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WSDesc: Weakly Supervised 3D Local
Descriptor Learning for Point Cloud Registration

Lei Li, Hongbo Fu, and Maks Ovsjanikov

Abstract—In this work, we present a novel method called WSDesc to learn 3D local descriptors in a weakly supervised manner for
robust point cloud registration. Our work builds upon recent 3D CNN-based descriptor extractors, which leverage a voxel-based
representation to parameterize local geometry of 3D points. Instead of using a predefined fixed-size local support in voxelization, we
propose to learn the optimal support in a data-driven manner. To this end, we design a novel differentiable voxelization layer that can
back-propagate the gradient to the support size optimization. To train the extracted descriptors, we propose a novel registration loss
based on the deviation from rigidity of 3D transformations, and the loss is weakly supervised by the prior knowledge that the input point
clouds have partial overlap, without requiring ground-truth alignment information. Through extensive experiments, we show that our
learned descriptors yield superior performance on existing geometric registration benchmarks.

Index Terms—Point cloud, 3D local descriptor, geometric registration, differentiable voxelization, 3D CNN, weak supervision.

1 INTRODUCTION

NCODING 3D local geometry into descriptors has been
E an essential ingredient in many computer graphics and
vision problems, such as recognition [1], retrieval [2], seg-
mentation [3], registration [4], [5], etc. In this work, we
are interested in developing 3D local descriptors for robust
point cloud registration (Fig. [T). Matching 3D geometry of
scans of real-world scenes is a challenging task due to the
presence of noise and partiality in the input data. To ad-
dress such issues, learning-based descriptors have received
significant attention in recent years, demonstrating superior
performance over hand-crafted ones [6].

To capture local geometric structures, an important step
for learning-based descriptors [7], [8], [9], is to extract
local neighborhood support of 3D points with some prede-
fined size. The local neighborhoods have a variety of repre-
sentations, such as the point-based , voxel grids @], his-
tograms , or point pair features , which are amenable
to feature learning with networks. In all of these approaches,
the support size is crucial in determining the amount of local
geometry information captured in the learned descriptors.
Normally, this parameter is set empirically and is not in-
volved in network training, which may keep the network
from extracting more informative descriptors. Moreover,
simply using a large support may lead to descriptors that are
too global and thus specific to a shape or a scene, whereas
using a small support may lead to loss of robustness and
informativeness, as discussed in []§|], . Thus, finding an
optimal support is not an effortless task.

To train local descriptors, prior works have lever-
aged contrastive learning, such as with the triplet [9]
or the N-tuple loss [12], to optimize the descriptor
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Fig. 1: Registration of two point cloud fragments (with
a partial overlap ratio of 51%) using learned descriptors.
3DSmoothNet [9] is trained with ground-truth alignment
information, while S2CNN and our WSDesc do not
require such information for training.

similarity. Researchers have also investigated end-to-end
registration-based training by applying the extracted de-
scriptors to in-network alignment estimation for pairwise
point clouds [15], [16]. In the aforementioned works [9],
[12], [15], [16], the training typically requires ground-truth
alignment information for supervision. While the ground-
truth can potentially be derived from existing 3D reconstruc-
tion pipelines [17], it can be prone to errors, and typically
requires careful manual verification. Recently there is a
growing body of literature advocating descriptor learning
without supervision [14], [18], [19], [20], [21], which can
sidestep the issues that arise in ground-truth labeling and
potentially benefit from broader untapped 3D data.

In this paper, we propose a weakly supervised 3D local
descriptor learning method (WSDesc for short), endowed
with differentiable voxelization for a learnable local support
and a novel registration loss for training without ground-
truth alignment information.



Specifically, given a pair of 3D point clouds as input, to
extract point descriptors, we build upon 3DSmoothNet [9],
a 3D CNN-based architecture using a voxel-based represen-
tation for 3D local geometry. That work adopts a predefined
local support for input voxelization. In contrast, we enable
the network to learn the support size in a data-driven man-
ner. In order to back-propagate the gradient to the support
size optimization, we propose a differentiable voxelization
layer to bridge the gap between the point clouds and their
local voxel-based representations.

Next, to train the descriptor extraction network, we
introduce a powerful registration loss based on deviation
from rigidity of the alignment of the point cloud pair. Prior
works [15], [16] normally formulate a registration-based loss
by evaluating the difference between the ground-truth and
a 3D transformation computed by matching the descriptors
of the input point clouds and applying the differentiable
singular value decomposition (SVD). The use of the SVD
ensures the rigidity of the estimated 3D transformation.
Differently, we propose to relax the alignment to be an affine
transformation, which can be solved in a linear system of
equations without additional constraints. Inspired by recent
non-rigid correspondence techniques [22], in our proposed
registration loss, we enforce the rigidity of the computed
affine transformation by promoting its structural properties
such as orthogonality and cycle consistency.

Our registration loss is weakly supervised in the sense
that we only expect the input point clouds to have partial
overlap, which is to ensure the presence of some underlying
rigid alignment between the point clouds. Notably, our
registration loss does not require the knowledge of ground-
truth alignment information, compared to the above SVD-
based works, thus giving rise to a simpler training proce-
dure.

Our main contributions are summarized as follows: (1)
We propose a differentiable voxelization layer, enabling in-
network conversion from point clouds to a voxel-based
representation and allowing data-driven local support op-
timization; (2) We propose a weakly supervised registration
loss based on the deviation from rigidity of 3D transforma-
tions between point clouds, effectively guiding the descrip-
tor similarity optimization; (3) Our method shows superior
performance on existing geometric registration benchmarks.
Our code will be made publicly availableﬂ

2 RELATED WORK

In this section, we briefly discuss relevant works on both
hand-crafted and learned 3D local descriptors as well as
learning geometric registration.

Hand-crafted 3D Local Descriptors. A considerable
amount of literature has investigated hand-crafted 3D lo-
cal descriptors. A histogram-based representation is widely
used to parameterize local geometry. Generally, the sta-
tistical information of points collected by the histograms
can be categorized into spatial distributions and geometric
attributes [6]]. The former is adopted by descriptors like Spin
Image [23]], 3D Shape Context [24], and USC [25]; while the
latter is adopted by descriptors like PFH [26], FPFH [27],

1. https:/ / github.com/ craigleili/ WSDesc
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and SHOT [28], [29]. We refer the reader to a comprehensive
survey by Guo et al. [6] on the hand-crafted descriptors.

Learned 3D Local Descriptors. With the recent develop-
ment of deep neural networks, significant research attention
has focused on a data-driven approach to encode 3D local
geometry into descriptors. Existing works on learned de-
scriptors generally differ in the choices of input parameter-
izations and network backbones. To parameterize 3D local
geometry, researchers have explored many representations
such as voxel grids [7], [9, [10], spherical signals [14],
multi-view images [13], [30], radial histograms [11], and
point pair features [12], [18], [19]. To extract descriptors,
various network architectures have been leveraged, such as
3D CNNs [7], [9], Spherical CNNs [31], 2D CNNs [13], [30],
MLPs [11], PointNet [12], [18], [32], [33]], [34], sparse convo-
lutions [35], [36], [37], and kernel point convolutions [38],
[39], [40]. In this work, we base our descriptor extractor on
3DSmoothNet [9], which uses a voxel-based representation
and 3D CNNs. Differently from that work, we propose a
novel differentiable voxelization layer to enable descrip-
tor extraction with a learnable local support instead of
a predefined one, allowing the network to capture more
representative local geometry in the descriptors.

Contrastive learning is normally adopted to optimize
descriptor similarity. For example, the triplet loss [41], [42]
used in 3DSmoothNet or the N-tuple [12], [43] used in
PPFNet. To avoid the issues of ground-truth labeling, ex-
isting literature has further investigated unsupervised de-
scriptor learning typically by taking auto-encoders [44] with
a reconstruction loss [14], [18], [19]. Closely related to the
unsupervised approaches, our work proposes a novel reg-
istration loss, based on deviation from rigidity, to train the
descriptor extractor without requiring ground-truth align-
ment information.

Learning Geometric Registration. To learn local fea-
tures well suited for registration, a myriad of studies have
incorporated a differentiable registration layer into their
networks, such as [15], [16], [45], [46l, [47], [48], [49], [50],
[51], [52], among many others. Works such as [51], [53],
[54], [55] further examine feature learning of putative cor-
respondences for outlier removal in pairwise matching.
Training the registration-based networks is normally done
by minimizing the errors between the ground-truth and
3D transformations estimated by the networks. Differently,
our work zooms in informative local descriptor extraction
and investigates a powerful registration-based training loss
that penalizes deviation from rigidity for the estimated
transformations, without requiring the knowledge of the
ground-truth.

3 METHOD

As illustrated in Fig. 2} WSDesc takes a pair of 3D point
clouds P and Q as input. For a point p; € P, to learn a ro-
bust local descriptor, our method has two stages: descriptor
extraction and registration-based training. In what follows,
we first briefly discuss the pipeline of WSDesc and then
present the details in the subsequent subsections.

To extract descriptors, we transform the local 3D ge-
ometry into a voxel-based representation [7], [9] for the
following reasons. First, as an analogy to 2D images, the
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Fig. 2: Overview of our fully differentiable learning pipeline WSDesc. In the descriptor extraction stage, the local geometry
of a point p; is converted to a voxel-based representation for the 3D CNN-based descriptor extractor. Each voxel grid is
transformed by a local reference frame (LRF) for rotation invariance and fitted to a learned local support size. The online
point-to-voxel conversion is enabled by the differentiable voxelization layer. In the registration-based training stage, the 3D
local descriptors are used for building putative correspondences between point clouds P and Q and estimating an affine
transformation (R, t) by weighted least-squares fitting for our registration loss £,

voxel-based representation is structured and works well
with the off-the-shelf convolutional networks. Second, as we
show below, this allows us to optimize the local support size
by directly making the voxel grid size a learnable parameter.
Third, unlike other local representations (e.g., point pair fea-
tures [12] and multi-view images [13]) requiring additional
information such as normals or colors, the voxel-based rep-
resentation only depends on point coordinates, and is less
sensitive to point density changes [9]]. Finally, using a local
voxel-based representation can help to avoid overfitting
to the global data modality (scene types) and thus offer
better generalization ability than dense feature extractors
(e.g., KPConv [38], PointConv [56], and SparseConv [35]),
as observed in existing works [10], [33], [38].

Our descriptor extraction network is built upon
3DSmoothNet [9], which considers a fixed-size local neigh-
borhood of p; in voxelization. We instead enable the net-
work to learn the support size in a data-driven manner.
However, the conversion from point clouds to a voxel-
based representation is a discrete operation lacking gradient
definition. To back-propagate the gradient to a learnable
local support, we develop a differentiable voxelization layer
based on probabilistic aggregation. After the differentiable
voxelization, we use a 3D CNN to extract robust features
from the resulting voxel-based representation.

To train the descriptor extractor, we propose a weakly
supervised registration loss that enforces rigidity in the
pairwise alignment of point clouds with partial overlap. To
formulate the registration loss, we first use the descriptors to
build putative correspondences between point clouds. Next,
inspired by [22], we propose to relax the alignment to be
an affine transformation, which can be computed simply
through weighted least-squares fitting. This is different from
existing end-to-end registration works [15], [16] that directly
solve for a rigid transformation via the SVD. Finally, we de-
fine our registration loss by promoting structural properties
of the computed transformation, including orthogonality
and cycle consistency.

3.1

To extract a robust descriptor for the point p;, we first
convert its local geometry in P to a function defined over

Descriptor Extraction

a voxel grid V; (Fig.B). Suppose that V; has a resolution of
h x h x h, where h is an integer hyperparameter. Prior to
voxelization, we need to determine the orientation and the
size of the local support of p;. The orientation is for ensuring
rotation invariance, and the support size determines the
amount of local geometry information captured in the final
descriptor.

For the orientation, as discussed in [9], it is nontrivial
to perform its regression as an integral part of neural net-
works [12], [57], [58]. Instead, we use the approach based
on explicit local reference frame (LRF) estimation [59] in
3DSmoothNet. Specifically, a local patch S; C P centered
at p; is extracted (Fig. B). The local patch is defined as
Si = {p; | lIp; — pill2 < ™}, where r'™ is a predefined
radius. We follow [9] to compute the LRF with resolved sign
ambiguity based on eigendecomposition of the covariance
matrix of the points in &;. We stack the axes of the resulting
LRF as column vectors in a matrix T/ € R3*3,
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Fig. 3: Illustration of transforming the local geometry of a
point p; to a voxel-based representation V;. The resolution
of V; is h3, and the voxel size is s/h.

For the support size, 3DSmoothNet empirically uses a

fixed setting s = Q%F as the grid size of V; for enclosing S;.
In contrast, we integrate the voxelization into the network
and enable the support size s to be a learnable parameter
during training. In this way, the network can gain better
flexibility to capture representative local geometry not cir-
cumscribed by the predefined S;, thus boosting the geomet-
ric informativeness in the learned descriptors (Sec. {4.1).
Next, as shown in Fig. [3| (right), we anchor the center of
the voxel grid V; at p;, and rotate V; by T}* for alignment




with the LRFE. The grid size of V; is set to the learnable
parameter s.

Differentiable Voxelization. The conventional voxeliza-
tion is non-differentiable and thus cannot back-propagate
gradient w.rt. training losses to the local support size
optimization. To address this, we propose point-to-voxel
conversion within the network and design a differentiable
voxelization layer leveraging probabilistic aggregation [13],
[60].

(a) P;

Distance

Probability Map of v

Fig. 4: Illustration of the differentiable voxelization layer.
(a) Probability map computation for voxel vf e V. (b)
Voxelization example; for clarity, only voxels with values
> 0.01 are visualized.

For the k-th voxel vf in the transformed V;, we compute
its value in a probabilistic manner. To simplify computation,
we consider each voxel as a sphere with a radius of r =
55, [61]. We use pjj to denote the probability of some point
p; € P contained in the voxel vF (Fig. E]-a):
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. . djk: k
ik = sigmoid(8ys - 2, dy = p; — offla =7, (1)

where of € R? denotes the voxel center, §;, is a sign
indicator d,; = —sign(d;x), and o controls the sharpness of
the probability distribution. We then propose to aggregate
the voxel value of v} as:

of=1- [ @ —pjn) )

Pj epP

In Eq. (), the voxel value can be viewed as the probability
of having at least one point contained in the voxel vF.
The resulting voxel values are a continuous function of the
point cloud coordinates and of the learnable support size
s, and thus Eq. () is fully differentiable. We also note that
Eq. (2) is permutation invariant to the input points and less
sensitive to point density changes, thus accommodating an
arbitrary number of points. In Fig. b, we visualize a vox-
elization example, showing that probabilistic aggregation
can approximate the voxelization procedure to capture the
structure of local geometry.

3D CNN. After converting the local geometry of p; to
a signal on the voxel grid V;, we use the 3D CNN-based
architecture from [9] to compute a descriptor f; € R". Let
fi = Y5(V;), where ® denotes the learnable parameters of
the 3D CNN . Fig. [f presents the details of &. Specifically,
the network ¢ is comprised of six convolutional layers,
which progressively down-sample the input V;. Each convo-
lutional layer is followed by a normalization layer [62] and
a ReLU activation layer. The output of the last convolutional
layer is flattened and fed to a fully connected layer followed
by ¢? normalization, resulting a unit-length n-dimensional
local descriptor f;.
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Fig. 5: The 3D CNN-based descriptor extractor. The numbers
in the parentheses of each 3D convolution layer represent
kernel size, number of filters, and stride, respectively. The
linear layer outputs n-dimensional descriptors.

3.2 Registration-based Training

In this section, we propose a novel registration loss for
optimizing descriptor similarity across point clouds. To
formulate the loss, we assume the input point clouds P
and Q to have partial overlap. Specifically, partial overlap
means the existence of corresponding points between P and
Q, and the overlap ratio [17] is normally defined as the
number of corresponding points over min{|P|,|Q|}. Having
partial overlap is a very weak supervision for ensuring the
presence of some underlying rigid alignment. Note that this
weak supervision can be easily satisfied in existing 3D point
cloud datasets [7], such as by leveraging temporally adjacent
point clouds due to the continuity of the scanning process
in practice or by employing a RANSAC-based overlap de-
tection procedure used in the reconstruction pipelines [63],
[64]. We stress that our loss calculation does not require the
knowledge of the ground-truth transformation between P
and Q.

Putative Correspondences. We construct a set of puta-
tive correspondences between P and Q by a nearest neigh-
bor (NN) search between their extracted local descriptors.
Note that the hard assignments of the NN search are not
differentiable. Thus we adopt a differentiable NN search
based on the softmin operation, which has been used in the
prior works [49], [65]. We use C to denote the resulting set
of correspondences {c; = (p; € P,q; € Q)}, where for a
point p; its closest neighbor in the descriptor space is the
point q;.

Transformation Estimation. Given the constructed C,
we solve for a 3D transformation aligning P to Q and
then formulate our registration loss by promoting structural
properties of the resulting transformation. We denote the
transformation as (R, t), where R is a 3x 3 affine matrix and
t is a 3D vector. We stack the points {p;} in C as columns
of a matrix P, € R3*ICl and Q. is a similar matrix stacking
the points {q;} in C. To estimate (R,t), we minimize the
following weighted quadratic error:

R,t = argmin [|(RP. + t1 — Q.)W|?, ©)
Rt

where 1 is a row vector filled with 1, and the ma-



trix W denotes the correspondence confidence: W =
diag(wy, -+ ,w;, -+ ,w|c|) computed as follows.
For the i-th correspondence, we define its confidence as

w; = wlf Swi™, 4)

where wif is the similarity of the two points in the de-
scriptor space, and w;"" is the compatibility with other
correspondences in the 3D space. Specifically, given the i-th
correspondence ¢; = (p;, q;) with local descriptors f,, and

fy,, the first term w; is computed by the softmax function:

i

of = D, o) o

! Eq_jegexp(_pri _qu'HQ).
For the second term w;™, we follow [54] and leverage the
well-known spectral matching technique [66], which finds
consistent correspondences based on their isometric com-
patibility. Spectral matching does not require ground-truth
labels and is fully differentiable. Details of this technique can
be found in the supplementary material and in [66], [67].

We note that while there exist recent deep outlier filtering
works [51], [53], [55] using neural networks to regress cor-
respondence confidence, we adopt Eq. (4) for the following
reasons. First, those deep outlier filtering methods require
to be fully supervised for the regression, and thus cannot be
adapted straightforwardly in our work, which strives to use
very weak supervision for local descriptor learning. Second,
the networks used in the above works typically have a
myriad of trainable parameters, which can significantly in-
crease the complexity of our network. In contrast, the above
computation for W is non-parametric and fully differen-
tiable, allowing gradient back-propagation to the descriptor
extractor. At test time, following 3DSmoothNet, we combine
our extracted local descriptors with RANSAC [68] for robust
point cloud registration.

Registration Loss. We formulate our registration loss
based on the transformation estimation by Eq. (). Prior
registration-based works [15], [16], [48], [49] employ the
SVD to solve a similar optimization problem, ensuring that
(R, t) is a rigid transformation that can be compared with
the ground-truth during training. Differently, we propose
to relax (R, t) to be an affine transformation and leverage
its deviation from rigidity as the driving force for local
descriptor training, as done in the context of non-rigid shape
matching [22]. Specifically, with the affine relaxation, we can
solve Eq. (3) in a least-squares sense as follows:

[R t] = ch(ﬁcw)+v (6)

where P, € R**ICl is P_ in homogeneous coordinates, and
(1)t is the Moore-Penrose inverse, which is differentiable.
The inverse transformation (R’, t’) aligning Q to P is com-
puted similarly.

We denote our registration loss as £, consisting of the
following terms:

Lo=(IRTR-TI|i + |R"R' —1|h)/2, @)
Le=|RR' —I||s + [|Rt" + |1, ©)
['pcr = >\o['o + ACE(H (9)

where )\, and ). are the weights for the loss terms, and I is
an identity matrix. The term £, regularizes the orthogonal-
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ity of R and R’. The term L, enforces the cycle consistency
by requiring

[R t} {Rl t’}:[RR’ Rt + t

0 1][0 1 0 1 }:I' (10)

Discussion. We briefly discuss the intuition behind Ly,
for providing training signals without requiring ground-
truth alignment information. If C is a set of inlier corre-
spondences, the underlying rigid transformation can always
be recovered by Eq. (f). However, outlier correspondences
may exist in C during the local descriptor training, making
the transformation by Eq. (6) deviate from rigidity. Mini-
mizing this deviation in £, will translate to a tendency
of promoting weights for the inliers and lowering weights
for the outliers (Eq. (8)). The gradient w.rt. £, can be
back-propagated through the differentiable correspondence
matching layer to the descriptor extractor, thus enabling the
similarity optimization between local descriptors.

3.3

We implemented our method with PyTorch [69]. Following
3DSmoothNet [9], we set v = 0.3, the voxel grid resolu-
tion h = 16, and the descriptor dimension n = 32. In the
differentiable voxelization, we set o = 1073. For the term
weights in L., we use A, = 1 and A\, = 1. We adopt
Adam [70] with a learning rate of 1073 as the network
optimizer. We use two point cloud datasets, 3DMatch [7]
and ModelNet40 [71]. During training on the 3DMatch
dataset, we sample 512 keypoints in each point cloud with
farthest point sampling for sparse descriptor extraction and
matching. The network is trained for 16K steps. For the
ModelNet40 dataset, we sample 128 keypoints in each point
cloud during training. The network is trained for 20K steps.

Implementation

4 EXPERIMENTS

We evaluate the performance of our proposed WSDesc
on existing point cloud registration benchmarks includ-
ing 3DMatch (Sec. 1), ModelNet40 (Sec. f.3), and ETH
(Sec. . The 3DMatch dataset [7] consists of point clouds
of indoor scene scans. The ModelNet40 dataset [71] consists
of object-centric point clouds generated from CAD models.
The ETH dataset [72] consists of outdoor scene scans and
is used for descriptor generalization test. We present the
ablation study in Sec.

4.1 3DMatch Dataset

The 3DMatch dataset is widely adopted for evaluating the
local descriptor performance on geometric registration. In
total, there are 62 indoor scenes: 54 of them for training
and validation, and 8 of them for testing. In the test set, the
number of points per point cloud is ~13K on average, and
each point cloud has 5K randomly sampled keypoints for
sparse descriptor extraction and matching.

Evaluation Metrics. Following [9], [35], we compute the
inlier ratio (IR), feature-match recall (FMR), and registration
recall (RR) on 3DMatch. Consider a set of testing point
cloud pairs A = {(P,Q)} with P and Q having at least
30% overlap. For each point cloud pair, a set of putative



correspondences {2 between keypoints is built by finding
mutually closest neighbors in the descriptor space:

Q= {(pi € P,q; € Q)|Z(p:) = NN(Z(a:), Z(P))A
P(qi) = NN(Z2(p:), 2(Q))},

where 2 denotes a specific descriptor extractor, and NN(-, -)
is the nearest neighbor query based on the ¢ distance.

IR measures the fraction of correct correspondences be-
tween P and Q as follows:

R= L > H\\f*(pi) —qill2 < 7'1]]7
€2 (pi,q:)€Q
where .7*(+) denotes the ground-truth transformation, 7, =
0.1 m is the inlier distance threshold, and [-] is the Iverson
bracket.
FMR measures the fraction of point cloud pairs in A,
for which a RANSAC-based [68] registration pipeline can
recover the transformations with high confidence [12]:

> [R> 7],

(P,Q)eA

(1)

(12)

FMR = —
IAI

(13)
where 79 is the inlier ratio threshold in the range of
[0.05,0.2].

RR examines the performance of local descriptors in an
actual reconstruction system. For a pair of point clouds P
and Q, let .7 (-) denote the estimated transformation by
a registration pipeline. Suppose €2* is the set of ground-
truth correspondences, and their root-mean-square error is
computed as follows:

1
RMSE = | ——
J 2]

RR is computed as the fraction of point cloud pairs in A
with RMSE < 0.2 m.

Comparisons. We compare our descriptor with hand-
crafted descriptors and existing descriptor learning methods
that do not rely on ground-truth transformations. The for-
mer includes FPFH [27] and SHOT [29|], which have been
implemented in the PCL library [73] and have descrip-
tor dimensions of 33 and 352, respectively. The latter in-
cludes PPF-FoldNet [18], CapsuleNet [19], and S2CNN [14].
Their implementations are based on publicly available code-
base@ﬂ and they all have a descriptor dimension of 512.
The high dimensionality makes NN search computationally
inefficient. Thus, for a direct comparison with the state-of-
the-art S2CNN, we also implemented an S2CNN variant
that outputs 32-dimensional descriptors.

Table [1| (bottom) shows the IR comparison for the meth-
ods w/o GT. It can be observed that our descriptor obtains
the highest IR (42.3%). WSDesc outperforms S2CNN (32) by
13.2 percentage points and S2CNN (512) by 7.8 percentage
points, indicating the better quality of correspondences built
by our method. For the FMR comparison, in the case of
79 = 0.05, our descriptor achieves an FMR of 95.1%, slightly
better than S2CNN (512). Yet 7, = 0.05 is a relatively easy
threshold [9], and the descriptor performance tends to be

17 (p3)

>

(pi,q:)EQ*

— q|3. (14)

2. https:/ /github.com /XuyangBai/PPF-FoldNet
3. https:/ / github.com/yongheng1991/3D-point-capsule-networks
4. https:/ / github.com /jonas-koehler /s2cnn
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TABLE 1: Performance (%) on the 3DMatch dataset w.r.t.
inlier ratio (IR), feature-match recall (FMR), and registration
recall (RR). The best and the second best results among the
methods w/o GT are highlighted. (GT — ground-truth labels;
Dim. — descriptor dimension.)

GT | Dim. IRt FMR?t RRt
T 0.05 0.2
3DMatch w/ 512 83 573 77 519
CGF w/ 32 101 606 123 51.3
PPFNet w/ 64 62.3 - 71.0
3DSmoothNet| w/ 32 36.0 95.0 729 788
FCGF w/ 32 - 952 674 82.0
D3Feat w/ 32 40.7 958 758 822
LMVD w/ 32 461 975 869 813
SpinNet w/ 32 - 97.6 857 -
WSDesc (BH) | w/ 32 543 967 882 814
FPFH w/o 33 93 596 101 54.8
SHOT w/o 352 149 733 269 594
PPF-FoldNet | w/o 512 209 838 41.0 69.0
CapsuleNet | w/o | 512 169 825 313 67.6
S2CNN w/o 512 345 946 703 784
S2CNN w/o 32 291 924 599 739
WSDesc w/o 32 423 951 77.7 80.0

saturated. In the harder case of 7 = 0.2, our descriptor

obtains 77.7%, significantly outperforming S2CNN (32) by
17.8 percentage points and S2CNN (512) by 7.4 percentage
points. Further, Fig. [f| plots the FMR performance w.r.t. dif-
ferent 5 values, and our descriptor shows lower sensitivity
to the inlier ratio 72, which can be ascribed to the superior IR
performance. For the RR metric, our descriptor also achieves
the best performance (80.0%) and outperforms S2CNN (32)
by 6.1 percentage points.

100

—¥— FPFH

40 4 SHOT

—<— PPF-FoldNet
—— CapsuleNet
20 1 —®— S2CNN (512)
—&— S2CNN (32)

WSDesc

Feature-match Recall (%)

0.125 0.150 0.175 0.200

Inlier Ratio Threshold

0 T T
0.050 0.075 0.100

Fig. 6: Feature-match recall of the methods w/o GT on
3DMatch, with a varying inlier ratio threshold .

In Table |1} (top) we include the performance of super-
vised descriptor learning methods, including 3DMatch [7],
CGF [11], PPENet [12], 3DSmoothNet [9], FCGF [35],
D3Feat [38], LMVD [13], and SpinNet [10]. Interestingly,
our WSDesc achieves even better performance than the
supervised 3DSmoothNet, which can be ascribed mainly to
our learnable support that allows capturing the local context
in an appropriate size. To validate this, WSDesc (BH) in
Table is the oracle performance of our method, that is, we
use the same supervised batch-hard loss as 3DSmoothNet
for training instead of L,.,. It can be found that using the


https://github.com/XuyangBai/PPF-FoldNet
https://github.com/yongheng1991/3D-point-capsule-networks
https://github.com/jonas-koehler/s2cnn

learnable support significantly improves the performance
of 3DSmoothNet, making it comparable to the state-of-the-
arts [10], [13], [38].

Rotation Invariance. To test the rotation invariance,
following [[18], we used the rotated 3DMatch dataset, where
each point cloud is rotated with randomly sampled axes
and angles in [0, 27]. Table P|reports the performance of the
compared methods. Our descriptor has the best IR (39.8%),
FMR (74.3% at 7o = 0.2), and RR (78.5%) scores.

TABLE 2: Performance (%) on the rotated 3DMatch dataset.
75 = 0.2 for FMR.

\ Dim. IRt FMRT RR?t
FPFH 33 9.3 10.0 55.3
SHOT 352 14.9 26.9 61.6
PPF-FoldNet 512 21.0 41.6 68.7
CapsuleNet 512 16.8 319 68.0
S2CNN 512 34.6 70.5 78.3
S2CNN 32 29.2 59.5 75.2
WSDesc 32 39.8 74.3 78.5

Qualitative Visualization. Fig. [/| (top) visualizes chal-
lenging point cloud registration examples with a large por-
tion of flat surfaces, where our descriptor demonstrates
better robustness. Fig. [8| shows a failure case for our lo-
cal descriptor, which we ascribe partly to the difficulty
of extracting discriminative local descriptors for the thin
structures of the two point clouds with the low-resolution
(h = 16) voxel grids. More qualitative registration examples
can be found in the supplementary material.

Computation Time. Table [3| shows the running time
comparisons. The results were collected on a desktop com-
puter with an Intel Core i7 @ 3.6GHz and an NVIDIA
GTX 1080Ti GPU. Note that for the input preparation,
PPF-FoldNet and CapsuleNet compute point pair features;
S2CNN performs spherical representation conversion; and
WSDesc estimates LRFs. Overall, our method has the
best running time, while S2CNN is computationally much
slower.

In Table we further collect the running time of
RANSAC-based registration [64] with different descriptors.
NN Query denotes the search time for building a putative
correspondence set (Eq. (1I)) with an efficient proximity
search structure, such as a k-d tree. S2CNN (32) and WSDesc
have better efficiency due to the lower descriptor dimen-
sionality. WSDesc has the best RANSAC time owing to its
high IR performance.

TABLE 3: Average running time (ms) of local descriptor
extraction on the 3DMatch dataset.

| Dim. InputPrep. Inference Total
PPF-FoldNet | 512 4.01 0.44 4.45
CapsuleNet 512 3.94 7.19 11.13
S2CNN 512 6.44 26.56 33.00
S2CNN 32 6.44 26.58 33.02
WSDesc 32 0.37 3.00 3.37

4.2 Ablation Study

To get a better understanding of the contribution of the
network components used by WSDesc, we perform an ex-
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TABLE 4: Average running time (ms) of pairwise registra-
tion on the 3DMatch dataset.

| Dim. NN Query RANSAC
PPF-FoldNet 512 9795.76 5.55
CapsuleNet 512 3652.68 6.78
S2CNN 512 13926.57 2.95
S2CNN 32 657.77 3.77
WSDesc 32 979.08 2.84

tensive ablation study on the 3DMatch dataset.

TABLE 5: Ablation studies on 3DMatch. 79 = 0.2 for FMR.

| IRt FMRt RRt
WSDesc | 423 777 80.0
w/oLLS | 253 516 728
w/ LP 389 729 780
w/ GP 400 742 787
w/oLRF | 21.6 395  50.8
w/0 w; 64 54 312
w/ow! | 80 64 456
w/ow:™ | 322 633 743
w/oL, | 394 753 775
w/oLe | 395 757 780

Learnable Local Support. First, to validate the effective-
ness of using a learnable local support (Sec. [3.1), we test
a variant of WSDesc using the predefined fixed-size local
support from 3DSmoothNet. We keep the loss L. and
other settings unchanged. In Table [5| the performance of
this variant is listed as w/o LLS, which is worse than our
full model. This indicates that making the local support size
optimizable enables the network to extract more informative
descriptors.

Next, we discuss alternative designs for the learnable
local support. In WSDesc, we propose to treat the local
support size s as a universal learnable parameter. One might
consider employing a sub-network to estimate the support
size. We implemented two variants for such a design. One
variant is based on a local sub-network that estimates a local
support size s; individually for each point p; € P. Specifi-
cally, to regress s;, we feed the local patch S; of p;, cropped
with the predefined radius r™, to a mini-PointNet [12],
[34]. Thus the local support size s; is dependent on the
local geometry of p;, but the mini-PointNet may need to
hallucinate the support size due to the missing of points
outside ;. We list this variant as w/ LP in Table[5}

The other variant is based on a global PointNet [34] for
estimating a local support size s; individually for each p;.
Specifically, we use the semantic segmentation architecture
of PointNet [34] for the estimation. We feed the point cloud
P to the PointNet backbone, which regresses a scalar value
s; for each point p; in a single forward pass. In this case,
the local support size s; is coupled with the global scene
structure (i.e., P) and the local geometry of p;. We list this
variant as w/ GP in Table

It is observed that both the w/ LP and w/ GP variants
perform worse than WSDesc, which uses a universal learn-
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Fig. 7: Qualitative examples of point cloud registration by RANSAC with different descriptors on the 3DMatch,
ModelNet40, and ETH datasets. The percentages denote the overlap ratio (OR) between fragments 1 and 2.
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Fig. 8: A failure case of point cloud registration with our
local descriptor.

able local support size (converged to 1.004m after training).
Interestingly, we found that the sizes s; learned by w/ LP
are on average 1.719m (5.0 x 1079), and the ones learned
by w/ GP are on average 1.701lm (£2.1 x 1072). The small
variance phenomenon of the two variants further confirms
our choice of using a universal learnable local support
size. This is possibly because robust descriptor matching
typically requires optimized yet consistent support sizes for
rigidly aligning point clouds, especially in the presence of
significant partiality and noise. Although the experimental

results indicate that an exhaustive parameter search seems
possible, we stress that it is computationally expensive and
needs to be repeated on each used point cloud dataset.
Instead, our proposal offers higher efficiency for learning
informative local descriptors in an end-to-end manner.
Local Reference Frame. In Sec. we follow
3DSmoothNet to use the LRF estimation for ensuring ro-
tation invariance in the descriptors. We test a variant of
WSDesc without the LRF estimation and report its per-
formance as w/o LRF in Table [p} Unsurprisingly, without
LRE, the local descriptors have reduced descriptiveness,
leading to worse geometric registration performance. Our
finding echoes a similar observation of the LRF contribution
in the 3DSmoothNet work. During training, due to the
lack of rotation invariance in the descriptors, the putative
correspondences across point clouds can be spurious in the
estimation of affine transformations between point clouds,
making Ly, ineffective to provide training signals.
Transformation Estimation. To estimate the affine trans-
formation, we adopt a weighted quadratic formulation in
Eq. (B), where the weight w; is comprised of two terms w{
and wi™ (Eq. {@). We test a variant of WSDesc without
the weights (i.e., by setting w; = 1), and we show its
performance as w/o w; in Table El Further, we remove one
of the weight terms from w; and list the performance of
these two variants as w/o wzf and w/o w{™ in Table
respectively. We observe that the network w/o w; fails on
3DMatch, and so does w/o wlf . This is likely because without



the weight terms, especially, wlf computed directly from

the extracted descriptors, the gradients w.r.t. £, can only
pass through positions and the differentiable NN search,
making it less effective to flow into the descriptor extractor
for optimization [51]. As also shown by w/o w;™, adding
wf to the network results in reasonable performance on
3DMatch. Nevertheless, incorporating spectral matching in-
deed boosts the learning of descriptors and thus the regis-
tration performance.

Registration Loss. Our training loss £, penalizes devi-
ation from rigidity for the estimated affine transformations
without requiring the ground-truth. £, is comprised of the
orthogonality loss £, and the cycle consistency loss £.. We
study the contribution of the two loss terms by removing
one of them during training and keeping other settings
unchanged. In the bottom of Table |5, we show the results
of the two experiments as w/o L, and w/o L., respectively.
Note that there is noticeable performance degradation when
using each loss term alone, and combining both loss terms
produces the best results.

4.3 ModelNet40 Dataset

We also perform comparisons with existing learning-based
registration methods on the ModelNet40 benchmark intro-
duced by [15]. The dataset has 40 man-made object cate-
gories. There are 9,843 point clouds for training and 2,468
point clouds for testing. To generate point cloud pairs, a new
point cloud is obtained by transforming each testing point
cloud with a random rigid transformation. The rotation
angle along each axis is sampled in the range of [0°,45°],
and the 3D translation offset is sampled in [—0.5,0.5]. To
synthesize partial overlapping for a point cloud pair, 768
nearest neighbors of a randomly placed point in 3D space
are collected in each point cloud.

Metrics. Given rotations and translations estimated by
a specific registration method, we follow [15] to compare
them with the ground-truth by measuring root-mean-square
error (RMSE) and coefficient of determination (R?). The rota-
tion errors are computed with the Euler angle representation
in degrees.

Comparisons. In Table E] (bottom), we evaluate existing
axiomatic registration methods, including ICP [74], Go-
ICP [75], and FGR [63], and the RANSAC-based registration
methods (w/o GT) previously tested on 3DMatch, including
PPF-FoldNet, CapsuleNet, S2CNN, and our WSDesc. Be-
sides, two recent unsupervised learning-based registration
methods, ARL [76] and RMA-Net [21], are consideredm
However, the released codebase for RMA-Net failed to
produce reasonable results on the ModelNet40 benchmark,
and thus we include only the comparison with ARL. In
Table [f] (top), we also show the performance of learning-
based registration methods with supervision, including
PointNetLK [45], DCP [16], PRNet [15], DeepGMR [77],
RPM-Net [48], Predator [39], and OMNet [78]. In Table [g]
(bottom), our WSDesc achieves the best performance across
all of the computed metrics, compared to the other methods
w/o GT, and is even on a par with the state-of-the-art RPM-
Net, which is a supervised method highly specialized for

5. https:/ / github.com/Dengzhi-USTC/ A-robust-registration-loss
6. https:/ / github.com/WanquanF/RMA-Net
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object-centric datasets. Fig. [7] (middle) shows qualitative
registration examples, where our descriptor leads to more
accurate alignment. We further perform comparisons on the
noisy ModelNet40 benchmark by [15]. Table [7] reports the
registration results, and our WSDesc shows better robust-
ness to noise.

TABLE 6: Testing on unseen point clouds of the ModelNet40
dataset w.r.t. rotation (R) and translation (t) estimations.

The best and the second best results among the methods
w/o GT are highlighted.

| GT | RMSE(R)l RZ*@R)t RMSE(t)l R%*(t)!
PointNetLK | w/ 16.735 -0.654 0.045 0.975
DCP-v2 w/ 6.709 0.732 0.027 0.991
PRNet w/ 3.199 0.939 0.016 0.997
DeepGMR w/ 19.156 -1.164 0.037 0.983
RPM-Net w/ 1.290 0.990 0.005 1.000
Predator w/ 1.875 0.979 0.017 0.997
OMNet w/ 4.280 0.891 0.019 0.996
icp w/o 33.683 -5.696 0.293 -0.037
Go-ICP w/o 13.999 -0.157 0.033 0.987
FGR w/o 11.238 0.256 0.030 0.989
ARL w/o 8.527 0.570 0.029 -0.046
PPF-FoldNet| w/o 2.285 0.969 0.013 0.998
CapsuleNet | w/o 2.180 0.972 0.013 0.998
S2CNN (512)| w/o 3.069 0.944 0.017 0.997
S2CNN (32) | w/o 3.234 0.938 0.014 0.998
WSDesc w/o 1.187 0.992 0.008 0.999

TABLE 7: Testing on unseen point clouds of the ModelNet40
dataset augmented with Gaussian noise.

| GT | RMSE(R)l RZ*@R)t RMSE(t)l R%*(t)!
PointNetLK | w/ 19.939 -1.343 0.057 0.960
DCP-v2 w/ 6.883 0.718 0.028 0.991
PRNet w/ 4.323 0.889 0.017 0.995
DeepGMR w/ 19.758 -1.299 0.030 0.989
RPM-Net w/ 1.870 0.979 0.011 0.998
Predator w/ 1.893 0.979 0.009 0.999
OMNet w/ 4.504 0.880 0.021 0.995
icp w/o 35.067 -6.252 0.294 -0.045
Go-ICP w/o 12.261 0.112 0.028 0.991
FGR w/o 27.653 -3.491 0.070 0.941
ARL w/o 7.973 0.624 0.027 0.023
PPF-FoldNet| w/o 4.151 0.899 0.009 0.999
CapsuleNet | w/o 4.274 0.893 0.009 0.999
S2CNN (512)| w/o 5.221 0.840 0.007 0.999
S2CNN (32) | w/o 5.040 0.850 0.009 0.999
WSDesc w/o 3.500 0.928 0.006 0.999

4.4 Generalization to ETH Dataset

To evaluate the generalization ability of our 3D local de-
scriptors, we follow [9] to conduct experiments on the ETH
dataset [72]. This dataset consists of point clouds of four
outdoor scenes, which are mostly laser scans of vegetation
like trees and bushes. The number of points per point
cloud is ~100K on average, and 5K keypoints are randomly
sampled in each point cloud for matching. For learning-
based descriptors, to test their generalization ability, we
directly reuse the networks trained on 3DMatch (Sec.
and use the ETH dataset only as a test set.

Comparisons. Table [§| shows comparisons for the 3D
local descriptors (Sec. in terms of the FMR metric


https://github.com/Dengzhi-USTC/A-robust-registration-loss
https://github.com/WanquanF/RMA-Net

(2 = 0.05). We observe that WSDesc achieves better
performance than the other methods w/o GT in Table
(bottom), demonstrating the superior generalization ability.
Fig.[7|(bottom) shows qualitative registration examples from
this challenging outdoor-scene dataset. We further provide
the running time comparisons in Table [9) which were col-
lected on a server with an Intel Xeon CPU @ 2.20GHz and
an NVIDIA GeForce RTX 2080Ti GPU. The speed of our
method is comparable with PPF-FoldNet and influenced by
the significantly increased number of points per point cloud,
due to the formulation of differentiable voxelization in Eq.
We will investigate further optimizations on this network
layer in future work.

TABLE 8: FMR performance (%) on the ETH dataset (7o =
0.05). The learned descriptors are only trained on the
3DMatch dataset.

GT Gazebo Wood

Sum. Wint. | Sum. Aut. | Avg.
3DMatch w/ 22.8 87 224 139 | 169
CGF w/ 38.6 15.2 19.2 12.2 21.3
3DSmoothNet | w/ 91.3 84.1 728 678 | 79.0
FCGF w/ 22.8 10.0 148 168 | 16.1
D3Feat w/ 85.9 63.0 496 480 | 616
LMVD w/ 85.3 72.0 840 783 | 799
SpinNet w/ 929 91.7 944 922 | 928
FPFH w/o | 402 15.2 240 148 | 236
SHOT w/o | 739 45.7 640 609 | 611
PPF-FoldNet w/o | 397 242 256  19.1 | 272
CapsuleNet w/o | 332 15.2 224 174 | 220
S2CNN (512) w/o | 799 581 632 539 | 63.8
S2CNN (32) w/o | 707 467 544 452 | 542
WSDesc w/o 783 77.2 95.2 93.9 86.1

TABLE 9: Average running time (ms) of local descriptor
extraction on the ETH dataset.

| Dim. InputPrep. Inference Total
PPF-FoldNet | 512 16.65 0.30 16.95
CapsuleNet 512 16.93 2.43 19.35
S2CNN 512 5.61 17.56 23.17
S2CNN 32 5.53 17.61 23.14
WSDesc 32 9.50 6.75 16.25

5 CONCLUSION, LIMITATIONS & FUTURE WORK

We have presented WSDesc to learn point descriptors for
robust point cloud registration in a weakly supervised man-
ner. Our framework is built upon a voxel-based representa-
tion and 3D CNNs for descriptor extraction. To enrich ge-
ometric information in the learned descriptors, we propose
to learn the local support size in the online point-to-voxel
conversion with differentiable voxelization. We introduce a
powerful weakly supervised registration loss to guide the
learning of descriptors. Extensive experiments show that
our descriptors achieve superior performance on existing
geometric registration benchmarks.

One limitation of our approach is that the differentiable
voxelization layer might be a speed bottleneck for large-
size point cloud inputs. This issue could be alleviated by
applying down-sampling. Besides, to handle thin-structure
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inputs, a higher resolution of voxel grids might be needed,
which, though, will also increase the computation cost.

For future work, we will study the application of the
differentiable voxelization to other 3D analysis tasks, such
as object recognition [61]. Besides, it would be interesting
to combine our registration loss with other sub-tasks of
point cloud registration, such as keypoint detection [38]
or outlier filtering of correspondences [51]. It is also worth
investigating the extension of our descriptor to the learning
of unsupervised non-rigid shape matching [22].
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APPENDIX

Spectral Matching. In Sec. 3.2 - Transformation Estimation,
we use the spectral matching technique to compute the cor-
respondence compatibility w;™ in Eq. (4). For completeness,
we describe the algorithmic details in the following.

Given the putative correspondence set C, spectral
matching aims to maximize the following inter-cluster score

w*™ = arg max (wsm)TMwsm,

WS

(15)

where M € RICIXICl is a correspondence compatibility
matrix, and w*™ € RI€l is an indicator vector whose i?
entry denotes the association of the correspondence ¢; € C
with the main inlier cluster. The entry M(c;, ¢;) measures
the consistency between correspondences ¢; = (p;,q;) and
¢; = (pj,q;) in terms of length distortion. For i # j,

M(c;, ¢;) is defined as follows:

d2.

M(ci, ¢;) = [Pfg]y dij = [Pi—pjllz—llas —qjll2, (16)
where [-]4+ = max(-,0), and o4 = 0.1 controls the sensitivity
to length distortion. For ¢ = 7, M(e;, cj) = 0, because there
is no information on an individual correspondence. The
entries of M defined above are non-negative and increase
as the length distortions between correspondences decrease.
Thus M intuitively captures the compatibility between any
two correspondences. The principal eigenvector of M, un-
der the constraint ||w*™ ||y = 1, maximizes the above inter-
cluster score and can be computed efficiently by the power
iteration algorithm as follows:

" Vg )
where k denotes the k' iteration. We use wi™ = 1. In prac-
tice, we find that the power iteration algorithm converges in
10 iterations. We assign the i entry of w*™ to w;™.

Qualitative Results. More qualitative registration results
are shown in Fig.[9]
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Fig. 9: More point cloud registration results by RANSAC with different descriptors.
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