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Interactive Visual Pattern Search on Graph Data via Graph
Representation Learning

Huan Song, Zeng Dai*, Panpan Xu*, Liu Ren

Fig. 1. The visualization interface of GraphQ contains: (1) A query editing panel to specify the subgraph patterns and initiate the search.
(2.1) (2.2) Query result panels to display the retrieved results. The graph thumbnails can be displayed in overview and detail modes.
(3) A statistics and filtering panel that helps users select a graph to construct example-based query, and visualizes the distribution of
the query results in the database. (4) A query option control panel to specify whether fuzzy-pattern search is enabled and whether the
node-match should be highlighted. (5) A popup window for pairwise comparison between the query pattern and the returned result.
The figure shows a case study on program workflow graph pattern search and the details are described in Section 5.1.

Abstract— Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include
control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important
approach to understand their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop,
example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we
use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching
in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in
the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment
called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a
query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional
constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows
and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19%–29% improvement in
node-alignment accuracy compared to baseline GNN and provides up to 100x speedup compared to combinatorial algorithms. Our
qualitative study with domain experts confirms the effectiveness for both usage scenarios.

Index Terms—Graph, Graph Neural Network, Representation Learning, Visual Query Interface
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The graph data structure models a wide range of processes and relations
in real-world applications. Examples include business processes [64],
control flow graphs in programs [5], social connections [53,78], knowl-
edge graphs [35] and semantic scene graphs in image analysis [48].
Visually identifying and searching for persistent subgraph patterns is a
common and important task in graph analysis. For example, searching
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for graph motifs such as cliques or stars in a social network reveals the
community structures or influencers [17]; searching for similar work-
flow templates helps streamline or simplify business processes; search-
ing for images with similar scene graphs helps systematic retrieval of
training/testing cases to develop models for computer vision tasks.

In this work, our goal is to support human-in-the-loop, example-
based graph pattern search in a graph database, which could contain
hundreds to thousands of individual graphs. Supporting interactive,
example-based visual graph pattern query is challenging. Previous
graph motif/pattern finding algorithms, e.g. [54, 55, 75] often impose
a strict limit on the size of query pattern and do not scale well as the
size of the query pattern and the number or the size of the query targets
increases. In fact, subgraph matching is a well-known NP-complete
problem [70] and there is no known efficient solution so far. Further-
more, the complexity of the subgraph matching problem also makes
it difficult to obtain accurate one-to-one node correspondence in the
matching results. The node correspondences are crucial to enable
visualization-based interpretation and verification of the model’s
finding. Besides that, it is quite often that domain knowledge is
needed to further refine and adjust the results, which cannot be easily
supported in algorithms with heavy computational costs.

To address those challenges, we propose a novel framework
for interactive visual graph pattern search via graph representation
learning. Our approach leverages graph neural networks (GNNs)
to encode topological as well as node attribute information in a
graph as fixed-length vectors. The GNNs are applied to both the
query graph and the query targets to obtain their respective vector
representations. The graph matching problem is therefore transformed
into a high-dimensional vector comparison problem, which greatly
reduces the computational complexity. In particular, we leverage
two separate GNNs to address 1) the decision problem to determine
whether a query pattern exists in a graph and 2) the node-alignment
problem to find the one-to-one node correspondence between the query
pattern and the query targets. We leverage NeuroMatch [44] for the
decision problem. For the node-alignment problem, we propose a novel
approach called NeuroAlign that can directly generate cross-graph
node-to-node attention scores indicating the node correspondences.
In most application scenarios we can precompute and store the vector
representations of the query targets for efficient retrieval of the graph
matching results. The visualization interface enables easy search and
specification of the graph query patterns. Since the query engine could
return a large number of matched graphs, we present the results with dif-
ferent levels-of-details that show the matched graphs in space-efficient,
thumbnail style representations. They can also be sorted via a variety
of criteria. Users can also interactively specify additional constraints
to further filter the returned results based on their domain knowledge.

We develop the visual analytics system GraphQ based on the
proposed framework. GraphQ goes beyond looking for a predefined
set of graph motifs and the users can interactively specify and
search for meaningful graph patterns in the respective application
domain. The query pattern can include both topological structures and
domain-specific node attributes to be matched in the query results. The
specified query can be partially matched to enable fuzzy-pattern search.

We demonstrate GraphQ’s usefulness with two example usage
scenarios in different application domains. In the first usage scenario,
we apply the system to analyze a large collection of engineering
workflow graphs describing the diagnostics programs in automotive
repair shops. The goal is to understand whether there are repetitive
patterns in the workflow graphs which eventually serves two purposes
– curate the workflows to reduce repetitive operations and reuse the
patterns as templates for future workflow creation. In the second
usage scenario, we apply GraphQ to analyze the semantic scene
graphs generated from images, where the nodes are image regions
(super-pixels) with semantic labels such as buildings and road, and
the links describe the adjacency relations between regions. Searching
for subgraph patterns in such semantic scene graphs can help retrieve
similar test cases for model diagnostics in computer vision tasks.
The example usage scenarios demonstrate that the framework is
generalizable and can be applied to graphs of different nature.

Furthermore, we conduct quantitative experiments to evaluate the
accuracy and the speed of both NeuroMatch and NeuroAlign. We
show that for the node alignment problem, NeuroAlign can produce
19%–29% more accurate results compared to the baseline technique
described in NeuroMatch [44]. The improvement greatly helps in
validating and interpreting the query results in the visualization. We
also compared the speed of the algorithm with a baseline combinatorial
approach, the result shows that our algorithm gains up to 100× speed
improvement. The speed improvement is the key that enables a
human-in-loop, visual analytics pipeline.

To summarize, our contributions include:
• A visual analytics framework for human-in-the-loop, example-

based graph pattern search via graph representation learning. To
the best of our knowledge, this is the first deep learning-based
approach for interactive graph pattern query.

• A novel approach (NeuroAlign) for pairwise node-alignment
based on graph representation learning which provides 10×–
100× speedup compared to baseline combinatorial algorithm [47]
and 19%–29% more accurate results than existing deep learning
based approach.

• A prototype implementation of the framework, GraphQ, with
interactive query specification, query result display with multiple
levels-of-detail, and user feedback mechanisms for query
refinement. Two example usage scenarios illustrating the general
applicability and effectiveness of the proposed system.

2 RELATED WORK

In this section, we focus on the most relevant research to our work
in the areas of graph visualization, visual graph query, and graph
representation learning for subgraph pattern matching.

2.1 Graph Visualization
Graph visualization is an extensively studied topic [30, 51] for its appli-
cation in a wide range of domains. Open source or commercial software
for graph visualization (e.g. Gelphi [8] and Neo4j Bloom [3]) are also
available for off-the-shelf use. Researchers in graph visualization typ-
ically focus on one or more of the following aspects: develop layout
algorithms to efficiently compute readable and aesthetic visualizations
(e.g. [9,16,22,33,34,38]), design new visual encoding to display nodes
and edges (e.g. [29, 30, 71]), develop graph simplification or sampling
technique to avoid over-plotting and visual clutter (e.g. [17, 72]), and
design novel user interaction scheme for exploratory analysis (e.g. [30,
56,63,67]). Depending on the nature of the graph data, they have devel-
oped a variety of systems and algorithms for directed/undirected graphs,
multivariate graphs (with node/edge attributes) and dynamic network
visualization to support a wide range of graph analytic tasks [40, 57].

In this work, we focus on supporting interactive, example-based
visual query of graph patterns in a database and visualizing the results.
This is a generic framework that can be applied to both directed or
undirected graph and graphs with node/edge attributes, as demonstrated
in the example usage scenarios. We utilize existing graph layout
techniques for a detailed view of directed graphs [22] and design a
compact visualization for summarizing graph structure to provide an
overview of the query results.

2.2 Visual Graph Query
Graph patterns/motifs are frequently used to simplify the display of
graphs and reduce visual clutter. Motif Simplification [17] was devel-
oped to identify graph motifs including clique, fan, and d-connectors
based on topological information and visualized them as glyphs in the
node-link display for more efficient usage of the screen space. More
generally, cluster patterns, esp. “near-clique” structures are the most
studied and visualized in the literature and various methods have been
developed to compute and visualize them [75]. However, most of the
patterns/ motifs here are predefined and can not be easily modified by
users.

Graphite [13], Vogue [10], and Visage [55] support interactive,
user-specified queries on graph data and Vigor [54] focuses on
visualization of the querying results. In these systems, users can
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Fig. 2. Visual illustration of the subgraph matching problem. We
color-encode the node categorical features of both graphs. The example
query graph is subgraph-isomorphic to the target graph with the correct
node alignment indicated by dashed lines.

interactively specify node attributes as well as topological constraints
in the form of a query graph and the system searches for matching
subgraphs. However, the complexity of the query is usually limited,
which reduces the expressive power of the specified patterns.

Our approach is also inspired by a number of existing visual query
system on time series data, where the user can interactively specify the
patterns they are searching for, by either drawing the pattern directly on
a canvas or selecting the pattern from a data sample [12, 31, 32, 41, 79].
Supporting user-specified patterns gives the user great flexibility
and power to perform exploratory analysis in various application
domains. However, querying arbitrary patterns on a graph structure
brings unique challenges in terms of the computation speed needed to
support an interactive user experience, which we address with a graph
representation learning-based approach.

2.3 Graph Representation Learning for Subgraph Pattern
Matching

Graph neural networks (GNNs) have emerged as a generic approach
for graph representation learning, which can support a variety of
graph analytics tasks including link prediction, node classification,
and community structure identification [27, 37, 60, 76, 80]. The recent
development on GNN library further increases the popularity among
researchers [19]. The success of GNN on diverse graph tasks also moti-
vated researchers to address the comparison problem between different
graphs, such as graph matching [42] and graph similarity learning [4].
A comprehensive survey on this topic is provided in [45]. Recently,
GNNs have been shown to improve the performance on the challenging
subgraph-isomorphism problems, including subgraph matching [44],
subgraph isomorphism counting [43], maximum common subgraph
detection [7], and graph alignment [20]. Powered by flexible represen-
tation learning, these approaches addressed issues of heuristic-based
solutions [28, 65] in terms of accuracy and query scalability. Our
objective is to utilize GNNs to facilitate fast user-interaction with
graph queries, where the embeddings of the existing graphs can be pre-
computed and stored to enable efficient retrieval during the inference
stage. Compared to [7, 20], our approach resolves subgraph isomor-
phism from the learned embedding space alone, without expensive
iterative search [7] or embedding refinement aided by the additional
network [20]. Our proposed framework utilizes NeuroMatch [44] as
a core component to efficiently query matching graphs but involves
a novel component NeuroAlign to resolve the issue of NeuroMatch on
obtaining accurate node alignment. The capability to identify matching
nodes is critical for intuitive user interaction with complex topologies.

There are relatively fewer works in the visual analytics domain
utilizing graph representation learning. In [21], a contrastive learning
approach is developed to visualize graph uniqueness and explain
learned features. Graph representation learning-based algorithms have
also been developed for graph layout/drawing [39, 77], evaluating
graph visualization aesthetics [26], and sample large graphs for
visualization [83]. Our framework addresses the important problem
of subgraph matching and facilitates intuitive interaction. To the best
of our knowledge, this is the first approach based on representation
learning for interactive visual graph queries.

3 ALGORITHM

In this section, we first define the subgraph matching problem and
describe our overall framework to resolve it. We then describe
NeuroMatch and NeuroAlign, the two GNNs as the core components

of the framework. Finally, we introduce an improved inference method
and a simple extension to support approximate query matching.

3.1 Problem Definition

We first formally define the subgraph matching problems. We denote
G = (V,E) as an undirected, connected graph with vertex set V and
edge set E, X as the features associated with V (e.g. categorical
attributes). Given a query graph GQ and a target graph GT , we
consider the decision problem which determines whether there exists
a subgraph HT ⊆ GT , such that GQ is isomorphic to HT . When HT
exists, i.e. GQ is subgraph-isomorphic to GT , we further consider
the node alignment problem which looks for an injective mapping
function f : VQ → VT , such that { f (v), f (u)} ∈ ET if {v,u} ∈ EQ.
When the node features X exist, the matching requires equivalence
of the feature too. Note that this defines edge-induced subgraph
isomorphism, which is our focus in the paper. However, the system
is general to apply on node-induced subgraph isomorphism [6] too.

An illustrative example is shown in Fig. 2, where the colors encode
node categorical feature and letters are the node names. The example
query graph GQ is a subgraph of GT with the correct node alignment
of f (a) = A, f (b) = B, f (c) =C, f (d) = D. In this paper, we consider
the practical case of a large database of target graphs, where the task
is to solve the above decision problem and node-alignment problem
for each of the target graphs.

3.2 Overall Framework

Our proposed framework consists of two core components: Neu-
roMatch (Fig. 3) and NeuroAlign (Fig. 4), which focus on solving
the subgraph decision and node alignment problems respectively.
Given a graph database and user-created query graph, we utilize
the state-of-the-art NeuroMatch method [44] to efficiently retrieve
matching target graphs which contain the query graph. NeuroMatch
decomposes the graphs into small neighborhoods to make fast decision
locally and then aggregates the results. After a matching target
graph is found, the node alignment between the two graphs can
still be ambiguous and misleading based on what we observe in the
experimental results. This is due to the fact that the learning process of
NeuroMatch relies entirely on small neighborhoods within the graphs.
As a result, each query node could end up matched to multiple target
nodes where many of them are actually false positives. To tackle these
issues, we propose a novel model NeuroAlign, which directly predicts
node alignment from query and target graphs, without segmenting
them into small neighborhoods. It computes node-to-node attention
based on graph node embeddings to obtain the alignment results.
Finally, the matching target graphs and corresponding matching nodes
are returned to the user for exploration and analysis.

NeuroMatch and NeuroAlign both employ GraphSAGE [27] as the
backbone GNN for representation learning. For simplicity, we consider
GraphSAGE as a general function that performs representation
learning, where the input is a given graph and the output is a set
of embeddings for every node in the graph. Optionally, a pooling
layer can be added on top of the node embeddings to obtain a single
embedding of the input graph. A more detailed description can be
found in the appendix. We use hv to denote the learned representation
of node v at the final output layer, which will be used by NeuroMatch
and NeuroAlign as described in the following sections.

3.3 Subgraph Decision via NeuroMatch

Conducting subgraph matching in the embedding space can facilitate
efficient retrieval. However, considering the scale of the database and
the large size of certain graphs, it is challenging to build the predictive
model to encode the subgraph relationships. NeuroMatch resolves this
issue by decomposing the given query and target graphs into many small
regions and learns the subgraph relationship in these small regions first.
In particular, for each node q in the query graph, it extracts a small k-
hop neighborhood graph gq. For each node t in the target graph, it also
extracts their k-hop neighborhood gt . Then the problem of determin-
ing whether GQ ⊆ GT transforms into many local subgraph matching

3

https://doi.org/10.1109/TVCG.2021.3114857


Fig. 3. NeuroMatch determines whether GQ is a subgraph of GT by
looking for local matches first and then aggregate the results. In this
figure, we highlight the 1-hop local neighborhoods at anchor nodes b,c
in the query graph as an example (in green and orange outlines). The
NeuroMatch algorithm compares these 1-hop neighborhoods with those
in the target graph. It finds that the 1-hop neighborhood graph of b is a
subgraph of the 1-hop neighborhood of B (highlighted in green) and the
neighborhood of c is a subgraph of the neighborhood of C (highlighted in
orange). Since for each query node (a, b, c, d), we can find a matching
1-hop neighborhood graph in the target graph (A, B, C, D), the algorithm
concludes that indeed GQ is a subgraph of GT .

Fig. 4. NeuroAlign algorithm obtains accurate node-to-node correspon-
dence. It extracts the embeddings of each node in the query graph and
the target graph by directly feeding them through GNN. It then uses an
attention network to compare every pair of node embeddings between
the query and target graphs. For the convenience of computation,
these pair-wise comparison results are formed as a matrix. The rows
correspond to query nodes and columns correspond to target nodes.
The matrix is then transformed into a probability matrix through softmax
on each row. A greedy assignment algorithm resolves potential conflicts
(black outlined block) during inference (Section 3.6).

decisions about whether gq⊆ gt . To find potential local matches, Neuro-
Match compares all pairs of nodes between the query and target graphs.
Finally, the ensemble decision can be made by checking whether every
query neighborhood can find a matching target neighborhood. Figure
3 shows a simple example to illustrate the main idea of NeuroMatch.
In order to determine the local subgraph relationship, i.e. whether the
k-hop neighborhood graph gq is a subgraph of gt , the algorithm feeds
gq and gt into GNN with the pooling layer to extract the respective
anchor node embedding at q and t. A comparator function then takes
each pair of these embeddings and predicts the subgraph relationship,
as shown in Fig. 3. We describe the method in the appendix and refer
readers to the NeuroMatch paper for more detail [44].

When the model is trained, we pre-compute and store embeddings of
all graphs in the database. The inference process simply iterates through
all pairs of query and target nodes, and utilizes the (trained) comparator
to make local subgraph decisions. The aggregated decision is then made
by checking whether each query neighborhood finds a match. This
process has linear complexity in terms of both query and target number
of nodes, thus facilitates efficient retrieval at the front-end interface.

3.4 Node Alignment via NeuroAlign
NeuroMatch determines whether the query is a subgraph of the target
graph. When a matching target graph is retrieved and visualized,
it is still difficult for the user to extract insights when the target
graph is large and the topology is complex. In this case, showing
the corresponding nodes can provide intuitive and explainable visual
cues. We propose NeuroAlign, to obtain improved node alignment
performance. We formulate the prediction problem as a classification
task, where query nodes are examples and the target nodes correspond
to labels. This architectural change is crucial to enable more accurate
alignment by accounting for much larger areas on both graphs.
However, for different target graphs, the number of classes (i.e. target
nodes) varies. This creates a challenge for predictive models. We
resolve it by employing a flexible, cross-graph attention mechanism.

As shown in Fig. 4, NeuroAlign directly takes the node embeddings
obtained from GNN on the entire graphs GQ and GT . These
embeddings are denoted as {hq,∀q ∈ GQ} and {ht ,∀t ∈ GT }. We then
compute the similarity between each query embedding and every target
embeddings through an attention network. This process can be consid-
ered as creating an attention matrix A∈R‖VQ‖×‖VT ‖, where the element
Aq,t contains the attention from node q to t. We then directly transform
the similarity matrix to a probability matrix P ∈ R‖VQ‖×‖VT ‖ using
row-wise softmax and use them in the cross-entropy loss. Formally,

Aq,t = ψ(hq ‖ht)

pq = softmax(aq)

L(GQ,GT ) =− ∑
q∈GQ

yq log(pq)
(1)

where ψ denotes the attention network, aq is the q-th row of A, and
yq is the one-hot ground-truth label for node q, indicating which node
in GT is the corresponding node of q. The prediction pq contains
the probabilities of matching query node q to every target node. We
implement the attention network as a multi-layer perceptron, which
takes a pair of embeddings produced by the GNN, concatenate them
and return a similarity score between a node q in the query graph and
a node t in the target graph. In case GT is too large, the computation
of Aq,t could consume too much memory, and needs to be constrained
to a subgraph at t. In practice, we specify a maximum size that covers
most target graphs in the database.

Similar to NeuroMatch, when the model is trained, we can
pre-compute all graph embeddings generated by NeuroAlign to
make the retrieval process efficient. In addition, NeuroAlign works
subsequently to NeuroMatch and only activates when a subgraph
relationship is predicted, thus creating minimal computational overhead
for visualization and interaction.

3.5 Algorithm Training
The training of NeuroMatch and NeuroAlign are conducted separately.
Training NeuroMatch (and its backbone GraphSAGE GNN) involves
sampling large amounts of mini-batches containing both positive
and negative pairs. A positive pair consists of two neighborhood
graphs gq and gt that satisfy the subgraph relationship, while a
negative pair consists of neighborhood graphs where the relationship is
violated. To sample a positive pair, we first randomly sample a k−hop
neighborhood as gt , and then sample a subgraph within gt as the query
neighborhood gq. To sample negative pairs, we start with the obtained
target neighborhood gt above, and sample a smaller neighborhood from
a different graph as gq (query neighborhood). Note that gq needs to be
verified with exact matching protocol [14] to ensure gq * gt . In practice,
we find that hard negatives are necessary to achieve high precision,
which are obtained by perturbing the above positive pair (gq ⊆ gt ) such
that the subgraph relationship no longer exists. We perturb the positive
pair by randomly adding edges to gq and verify the success with exact
matching [14]. As can be seen, negative sampling extensively invokes
exact matching algorithm, which is slow to compute. To keep the
training tractable, we set small neighborhood hop k = 3 and also limit
the number of nodes to sample from the neighborhood to 30.
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Training NeuroAlign (and its backbone GraphSAGE GNN) is much
simpler. It involves sampling only positive pairs, since its objective
is to improve node alignment when the subgraph decision has already
been made that GQ ⊆ GT . Therefore, the sampling involves extracting
random queries from the graphs in the database. For each target graph
GT in the database, we randomly sample a subgraph within it as GQ.
The ground-truth injection mapping is acquired directly in the sampling
process, and it is converted to yq to indicate which node in GT is the
corresponding node of q. NeuroAlign can be trained efficiently through
this simple sampling process and without invoking the expensive exact
matching algorithm.

3.6 Greedy Assignment for Inference

During inference of node alignment, different nodes in the query
graph could be mapped to the same node on the target graph. This
is likely to occur among nodes with highly similar topological and
attribute features. The prediction conflict can be resolved with a
task assignment algorithm. Instead of resorting to the combinatorial
Hungarian algorithm [47], we further develop a simple greedy
assignment approach. Specifically, given the predicted probability
matrix P, we iterate the probabilities in descending order and record
the corresponding matching pair only when both the query and target
nodes have not been assigned. The iteration stops when all query
nodes have been assigned. This simple process resolves conflicting
assignment to the same target node and improves the overall node
alignment performance (experimental results in Section 5.3.1).

3.7 Approximate Query Matching

In addition to the retrieval results obtained from the query graph, we pro-
vide the option to perform approximate query matching. This method
perturbs the query graph slightly, in order to obtain similar, but different
matching graphs. Specifically, denote the set of obtained matches from
the original query graph GQ as R. We remove one node from GQ and
its associated edges to obtain the perturbed query G′Q. Then we conduct
the search with NeuroMatch on G′Q and add the novel matches R. We
continue the iteration by removing a node from the perturbed query,
until either a prespecified maximum number of steps is reached or G′Q
becomes disconnected. To lower the chance of getting a disconnected
graph, each time we remove the node with the lowest degree in G′Q.

4 VISUALIZATION AND INTERACTION

In this section, we first evaluate the design goals of GraphQ (Section
4.1). We then describe the GraphQ system with details on its
visualization and interaction components (Section 4.2.1), and technical
implementation (Section 4.2.2).

4.1 Design Goals

GraphQ’s principle design goal is to provide a generic solution
for interactive graph pattern search on a graph database based on
user-specified examples. The basic requirement is that the user needs
to be able to interactively select and refine graph patterns and analyze
the retrieved results. In the meanwhile, the system should display the
matching instances as well as explaining the results by highlighting
the node correspondences.

We further enrich and refine the design goals by collecting
requirements for domain-specific usage scenarios. We analyzed two
example usage scenarios including workflow graph pattern analysis
and semantic scene graph analysis in image understanding. For the
first usage scenario (details in Section 5.1) we worked closely with
the domain experts who provided the workflow graph data and who
are also the end-user of the system. In the second usage scenario, we
reference the relevant literature in computer vision on semantic scene
graphs. Semantic scene graph is a commonly used graph structure that
describes not only the objects in an image but also their relations [36].
They are frequently used to retrieve images with the same semantics.
By analyzing the commonalities of the two usage scenarios we
identified the following user analysis tasks to support in GraphQ:

T1 Browse/search the graph database. To start the query process,
the user needs to be able to select from hundreds to thousands
of graphs. Therefore, the system should provide graph search
and filtering functionalities based on the category, the name, or
graph statistics such as the number of nodes/links. Besides that,
a visualization showing an overview of all graphs in the database
will be useful to help locate interesting graphs or clusters.

T2 Interactively construct the query pattern by selecting on a
graph visualization. To minimize user effort, the system should
support both bulk selection mechanisms such as brushing the
graph regions as well as query refinement methods to add/delete
individual nodes/edges from the pattern.

T3 Interpret and validate the matched graphs via highlighted
similarities and differences. To help users interpret the matching
results, the node correspondences, as well as differences in
the query results, should be highlighted. Furthermore, since
the subgraph matching and node correspondence calculation
algorithms are not 100% accurate, the results need to be presented
in a meaningful way for easy verification.

T4 Explore the distribution of the matching instances. After the
matched graphs are returned, the system should indicate how
frequently the query pattern occurs in the entire database, and
provide the distribution of the pattern among different categories
of graphs in the database.

T5 Refine query results. A flexible query system should further
support query refinement mechanism where the users can apply
their domain knowledge to filter the results with additional
constraints, such as matching additional node attributes or limiting
the results to a certain category of graphs.

4.2 GraphQ System
We design GraphQ to support the user analysis tasks (T1-5) described
in Section 4.1 with the architecture and user workflow featured in Fig. 5.
The user can start with an overview of the graph database (T1), brush,
and select a graph to create example-based query patterns (T2). The
query pattern (along with optionally perturbed query pattern for approx-
imate query matching) will be sent to the back-end, its node representa-
tions will be computed and compared with the precomputed node em-
beddings to obtain a set of matching graphs containing the query pattern.
The matching results along with the query pattern will go through Neu-
roAlign to compute one-to-one node correspondence. The query results
will be displayed in the front-end with multiple levels-of-detail (T3)
and can be refined further by adding node-attribute constraints interac-
tively in the query panel (T5). The distribution of the matching graphs
will be highlighted interactively in the database overview panel (T4).

4.2.1 Components
The user interface of GraphQ is composed of four main components:

Overview and filters. In the overview panel (Fig. 1(3)) the system
displays the distribution of key graph statistics such as the number of the
nodes/edges as well as domain-specific attributes such as the category of
the graph. Both univariate distributions and bivariate distributions can
be displayed as histograms or scatterplots. Users can brush the charts
and select a subset of graphs to create example-based query patterns. To
provide an overview of the graph structural information and help users
navigate and select a graph to start the query (T1), we further precom-
pute the graph editing distance [23] which roughly captures the struc-
tural similarities between all pairs of graphs. A 2-D projection coordi-
nates of the graph can then be precomputed using t-SNE [73] based on
the distance matrix and stored as additional graph attributes (Fig. 1(a)).

After the query result is obtained, the charts will be updated to
provide a contextual view of how the subgraph pattern occurs in the
database. For example, the user can observe whether the pattern occur-
rence concentrate on a small subset of graph categories or it is a generic
pattern that appears in many different categories (T4) (Fig. 1(d)).

Furthermore, the overview panel is a customizable module that can
be configured through a json file specifying the attributes to be dis-
played and the chart to display it. Users can also interactively fold each
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Fig. 5. System architecture of GraphQ. The back-end precomputes and stores the graph representations to support efficient matching graph retrieval
through the NeuroMatch algorithm. After the matching graphs are obtained, we use NeuroAlign to obtain accurate node-to-node correspondence
to be displayed in the visualization for the user to verify the results. Users can start from an overview of all the graphs in the database and select
one to construct example-based query pattern. The query pattern can be slightly perturbed to retrieve approximate matching results from the
database. After the results are returned, the user can use a variety of views to explore the returned results.

chart and hide it in the display, such that space can be used for keeping
important attribute information on the screen. The system also displays
a popup window to show detailed information for selected charts.

Graph query panel. In the graph query panel ( Fig. 1(1)), the user
can interactively select from a graph instance to construct the query
pattern. The color of the nodes encodes the key node attribute to be
matched in the subgraph pattern query. The system currently supports
categorical node attributes. This can be extended to numerical attributes
by quantizing the values. Additional node attributes are displayed in
attachment to the nodes or in tooltips. As discussed in Sect. 4.1, we need
to support fast, interactive query construction (T2). In this panel, the
user can quickly select a group of nodes and the subgraph they induce by
brushing a rectangular area on the visualization. They can also construct
the pattern in a more precise manner by clicking the + and - button on
the top right corner of each node. A minimap on the bottom right of the
panel allows the user to easily navigate and explore graphs of larger size.
The layout of the graph is computed with existing layout algorithms,
such as the algorithm described in [22] for directed graphs. When the
nodes have inherent spatial locations, they are used directly for display.

Query results. After the sub-graph pattern matching results are
returned, the query results panel will be updated to display all the
matching graphs as a small multiples display (Fig. 1(2.1) and (2.2)).
Since the number of returned results could be large, the system sup-
ports sorting the returned graphs with graph attribute values such as
the number of nodes (Fig. 1(f)). To support T3, the matching nodes are
highlighted based on the results returned by the node alignment module.
The graphs can be displayed either in a node-link diagram with the same
layout as the graph in the query panel (Fig. 1(2.2)) or in a thumbnail
visualization designed to display the graph in a more compact manner
(Fig. 1(2.1)). In particular, we use topological sorting of the nodes for
directed acyclic graphs to order the nodes, layout them vertically, and
route the links on the right to obtain a compact view (Fig. 1(2.1)).

Comparison view. To support T3 and T5, we further visualize the
query and selected matching graphs side-by-side in a popup window.
The user can click on the zoom-in button on each small multiple to
bring out the comparison view (Fig. 1(5)) and review each matching
graph in detail. The matched nodes are highlighted for verification.

4.2.2 Implementation
GraphQ’s implementation uses a typical client-server architecture.
The frontend UI framework is implemented in Javascript with Re-
act [18] and AntD UI [15] libraries. The visualizations are drawn using
D3.js [11] on svg within the React framework. We use dagre [1] to com-
pute directed graph layout in the front-end. The backend server is imple-
mented in Python with Flask [24]. The graph data are stored as json doc-
uments in the file system and modeled with NetworkX [25]. We use Py-
Torch [52] for graph representation learning for both subgraph matching
and node correspondence learning. More specifically, we use PyTorch
Geometric [19] and DeepSNAP [2] to batch graph data (including their
topological structures and node features) for training and inference.

5 EVALUATION

Our evaluation of the proposed system consists of two example usage
scenarios (Section 5.1 and 5.2), quantitative experiments on various
datasets (Section 5.3), and interview with domain experts on both
usage scenarios (Section 5.4).

5.1 Example Usage Scenario: Program Workflow Analysis

In the first usage scenario, we apply GraphQ to analyze a collection
of graphs describing the workflows in a vehicle diagnostics software
program. The software program uses prescripted workflow graphs
to check the functionalities of the system and locate the problem in
the vehicles. The workflows are modeled as directed graphs where
each node represents an individual procedure in the workflow and
the link represents their sequential orders. We convert the graphs to
undirected graphs as input for the query algorithms. In total, there are
∼20 different types of procedures in the workflow, and we use node
colors in the system to distinguish them (Fig. 1) (all the names of the
nodes are anonymized). In both NeuroMatch and NeuroAlign, the type
of the procedures is considered as a node attribute.

The workflows are manually created and it is a time-consuming
process. The goal of analyzing workflow graphs is to identify
subroutines in the workflow that are reused frequently and therefore
can be used as templates, or submodules in the future to facilitate the
workflow editing process or to simplify the workflow descriptions.
However, identifying such frequent subroutines cannot be easily
automated – substantial domain knowledge in automotive hardware
and software system is needed to curate meaningful patterns, therefore
a human-in-the-loop approach is well-suited.

Through an initial data exploration together with the domain experts,
we found that pairwise comparison of workflows using graph editing
distance [23] can provide an overview of the graph similarities in the
dataset. This overview can help the user to select interesting workflows
as the starting point for exploration. Our system integrates a t-SNE pro-
jection [73] of all the graphs based on the graph editing distance matrix
which reveals several clusters (Fig. 1(a)). The user can use the brushing
function to select one cluster and the selected graphs will be updated in
the table (Fig. 1(b)). The user could then select any graph from the table
to be displayed in the query editor (Fig. 1(1)) to create example-based
queries. In Fig. 1(c), a subroutine with a branching structure is selected
by brushing on the visualization. The user can invoke the context
menu and search for the query pattern in the graph database. With
approximate matching disabled (Fig. 1(4)), the system returns 45
matched graphs in the database. In the graph types histogram, we can
see that most of the matched graphs belong to two types (Fig. 1(d)).
For an overview of the matching results (Fig. 1(2.1)), the user could
toggle minimize in the query results display (Fig. 1(f)) and highlight
the node matches returned by NeuroAlign (Fig. 1(e)). The result shows
that indeed most of the graphs returned contain the nodes in the query
pattern, indicating that the algorithm is returning reliable results. To
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Fig. 6. The user selects a fan-like pattern (a). Exact subgraph matching returns 21 results (b). After enabling approximate search (Fig. 1(4)), the
back-end returns 172 graphs (d) containing fan-like patterns, although some of them are simpler than the query. The query results indicate that
such structure can be reused as a template to reduce the manual effort for future workflow creation.

Quick
shift

Original Image

+

Ground-truth Semantic 
SegmentationSuper-pixels

Fig. 7. To obtain a semantic scene graph from an image in the MSRC-21
dataset, we use the Quickshift [74] algorithm which segments the
image into partitions, i.e. super-pixels; then we derive each semantic
label as the most frequent ground-truth label of all pixels inside the
corresponding super-pixel. Each super-pixel is mapped to a graph node
with the semantic attribute.

further view the details, the user turns off the minimize toggle, and
the graphs are displayed in a similar layout as in the query panel and
the user can review more details about each graph including the graph
name, number of nodes, and links, etc (Fig. 1(2.2)). To facilitate the
inspection of more detail about the returned matches and aligned nodes,
we design the side-by-side display of the query graph and returned
matching graph (Fig. 1(5)). The display is activated as a popup window
when the user clicks on the zoom button (Fig. 1(g)). Users can also add
additional node attribute constraints by clicking on the corresponding
node attribute (Fig. 1(h)) to be matched in the query results. In this ex-
ample there is no workflow satisfying the specified attribute constraint.
After verifying the results the user can save the query pattern in a json
file to be reused when manually creating workflows in the future.

Fig. 6 shows the query results for a fan-like structure selected from
a graph (Fig. 6(a)). The system returns 21 matched results with approx-
imate search disabled. Indeed most of the returned graphs contain the
fan-like structure (Fig. 6(b)), indicating another reusable submodule
in the workflow creation process. In the t-SNE plot, the graphs with
matching fan-like patterns are highlighted in orange, showing the
graphs are scattered in different clusters according to graph editing
distance (Fig. 6(c)). This finding indicates our method can uncover
meaningful patterns in the sub-regions of the graphs that are missed by
graph-level similarities. To further extend the search to graphs that may
contain similar, but not exact the same patterns, the user toggles the
button to enable approximate search (Fig. 1(4)), the returned result con-
tains much more graphs (172 graphs) than in exact matching (Fig. 6(d)).
The user sorts the results based on the number of nodes and found
that the graphs with approximate matches contain a simpler fan-like
structure with fewer nodes. Based on the analysis the user concludes

that the fan-like pattern can be used as a template in the future.

5.2 Example Usage Scenario: Scene Graph Search
In the second usage scenario, we apply GraphQ to semantic scene
graph search in computer vision applications to find images with
similar objects and relationships that resemble our query subgraph
structure. It can be useful for many computer vision tasks such
as image retrieval [59, 82], visual question answering, relationship
modeling, and image generation. We follow the procedures described
in [49] to extract a semantic scene graph from each image. Each
node in the graph represents a super-pixel extracted from the image
using a segmentation algorithm and the links between nodes encode
the adjacency information between those super-pixels. Each node is
annotated with a semantic label, as one of its attributes and the whole
extracted graph from an image is an undirected, planar graph [69]. In
this study, we use a public image segmentation dataset (MSRC-21 [62])
to illustrate this approach. Each image contains ground-truth labels
such as tree, grass, wall and unlabeled void, etc. We illustrate the
process to extract the scene graph from each image in Fig. 7.

To perform scene graph search, the user starts with the overview
of all graphs in the database. The user picks a graph to work on and
brushes a subgraph, for example, three connected nodes (Fig. 8(a))
including sky, building and road. This subgraph structure could
indicate a typical city environment (with buildings and road). The
backend, with approximate search disabled, returns matched result
of 25 graphs and most of them contain the same subgraph: street
view: interconnected super-pixels of sky, building and road as shown
in (Fig. 8(b)). Note in histogram overview (Fig. 8(c)), all of these
resulted images come from the same row (17th) in MSRC-21 dataset
that belongs to the category “road/building”. The user can also sort by
different metrics and filter by different node information such as area
range, or even super-pixel location, etc. Through these interactions,
the user eventually finds interesting images tailored to needs.

5.3 Quantitative Evaluation
We evaluate the performance of the proposed system on 4 graph
datasets in various domains: program workflow dataset (vehicle
diagnostic), MSRC-21 (image processing), COX2 (chemistry) and
Enzymes (biology). The workflow dataset contains ∼500 individual
workflow graphs with the number of nodes ranging from 5 to 150.
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Fig. 8. Case study 2, searching by brushing a subregion (a chain of sky, building, and road nodes) on the (MSRC-21) scene graph and find the match-
ing results (b), most of which contain the same chain of such three nodes as in (a). The three nodes’ relationship resembles a typical street view image.

Table 1. Subgraph decision performance using NeuroMatch.

Dataset Precision Recall F1
Workflow 87.0 89.9 88.4
MSRC-21 83.6 91.6 87.4

COX2 87.4 90.9 89.1
Enzymes 81.8 73.0 77.1

∼20 different types of nodes correspond to different diagnostic
procedures. MSRC-21 [62] contains natural scene images with 21
object semantic labels. After the super-pixel extraction and processing
steps as described in Section 5.2 and Fig. 7, the resulting graph dataset
includes 544 graphs with 11 to 31 nodes. COX2 [46, 66] consists of
467 chemical molecule graphs with the number of nodes ranging from
32 to 56. Enzymes dataset [46, 58] contains 600 graphs of protein
tertiary structure with 3 to 96 nodes. The last 3 datasets are public.

We utilize an 8-layer GraphSAGE in training and the hidden
dimension for node embeddings is 64. For NeuroAlign, the attention
network has two hidden layers of dimensions 256 and 64. We use
ReLU activation. The learning rate is fixed at 0.0001 without weight
decay and Adam optimizer is utilized.

The training data is generated on the fly by randomly sampling
the positive and negative pairs, as described in Sect. 3.5. Note that the
ground-truth label for a positive pair is obtained automatically during
sampling, and for a negative pair is calculated by exact matching
algorithm [14]. The batch size is fixed to 128. For validation data, we
sample the dataset following the same process, prior to training. For
testing data, we sample based on the evaluation tasks as described in
the following sections.

All experiments are conducted on a single GeForce GTX 1080 Ti
GPU. We measure the performance of the system in terms of prediction
correctness and runtime efficiency. For all evaluations, the approximate
query matching is turned off. The detailed description of the evaluation
setup and experimental results are presented below.

5.3.1 Prediction Accuracy

To construct the testing dataset for evaluation of the prediction accuracy,
we randomly extract 5 queries from each graph, and obtain their ground-
truth subgraph-isomorphism labels. The evaluation is conducted on the
problem of subgraph decision and node alignment separately. For sub-
graph decision, we measure the precision and recall, commonly used in
the information retrieval domain, to measure how well NeuroMatch re-
trieves the ground-truth matching target graphs from the graph database.

For node alignment, the objective is to measure how well the
algorithm predicts the correct matching nodes on the retrieved target
graphs. Since the wrong retrieval does not have ground-truth node
alignment, we conduct the evaluation on the set of correctly retrieved
target graphs. For this task, we compare our proposed NeuroAlign

with NeuroMatch, which provides node correspondence through the
matched anchor nodes. Greedy assignment (Section 3.6) is applied
on both NeuroMatch and NeuroAlign to improve the inference. The
details on utilizing the greedy assignment on NeuroMatch can be
found in the appendix. To measure the performance, we calculate the
top-k (k ∈ {1,2,3}) accuracy along with the accuracy after the greedy
assignment on each query, and report the average among all queries.
In case multiple matches exist in the ground truth, we only consider
the one closest to algorithm prediction to measure the accuracy. The
identification of multiple subgraph isomorphisms [43] is a more
challenging research topic and we provide a discussion in Section 6.

The performance of subgraph decision is shown in Table 1. The
results show that the system is able to retrieve around 90% matching
target graphs for both datasets while maintaining high precision. Note
that achieving high precision is much more challenging than high recall
since a matching target graph is rare as compared to non-matching
graphs. The excellent precision and F1 score of the system demonstrate
the model’s capability to learn embeddings that correctly reflect the
subgraph relationship.

The comparison between NeuroMatch and our proposed algorithm
NeuroAlign on the node alignment task is shown in Table 2. Neuro-
Match performed poorly on this task due to multiple predicted matches
for many query nodes. We achieve significant improvement over Neuro-
Match (e.g. 27.3% improvement on top-1 acc. and 22.2% improvement
after assignment for Workflow, 18.7% improvement on top-1 acc. and
28.7% improvement after assignment for MSRC-21). We also observe
that MSRC-21 is much more challenging than Workflow dataset due to
the dense connectivity and a large number of similar adjacency nodes.
Interestingly, although NeuroAlign makes many wrong decisions from
the top-1 predictions, its top-3 predictions contain most labels. As
a result, the simple assignment approach successfully resolves many
predicted conflicts and significantly improves the accuracy. Contrarily
the assignment does not make much improvement for NeuroMatch
predictions. In addition, we experimented with the optimal Hungarian
assignment algorithm and observe that, as compared to our greedy
approach, the improvement is negligible for NeuroAlign, but higher
for NeuroMatch (e.g. achieves 73.1% acc. on Workflow and 55.4%
acc. on MSRC-21) due to more conflicting predictions.

5.3.2 Runtime Efficiency

Next, we measure the runtime efficiency in comparison with the VF2
baseline [14] to evaluate the speed gain. VF2 is the state-of-the-art
exact matching algorithm based on backtracking procedure. Although
it calculates true subgraph-isomorphism results, the computation is ex-
pensive, especially for larger graphs. In addition, we also compare with
a similar system where NeuroAlign component is removed to evaluate
the added computational overhead of NeuroAlign. For this evaluation,
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Table 2. Node alignment performance. NeuroAlign achieves averaged 25% improvement on the final accuracy.

Method Dataset top-1
acc.

top-2
acc.

top-3
acc.

acc. w/
assignment Dataset top-1

acc.
top-2
acc.

top-3
acc.

acc. w/
assignment

NeuroMatch Workflow 64.2 85.6 93.4 68.6 COX2 42.2 56.5 65.9 44.1
NeuroAlign (Ours) 91.5 97.7 98.7 95.2 65.3 81.6 92.0 70.4

NeuroMatch MSRC-21 40.9 62.7 77.0 52.6 Enzymes 41.7 56.6 67.4 47.5
NeuroAlign (Ours) 59.6 84.2 95.1 81.3 53.6 75.3 86.3 66.7

Fig. 9. Runtime comparison with VF2 [14] and NeuroMatch [44] on the
Workflow dataset. Runtime in seconds is shown on the y-axis as loga-
rithm scale and the exact number is above the bar. Compared to VF2, our
system provides 10×–100× speedup starting from 10 query nodes and
therefore enables interactive query. Our proposed NeuroAlign component
adds little to none computational overhead as compared to NeuroMatch,
while providing much more accurate node-alignment results.

we consider the number of query nodes ranging from 5 to 30 with an
increment of 5 on the Workflow dataset, and randomly extract 2000 cor-
responding queries for each number. We measure the averaged runtime
in seconds for the matching with the entire database. The results are
visualized in Fig. 9. We observe that the runtime of VF2 increases expo-
nentially with the increase in query nodes and reaches close to 6 minutes
with just 25 query nodes. With further increased query nodes they be-
come larger than many target graphs and cannot be matched, thus creat-
ing a runtime drop at node size 30. In contrast, our runtime increases lin-
early with query node size. Compared to NeuroMatch, the added Neu-
roAlign component induces little to none computational overhead. Sur-
prisingly it is slightly faster than NeuroMatch in some cases. We conjec-
ture this is due to the easier assignment task generated by NeuroAlign
(i.e. fewer conflicts), such that the greedy algorithm can terminate early.

5.4 Expert Interview
To evaluate the usability of the system, we conducted a semi-structured
interview involving three industrial experts working on program work-
flow construction and review for the first usage scenario, as well as
three researchers working in the computer vision domain for the second
usage scenario. We introduced the system with a walk-through of the
interactive features and visual encodings and then explored the system
together through a remote call. We report a brief summary of the find-
ings here as an initial validation of the usability and utility of the system.

For the first usage scenario, the domain experts considered the visual
analytic system easy to understand and fits their current usage scenario
very well: identifying reusable workflow modules to simplify future
workflow creation. They can easily create new patterns and search for
matching graphs in the database and validate the results in the visualiza-
tion interface. They even proposed new usages such as using the visu-
alization to review newly created workflows. One of them commented,
“The abstraction and searching of custom queries open up a lot of oppor-
tunities”. In addition, they requested that the returned workflows to be
grouped by additional node features for fine-grained analysis. We are
currently working with the experts to deploy the system for larger-scale
use, and are expecting more feedback after long-term usage.

For the second usage scenario, the domain experts appreciated
the usefulness of the system by commenting, “It’s great to perform
query so fast and see results interactively. It’s certainly very powerful
for many computer vision problems”. They showed great interest
in applying the system for diagnosing computer vision models to

answer questions such as: does an object detection model performs
worse when the object is placed on the road instead of in a room?
One of them is interested in retrieving images containing similar
semantic structure as some failure cases of the model to perform
further analysis and model refinement. Another expert is interested
in utilizing the tool for computer vision problems with a heavy focus
on object relationships, such as image captioning and visual question
answering. For improvement, they mentioned that the graph edge
could encode additional information such as the relative positions
(up, down, left, right) of the superpixels to retrieve similar images. In
addition, a ranking of the matched images could be provided based
on the closeness of visual appearance to the query image.

6 DISCUSSION, LIMITATIONS AND FUTURE WORK

We introduced a novel system GraphQ to perform interactive visual
pattern queries on graph databases based on user-created query patterns.
To facilitate interactive query, we utilize graph representation learning
to resolve the problem of subgraph decision and node alignment. The
intuitive and explainable visual cues provided by NeuroAlign are
paired with novel visual and interaction designs to help users navigate
the retrieval results and extract insights. Due to the complexity of the
subgraph matching problem, there are still many open questions we
have not addressed yet:

Node alignment for multiple subgraph isomorphism. Currently,
the training and inference of NeuroAlign focus on a single instance
of subgraph isomorphism. However, in practice, the query nodes could
be mapped to multiple sets of nodes in the same matching target graph.
Counting and enumerating all these instances is a very challenging
problem and requires future research. Besides that, multiple pattern
matches in a large graph bring additional challenges for interaction
and scalable visual representations.

Scalability to very large query graphs. During training of Neuro-
Match, we observe that hard negative samples are crucial to achieving
high precision rate. However, sampled or perturbed queries need to
be verified with exact matching algorithms to ensure the subgraph
relationship does not exist. These algorithms are slow to compute
especially when the query and target neighborhood graphs become
larger and the connectivity becomes denser. A potential approach to
alleviate the issue is to assign large weights to these hard negatives
and reduce the overall need to invoke these algorithms during training.

Handling directed or disconnected query patterns. Currently,
our algorithm works with using undirected, connected graphs as the
query pattern. For directed graphs, we converted them into undirected
graphs as input for NeuroMatch and NeuroAlign. To account for
the direction of connectivity, the backbone GNN model needs to be
modified. For example, GraphSAGE can be modified by distinguishing
the in-node and out-node neighborhoods during the aggregate-update
process and other GNNs specifically designed for directed graphs such
as [61, 68] can be considered. On the other hand, for disconnected
query patterns, a potential workaround is to consider each connected
component separately and make an ensemble of the individual
predictions. However, the performance still needs to be investigated.

In the future, besides addressing the aforementioned limitations, we
plan to investigate database index applied on the embeddings of the
large graph database to allow even more efficient retrieval at sub-linear
time. Furthermore, considering the wide variety of graph-structured
data, we plan to extend the current work to more usage scenarios
including social network analysis [81] and 3-D point clouds [50].
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