. Based on a CNN-LSTM architecture, Drive360 [22]
further comprises a fully connected network to integrate information
from multiple sensors for the prediction of the driving maneuvers. The
performance of deep learning models is measured quantitatively for
statistical comparison. But there is a lack of interactive visual analytics
tools to analyze the model performance with geographical attributes,
which is the focus of this paper.

2.2 Visual Analytics of DL Models
Interactive visualization tools have been used for an in-depth under-
standing of how deep learning models work [23, 41]. Many VA tools
(e.g., [14, 30, 31, 50, 55]) allow users to interact with the activation
maps and network structure, and the prediction/classification results.
These tools have the potential but are not yet applied to DL networks of
ADM, where for instance, LSTM and CNN model visualizations may
be integrated with street-view perception data.

For vision-based DL models, computational approaches of deep
learning explanation have been addressed through a variety of algo-
rithms [44]. A general taxonomy classified them into three main cat-
egories [20]: input modification methods, deconvolutional methods,
and input reconstruction methods. Deconvolutional Networks (De-
convNets) [48, 61], Guided Back Propagation [49], Class Activation
Mapping (CAM) [33, 46, 63], were the popular approaches. Recently,
LRP has become an emerging focus from computer vision researchers
(e.g., [6, 8, 32, 51]). Heatmaps were mostly used in these methods to
visualize input pixels’ relevance values to prediction results. VisLR-
PDesigner [24] provides a comprehensive visualization tool for LRP
design and exploration. These methods and tools can be applied in the
future to street-view-based ADMs to visually explain what perception
features affect the driving action decisions.

Few VA systems are designed for autonomous driving models. Visu-
alBackProp [10] highlights network elements in Nvidia PilotNet [11]
that affect steering decision. VATLD [19] focuses on the understanding
of the accuracy and robustness of traffic light detectors by disentangled
representation learning and semantic adversarial learning. It allows
users to obtain valuable insights to improve the CNN model perfor-
mance. These tools do not study the prediction results of autonomous
driving models and the spatial video data in the context of city-wide
geography. Our system presents geographical visualizations together
with model prediction metrics in a VA system, which enables users to
conduct interactive studies among spatial, video, and model prediction
data elements.

2.3 Geospatial and Urban Data Visualization
A variety of VA methods and tools have been developed to visually
make sense of geo-spatial data [3]. They are developed for visualizing
origin-destination movement data [3, 5, 65], vehicle trajectory data [1],
space-time data [2, 32, 36], flow maps [39], Flowstrates [13], OD maps
[56], and visual queries [17]. Vehicle trajectories are visually studied
with various visual metaphors and interactions, such as GeoTime [29],
SemanticTraj [1], TripVista [21], FromDaDy [26], TrajGraph [25],
and more [4, 34, 53, 57]. They have been widely used for urban and
transportation data analytics, which however, have not been extended
to leveraging the autonomous driving data.

On the other hand, street-view images have been used in landscap-
ing, urban planning, transportation, and social studies. [37, 47, 64].
Recent development of DL technologies (e.g., Segnet [7] and PSP-
net [62]) make this process less expensive and faster, which can find
objects and extract semantic categories from street-view images and
videos. A VA system [27], GeoVisuals, is developed to interactively
manage, visualize, and analyze spatial video and geo-narratives using a
set of visualization widgets and interaction functions. Moreover, VA
systems for model diagnosis based on multi-modal sensors (camera,
lidar, radar) have been developed and adopted in the AD industry (e.g.
https://avs.auto/demo/).

In this paper, we present a new VA system for the efficient study of
vision-based ADMs inside a geospatial visualization platform. Our sys-
tem integrates model prediction visualization with city-wide geographic
environment.

3 VISION BASED AUTONOMOUS DRIVING MODELS

Automated driving in urban scenes presents big interest and challenge
in researchers and practitioners, leading to the advent of deep learn-
ing models together with the development of massive autonomous
driving datasets. A survey reviewed the studies regarding present
challenges, system architectures, emerging methodologies and core
functions including localization, mapping, perception, planning, and
human-machine interfaces [60]. Vision-based DL models trained by
spatial videos of traffic scenes have achieved impressive advances,
which are studied in this paper. Next, we introduce the basics of au-
tonomous driving models (ADMs) and video datasets.

3.1 Discrete Action Driving Model
Deep learning models used for autonomous driving action prediction
usually take road view images from video cameras to predict possible
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Fig. 2. An illustration of CNN-LSTM and FCN-LSTM networks.

future motion. Realtime image frames in a sequence of time steps are
utilized to provide current and previous state signals, and the ADMs
implement a driving action function as:

G(i,a) : IMG×ACT → R (1)

where i ∈ IMG represents a set of images, and a ∈ ACT represents a
potential motion action. This function generates the probability of the
action in real number. A typical set ACT includes four discrete motion
actions as:

ACT = {go straight,slow or stop, le f t turn,right turn} . (2)

The set can also be extended to more actions (e.g., using slightly left
turn, sharp left turn, and so on). These actions are usually qualified from
the angular velocity and other car driving attributes. If the continuous
velocity is used, it will lead to a continuous action driving model usually
used for lane following problems. In this paper, we build the system
based on the typical discrete action driving model.

3.2 Model Training with Spatial Videos
In order to design DL models for motion action prediction, large-
scale spatial video datasets are needed for training and evaluation.
Usually, crowd-sourced video datasets are collected from dashcam
video cameras mounted on vehicles. The vehicles travel across roads
and videotape various road conditions, while their GPS trajectories
are stored. Meanwhile, real drivers’ actions are recorded with sensors.
It is demanded that these videos are generated in a large variety of
geographical locations and settings, weathers, and time periods in a day,
so that the DL models are well trained to face various traffic situations.
Therefore, the DL model performance should also be studied based on
these geographical attributes, which is one of our system goals.

There exist a group of open datasets, such as KITTI [18], Cityscape
[16], Comma.ai [45], Oxford [35], synthetic Princeton Torcs [15] and
GTA [42], which are publicly shared by ADM designers and researchers
[58]. In this paper, we utilize one of the largest datasets, the Berkeley
DeepDrive Video (BDDV) dataset [59].

The BDDV dataset includes more than 10k hours of road videos
in city, rural, and highway environments in multiple cities, multiple
weather conditions (sunny, rain, snow, etc.), and both day and night
times. It also comes with real driver actions and GPS trajectory data
which can be mapped to locations at each time step.

3.3 DL Neural Networks
A set of DL neural network architectures have been developed to make
action predictions for the function G. Fig. 2 illustrates two networks.
The input of image frame at current time t is processed with either
CNN (Convolutional Neural Network) or FCN (Fully Convolutional
Network), and the output is combined in LSTM (Long short-term
memory) network with previous states including the previous frames
and actions in a few seconds prior to t. Then, the probabilities of
motion actions in ACT at t is generated for prediction. The two models
are named as CNN-LSTM and FCN-LSTM. In addition, a temporal

CNN (TCNN) architecture can also be applied by adding an additional
temporal convolutional module with a fixed time window [58]. TCNN1
uses only a single image frame in the temporal window, so the two
LSTM-fused models should have a better performance compared with
TCNN1. We follow the methods in [58] with CNN-LSTM, FCN-
LSTM, and TCNN1 to show the visual study of multiple ADMs while
other models can be further included. In particular, the three models
are trained by video data from BDDV in New York City area in our
prototype.

3.4 Model Performance Metrics
ADM prediction performance is usually measured by accuracy and
perplexity. The accuracy is defined as

accuracy =
Nc

N
, (3)

where N is the total number of predictions, and Nc is the number of
correct predictions when argmaxaG(i,a) = areal . Here areal is the
labeled action from the real driver. The number N is usually counted
for a whole test dataset to show the global accuracy of a model. In this
paper, we realize that the accuracy can also be defined on a geographical
region, so that the performance can be measured and studied within the
geo-environment.

Model perplexity at time t is defined over a sequence of n predictions
along the same driving path prior to t as [58]:

perplexity = e−
1
n ∑

n
k=1 logG(ik ,ak). (4)

Here, ik and ak are the k-th image frame and predicted action in the
sequence. The perplexity is defined at each prediction and a low per-
plexity indicates more confidence in the prediction. An averaged per-
plexity of an ADM is often computed overall predictions in the whole
test dataset. In this paper, a perplexity value is linked to the location
where the prediction is made. Therefore, the average of perplexities at a
geographical region or street can be computed interactively to indicate
model performance with respect to geographical objects.

4 GEO-CONTEXT AWARE DATA PROCESSING

4.1 Video Trips and Data Extraction
We download raw spatial video datasets from the public BDDV repos-
itory. In our prototype, we use the videos covering New York City
(NYC) and its suburban area. The data is stored in the format of clips
in the length of 40 seconds, with a frame rate at 30 fps and a high
resolution at 720p. We call each clip as a video trip. Each video trip is
associated with TripID, speed, GPS locations and timestamps, altitude,
and other vehicle information. A total of 12,000 video trips with 130-
hours of driving experience are used in our system. The total number
of predictions is about 1.44 million. The video files are approximately
250GB in size.

In addition to locations on the trace, each video trip contains spatial
attributes including: (1) distinct times of day (day, night, dawn/dusk),
(2) different street types (city streets, highways, residential, tunnel, gas
station, parking lots), and (3) different weather types (clear, overcast,
rainy, snowy, cloudy, foggy). The dataset contains approximately equal
amounts of video trips in day-time and night-time. It also includes a
large portion of weather conditions such as rain and snow. It is of great
interest to study the ADMs with respect to these spatial attributes. For
convenience in this paper, we call these attributes as spatial conditions,
with an extended definition of “spatial” information.

4.2 Data Processing and Transformation
The extracted video trip data is processed in several steps: (1) generat-
ing TFRecords data; (2) making ADM predictions; and (3) computing
ADM performance values.
Generate TFRecords: To make efficient visual analysis, we transform
raw data into TFRecords optimized for Tensorflow computing. The
binary data format uses less disk space and less time to process. It is
also essential to combine multiple data types for DL networks. For
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videos, ffmpeg library [52] is used to extract frame images from video.
Three images are extracted per 1 second. They are stored together with
speed and timestamps in TFRecords.
ADM prediction: CNN-LSTM, FCN-LSTM, and TCNN1 networks
are used to generate predictions of driver actions at each frame of these
video trips, compatible with the recorded actual driver’s action. The
pre-trained DL networks [58] are employed. For each frame, the neural
network output includes a vector of prediction probability values for
each action in {1: go straight, 2: slow or stop, 3: turn left, 4: turn
right}. The action with the largest value is considered as the predicted
action. For example for a frame image with the prediction values {0.14,
0.35, 0.82, 0.46}. The most probable action is “turn left”. This action
links to an accurate geo-location since the frame image has a recorded
GPS location.
Computing model performance values: The accuracy and perplexity
values (see Sec. 3.4) are finally computed for each frame image and
link to the corresponding location as well. Here for a single image,
the accuracy is either 1 or 0. For perplexity, it is computed from the
previous seven predictions, that is, from seven previous image frames.
These measures can be further aggregated to compute accuracy and
perplexity for spatial units such as a trip and a spatial region.

4.3 Map Matching and Spatial Database
After data extraction and ADM computation, a set of locations along
each video trip are linked to the predictions, performance values, ac-
tual actions, car speed, and spatial attributes. To enable geo-context
aware visualization, these data items need to be matched with geo-
graphical objects such as streets, regions, and cities. Fast data query is
needed to support interactive exploration. Therefore, we perform map-
matching and then store and manage data in a specifically designed
spatial database.
Map matching: We first download road network geometry in NYC
area from an open GIS data repository, OpenStreetMap (OSM) [9]. We
further retrieve zip code regions containing geometric boundaries. Each
video trip is processed while each location with prediction results is
mapped to a street segment and a zipcode region it resides in. In the
process, some trips may go across different zipcode regions. Their GPS
trajectories are cut into these regions respectively.
Data management: A spatial database is devised to support data
queries for interactive visualization. A NoSQL database is used specif-
ically for the ADM and video data, instead of using a traditional re-
lational database. The reason of choice is that the NoSQL database
provides easy programming and efficient indexing for unstructured
data including videos, images, and locations as a “document”. It can
also easily perform spatially based read or write operations on such a
single data entity. A document encapsulates the location, timestamp,
predictions, accuracy and perplexity, and various spatial attributes. It
also includes links to the corresponding video clips and image frames,
as well as the street segment and zipcode region it belongs to. This data
structure can further incorporate other spatial and ADM information if
needed. A video trip is further stored as a sequence of such locations.
Moreover, the database also stores geo-structures of street networks
and region geometries. In implementation, MongoDB is used for its
popularity and easy to operate JSON files in data transfer.

The ADM prediction measures are further aggregated by averaging
them over trips, streets, and zipcode regions. Furthermore, to support
semantic query, we project the averaged accuracy and perplexity to
multiple categories (bins). For example, a region with 64% accuracy is
categorized into the “60-70” percentage category. These categories
facilitate easier visual exploration than raw numerical values. They
can be used as ADM performance conditions for users to query data
with different prediction performance ranges.

4.4 Query and Indexing
Table 1 summarizes the queries used in our system based on spatial
conditions and ADM performance conditions. To enable fast data
retrieval, spatial indexing is constructed in the database (MongoDB in
default uses a B-tree subdivision of the space). Then geohash strings

Table 1. Querying by spatial and ADM performance conditions.

Query by Spatial Conditions
Region Any polygon shape
Street Street Segment ID

Time of Day day, night, dawn/dusk
Street Type city street, highway, residential,

tunnel, parking, gas station
Weather clear, overcast, snowy, rainy, cloudy, foggy

Query by ADM Performance Conditions
Accuracy 1-10, 10-20, ... , 90-100 percentage
Perplexity 1-10, 10-20, ... , 90-100 percentage

Fig. 3. Driving action icons.

(e.g. $geoWithin, $geoIntersects) are used to quantify the locations to
a cell in the tree. This scheme can quickly retrieve locations inside any
queried region or streets by different conditions.

Furthermore, we create Boolean operational indexes for both accu-
racy and perplexity categories, and for spatial attributes. A variety of
attributes thus can be combined in a data query using “AND” and “OR”
operations. For example, the database can immediately respond to a
query of video trips and locations where the ADM predictions happen
at “day OR night” with a “snow” weather and the accuracy value ranges
between “30-40” percentage. Such operations facilitate flexible data
analysis tasks.

4.5 System Implementations

The datasets are processed on computers with Intel i7-8700K CPU
and 16GB memory. The predictions are conducted with TensorFlow,
with GPU acceleration on either Nvidia GTX 1070 GPU with 8GB
texture memory or Nvidia K80/T4 GPU with 12GB memory. The data
processing time of each video trip including predictions of three ADMs
cost on average about 5 minutes.

The visualization interface is implemented with Native JavaScript
framework as client-side, bundling with several JavaScript libraries
including Node.js, Mapbox-GL, and D3.js [12] libraries. The server-
side script is implemented using Express.js and Mongoose.js JavaScript
library in order to perform different query requests from MongoDB
database.

5 DESIGN OF THE VISUALIZATION SYSTEM

5.1 VA Task Characterization

ADM researchers currently use statistical metrics such as accuracy and
perplexity over benchmark datasets for model evaluation. They also
compare predicted driver actions with actual driver actions by finding
specific image frames in training datasets. However, their study has not
been well supported by visual exploration, which can provide in-depth
and interactive investigation connecting multiple models with locations
and video contents. Therefore, our visual analytics system is designed
for the following tasks:
• T1. Visually exploring model performance metrics: Manage mul-

tiple models and a large set of training videos so that their perfor-
mance metrics can be easily identified and understood. The explo-
ration can be done with both large-scale analysis of global perfor-
mance and fine-scale analysis of driver prediction behaviors.

• T2. Comparing different models: Show and examine prediction
results of various ADM implementations, so that users can easily
compare these models and analyze their relations.

• T3. Analyzing models characteristics with visual contents: To-
gether with model performance study, distill and display related
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Fig. 4. Visual exploration of model performance with spatial conditions in a selected region. (A) Observe ADMs performance on snowy days; (B)
Select wrong predictions of all three ADMs. Their locations are shown on the map as blue points; (C) Visualize corresponding video frames.

video contents and street-view environments, to provide important
cues of critical situations that affect model prediction results.

• T4. Studying models with spatial condition: Integrate geo-context
information into the above model analytical tasks by facilitating users
with spatial conditions to perform ADM analysis, in the levels of
streets and regions, and in the aspects of weather and time. Users
can conduct efficient browsing, filtering, and queries, as well as a
drill-down study of detailed information.

• T5. Studying locations with ADM prediction behaviors: Dis-
cover geo-locations that have specified prediction results of interest.
Users thus are able to link model behaviors to geo-spatial and/or
environmental factors.

We realized that there exist more tasks in promoting wider use of
ADM and its datasets, such as linking behaviors of neural network
components with geospatial and street-view disparities, which can be
further addressed in future work by VA community.

5.2 Visualization Design

With respect to the tasks, we design a visualization system which is
illustrated in Fig. 1. The interface includes a set of coordinated views
supporting interactive visual study:
• Interactive Map View (Fig. 1A): Geo-environment is visualized

together with model performance and video data. Users can overview
the whole city and can also select an arbitrarily sized region of
interest. Here, three types of information visualizations are layered
on the map:
1. Region heatmap: Zipcode regions are color-coded by one of the

three ADM attributes including the density of locations where
ADM predictions are made, ADM accuracy, and ADM perplexity.
As shown in the legend on the top left corner of Fig. 1A, users can
also select individual models for visualizing these attributes.

2. Video trips: Video trips are visualized in orange as trajectories.
A kernel density estimation (KDE) algorithm is applied since
many trips overlap in locations. The visualization shows their
distribution in geo-space.

3. Critical locations: ADM locations are shown as blue points on

the map, while users can select to show only those locations with
specified driving actions, as shown in the legend on the top right
corner of Fig. 1A.

Users can make these layers visible or invisible on the map view. As
shown in Fig. 1A, the region heatmap shows the average perplexity
of all ADMs at zipcode regions in the NYC area. The available video
trips in the area are also visible. The visualization shows that the
benchmark video dataset has traversed most parts of Manhattan and
many locations in other parts of NYC.

• ADM Performance Chart (Fig. 1B): Performance statistics of the
three models, TCNN1, CNN-LSTM, and FCN-LSTM, are shown
which are aggregated in realtime for any selected region on the map
view. Users can select to check the accuracy or perplexity values of
these models aggregated with respect to street type, weather, time of
day. For example in Fig. 1B, the accuracy and perplexity are shown
for different street types (highway, city street, etc.). In addition, users
can also check the aggregated performance values according to actual
driver actions.

• Trip Filters (Fig. 1C) and Trip Distribution Charts (Fig. 1D):
Users can select video trips for bidirectional analysis. First, users
can choose video trips based on spatial conditions in the Spatial
Conditions Filter as shown in Fig. 1C. Then, the distribution charts
of ADM accuracy and perplexity show the histograms of those trips
satisfying the conditions (Fig. 1D). The trips are also shown on the
map. Users can click on bars of the charts to further filter the trips.
Second, users can also choose to use Model Metrics Filter to select
trips based on the accuracy and/or perplexity values. For example,
they can extract trips with an average accuracy smaller than 60%
to find questionable prediction results at spatial locations. With
this filter, the Trip Distribution Charts show the histograms of the
selected trips according to street type, weather, time of day. Users
can interactively select specified bars on the charts as well. The
filtered data will be updated on the map view.

• Model Prediction Filter (Fig. 1E): After trips of interest are se-
lected, users can study and compare different model predictions
results. In this view, four columns represent actual driver action, and
predicted actions from the three models. If a model’s prediction is
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Fig. 5. Visual study of ADMs at snowy days in a local area. (A) View
model performance distributions; (B) Visualize locations on map; (C)
Study prediction features of ADMs; (D) Observe key video frames.

the same as the actual action, the radio button is checked. Then, each
row in this view represents a combination of predictions of differ-
ent ADMs. The count of all predictions (i.e., locations and images
frames) of each combination is shown. Buttons in the first column are
all checked since makes it easy for comparison in rows with actual
actions. For example, the first row in Fig. 1E indicates that there are
34,342 predictions in the selected trips which only FCN-LSTM gives
a correct prediction. Users can also make critical locations of these
predictions visible on the map to study them in detail.

• Street View Thumbnails (Fig. 1F): Visual contents of the critical
locations are shown in the thumbnail view. Users can click to enlarge
the image which is also linked to its position on the map. In the design
of thumbnails, we realized that there are many images that are similar
because predictions are made every 1/3 second from a video clip.
Showing these sequential images cannot well utilize the visualization
space. Therefore, we need to show different representative images
at the top of the thumbnail view. Here, we implement an image
comparison algorithm based on Structural Similarity Index Measure
(SSIM), which automatically finds the most different images [54]. As
shown in Fig. 1F, the thumbnail images show different locations and
situations. Users can further see more images by sliding down this
view. We limit the maximum number of video frames to be shown
in this thumbnail view to 300. The choice is based on (1) users
would not scroll down to check more than three hundred images;
(2) the selected region in the spatial study usually do not have more
than hundreds of different locations with different views; and (3) the
interactive performance of the interface will not be affected.
Under each image, four driving action icons are designed to help
users quickly identify the actual and predicted actions, which are
shown in Fig. 3. The icons are colored as black (actual action),
red (TCNN1 prediction), blue (CNN-LSTM prediction), and green

Fig. 6. Visual study of ADMs at parking lots. (A) Filter data with paking
lots; (B) Study related video details.

(FCN-LSTM prediction), which are used throughout the system.
In addition, users can conduct a drill-down study of videos and

critical locations on video trips. A visualization interface of Trip Study
Interface is shown in Fig. 8. It coordinates several views including:
• Regional Map View (Fig. 8A): Users can click to select one trip

or one location on the main interface, and then the regional map
view automatically zooms into fine details around the selected ob-
ject. A map inlet (Fig. 8B) shows this area’s location in the global
view. All the video trips are visualized as trajectories with a start
point (green) and end point (yellow). The dataset does not have an
excessive amount of trips in small areas, so it does not affect system
performance by showing all trips. Several trips may travel the same
road. With this view, they can be clearly identified. An active trip can
be selected which is highlighted and its driving direction is shown
in black arrows. Users can also drag a marker to see details of the
video and ADM prediction contents.

• Trip List View (Fig. 8C): This view lists all trips inside the zoom-
in area. Each video trip’s ID, prediction accuracy, and perplexity
are shown for users to quickly check ADM performance. Users
can click to select one trip in the list (or directly click on the map).
Then this trip’s video content is shown in Fig. 8D. Below the video,
the actual speed and predictions of ADMs at the current frame are
shown. Here in addition to the driving action icons, we also show the
actual prediction probabilities. Users can further click them to show
a popup view of the full prediction vectors (as shown in Fig. 8G).

• Trip Timeline View (Fig. 8E): Studying the variation of model
performance over a trip from the trip start to end time is an important
method. We design the timeline view where four rows indicate
actual and three ADMs, respectively. At each row, the line chart
shows the perplexity values at each corresponding location along this
trip. And the dotted line separated by different action icons is used
to indicate the prediction actions along the trip. For example, the
bottom three rows have the predictions of stop/slow, then go straight,
and then stop/slow again. But the predictions are not made at the
same locations. A slider above allows users to drag along the trip
to show accurate values of speed and prediction perplexities. It also
changes the video contents in Fig. 8D and the marker location in Fig.
8A.
A supplemental video is presented to show interactions on the inter-

faces and use cases. In this paper, the image and video contents have
been modified by blurring when necessary to preserve privacy.

6 USE CASES

A primary goal of autonomous driving researchers is to visually explore
the performance of ADMs. Our system allows them to do this in
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different spatial regions. Next, we show examples of users performing
visual exploration with our system.

6.1 Case 1: Visual exploration with spatial conditions
Fig. 1 shows the global performance and street type information,
together with video trips. First, users can observe spatial distribution of
the data in the NYC area in Fig. 1A. It helps users understand that most
videos are recorded in Manhattan and also cover major roads in Queens
and Brooklyn. The training is related to the built-in environment in
these areas. Thus, the trained models may not work well on other
suburban or rural areas. In addition, the performance measures in the
whole area are shown in Fig. 1B, where the accuracy and perplexity
of the three networks are displayed with respect to street types. It can
be found that they have similar values. But for parking lots, TCNN1
has relatively low accuracy. For tunnel locations, all the models have a
high perplexity indicating low confidence. This knowledge can be used
for model analysis and training improvement.

Users further observe the average accuracy and perplexity of zipcode
regions in the area by hiding the trips on the map. For example, users
draw a polygon around one region with low perplexity and zoom in to
study it. It can be seen on the map that this area is around LGA airport.

As shown in Fig. 4, in this area, most of the video trips are in the
highways and roads around the airport, while a few of them ar in the
residential area. In Fig. 4B, users choose to show critical locations
where all three ADMs fail in prediction, which appear as blue points on
the map. By studying Fig. 4C in the street view thumbnails, users can
click each location on the map or on the thumbnails to study individual
situations.

Users then study weather-based ADM performance, they find snowy
day links to a low accuracy (Fig. 4A). Then a snowy day in the spatial
conditions filter is selected as shown in Fig. 5A, finding two related
video trips whose accuracy and perplexity distributions are displayed.
The two trips are shown on the map (Fig. 5B). Users study on the
model prediction view where one row is selected (Fig. 5C). This
row reflects ten predictions where CNN-LSTM and FCN-LSTM give
correct predictions and TCNN1 fails. The ten prediction locations are
shown on the map and the street view thumbnails (Fig. 5D). It can be
seen that snow on roadsides may affect the performance of TCNN1
while the traffic is very light.

Users can also conduct a study of street types. As shown in Fig.
6A, the video trips at parking lots (based on Fig. 4) are selected and
they have low accuracy and high perplexity values. Users observe their
locations which are in the outdoor airport parking lot. In Fig. 6B,
a set of thumbnail images are shown. These images are part of the
locations where only FCN-LSTM gives correct predictions and other
ADMs fail. In these scenes, the actual driver’s actions are all stop
while TCNN1 and CNN-LSTM give predictions of go forward. It may
be due to the lack of training for stop situations, and also shows the
advantage of FCN-LSTM, which the original designer claimed as the
best model [58].

6.2 Case 2: Visual study of locations with model accuracy
condition

In addition to study ADMs with spatial conditions, it is also of interest
to perform visual analytics based on performance metrics. As shown in
Fig.7, users can study locations related to low performance (accuracy <
50%) of ADM prediction. In Fig.7A, users select accuracy percentages
lower than 50. In the overview of Fig.7B, it is interesting to find
that most of such trips are distributed in the lower Manhattan area.
This observation matches the common opinion that it may be hard for
autonomous vehicles to operate in complex built-in environments such
as lower Manhattan. This area has a complex transportation network,
situations and rules, high-rise buildings, and many pedestrians.

After zooming in to this area, users select the top row in the Model
Performance View (Fig.7C), where all three ADMs give wrong pre-
dictions at 146 locations shown on the map (It can also be seen that
the bottom row indicates only 40 locations have correct predictions).
Users check the critical locations in the top row by studying their visual
contents in Fig.7D. They can click to enlarge them for details (such as

in Fig.7E). It can be realized that these wrong predictions happen in
busy city streets. In Fig.7E, one situation happens when stopped traffic
just starts to move at an intersection. Here the actual driver’s action
is go ahead, and the ADMs predict slow and stop. This indicates the
anticipation by the real driver that there is no need to slow based on
prior experience. On the contrary, the ADMs rely on vision information
only which may not easily give anticipated predictions in this situation.

Moreover, in Fig.7F, users find these error predictions mostly happen
at “daytime” in comparison to “night”, which is possibly due to the rush
hours in this busy city. And they happen mostly in “undefined”(data
missed) and “rainy” days and on “city streets”. Such information may
provide guidance for collecting future training data to improve model
performance.

6.3 Case 3: Drill-down visual study of video trips
Fig. 8 shows the drill-down visual exploration of video trips following
the study in Fig. 7. Here, users select one trip on the map view (Fig.
8A) which goes from south to north along a major city street. The
weather is clear and the time is night, which are shown at the bottom of
the map. The video of this trip played in Fig. 8D. Users also observe
the details in Fig. 8F to overview the ADM predictions of this trip. In
the timeline view, users realize that there exists a sudden increase of
perplexity values for all three ADMs. They drag the slider to these
locations. The video is also played to the corresponding locations
where a car ahead is braking. The three predictions give conflicting
results to the actual action. While the real driver’s action is go straight,
the ADMs predict slow and stop. Here, the vehicle speed is low (5.51
mph) and so the real driver feels it is OK to go ahead. But the ADMs
suggest preventive driving to slow/stop the car for safety. Users further
click to see the details of prediction vectors, as shown in Fig. 8G. They
find the prediction scores for “stop/slow”(1.44 or 1.45) are just slightly
higher than “go straight” (1.14 - 1.27), which partly explains the high
perplexity. In such cases, maybe the models can be refined to include
preventive driving actions through better training.

7 EXPERT EVALUATION

7.1 Domain Experts and Procedure
We interviewed several domain experts to evaluate the utility of our
new approach to satisfy their needs in domain research. The experts
were from two major research areas. One group (GA) had two experts
(professors with Ph.D. degrees) working on using machine/deep learn-
ing in engineering fields including the study of unmanned vehicles,
robots, and their swarms. One professor had developed driving recog-
nition models based on DL and human behavior study. The models
were used to build trust between humans and autonomous vehicles.
Another group (GU) had three experts (all with Ph.D. degrees and two
professors) working in urban study, remote sensing, geography, and
land use. They have an interest to understand ADMs and their relations
to geographical factors. We conducted individual virtual meetings with
each expert for about 1 to 2 hours including system demonstration, test
use, and interview for system evaluation.

First, we introduced the ADMs and video datasets used in the sys-
tem. We then showed our Web-based VA interface. Next, the experts
explored the interface within the NYC area through an internet browser.
Finally, they were asked to evaluate the system in several facets by
answering questions including:
• System utility:

For GA: How do you think this system can contribute to the study of
autonomous driving models?
For GU: How do you think this system can contribute to the study of
geographical infrastructure and transportation?

• Comparison:
How do you compare this system with existing visualization ap-
proaches in your field?

• Usefulness of visualizations: How do you evaluate the visualization
functions in support of data analysis?

• Limitation: What are the limitations of the system and visualization
functions?
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Fig. 7. Visual study of locations with model performance condition. (A) Select trips whose accuracy of three ADMs below 50%; (B) Visualize spatial
distribution of trips in the city; (C) Filter locations with wrong predictions; (D) Observe visual contents in thumbnails; (E) Enlarge view of selected
thumbnail images; (F) Study data distributions with spatial attributes.

• Suggestions: How do you suggest us to further improve the system?

7.2 Evaluation Results

We collected and summarized experts’ answers to the questions.
• System utility:

For GA: The experts agreed that the system could contribute to
the research in ADM. They identified that the system could help
researchers analyze performances and identify the causes of unqual-
ified data, or wrong labels, or threshold settings for ADMs. They
claimed the system “... be really helpful to analyze model bad per-
formance, and potential risk ...”. With this system the models “will
be continuously improved for performance and reliability”. They
pointed “One of the biggest challenges in an ADM model is to iden-
tify where a model is not performing well. In my opinion, the system
will be highly appreciated by the ADM-based researchers” to analyze
if there is a need to collect training datasets at different locations.
For GU: The experts believed that this work has the potential to be
used in infrastructure and transportation study. They had not realized
that such large-scale open-source datasets (e.g., BDD) were utilized
by geographical and urban researchers. They said this system may
help domain users utilize such spatial and video datasets in a new
way. Furthermore, they liked the system since it could “downscale
spatial analytic to fine-level and space-time resolution within a highly
visual context”. “This is more understandable to domain researchers
on urban infrastructure and transportation.”

• Comparison:
For GA: The experts said there were no existing visualization sys-
tems that did the same work. One professor claimed that “I think this
is a cutting edge ADM system”.
For GU: The experts did not realize any visualization system using
ADMs and spatial video datasets for geography-based study.
All groups liked the new approach of this system and thought it could
contribute to their fields with the new datasets and models. One
expert noticed that “the system interactively visualizes the algorithms
in the urban scene ...”.

• Usefulness of visualizations:
All the experts in both groups agreed that the system was very useful
in ADM data analysis with the visualization functions. They pre-
ferred to use spatial condition filter and model metric filters. The
mostly liked functions were the ability that they could study ADMs
and locations with respect to environmental attributes such as day,
night, rainy, or snowy.
For GA: The experts found it was very useful to observe the errors of
different models in the timeline view, which provides a very detailed
analysis. GA experts also liked region-based study: “I like the feature
as it allows us to explore the performance of an ADM for any specific
region of a city.”
For GU: The experts agreed that the system allowed them to work
on ADM and spatial video data, with familiar functions as in many
GIS tools. They mentioned the algorithm performance analysis could
help urban scientists understand the impacts of urban environment
settings on driving behaviors. “The system is also useful to identify
location feature with clustered incidents in very few locations.”

• Limitation:
For GA: The experts would like the system to integrate object de-
tection or other computer vision-based techniques (e.g. semantic
segmentation) for further analysis of video contents. For example,
moving humans (e.g. pedestrians) in the scene played critical roles
in driving decision making, which could be used in the system. They
also realized domain users might need some efforts to learn and
understand the visualization system. They also suggested extending
the system to more open datasets and cities.
For GU: The experts would like the visualization system to include
available road conditions, traffic congestion, the dilapidation of
houses in the neighborhood, etc. One expert also pointed that the
system did not allow users to upload their own data.

• Suggestions:
The experts suggested us to address the above limitations. Moreover,
some of them suggested that “interpretation of unsatisfied perfor-
mance such as cause or consequence generation could be improved.”
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Fig. 8. Drill-down visual study of video trips. (A) Regional map view; (b) Global map inlet; (C) Video trip list view: (D) Corresponding video of a
selected trip; (E) Trip timelines view of model prediction details; (F) Slider on the timelines to show detail performance values. (G) Pop-up view of
prediction vectors.

One expert mentioned that it would be helpful if researchers were
allowed to make changes in an existing model and see performance
changes. An GU expert also suggested adding a data fusion function
to integrate various urban datasets to enrich the urban background
information for the ADM comparison. Some also suggested a set of
visualization details such as adding more labels and explanations to
the terms and functions.

8 DISCUSSION AND CONCLUSION

In this paper, we develop and evaluate new visualization techniques
for analyzing ADM prediction data within a geographical environment.
It presents a new VA system which can be used by domain experts to
enhance their data analytic capability of large-scale ADM data. The
system can be further improved in several directions.
System Scalability: The system is designed for the BDD dataset with
some limitations of scalability. First, we currently study three ADMs.
Although we expect a few other models can be added directly, if more
than 10 models are to be studied together, the system interface should
be re-designed to accommodate them. Second, the driving actions
are limited to four. If more actions are interested such as “slightly
turn left or right”, the system should easily handle it. However, if
continuous action predictions of wheel angles and speed ranges need
to be analyzed, the system will need to be revised. Third, the system
cannot integrate more AD attributes such as multiple camera inputs and
IMU sensor data, which would be our future study topics.

When the size of models, actions, and data increase, it may become
overwhelming for users to conduct effective studies. Excessive explo-
ration efforts may impair their capability to form insights. Therefore,
automatic recommendation algorithms and visualizations may need to
be developed for the system.
ADM refinement: The system mostly focuses on data analytics of
ADM predictions with geo-visualization tools. However, it does not
solve the problem of how the spatial context information can be used to
improve the perception models with actionable insights. Moreover, the
system is not designed for on-the-fly model debugging and refinement.
In the future, VA tools can be developed to integrate spatial information

with the design of such neural networks by AD experts.
Video content: Video contents are used in this work as image frames
coupled with predictions and locations. The spatial videos can be
further processed by computer vision tools, such as DL-based segmen-
tation and object detection. This information can be further integrated
into the VA system. For example, pedestrians may be extracted and add
a new aspect in visual analysis to better explain driving predictions.
Data integration: There exist many other types of urban datasets
which may be incorporated into the ADM analytical system. In the
current system, the spatial conditions include street types, weather, and
video recording time. We could further include traffic data, neighbor-
hood data (e.g., highrise buildings), and other influential information in
the analysis.
Domain research: The emerging ADM datasets including large-scale
spatial video data may become a useful and interesting resource for
research of a variety of urban scientists. As we can foresee the preva-
lence of autonomous driving vehicles in a near future, urban researchers
either from transportation studies, urban planning, or social sciences
want to know more about ADMs and their influences. Our system may
give them a visualization tool to start the work, by integrating their
domain-specific problems.

The real world AD system can be much more complex with different
perception models with multiple sensor inputs. In future work, we
first plan to address the limitations and suggestions pointed out by the
domain experts in evaluation. We will also extend the use of this tool to
more ADM scenarios. We will further make new technical development
as discussed in this section.
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