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Abstract—Embedding high-dimensional data onto a low-dimensional manifold is of both theoretical and practical value. In this article, we

propose to combine deep neural networks (DNN) with mathematics-guided embedding rules for high-dimensional data embedding.We

introduce a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional

space to low-dimensional space, guided by well-established objectives such as Kullback-Leibler (KL) divergenceminimization.We

further propose a recursive strategy, called deep recursive embedding (DRE), tomake use of the latent data representations for boosted

embedding performance.We exemplify the flexibility of DRE by different architectures and loss functions, and benchmarked our method

against the twomost popular embeddingmethods, namely, t-distributed stochastic neighbor embedding (t-SNE) and uniformmanifold

approximation and projection (UMAP). The proposedDREmethod canmap out-of-sample data and scale to extremely large datasets.

Experiments on a range of public datasets demonstrated improved embedding performance in terms of local and global structure

preservation, compared with other state-of-the-art embeddingmethods. Code is available at https://github.com/tao-aimi/

DeepRecursiveEmbedding.

Index Terms—t-distributed stochastic neighbor embedding, uniform manifold approximation and projection, deep embedding network, deep

recursive embedding, unsupervised learning
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1 INTRODUCTION

EMBEDDING high-dimensional data onto a low-dimensional
manifold is of both theoretical and practical value. It can

be used for a variety of applications such as data visualiza-
tion, representation learning, unsupervised clustering, and
data exploration [1], [2], [3], [4]. t-distributed stochastic
neighbor embedding (t-SNE) [5] is among the most well-
known and widely-used methods for high-dimensional data
visualization,which preserves local similarity of high-dimen-
sional data in a drastically reduced low-dimensional map
(typically 2). t-SNE has foundwidespread applications in life
science research among others in the last decade, and estab-
lished itself as an important visualization tool in the scientific
community [6]. Nonetheless, it is so far largely recognized as
a visualization tool, as some practical issuesmay have limited
its wider use in learning-based tasks. First, t-SNE does not

immediately allow out-of-sample projection. Second, the
computation of t-SNE is memory- and time-consuming, not
well scalable to the extremely large datasets of today. Third,
t-SNE (especially its fast implementations) focuses on local
neighborhood, often losing global data structure of data.

A number of follow-up work have been proposed after
the initial paper of t-SNE. For instance, Barnes-Hut-SNE
(BH-SNE) [7], A-tSNE [8] and FIt-SNE [9] were proposed to
accelerate the computation and reduce memory usage of t-
SNE. Recently, another DR method called uniform manifold
approximation and projection (UMAP) [10] was introduced
and became another popular visualization tool. UMAP has
demonstrated competitive visualization performance as t-
SNE, with notably reduced runtime and arguably better
preservation of global structure [10].

In the meanwhile, DR has also been studied in the deep
learning field [11], [12]. For example, the auto-encoder (AE)
is a classical DR method [11], which embeds high-dimen-
sional data through a DNN with an encoder-decoder archi-
tecture. AE can be trainedwithmean square error (MSE) loss
and standard optimization, and the intermediate tensors at
the information bottleneck are seen as low-dimensional rep-
resentations of the high-dimensional data. Although its
embedding performance is generally inferior to that of t-SNE
or UMAP, AE suggests great potential of DNN for DR
through unsupervised learning.

We posit that the combination of DNN and dedicated,
mathematics-guided embedding rules may further enrich the
possibilities of DR and improve its performance. Embedding
rules such as cross entropy and Kullback-Leibler (KL) diver-
gence are more specific to the purpose of DR, compared to
MSE which is intended for reconstructing data. Generally
speaking, there exist twomethodologies to combine DNN and
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DR. Intuitively, we may teach the DNN to learn from a refer-
encedDRmethod. The recent deep learningmultidimensional
projection method [13] follows this methodology, which first
computes a t-SNE or UMAP map in conventional ways, then
let the DNN learn the t-SNE or UMAP results by MSE. This
method can achieve scalability and out-of-sample support, but
its embedding performance has an upper limitation equal to
that of the referenced method. The second methodology is to
train a DNN with dedicated loss functions to directly capture
the mathematical principles of embedding, therefore mathe-
matics-guided. The parametric t-SNE (ptSNE) proposed in 2009
[14] is an early work in this direction, which employed the t-
SNE loss function to train a restricted Boltzmann machine
(RBM). ptSNE addresses the scalability issue, but still has
some practical limitations. ptSNE involves a pre-training step
and a fine-tuning step, which are complicated while not
guaranteed to converge. Even with ideal convergence, ptSNE
cannot exceed the performance of the original t-SNE.

We seek to develop a parametric (i.e., able to embed new
data points) and scalable (i.e., able to embed infinite data
points) DR method that can find an intrinsic low-dimen-
sional representation of data. In this paper, we propose a
generic deep embedding network (DEN) framework that is
based on well-established embedding rules and optimized
by modern DNN. In addition, to break the upper limit of
the performance in classical DR methods, we propose a
recursive training strategy called deep recursive embedding
(DRE), to make use of latent representations to boost the DR
performance further.

Specifically, as we will show in later sections, the advan-
tages of the proposed DRE method are four-fold: (1) It can
readily map out-of-sample data points. (2) It is scalable and
memory-efficient. (3) It is flexible in the design of its archi-
tecture, loss, and training strategy. (4) It breaks the upper
limit of t-SNE or UMAP.

2 RELATED WORK

2.1 Classical Dimensionality Reduction Methods

Dimensionality reduction is a classical problem in machine
learning. The most well-known linear DR method is princi-
pal component analysis (PCA) [15], which computes low-
dimensional representation by linearly projecting high-
dimensional data points onto the first few principal compo-
nents that preserves the largest variance. Other classical DR
methods include multidimensional scaling (MDS) [16], Iso-
map [17], locally linear embedding (LLE) [18], and stochas-
tic neighbor embedding (SNE) [19]. They usually produce
better visualization results on nonlinear data compared
with PCA, but with limitations in terms of scalability, speed,
and stochasticity. In 2008, the t-SNE method [5], a variant of
SNE, was proposed, which later became one of the most
popular methods in the research community for high-
dimensional data visualization. t-SNE emphasizes local
neighborhood in data with a modified assumption (t-distri-
bution in low-dimensional space) over SNE, and can pro-
duce higher quality embedding results compared with
other nonlinear manifold learning methods.

Many developments followed up the original t-SNE [20],
[21]. An important work is Barnes-Hut t-SNE (BH t-SNE) [7],
which approximates the high-dimensional space with sparse

distributions and uses the Barnes-Hut algorithm to speed up
computation. The approximation largely reduces the algo-
rithm complexity and memory consumption, enabling t-
SNE to embed very large datasets that were previously
impossible. A hierarchical stochastic neighbor embedding
(HSNE) method was proposed to interactively render the
visualization at different scales [22]. The hierarchical way of
visualization allows small memory footprint by focusing on
landmarks instead of all data. The authors also proposed an
A-tSNE method [8], which trades off speed and accuracy, to
enable interactive data exploration. More recently, Linder-
man et al. proposed a fast Fourier transform-accelerated
interpolation-based t-SNE (FIt-SNE) [9] to accelerate the
implementation of t-SNE. In FIt-SNE, an effective late exag-
geration strategy was also proposed for better clustering.
Lately, another important embedding method UMAP was
introduced [10], which is rooted in mathematical founda-
tions of Riemannian geometry and algebraic topology.
UMAP is considered competitive with t-SNE in visualiza-
tion, while faster and better scalable in implementation. It is
also able to map out-of-sample data by graph embedding.
However, it was reported that UMAP can be sensitive to
the choice of hyper-parameters [13]. Although some work
argued that the global data structure can be better preserved
by UMAP, other studies suggested that UMAP preserves the
global structure in a way similar to t-SNE with the same ini-
tialization [23].

2.2 Deep Learning Methods

AE is a classical DNN-based DR method, which maps the
data to a low-dimensional representation with an encoder.
Through unsupervised learning, the encoder can generate a
nonlinear embedding in the low-dimensional space. While
AE uses the MSE loss, the ptSNE method [14], proposed by
van der Maaten in 2009, adopted the same KL loss function
as t-SNE. ptSNE consists of three separate steps: training
RBMs, stacking the RBMs to construct a pre-trained NN,
and finetuning the pretrained NN. Such a training process
is cumbersome, and its performance is frequently poorer
than that of the standard t-SNE due to the difficulty of opti-
mization. Another DNN method was later proposed to
directly cluster data, using a loss function similar to that of
t-SNE, but based on estimated centroids [24]. Very recently,
a DL Projection method [13] was introduced to learn from
any referenced DR methods: it first selects a reference
method (e.g., t-SNE, UMAP) to generate a projection of a
subset; then trains a DNN to learn the embedding. The
method is effective and intuitive, but its performance is
restricted by its teachers. Although the network itself does
not demand complex parameter settings, the front-end pro-
cess (i.e., the DR method to generate the ground truth for
supervised learning) still requires elaborate tuning.

We believe there is still much potential in DNN for DR,
given its strong capability of representation learning. In this
work, we propose a dedicated DNN-based DR framework,
named deep embedding network (DEN), to embed high-dimen-
sional data in a unsupervised manner by well-established
mathematical principles. Within this framework, we further
propose a novel deep recursive embedding (DRE)method,which
can make use of the latent representations of the original
data for further boosted DR performance. To demonstrate the
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flexibility of our framework, we introduce a two-stage t-SNE-
UMAP loss, which is able to combine the favorable properties
of t-SNE and UMAP. We provide a further detailed compari-
son between our methods and other deep-learning-based
methods inDiscussion.

3 METHODS

3.1 Overview of DEN

We propose a generic framework, called Deep Embedding
Network, to accomplish nonlinear DR through DNNs. In
short, DEN is an unsupervised learning method which uses
DNN to optimize a dedicated loss function such that the
output low-dimensional representation optimally preserves
the desirable geometrical properties of the input high-
dimensional data. Once trained, it forms a parametric map-
ping from input to output, able to embed any out-of-sample
data. DEN is flexible in its design: it can make use of any
modern modules of DNN, take in data of different forms
(i.e., not only vectors but also tensors), and allow different
loss functions.

3.2 Flexible Architecture: FCNN and CNN

DEN allows very flexible design of the network architec-
ture. Generally speaking, DEN can be divided into two
parts: a feature extraction part and a dimensionality reduc-
tion part. In Fig. 1 we present two DEN architectures,
named as Model A and Model B. Model A is a classical fully
connected neural network (FCNN), while Model B includes
convolutional neural network (CNN) modules for better
extraction of features from images.

Each network consists of two parts: (1) Feature extraction:
In this part, we aim to capture the high-level features from
input data. In our experiments, we determined empirically
the parameters of NN, and we noticed that the final perfor-
mance is very robust to the setting of NN parameters. In
Model A, the vector feature extractor contains 5 hidden
layers, each ofwhich followed by a ReLU and a batch normal-
ization layer. In Model B, a standard design is followed: the
first 2 convolutional layers (filter number=16) with ReLU and
maxpooling capture shallow features, then 2 convolutional

layerswith 32 filters followedbyReLUandmaxpooling oper-
ation are used to extract deeper features related to the task.

(2) Dimension reduction: In this part, the dimensionality
is gradually reduced, from 2000 to 500, then 100, and finally
to the target dimension 2. We also followed a standard
design in DNN: the first dense layer with 2000 neurons is
used to lift the representations so that the capability to
express data is increased. Then 2 dense layers with 500 and
100 neurons are used to reduce the dimension, as is often in
NN design, i.e., a decreasing number of neurons at deeper
layers. We note that the final DR results are not sensitive to
the network hyperparameters.

3.3 Flexible Loss: Deep t-SNE and Deep UMAP

With the generic DEN architectures, we formulate dedicated
loss functions to guide the training. DEN can take flexible
loss functions, including that of t-SNE [5] and UMAP [10],
both in an information-theoretic sense.

t-SNE [5] minimizes the Kullback-Leibler (KL) diver-
gence between two estimated probability distributions, P
and Q, where P is for x in the high-dimensional space, and
Q for their representation y in the low-dimensional space

Lt�SNE ¼ KLðP jjQÞ ¼
X
i

X
j 6¼i

pijlog
pij
qij

; (1)

where pij and qij are normalized pairwise similarities: pij is
the probability that a data point would choose the data
point xj as its neighbor under the Gaussian distribution in
the high-dimensional space, and qij is the probability that a
data point yi would choose the data point yj as its neighbor
under the t-distribution in the low-dimensional space. pij
and qij are calculated as follows:

pjji ¼
exp

�kxi�xjk2
2s2

i

� �

P
k 6¼i exp

�kxi�xkk2
2s2

i

� � (2)

pij ¼
pjji þ pijj

2N
(3)

Fig. 1. Two exemplar architectures of the DEN model. Model A is a FCNN for vector input, and Model B is a CNN for image input. The CNN modules
in Model B allow better extraction of features from images.
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qji ¼
1þ kyi � yjk2

� ��a�1
2

P
k

P
l6¼k 1þ kyk � ylk2

� ��a�1
2

; (4)

where N is the number of data points, si is the Gaussian
kernel at xi, computed through a user defined perplexity
[5], and a is the degree of freedom of t-distribution.

UMAP minimizes the fuzzy set cross entropy (CE)
between two fuzzy membership functions [10], V and W ,
where V is for x in the high-dimensional space, and W for
their representation y in the low-dimensional space. The
loss is defined as

LUMAP ¼ CEðV jjWÞ (5)

¼
X
i

X
j 6¼i

vijlog
vij
wij

þ ð1� vijÞlog 1� vij
1� wij

� �
: (6)

In the high-dimensional space, vij is calculated as

vjji ¼ exp
�dðxi; xjÞ þ ri

si

� �
(7)

vij ¼ ðvjji þ vijjÞ � vjjivijj; (8)

where dðxi; xjÞ is the distance between data point xi and xj.
ri is the minimum distance between xi and its neighbors to
ensure connectivity of the map. si is derived as follows:

Xk
j¼1

exp
�maxð0; dðxi; xjÞ � riÞ

si

� �
¼ log 2ðkÞ; (9)

where k is the number of nearest neighbors when construct-
ing the UMAP graph.

In the low-dimensional space, wij is calculated as

wij ¼ 1þ akyi � yjk2b2
� ��1

; (10)

where a and b are user-defined values [10].
We name the DEN trained with the t-SNE and UMAP

loss deep t-SNE and deep UMAP, respectively. In the training
process, mini-batches are used to reduce memory consump-
tion for the expensive computation of P and V . We first ran-
domly shuffle the entire dataset, then divide the dataset
into mini-batches of a fixed size. After that, the batches are
trained one-by-one. When all batches of the entire dataset
have been trained, one epoch is accomplished. The loss cal-
culation is as define in (1) and (6), and the two probability

distributions P and Q for t-SNE (or V and W for UMAP)
are calculated from data within mini-batches.

3.4 Deep Recursive Embedding

With introduction of the modern DNN components such as
ReLU activation and batch normalization, we can largely
improve the ease and efficiency of training, compared with
the RBM-based ptSNE. However, we note that the upper
limit of the embedding performance remains the same as
that of the original t-SNE or UMAP, given that the loss func-
tion is identical to its original definition. To push the limit,
we further present a recursive training strategy, called deep
recursive embedding (DRE).

DRE is proposed to make use of the latent representations
extracted by DEN. In principle, the intermediate feature
maps from different layers of DNN reflect different levels of
abstraction of the original input. As discussed in [25], [26],
the deeper layers of DNN provide more abstract representa-
tions specific to the learning task. In [27], the authors demon-
strated that the deep layers of DNNs can extract a rich set of
features, and leveraging these intermediate representations
for knowledge distillation led to significant improvement of
network efficiency. In [28], the high-level intermediate fea-
turemaps extracted from a pretrainedDNN are used to com-
pute the perceptual loss to improve the image reconstruction
performance. For our purpose, the high-level representa-
tions obtained by Deep t-SNE (or Deep UMAP) also contain
relevant information related to the task of DR. Although
unsupervised, these representations are optimized with the
information-theoretic loss that strives to match high-dimen-
sional and low-dimensional statistics. Such representations
therefore serves as proper representation of the original data
to progressively improve the performance of DR.

We propose to make use of the intermediate output of
DEN for computation of P or V . This process is therefore
recursive, as illustrated in Fig. 2. In each recursion step, we
invoke intermediate outputs of feature extraction. Then,
based on these extracted feature maps, we calculate a new
probability distributions ~pjji and ~vjji for ~P and ~V

~pjji ¼
exp

�kfðxiÞ�fðxjÞk2
2s2

i

� �

P
k 6¼i exp

�kfðxiÞ�fðxkÞk2
2s2

i

� � (11)

~vjji ¼ exp
�d fðxiÞ; fðxjÞ

� �� ri

si

� �
; (12)

Fig. 2. The schematic of the proposed DRE method: Stage 1 shows the recursive training of DEN using the t-SNE loss, while Stage 2 further updates
the network with the UMAP loss.
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where f (�) is high-level feature extraction function realized
by the feature extraction part of DEN. Based on this new
probability distributions, we can define the recursive t-SNE
loss and recursive UMAP loss

L
0
t�SNE ¼ KLð ~P jjQÞ (13)

L
0
UMAP ¼ CEð ~V jjWÞ: (14)

At the beginning of recursive training, we calculate P and V
once to estimate the loss in (1) and (6). In principle, we can
also continuously update P and V during the training.
However, this turned to be time-consuming and our experi-
ments showed that the improvement was minor.

3.5 Multi-Stage Losses

Our design also allows flexible combination of loss func-
tions at different stage of recursion. In theory, UMAP
pushes the dispersed points between different clusters to
the nearest ones, driven by the second term in its loss func-
tion (6). This results in a desirable visual effect promoting
clean margins between classes (albeit not necessarily better
classification performance or representation, as show in
Results). We exemplify the flexible design of DEN by intro-
ducing a two-stage loss: first optimize DEN by the t-SNE
loss, then refine the final visualization by the UMAP loss.
The workflow is as follows:

In stage 1, the network is trained with the original t-SNE
loss Lt�SNE between y and x; then, the network is recur-
sively updated by minimizing the recursive t-SNE loss
L

0
t�SNE between y and the latent representations, generated

by the output of Dense 2000, Dense 500 and Dense 100
layers, where the feature extractors are defined as f2000ð�Þ,
f500ð�Þ, and f100ð�Þ, respectively. This is shown as Recursion
1, Recursion 2 and Recursion 3 in Fig. 2 (STAGE 1).

In stage 2, the DEN is further fine-tuned with the UMAP
loss. This step is optional and for visualization purpose.
This is shown in Fig. 2 (STAGE 2).

4 EXPERIMENTS

4.1 Datasets

We experimented with 5 public datasets, covering different
data types, sizes, and characteristics: (1) MNIST [29], the
handwritten digits dataset widely used to evaluate machine
learning algorithms, which contains 60,000 training images
and 10,000 testing images with size 28� 28, in 10 classes from
digit 0 to dig-it 9. (2) Fashion-MNIST [30], the fashion product
database by Zalando, developed in the same format as
MNIST, containing 60,000 training images and 10,000 testing
images of size 28� 28, including 10 classes: T-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle
boot. Fashion-MNIST is another benchmark database for
machine learning algorithms, more challenging than MNIST.
(3) RNA-Seq dataset includes 23,822 single-cell transcrip-
tomes. The cells were isolated from the primary visual cortex
(VISp) and anterior lateral motor cortex (ALM) of adult
mouse. The cluster label is defined in [31], which is used for
visualizing different cell types. (4) IMDB dataset [32] includes
25,000 movie rating data used for sentiment analysis. All data
are classified into positive and negative comments. Each

comment was preprocessed to transform the textual sequen-
ces into a 500-dimensional word-vector. (5) InfiMNIST [33]:
an open source method to generate an infinitely large data-
base of handwritten digits based on MNIST. This dataset is
used to test the scalability of DR algorithms.

4.2 Implementation

Our environment is a Linux workstation with a NVIDIA
Tesla V100 GPU, with 50GB system memory and 16GB GPU
memory. The proposed DEN has a number of loss-related
and network-related hyperparameters. In our experiments,
we used Model A in Fig. 1 for vector input including RNA-
Seq and IMDB, andModel B in Fig. 1 for image input includ-
ing MNIST, Fashion-MNIST, and InfiMNIST. For the loss-
related hyperparameters, we set the perplexity to 30 and the
degree of freedom of t-distribution to 1. For the network-
related hyperparameters, a mini-batch size of 2500 is chosen.
Given one mini-batch of 2500 randomly selected data points
from the input, Pij is computed to derive the gradient for
updating the network parameters. Then the next mini-batch
follows to update the network parameters further. The
Adam optimizer was used for DNN training, with an initial
learning rate of 10�3, b1 (the exponential decay rate for the
1st moment estimate) of 0.9, b2 (the exponential decay rate
for the 2ndmoment estimate) of 0.999 and an epsilon of 10�7.
The training epochs of Deep t-SNE is set as 100. The DRE
method has the first 100 epochs trained with the original t-
SNE loss, and 50 epochs for each subsequent recursion in
Stage 1. In Stage 2, an additional 100 epochs were trained
with the UMAP loss.

4.3 Evaluation Metrics

We used 6 metrics to evaluate the DR performance [34], [35]:
(1) 1-nearest neighbor (1NN), (2) neighborhood hit, (3) trust-
worthiness, (4) continuity, (5) Shepard goodness, and (6)
normalized stress. The definition of evaluation metrics are
given as follows, where the dataset is denoted as D ¼ fxig,
i ¼ 1; . . . ; N , N is the number of sample points.

(1) The 1-nearest neighbor (1NN) classification accuracy
is a standardmeasurement as reported in [5], [14], which can
be used to estimate the quality of clustering.With its absolute
simplicity, the 1NN classification accuracy can be an indica-
tion of the goodness of clustering in the low-dimensional
space.

(2) The neighborhood hit measures how well separable
the data is in the low-dimensional space, which helps gauge
if a technique is good for data exploration. The neighbor-
hood hit is defined as

XN
i¼1

j 2 N
ðKÞ
i : lj ¼ li
KN

; (15)

which indicates the proportion of K neighbors N
ðKÞ
i of a

point i in the low-dimensional space who have the same
label l as point i itself, averaged over all points in the low-
dimensional space (K ¼ 7 as commonly used in literature).

(3) The trustworthiness measures the proportion of
points in D that are also close in its mapping, suggesting
how much one can trust the local patterns in a projection.
The trustworthiness is defined as
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1� 2

NKð2n� 3K � 1Þ
XN
i¼1

X

j2UðKÞ
i

rði; jÞ �Kð Þ; (16)

where rði; jÞ represents the rank of the low-dimensional
data point j according to the pairwise distances between the
low-dimensional data points, and U

ðKÞ
i represents the set of

points that are among the K nearest neighbors in the low-
dimensional space but not in the high-dimensional space.

(4) The continuity measures the proportion of points in
its mapping that are also close together in its original space,
and is closely related to the missing neighbors of a projected
point. The continuity is defined as

1� 2

NKð2n� 3K � 1Þ
XN
i¼1

X

j2V ðKÞ
i

r̂ði; jÞ �Kð Þ; (17)

where r̂ði; jÞ represents the rank of the high dimensional
data point j according to the pairwise distances between the
low-dimensional data points, and V

ðKÞ
i represents the set of

points that are among the K nearest neighbors in the high-
dimensional space but not in the low-dimensional space.

(5) The normalized stress measures the relative preserva-
tion of point-pairwise distances, which can be expressed as

P
i;j

�
DLðxi; xjÞ � DHðP ðxiÞ; P ðxjÞÞ

�2
P

i;j D
Lðxi; xjÞ

; (18)

where DL and DH are distance metrics for data points in
low- and high-dimensional space, respectively.

(6) The Shepard goodness measures the overall distance
preservation by computing the Spearman rank correlation
of Shepard diagram. The formula of generating a Shepard
diagram is as follows:

Scatterplot
�kxi � xjk; kP ðxiÞ � P ðxjÞk

�
; 1 � i � N; i 6¼ j:

(19)

5 RESULTS

5.1 Effect of Recursive Training

During recursive training, we observed that the clusters
were gradually refined to better reflect the inter-cluster rela-
tionship, resulting in better separable clusters. This is remi-
niscent of the late exaggeration in FIt-SNE [9], which also
forces clusters to be tighter and more apart. For an empirical
comparison between FIt-SNE and DRE, we implemented
FIt-SNE with different late exaggeration settings, as well as
DRE with different number of recursions. Fig. 3 shows a
comparison between the two different strategies on the
MNIST and RNA-Seq datasets. We observed that both late
exaggeration and recursive training resulted in similar
effect of map optimization by shortening the distance
between data points within the same class while prolonging
the distance between data points in different classes, both in
an unsupervised manner. While FIt-SNE realizes this effect
by increasing the repulsive forces explicitly during optimi-
zation, our method recalculates the distribution P using an
updated representation of the original high-dimensional
data, obtained through DNN. The two strategies are not
equivalent per se, but both lead to a better separation of the

inherent clusters in data. Closer observation shows that the
DRE preserved a better visual balance between global and
local structures. Within clusters we can better appreciate
sub-structures in data, especially in the RNA-Seq data
(lower panel b) with a natural hierarchical structure.

5.2 Comparison With Other Embedding Methods

We compared the proposed DEN methods with other refer-
ence methods on the MNIST, Fashion MNIST, RNA-Seq
and IMDB datasets. For illustrations We included in total 7
methods for visual evaluation: (1) PCA, (2) AE, (3) t-SNE
(Barnes-Hut implementation in Python), (4) UMAP, (5) DL
Projection [13] (trained by t-SNE), (6) DRE (with t-SNE
loss), (7) DRE (with t-SNE and UMAP loss). Quantitative
evaluation metrics are reported in Table 1, which compared
a more extensive set of embedding methods. The compari-
son further includes RBM-based ptSNE [14], Fit-SNE [9],
DL Projection trained by UMAP [13], and Deep t-SNE (i.e.,
without recursion).

Fig. 4 shows the results of MNIST and Fashion-MNIST,
both in training and testing. For the t-SNE method (column
c), no testing results was plotted as there is no learning
mechanism. For MNIST, it can be observed that the PCA
method (column a) could hardly differentiate the 10 classes,
with poor performance in terms of 1NN error and neighbor-
hood hit. The AE method (column b) performed better than
PCA in terms of 1NN error, neighborhood hit, and trust-
worthiness, but the embedding remained visually poor. The
Barnes-Hut t-SNE (column c) and UMAP (column d) are
the two currently most popular visualization methods,
which generated largely improved embeddings over PCA
and AE. The DL projection method (column e) method
reproduced the results of t-SNE (column c) both in training
and testing. However, we noticed a change of cluster distri-
bution (colunm c and e), due to the different optimization of
t-SNE in separate runs. The last two columns show the
embedding results from the proposed DRE method, with t-
SNE loss (column f) and t-SNE + UMAP loss (column g),
respectively. Both exhibited visually improved 2D embed-
dings. Even without color coding, we can still observe 10
distinct clusters, better separated compared with t-SNE or
UMAP. Quantitatively, our proposed DRE method also
showed superior 1NN and neighborhood hit value, compa-
rable trustworthiness, continuity and normalized stress
compared with those from the t-SNE and UMAP methods.
Nonetheless, we noticed that the Shepard goodness was
reduced, as the recursive training strategy exaggerated the
inter-cluster distances, while Shepard goodness is a metric
based on the original data distribution.

The Fashion-MNIST dataset is generallymore challenging
to cluster or classify than the MNIST dataset. We observed
more distinct clusters (e.g., tops, bottoms and shoes) by our
method thanUMAP or t-SNE, however, the confusion of cer-
tain classes (e.g., shirt, pullover and coat) remained similar.

The results of RNA-Seq are shown in the first and second
rows of Fig. 5, in two color schemes reflecting the hierarchy
of global and local data structure. The RNA-Seq can be
divided into three major types: glutamatergic excitatory
neurons (GABA), GABAergic inhibitory neurons (Gluta)
and non-neuronal cells (Non-neu), color-coded in red, blue
and black in the first row. It can be observed that the PCA
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Fig. 3. Comparison of embedding performances of FIt-SNE with different late exaggeration settings and DRE with different recursions. (a) and (b) are
results from the MNISTand RNA-Seq dataset, respectively. Different colors indicate different classes. Note that the color is for visualization, while the
mapping was unsupervised in both FIt-SNE and DRE.

TABLE 1
Comparison of the Embedding Performance on MNIST, Fashion-MNIST, IMDB, and RNA-Seq Data by Different Methods

MNH ,Mt,MC ,Ms ,MS indicate the values of neighborhood hit, trustworthiness, continuity, Shepard goodness, and normalized stress, respectively.
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method could differentiate the three major types of cells very
well, presenting the global structure in data. In each major
cell type, there are also a large number of subtypes, in total
133 (details can be find in [31]). The second row of Fig. 5
color-codes the cell subtypes in a refined color scale. As the
local data structures are nonlinear, PCA can no longer differ-
entiate these subtypes, in contrast to nonlinear methods such
as t-SNE andUMAP, which exhibited clustering according to

cell subtype. However, we observed a loss of global structure
in the results of t-SNE and UMAP, with the global distribu-
tion of three major types no longer consistent, i.e., scattered
and mingled. The proposal DRE method (column f and g)
showed a better balance between global and local data struc-
tures. The three major types are close as highlighted by the
dotted ellipses in Fig. 5 column g, whereas the subtypes can
also be appreciated.

Fig. 4. Comparison of embedding performance on the MNIST and Fashion-MNIST datasets by 7 methods: (a) PCA, (b) AE, (c) t-SNE (Barnes-Hut
implementation in Python), (d) UMAP, (e) DL Projection (trained by t-SNE), (f) DRE (with t-SNE loss), and (g) DRE (with two-stage t-SNE + UMAP
loss). The results of both training and testing datasets are shown.

Fig. 5. Comparison of embedding performance on the RNA-Seq and IMDB datasets by 7 methods: (a) PCA, (b) AE, (c) t-SNE (Barnes-Hut imple-
mentation in Python), (d) UMAP, (e) DL Projection (trained by t-SNE), (f) DRE (with t-SNE loss), and (g) DRE (with two-stage t-SNE + UMAP loss).
For readability of figures only the results of training datasets are shown. For RNA-seq, we showed two color schemes to highlight the hierarchy of
global and local data structure.
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The results of IMDB dataset is shown in the third row of
Fig. 5. The original data are only classified into positive and
negative comments, however, the actual sentiments are
much more complicated and subtle. We observed that all
embedding methods mixed up the two categories of data,
but nonlinear methods (column c-g) showed sub-clusters,
whichmight reflect subtle semantics in comments. In Table 1,
we note that the two DRE methods resulted in better quanti-
tative metrics compared to other methods, with the highest
neighborhood hit, trustworthiness and Shepard goodness,
and lowest normalized stress. However, further evaluation
demandsmore detailed labels of sub-clusters.

5.3 Scalability and Generalization

To evaluate the scalability of the embedding methods, we
generated huge training and testing datasets from InfiMN-
IST [33], and evaluated if the proposed DRE could scale to
such extremely large dataset. We trained DRE with 0.05 mil-
lion, 0.1 million and 0.3 million InfiMNIST data, and embed-
ded an independently generated 1 million InfiMNIST testing
dataset. Then we measured the 1NN classification accuracy
on the 2D embedding, as reported in Table 2. The proposed
DRE method out-performed all other embedding methods,
with a 93.52%, 95.58% and 97.17% testing accuracy when

trained on 0.05 million, 0.1 million and 0.3 million data,
respectively. Fig. 6 shows the embedding results of the 1 mil-
lion testing data (trained on 0.1 million data), for 6 methods
in comparison: (a) PCA, (b) AE, (c) UMAP, (d) DL projection
trained with t-SNE, (e) DRE with t-SNE loss, and (f) DRE
with t-SNE + UMAP loss, respectively. The embedding of
both the training and testing datasets are shown. On the test-
ing results, we zoomed in the local neighborhood at the
inside and border of class 9 to inspect embedding details. As
the learned embedding was extrapolated from 0.1 million
training data onto 1.0 million testing data, we observed scat-
tering of classes at the border. Overall, the proposed DRE
methods resulted in the cleanest neighborhood compared to
other embedding methods, which explains the high classifi-
cation accuracy in Table 2.

In a second experiment, we used a training set of 10K data
points to train the embedding methods, and tested them on
an increasing testing set of 10K, 30K, and 60K. The 1NN clas-
sification accuracy is reported in Table 3. It can be seen that
all embedding methods showed stable generalization, sug-
gesting the manifold of MNIST can be adequately learned
and represented in a dimensionality as low as 2. In both
Tables 2 and 3, we observed that the two DRE methods had
the best quantitative performance, followed by deep t-SNE

TABLE 2
Comparison of the 1-Nearest Neighbor Classification Accuracy (%) of the 1 Million InfiMNIST Data,

Embedded by Learning From Training Data of Different Sizes: 0.05, 0.1, and 0.3 Million

Fig. 6. Embedding 1 million InfiMNIST data by learning from 0.1 million data. The embeddings of both training and testing data are shown for (a) PCA,
(b) AE, (c) UMAP, (d) DL projection trained with t-SNE, (e) DRE with t-SNE loss, and (f) DRE with t-SNE + UMAP loss. Local neighborhoods inside
and at the border of class 9 are zoomed in for a closer look of embedding quality.
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and the DL projection method. The results can be intuitively
explained as follows: both deep t-SNE and DL projection
methods are approaching the limit of t-SNE, while the DRE
methods are pushing the limit further by recursive training.
Comparing the two DRE methods using t-SNE and compos-
ite t-SNE+UMAP losses, however, we noticed little differ-
ence in 1NN classification performance or other quantitative
measures, although the latter produces visually better sepa-
ration and clearer margin.

5.4 Runtime

We tested the runtime of a large range of existing embed-
ding methods in literature, categorized into parametric and
non-parametric DR methods. The runtime are reported in
Table 4. The PCA, Eigenmaps and BH t-SNE methods were
implemented single threaded on CPU. UMAP used
numba’s parallel implementation to do multithreaded proc-
essing with multiple cores on CPU. The DL projection meth-
ods adopted the MulticoreTSNE with 8 NVIDIA Tesla V100
GPU to parallelly calculate the network references, and fit-
ted the model using 1 GPU. The t-SNE and FIt-SNE method
utilized the multithreading and C/C++ compiler on CPU.
The proposed methods single threaded all computations,
and used 1 GPU to train the network. As shown in Table 4,
the runtime of the proposed Deep t-SNE, DR t-SNE and
DRE increased gradually with more recursions. Compared
with non-parametric methods, the DRE method needed less
runtime than the publicly available Open t-SNE [36], but
more runtime than FIt-SNE [9]. Among the parametric
methods, the proposed methods were faster than the RBM-
based ptSNE. Although our methods are slower than AE
and UMAP during training, they are very fast when applied
on new data points (second row “test”).

6 DISCUSSION

In this work, we propose to integrate modern DNNs and
mathematics principles to embed high-dimensional data,
and we name this framework “deep embedding network” -
DEN. DEN is a generic framework, which can be designed

in a flexible manner in terms of NN architectures, training
strategies, and loss functions. Based on DEN, we showed
how to design Deep t-SNE and Deep UMAP, and further
introduced a recursive training strategy to boost the embed-
ding performance over the original t-SNE or UMAP. We
exemplified the flexibility of DEN by the recursive training
with two-stage loss functions combining the popular t-SNE
and UMAP. We tested the proposed DRE on a variety of
public datasets, and evaluated its performance both visually
and quantitatively, against a comprehensive set of classical
and state-of-the-art embedding methods.

While inspired by t-SNE, the proposed DRE has made
the following improvement: (1) the DRE method is paramet-
ric and can easily embed new, out-of-sample data; (2) the
proposed recursive training strategy can boost the embed-
ding performance over the original t-SNE; (3) empirical
experiments show that the DRE method can better preserve
the global data structure simultaneously; (4) it can integrate
any mathematics rules beyond t-SNE.

Both DL projection method and the proposed DRE
method can map large, out-of-sample datasets. This is an
inherent advantage of learning-based methods. However,
the trainingmechanisms are very different: DL Projection sol-
ves the DR problem by learning from the results of t-SNE or
UMAP, i.e., the network is taught to generate an output simi-
lar to that of the reference methods. In contrast, the proposed
DREmethod provides the network a principled loss function,
and then let the network explore the embedding itself.

There are a number of hyperparameters in the proposed
method. The mini-batch used in DNN is critical for scalabil-
ity and has an influence on the embedding results: a small
mini-batch cannot fully sample the data distribution, while
a big mini-batch demands too much memory as the square
matrix of P is dependent on mini-batch size. We empirically
selected 2500, but it can also be set larger if memory allows.
Other network settings only had minor influence on the
final performance according to our experiments, given the
capability of DNNs to optimize highly complex loss func-
tions. Another hyperparameter is the number of the recur-
sions, for which we can use a simple rule of thumb: if we

TABLE 3
Comparison of the 1-Nearest Neighbor ClassificationAccuracy (%) on InfiMNIST TestingDatasets of Different Sizes: 10K, 30K, and 60K

The training data size is 10K.

TABLE 4
Comparison of the Runtime of Different Embedding Methods (MNIST: 60,000 Training and 10,000 Testing)

Type Parametric DR methods Non-parametric DRMethods

Method PCA
Auto- RBM

UMAP
DL projection DL projection Deep t- DR t-

DRE Eigenmaps
BH t- Open t- FIt-

encoder ptSNE (t-SNE) (UMAP) SNE SNE SNE SNE SNE

Runtime Train 0.029 31.78 7455.39 83.88 2122.01 1085.72 250.81 339.51 759.88 42026.70 5730.79 1149.47 304.17
(second) Test 0.67 0.46 0.49 13.68 0.22 0.40 0.84 0.82 0.73 / / / /
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are keen in visualizing the global clustering of data, we can
increase the number of recursions (e.g., 3) and obtain better
separated clusters in a global view; otherwise 1 or 2 recur-
sions are sufficient as our experiments indicated. We argue
that the improved global structure preservation by DRE
may arise from the use of latent representations, which bet-
ter capture the global structure in data (for example, PCA is
a linear latent representation). Meanwhile, the local struc-
tures are captured by DRE as it is initiated from the t-SNE
embedding rule, which emphasizes local neighborhood.

There are a few practical weaknesses of the proposed
methods. First, our method obtains the parametric mapping
by learning from a dataset, so it is more suitable for big data
datasets than for small datasets. Second, the proposed meth-
ods still need more runtime than PCA, AE and UMAP. Nev-
ertheless, we expect that the runtime can be reduced by
multi-threaded implementation.

7 CONCLUSION

In this paper, we introduced a generic DEN frame-work,
which is flexible in its NN architectures, training strategies,
and loss functions. Based on DEN, we proposed a novel DRE
strategy to further boost the embedding performance. The
proposed framework can combine modern DNNs and any
effective embedding rules such as those from t-SNE and
UMAP. The proposed DRE method can map out-of-sample
data and scale to extremely large datasets. Experiments on a
range of datasets demonstrated its improved embedding per-
formance in terms of local and global structure preservation,
comparedwith other state-of-the-art embeddingmethods.
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