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Understanding How In-Visualization Provenance
Can Support Trade-off Analysis

Mehdi Chakhchoukh, Nadia Boukhelifa, and Anastasia Bezerianos
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Fig. 1. The VisProm technology probe includes several in-visualization provenance views to aid trade-off analysis.

Abstract—In domains such as agronomy or manufacturing, experts need to consider trade-offs when making decisions that involve
several, often competing, objectives. Such analysis is complex and may be conducted over long periods of time, making it hard to revisit.
In this paper, we consider the use of analytic provenance mechanisms to aid experts recall and keep track of trade-off analysis. We
implemented VisProm, a web-based trade-off analysis system, that incorporates in-visualization provenance views, designed to help
experts keep track of trade-offs and their objectives. We used VisProm as a technology probe to understand user needs and explore the
potential role of provenance in this context. Through observation sessions with three groups of experts analyzing their own data, we make
the following contributions. We first, identify eight high-level tasks that experts engaged in during trade-off analysis, such as locating and
characterizing interest zones in the trade-off space, and show how these tasks can be supported by provenance visualization. Second,
we refine findings from previous work on provenance purposes such as recall and reproduce, by identifying specific objects of these
purposes related to trade-off analysis, such as interest zones, and exploration structure (e.g., exploration of alternatives and branches).
Third, we discuss insights on how the identified provenance objects and our designs support these trade-off analysis tasks, both when
revisiting past analysis and while actively exploring. And finally, we identify new opportunities for provenance-driven trade-off analysis, for
example related to monitoring the coverage of the trade-off space, and tracking alternative trade-off scenarios.

Index Terms—Provenance, visualization, trade-offs, multi-criteria, decision making, qualitative study.
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1 INTRODUCTION

D OMAINS such as agronomy and manufacturing, often use
simulation models that represent entities and parameters of

complex biological or mechanical processes, and their relationships.

Experts explore the results of these models, reach insights and make
decisions about how to optimize their processes. For example,
an agronomic engineer who wants to propose sustainable, but
robust, wheat fertilization strategies to farmers, needs to account
for the wheat growth process and how it is affected by soil and
weather conditions, as well as the impact of the chosen fertilization
strategy on the environment. Thus experts have to deal with trade-
offs, attempting to consider and reconcile multiple competing
objectives in a single investigation [1]. For instance, the agronomic
engineer needs to find fertilization strategies that on the one hand
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maximize yield, and on the other hand reduce the amount of
supplied fertilizers, and nitrogen loss to the plant.

This type of trade-off analysis can be complex as it captures
experts requirements and preferences across several objectives and
often invovles multiple experts working together to understand
different aspects of the data [2]. Depending on the domain,
datasets can include tens of dimensions and hundreds or thousands
of datapoints. Using their domain knowledge, experts analyze
these large multi-dimensional spaces, prioritizing requirements
and balancing subjective preferences across several competing
objectives. This complex analysis is conducted over long periods
of time and several exploration sessions [2], as multiple experts
try to explore alternatives and reach common ground , making this
type of analysis hard to resume and revisit. We explore the use of
analytic provenance visualizations [3], [4], [5], [6], to aid experts
keep track, resume and revisit their trade-off analysis sessions. How
provenance can support trade-off analysis tasks is a question that
has not been considered before, and poses unique challenges as
analysts need to keep track of the objectives they have already
considered, their importance, and the trade-offs they represent [7].
Inspired by past observations on trade-off analysis challenges [2],
we designed and developed a web-based trade-off analysis tool
(VisProm) that embeds provenance visualizations directly inside
the analysis environment, i.e., in-visualization provenance. The
tool was designed specifically with trade-off analysis in mind, and
simplicity when it comes to the proposed provenance views. Since
no previous study looked at the role of in-visualizaton provenance
in supporting trade-off analysis, our hypothesis here is that if
such simple views are helpful for trade-off analysis, then richer
provenance views may be investigated in the future. We use the
VisProm system as a technology probe [8]; a prototype system
designed to be field tested in order to inspire users and designers
to think about the benefits and limits of provenance support in
trade-off analysis, rather than a fully-fledged trade-off analysis
system. Our goal is to bring new insights on analytical provenance
usage in real world analysis scenarios, both during and after data
exploration, as well as to identify new opportunities for future
trade-off provenance designs.

This paper describes findings from an observational study that
investigates the use of provenance in trade-off analysis, where three
groups of experts from different domains used VisProm to explore
their own data. Our contributions are: (i) the delineation of eight
trade-off analysis tasks extending previous work in operations
research [7]; (ii) the specification of the general provenance
purposes [4], through eight provenance objects, that our participants
appear to focus on during trade-off analysis; (iii) insights on how
the identified provenance objects and our implemented designs
support these trade-off analysis tasks during a-posteriori exploration
and active analysis; and (iv) the identification of specific needs and
opportunities for the use of provenance during trade-off analysis,
that refine or go beyond those identified in previous provenance
work [4] [6].

2 RELATED WORK

Since our goal is to study provenance in the context of trade-
off analysis, we review research on provenance visualization for
sensemaking (sections 2.1), and decision making and trade-off
analysis (section 2.2). We summarize recent work from these two
fields separately as, to the best of our knowledge, there is little
work that addresses both at the same time.

2.1 Provenance

Xu et al. define provenance information as the history of the data
and reasoning involved [during complex sensemaking tasks] and
the context within which sensemaking was performed [9]. It is
invaluable as a means to help analysts retrace their exploration and
how it led to insights. As Ragan et al. explain [4], the types of
provenance information that may be of interest to analysts can vary
greatly. It can range from keeping track of low level information
such as data transformations, view changes and user interactions;
to high level such as capturing insights reached during the analysis,
or the rational behind decisions and hypotheses.

Visual analysis tools often capture basic view and interaction
events that analysts can access in the form of a history or action
log. But several systems go beyond this basic provenance capture
and visualization. Past work has explored how to revisit, operate on
(search, filter, annotate) [10] and more generally how to visualize
and curate past history [11]. It also studied ways to help connect
exploration steps [12], and aid analysts summarize and hand-off
their analysis to colleagues [13]. A recent survey on the topic in
interaction provenance provides further reading [14].

More relevant to our work are tools that provide in-situ prove-
nance visualizations (or in-visualization provenance), augmenting
existing parts of the interface with simple visual marks to encode
provenance information. The first such instance is the idea of “visit
ware” [15], that applies a fish-eye lens on a graph to magnify the
nodes that are more visited. Later BookVoyager [16] attempted on
the contrary to de-emphasize the most visited timeseries in a line
chart by graying them out, in order to encourage users to visit new
parts of the visualization (“road-less-traveled navigation”).

Scented Widgets [17] introduce a framework for enhancing
interface components (such as buttons or sliders) with information
that can aid navigation. While the concept is general, the work
suggests several examples of visualizing provenance information,
such as changing the color of a button based on the frequency of
use, or keeping track of datasets visited in a drop-down list.

HindSight [18] encoded interaction history directly on visu-
alizations (in-visualization history), for example by changing the
opacity of the most visited chart in a small multiples list, or the
color and width of the most visited line in a line chart. In an online
study they observed that adding such interaction history increased
user interaction with the interface and may have led users towards
typically unexplored areas of the visualization.

Most recently Lumos [19], [20] added to scatterplots (among
other views) in-situ visualizations of interaction traces: real-time
ones, such as coloring individual data-points or attributes to
encode frequency of interaction; and summative ones to show
the distribution of data-points that users interacted with compared
to a target distribution on a dimension. Their goal was to enhance
awareness of biases [19] and mitigate them [20] during exploration
and decision making. In a series of laboratory and crowdsource
experiments, they found that these traces increased awareness of
biases [19], and somewhat mitigated unintentional bias but enabled
intentional bias [20].

The provenance designs introduced in our technology probe
follow this in-situ approach, augmenting existing components of the
interface with simple visual indicators of provenance information.
Nevertheless, we contribute a study that uses in-situ visualizations
to observe real analysts: our experts revisit their own past analysis
and data, days or even months later; and also use our provenance
visualizations during active exploration. Moreover, we introduce
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in-situ visualizations in an environment targeting a specific type of
visual analysis: trade-off exploration.

Purposes of provenance

While provenance support has not been studied in the context
of trade-off analysis, past work has highlighted what we should
expect provenance to be used for. Beyond provenance information
types, Ragan et al. [4] have also identified the following reasons
why analysts use provenance (purposes): Recall: maintaining and
recovering awareness and memory of the current and past states
of the analysis; Replication: reproducing aspects of a previous
analysis (steps or workflow); Action recovery: undoing/redoing
past actions during the analysis; Collaborative communication:
sharing data, information and ideas with colleagues; Presentation:
summarizing and sharing the results or processes of the analysis
with someone not involved in the analysis; and Meta-analysis:
reviewing the analysis process itself. These general provenance
purposes serve as the starting point for our own analysis (section
5.2). In our work we contribute a refinement of these purposes
based on specific trade-off analysis needs.

2.2 Decision Making & Trade-off Analysis

In domains such as agronomy or engineering design, experts
often explore the results of large multi-dimensional search spaces
derived from model simulations. Their goal is to identify solutions
(or simulations) that fit a set of criteria they have, that can be
competing - representing trade-offs. This goal is related to multi-
attribute choice tasks that focus on finding the best option out of
a set of alternatives defined across multiple attributes [21], [22].
Nevertheless, trade-off analysis does not consist of finding one
single best option, but rather of identifying a set of “good” options,
that may differ greatly in what criteria they optimize.

More relevant to our work is Multi-Criteria Decision Making
(MCDM), a discipline that studies procedures to aid decision
making when dealing with a large number of alternatives. Often,
MCDM problems involve the ordering or classifying of alternatives
[23], by imposing a procedure or strategy, like explicitly ordering
or weighting criteria [24]. On the other hand, we use the term
trade-off analysis to describe a process that is less structured: the
exploration, aided by visualizations, of multiple alternatives in
order to understand the different criteria they optimize, without
any imposed procedure or strategy. Nevertheless, we are motivated
by work in MCDM to identify possible tasks to support in a
visualization tool for trade-off analysis.

Trade-off Analysis Tasks

Trade-off tasks feature in many visualization and visual analytics
systems, in particular where users, via an interactive interface, have
to make decisions according to multiple criteria. Some systems treat
trade-off analysis as a single coarse task. For example, Sedlmair et
al. [25] analyse tasks that users engage in when conducting visual
parameter space analysis to find the best parameter combination
given some objectives. Booshehrian et al. [26] make use of
visualization to understand trade-offs of a set of pre-computed
simulations. They describe a task within the analysis workflow of
scientists working in fisheries management, where the goal is to
quantify trade-offs between selected options, avoiding sensitive
regions of the parameter space and those with high uncertainty.
Other works break down trade-off analysis into smaller sub-tasks,
often focusing on particular exploration strategies such as ranking

of alternatives, or weights to express preferences. For instance,
in the LineUp system [27] users can rank solutions and evaluate
their performance relative to each other. The tool also provides
means to combine dimensions (or attributes) and weights to convey
priorities for the different attributes. Similarly, Weightlifter [28]
helps analysts understand the effects of different weights for multi-
criteria decision spaces with up to ten criteria.

Work that breaks trade-off analysis tasks into finer components
or sub-tasks can also be found outside the visualization and
visual analytics community. The work of Hakanen et al. [7] from
operations research is the closest to ours. They built an interactive
visual analytics systems where a decision maker explores Pareto
front solutions that are computed, iteratively, based on their user
preferences. They discuss trade-off analysis in the context of
interactive multi-objective optimization, and identify seven high-
level tasks: compare Pareto optimal solutions, specify preferences,
check feasibility of preferences, determine most preferred solution,
learn about problem characteristics, detect correlations, and post-
process the most preferred solution. We hypothesize that most of
their tasks [7] are still relevant for both general trade-off datastets
(not just Pareto front solutions) and for a-posteriori methods such
as ours, with the exception of the tasks “specify preferences” and
“check feasibility of preferences” which are specific to interactive
multi-objective optimization.

Visualization in Trade-off Analysis

Trade-off datasets are almost always multi-dimensional, covering
objective dimensions to be optimized, and whose values vary
in relation to other dimensions (or parameters). Many existing
visualization techniques for multidimensional data have also been
used for trade-off analysis, including tabular visualizations, parallel
coordinates, scatterplot matrices, and self-organizing maps (for an
overview of visualization techniques for trade-off sets see [29],
[30]). Because trade-off exploration is a complex process [2],
existing work looked at how to better support decision makers
during the analysis, such as in terms of powerful interactive
visualizations and robust ranking and optimization algorithms [28],
[29], [31], [32], [33]. Tusar at al. [29], however, argue that trade-
off sets (such as those found by evolutionary multi-objective
optimization algorithms), require further support that traditional
multidimensional visualizations do not necessarily cater for. Our
study investigates these additional needs, and hypothesizes that
provenance visualization can aid trade-off analysis.

Although trade-off analysis and provenance visualization are
prominent areas of research, little work exists that looked at
exploiting provenance information to specifically assist trade-off
analysis. An exception is recent work by Cibulski et al. [34], who
developed an interactive Pareto front visualization tool to explore
multi-criteria alternatives in engineering design. Since their focus
is on trade-off analysis, they describe 13 design requirements
for this domain, such as showing criteria ranges for simulation
steering, supporting selections, and highlighting conflicting criteria;
but they also describe one additional requirement for provenance
pertaining to storing favorite alternatives for future comparison.
Trinkaus et al. [35] presented a generic multi-criteria decision
support system called knowCube. They use provenance to support
trade-off analysis by logging navigation paths, then clustering,
storing and viewing “good” decision alternatives. As such, past
navigation paths and good candidate solutions are stored in a log
file, and the user can later replay them in an animated movie-like
fashion. KnowCube provides a simple visualization in the form
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of a radar chart to show the different decision alternatives, and is
demonstrated through real-life applications, but no user study or
formal evaluation were conducted.

In summary, we were inspired by the recommendations of
these trade-off analysis systems and provenance studies to design
our own provenance-driven trade-off analysis probe and user study.
To the best of our knowledge, no prior user study looked at the
effect of provenance visualization on trade-off exploration.

3 VISPROM: PROVENANCE VISUALIZATION TOOL
FOR TRADE-OFF ANALYSIS

We designed VisProm (Visualization Provenance master) to act as a
technology probe [8]. Technology probes are systems traditionally
used to field test the usage of a technology in real world settings,
and inspire ideas for new technologies to support user needs. As
such, VisProm had to be robust, but also effective for field use. Our
goal was to see how provenance visualizations can aid trade-off
analysis, focusing in particular on in-visualization views that are
embedded in the exploration environment (rather than dedicated
views). To this end we needed as a starting point a tool that has
been shown to be appropriate for trade-off analysis, that we could
then augment with in-visualization provenance views.

The inspiration for the basic trade-off support (before adding
provenance) comes from EvoGraphDice [36], [37], [38]. This
tool relies on a scatterplot matrix (SPLOM), that is well suited
to communicate relationships between dimensions, such as cor-
relations, and distributions of data points [39], [40], and is thus
appropriate for visualising relationships between objectives to show
trade-offs. The SPLOM is combined with multiple query selections,
differentiated by colour, that help experts narrow their search space
to important parameters [29]. Most importantly, EvoGraphDice has
been used effectively in the past for trade-off analysis conducted
by groups of agronomy experts [2].

While we did not use EvoGraphDice, in our new VisProm probe
we replicated the following functionality from EvoGraphDice: (i) a
scatterplot matrix of all dimensions from the dataset; (ii) a main
scatterplot that is seen in larger detail; (iii) a query panel where
users can choose colors in order to perform selections on the main
scatterplot (visual query sculpting); (iv) a datatable available on
demand, with points colored depending on the visual queries they
belong to; and (v) a means to create new dimensions by combining
existing ones using arithmetic operators and weights. This basic
version also includes two components that can be considered as
simple forms of provenance support: a history of actions such as
view changes and queries, as well as a list of favorite views (or
bookmarks) that is populated by the user.

We implemented the above functionality in VisProm, and also
provided additional support designed explicitly for provenance
tracking. Thus, although the trade-off analysis part of VisProm is
inspired by EvoGraphDice, they are distinct: EvoGraphDice is a
desktop application that uses an interactive evolutionary algorithm
to guide user exploration, and does not include in-visualization
provenance aside from a basic history and favorite views.

In the past, EvoGraphDice was used to study the role of
expertise in collaborative exploration of complex model simulations
(and how domain experts structure their exploration) [2]. Our
current work goes deeper into the analysis tasks domain experts
engage in when they explore trade-off datasets, whether they
consult provenance views and how they use them while they are
engaged in the exploration.

An informal test of EvoGraphdice [41] which included a
provenance view as a separate window was not always consulted
by users, who were often too absorbed by their main task. Thus
in our approach we provided instead simple in-visualization views
embedded in the analysis environment, in an attempt to make them
always visible. We chose simple designs to not clutter and not
compete with the main analysis views, but this begs the question
of whether these simple designs are consulted and when, and
if they carry enough information to support provenance needs. A
contribution of our work is studying if the same, simple provenance
designs can do both.

The basic trade-off support functionality and our provenance
additions can be seen in Figure 1. The additional provenance
designs were motivated by workshops with expert users.

3.1 Design process

To inform the design of VisProm we ran three brainstorming
sessions with domain experts and visualization researchers (early
results related to storytelling are published in a late-breaking-
work report [41]). Nine participants took part in these sessions
that lasted around two hours each. Five participants had design,
HCI or visualization background and four were domain experts in
agronomy. Participants were first shown a scatterplot matrix tool
with basic provenance support (History & Favorites) [2], followed
by an ideation and brainstorming phase on aspects that could help
them keep track of their goals and revisit their exploration.

We report next the main recommendations derived both from
our workshop participants,

as well as findings from previous work (section 2.2). These
guided the design of VisProm.

[R1] History and Favorites (existing features) are important for
reverting to past steps when errors occur and for storing important
views. Thus they should be maintained.

[R2] Key objective dimensions that have been visited (or ones
that have not) are important to know. This is confirmed by past
work that observed that when experts have a-priori hypothesis they
use objectives to prioritize their exploration [2].

[R3] Views already visited, i.e., what relationships between
dimensions have been considered, was a common suggestion as a
type of information the experts would like to track.

[R4] Combined dimensions they created and with what weights,
were identified by some experts as important to track. Previous
work has also discussed the importance of weights for expressing
preferences [28].

[RS] What objective dimensions were maximized or minimized
in their decisions, or more generally what range of the dimensions
their decisions fell in, were also identified as important to keep
track of. Past work also highlights the need to identify and “lock”
part of decision ranges [35].

[R6] Alternative search spaces considered should be tracked.
Our experts mentioned this in the workshop, and past work on
trade-off analysis has identified that comparisons of alternatives
are important [7].

[R7] A way to summarize the entire exploration would be
desirable. This is an important topic in provenance visualization,
not only for trade-offs (section 2.1).

3.2 Additional in-visualization Provenance Designs

We discuss next the different in-visualization components of
VisProm that we added to communicate provenance, and how
these support the requirements identified before.
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Fig. 2. ViewCount: in this partial view of the SPLOM we see the View-
Counts as red borders around the thumbnails, indicating how frequently
they have been visited (more saturated red for more visits).

3.2.1 ViewCount on Scatterplot matrix (Figure 2)

Our tool relies on a SPLOM matrix that displays thumbnails of
scatterplots for all pairs of dimensions, coupled with a main view of
one selected scatterplot shown in large scale that users can interact
with. The SPLOM acts as a navigation tool, letting the user choose
which pairs of dimensions they want to interact with in the main
scatterplot view. Users can select points on the main scatterplot
using colored queries, and see the impact of these selections in all
thumbnail views. This ensures the user knows exactly where the
selected points fall under different dimensions that they may be
trying to optimize.

Each scatterplot in the SPLOM corresponds to a relationship
between two dimensions, for example correlations or competing
objectives that represent trade-offs - when one increases the other
decreases. To help analysts keep track of what pairs of trade-
offs they have already considered [R3], we log how often they
visited each scatterplot. We augment the SPLOM thumbnails with
a colored edge, whose opacity changes in real time in proportion
to the number of times the corresponding scatterplot was visited,
relative to the most accessed scatterplot

3.2.2 DimensionCount table (Figure 3a)

Our participants in the workshop expressed the need to track
the important objective dimensions they have already tackled
in their analysis [R2]. To aid this task, we introduced a table
with one cell per dimension, where each cell contains a bar that
represents the number of times each dimension has been accessed
(all bars are relative to the total access counts in the SPLOM). The
length of the bars indicates which dimensions have been already
considered through visits of scatterplots that include them, and
which dimensions may have been overlooked. This representation
differs from the ViewCount on the scatterplot matrix, as it focuses
on the access history of individual dimensions rather than pairs.
This design resembles past work, like the Lumos attributes panel
[19] that shows frequency of interactions with different dimensions,
to provide in their case awareness of biases in the exploration.

We initially planned to only add the DimensionCount table
on top of our collapsible datatable (Figure 4). In the datatable
each column is a dimension and each row a datapoint with
corresponding numerical values, as well as the colored selections
they belong to (colored rectangles). Given the existing organization
by dimension columns, we added here the DimensionCount for
each column (dimension). Feedback from experts indicated that
while the datatable is extremely useful to confirm surprising
findings and double check values (also observed in previous work
[2]), it nevertheless remains collapsed and not visible during the
majority of the exploration. We thus decided to replicate the
DimensionCount table on top of the visual query selection panel as
well, so as to ensure it is visible at all times (Figure 3a).
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Fig. 4. Top of the Datatable, including colored indications of points
belonging to queries (right column). On the top just under the dimension
names, are the DimensionCount and the SelectionRange tools.

3.2.3 SelectionRange table (Figure 3b)

Our experts commented that it is often challenging to keep track
of what key objective dimensions are optimized (maximized or
minimized) in the choices they make [RS]. In VisProm, choices
are generally expressed as colored queries/selections of interesting
points. To help analysts understand where their selections fall under
the different dimensions, we added the SectionRange table. Each
cell of the table corresponds to one data dimension, and indicates
with text (Min/Max/Mid or — ) two key pieces of information:
(i) if the points in the current selection are mostly clustered under
that dimension; and (ii) if this cluster tends to be in the max range
of values of the dimension, the min, the middle range, or if no
pattern is detected. We consider as clustered, datapoints that have a
low value for the ratio variance/(value range of dimension).
Then we determine the approximate position of the cluster in the
range of values for the dimension (higher, middle, lower third). The
SelectionRange table is placed below the DimensionCount table,
and thus added to both the datatable and selection query panel.

Other work [19] visualizes where individual interactions with
data-points take place along a dimension, compared to an ideal
distribution for that particular dimension. In our case, our experts
are more interested in larger zones of data-points (expressed as
selections) and where these fall across all the different dimensions
they are trying to optimize.

3.2.4 Selection Origin (Figure 3d)

Analysts can interact with the main scatterplot view and perform
visual query selections (Figure 3c). The visual query panel helps
them choose a color for each of their selections, and provides
additional information regarding the number of selected data points.
As in previous work [2], [37], we provide tools to sculpt the visual
selections (adding and subtracting datapoints in different views).
Past work [2] and our workshops indicated that experts express
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their search and trade-off criteria with these colored selections.
They often compare them when they represent different decision
alternatives [R6], observing where they fall within the multi-
dimensional space. One aspect that the experts requested was
to also be able to perform grouping operations between multiple
important selections (intersection, union, difference) in order to
combine their criteria more effectively. In an effort to help them
keep track of the provenance of such combinations, we added
information about their origin in the form of two icons next to the
query name: one with the grouping operation that created it and
one with the colors of the original queries used in the grouping.

3.2.5 History and Favorites (Figure 1)

While not unique to VisProm, we mention History and Favorites as
they represent basic provenance visualizations that are important
for our participants [R1]. The basic history displays thumbnails of
the last states of the tool - both selections and navigation changes.
The Favorites acts as a bookmarking tool, where participants can
explicitly store a view for easy access. Both History and Favorites
are interactive, clicking on a thumbnail restores the saved view.

Our goal is to create in-visualization provenance views rather
than summaries that can be considered outside the main exploration
view. We thus do not provide elaborate summarizations of past
exploration history [R7]. Nevertheless, our History provides a
snapshot of the final workspace, that is valuable for remembering
past analysis [42].

3.3

As our work took place during the COVID-19 pandemic, we opted
for a Web tool that could be operated easily without any installation
and intervention from our part. We implemented VisProm using
d3 and Node.js for the rendering aspects, and the Google Firebase
database service to log the user actions during the exploration. For
the individual thumbnails on the SPLOM matrix, we used Canvas
drawing: as they are quite small, we optimized their rendering using
sampling [43] that reduced the number of points drawn inside the
thumbnails, but ensured the larger patterns are still visible. The
prototype has been used on the Chrome browser with datasets of
up to 20 dimensions and 1000 datapoints without any performance
issues. The provenance visualizations on the SPLOM updates every
time a selection is made or a combined dimension is created but
will only update for every three accesses to the SPLOM thumbnails
(this makes the exploration of the SPLOM smoother).

Implementation

4 USER STUuDY DESIGN

We conducted an observational study to understand how in-
visualization provenance is used during trade-off analysis. We
focused on the following research questions on fask support and
usefulness of provenance during and after the exploration:

[RQ1] What tasks experts engage in during trade-off analysis?
How do provenance purposes manifest in trade-off analysis?
[RQ2] Does in-visualization provenance support a-posteriori
analysis, such as by helping recall of past exploration?

[RQ3] Is in-visualization provenance taken into account by experts
during trade-off analysis and how?

[RQ4] What are untapped opportunities for using provenance to
support trade-off analysis?

TABLE 1
Datasets and participants (P1-5) for the three case studies. Each was
conducted in two sessions, with a time interval in between (Weeks).

CS Domain #Dimensions #Points P# Weeks
ml Benchmark meta-analysis 10 3000 P1,2 1
eco Sustainable farming 9 100 P23 17
w  Wine fermentation 14 1000 P4,5 156

41

Five domain experts (P1-5) from research institutions in France
and the UK participated in this study (5 male, mean age 36.6).
Participants were researchers (4 domain experts) and one first
year PhD student. The recruitment procedure drew on previous
collaborations between the authors and participants, or between
participants, but none took part in the design brainstorming sessions
described in section 3.1. At the time of the study, all participants
were involved in different research projects, we call Case Studies
(CS), where trade-off analysis is an important aspect of their work.
Different domain experts participated in each case study, with the
exception of participant P2 who was involved in two case studies
(CS-ml and CS-eco).

Case Study 1: ML Benchmark Meta-Analysis (CS-ml):
The goal of this exploration is to characterize possible trade-
offs and relationships between different features of a number of
benchmark Machine Learning (ML) datasets. An example trade-
off concerns the number of features of a benchmark dataset, its
intrinsic dimensionality (i.e., dimensions that exclude noise) and
the average correlation between features. As the number of features
grows, the intrinsic dimensionality is likely to grow. However, the
feature average correlation is likely to decrease.

Case Study 2: Sustainable Framing (CS-eco): The goal of
this exploration was to assess the trade-offs between different
aspects of sustainability in farming practices in Europe. These
sustainability aspects or indicators cover environmental, economic
and social factors that are often in conflict, such as between fodder
consumption, animal production and farmers’ perceived happiness.
An example trade-off pertains to animal production, which is
likely to increase with fodder consumption, but in many cases has
negative environmental impact.

Case Study 3: Wine Fermentation (CS-w): The goal of this
exploration is to compare different wine fermentation strategies and
their characteristics. In terms of trade-offs, experts are searching
for fermentation strategies that maximize wine aroma (three esters),
and minimize undesired compounds (higher alcohols) and the
energy required to control fermentation.

All datasets were prepared by the domain experts themselves
(see Table 1), who also brought their own research questions. We
note that all domain experts performed basic statistical analysis of
their data prior to this study, using software tools such as MS Excel,
R or Matlab, but they have not used interactive visualization.

Participants and Use Cases

4.2 Study Procedure and Setup

Similar to Ragan et al.’s method [42] where participants conducted
analysis in two steps one week apart, we run our study in two
sessions separated by a time interval of one week for CS-ml, 17
weeks for CS-eco, and 156 weeks for CS-w. Since our focus is
on studying provenance through the history of user interactions,
in the first session we only collected history data, and we only
activated provenance and analyzed the second session of each
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case study. We also note that for CS-w, whose first exploration
session took place three years earlier, we used a similar trade-
off analysis tool (EvoGraphDice [38]), which had all the basic
functions provided by VisProm but lacked the new provenance
visualization functionalities described in section 3.

In the first session, participants reached new insights in the
form of: interesting relationships between aspects of the data (e.g.,
between animal production system typology and sustainability
indicators, CS-eco); new findings about clusters of data points
and how they are situated with regards to a decision boundary
(CS-ml); or alternative exploration paths to reach the same (aroma)
objectives (CS-w). To reach these insights, participants consulted
multiple scatterplots, created numerous selections, and in some
cases composed new combined dimensions.

All second sessions of the three case studies were run online
using a video conference platform. Participants used their own
machines with either a 13” or 15” monitor. For each case study,
one participant led the exploration by interacting with the online
tool and sharing their screen with the second participant (and the
study facilitators) when they were not co-located with them (CS-
ml and CS-w). Both domain experts equally participated in the
trade-off exploration by proposing directions for the exploration,
advancing new hypotheses and discussing findings.

Each session lasted ~1.5 hours (mean 108 mins). The second
session (analyzed) was structured in the following Parts:

1- Introduction [~10 mins]: Welcome and tool setup.

2- Reproduce Insight Without Log [~15 mins]: Our experts first
saw the stripped down version of VisProm, without log data from
their previous session. In this study part experts attempted to
recreate the results they reached in their previous exploration
relying on their memory. Our goal was to identify potential
challenges in reproducing insights when no provenance history
data is visualized.

3- Reproduce Insight With Log [~15 mins]: Our experts then saw
the full version of VisProm with log data from their previous session
visualized. We explained the additional provenance visualisations
then participants were asked to reflect on their past exploration,
in particular any aspects that they were unable to reproduce by
memory. The goal of this study part was to observe how experts
used the new provenance tools to revisit past findings.

4- Open Explore [~30 mins]: Participants continued their explo-
ration with the full VisProm functionality, without any further
instructions. The goal of this study part was to see if and how
experts used the in-visualization provenance during their active
exploration.

5- Discussion [~20 mins]: Finally, we conducted an open discus-
sion session to elicit the experts’ feedback about their experience,
in particular related to how they used the provenance aspects of
VisProm and what more they would like added or improved.

We chose to study provenance both when revisiting past
analysis (days and even months later) and during active exploration.
We suspect that the provenance needs differ: revisiting past analysis
may require more support to acquire high-level understanding and
reproduction of steps when memory may be faulty, whereas it may
not be needed for reproduction of steps during active exploration
and may even not be used in on-going analysis.

4.3 Data Collection and Video Coding

We collected video recordings of the three case studies (324
minutes), user interaction log files and observational notes. Two

different authors of this paper independently coded each video
using discrete events, then met to discuss annotation codes and
resolved conflicts. We use the term event to refer to a chunk of video
for which we attach a code pertaining to our research questions,
mainly about trade-off tasks, provenance, and opportunities for
provenance supported trade-off analysis.

We followed standard thematic analysis [44] in coding the
videos and analyzing the collected data, using both inductive
and deductive coding. We coded separately trade-off tasks and
provenance events. For trade-off tasks, we did not rely solely on
specific terms to find trade-off tasks (such as trade-off, objectives,
criteria), we also observed what participants did and what they
said to enrich the descriptions of those tasks. For example, one
participants quote: “this is NitOut it would be nice to combine
with Nilnput” (CS-ml) was coded as “Combine interest zones &
dimensions”. Another event was based on our observation that the
participant was checking where a selection fell with regards to the
bisector (and later on confirmed in the Discussion). This was coded
as the trade-off task “Locate & characterize”. For provenance events
and associated opportunities, an initial annotation scheme was
decided before coding, based on the general provenance purposes
proposed in Ragan et al. [4]. We coded events in the study parts
where experts engaged with their data (Parts 2-4, 84.26%) as well
as their comments in the discussion (Part 5, 15.73%).

In addition to coding for trade-off tasks and observed cases of
provenance use, we also coded opportunities for provenance. We
identified these when observing domain experts express hesitance
in remembering important aspects of their exploration (current
or previous), or when we thought the challenges encountered by
the exploration may be overcome using provenance visualization.
Our corpus contained 178 events in total (CS-w: 39.32%, CS-ml:
34.83%, CS-eco: 25.84%), related to trade-off tasks (25.84%),
provenance tool use (23.03%), and opportunities (51.12%). A
thematic saturation analysis [45] found conceptual stability approx-
imately halfway through the data collection.

The results of the analysis are described in the following
section. Participants comments are in italics and we indicate their
case study, as well as whether they were translated using the T sign.

5 RESULTS

We first discuss the trade-off tasks that our study participants
engaged in [RQ1]. We report next a summary of the provenance
purposes we identified, that refine ones from previous work [4] by
adding sub-categories and concrete specifications from real-world
trade-off analysis. We then show how in-visualization provenance
was used both to revisit past analysis [RQ2] and during the actual
exploration [RQ3]. We conclude with the opportunities that our
probe helped us collect that can inform the design of future trade-off
analysis systems that include provenance [RQ4].

Further details about our study, including the video codes,
participants’ comments and analysis notebook, can all be found in
https://github.com/tradeoff-analysis/provenance.

5.1

We coded key events related to the different tasks participants
performed during trade-off analysis. Our goal was not to code
each one of those events. Rather it was to first, showcase the
variety of tasks decision makers engage in during trade-off analysis.
And second, to investigate if there are new tasks not reported in

Trade-off analysis tasks [RQ1]
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past literature. We qualify these tasks as high-level, because we
focus on user needs for trade-off support, rather than usage of any
implemented feature of our system. As such, some of the trade-off
tasks described below are not currently fully supported by VisProm.

Overall, there were 46 task events (CS-ml: 47.82%, CS-w:
32.60%, CS-eco: 19.56%), most of which were observed during
the Reproduce Insight Without Log part where participants tried
to reproduce an old insight without log data loaded into the tool
(41.30%), and the Open Explore part where they conducted open
exploration using the additional provenance support tools (52.17%).
We only observed one trade-off task event in Reproduce Insight
With Log as participants were mostly concerned with interpreting
the loaded history data, and reflecting on how the previous insight
was reached, rather than actively conducting trade-off analysis.

The authors of this paper coded these events and categorized
them into the following eight high-level trade-off tasks:

[T1] Minimize & maximize (6.52%): When aspects of the
multi-criteria problem were clearly described, participants took a
direct approach to explore trade-offs by minimizing or maximizing
known objective dimensions or criteria. For example, participants
of CS-w made various colored selections to maximize the amount
of aroma, and to minimize undesired wine compounds and the
energy and time required to control the fermentation process.

[T2] Locate & characterize (28.26%): When little or no
information is known about the structure or dependencies within the
multi-criteria problem, participants tried first to locate interesting
areas of the trade-off space using known thresholds, decision
boundaries or ranges that are important for the problem domain.
For example, experts in CS-ml examined the trade-off between
the number of features and number of samples in their dataset,
focusing on a cluster of points having 2-16 features. They then tried
to characterize this cluster by checking its spread and distribution
in other views. As the number of selections grew, participants gave
meaningful names to their selections such as “grains high subs”
(CS-eco) or “optimum” at the end of the exploration (CS-w).

[T3] Cascade & refine (15.21%): Participants deepened their
understanding of the multi-criteria problem and its characteristics
by cascading selections across multiple views, using brushing and
linking. Oftentimes, they refined and narrowed down the initial
selections, in order to find the best possible solutions. For example,
in CS-w, starting from an initial large selection of fermentation
recipes requiring a minimum level of initial nitrogen (149 recipes),
participants found a much reduced set of “optimal” solutions (9
recipes), based on successive cascade and refine operations, using
three criteria: aromas, fermentation time and energy.

[T4] Rank & prioritize (4.34%): A key decision participants
often made when exploring trade-offs was to decide the order in
which to examine the different objective dimensions. This order or
ranking may have a different meaning depending on the use case
or participants’ research questions. For CS-w, the order determined
the size of selections (i.e., interest zones). Initial criteria were less
strict and participants tended to make larger and more generous
selections (e.g., on initial nitrogen amount), whereas selections
based on subsequent criteria were more strict and thus their sizes
were smaller (e.g., aromas). For CS-ml, the rank did not determine
the size of selections. Instead, participants first visited features of
their dataset that are most relevant to their research questions.

[T5] Create branches & compare alternatives (13.04%):
When resuming previous analysis, participants wanted to branch out
with a different but related goal, or create an alternative exploration
path often with shared objective dimensions. New branches and

alternative exploration paths helped domain experts discuss possible
explanations and reasons behind certain trade-off choices.

[T6] Combine interest zones & dimensions (10.86%): Our
participants often used a divide and conquer strategy, looking at
selected zones of the trade-off space across different dimensions,
and then combining them to explore more complex trade-offs.
For example, participants created multiple selections to express
different interest zones such as farms with high subsidies, and those
who support organic practices (CS-eco). They then combined these
selections to see farms that fell under both zones. Our experts were
also interested in combining objectives, and dimensions more gen-
erally. In particular, they selected a subset of objective dimensions
and assigned weights to reflect their relative importance.

[T7] Observe coverage (4.34%): Participants wanted to keep
track of values explored within a specific data dimension or across
many. They commented on whether they visited most dimensions,
but sometimes they had difficulty remembering the dimensions
they visited and the part of the exploration where this happened.

[T8] Find clusters, correlations & outliers (17.39%): Like in
multidimensional data exploration, participants looked for clusters,
correlations and outliers in their datasets, including between pairs
or multiple conflicting objective dimensions. They explored groups
of data points forming a cluster in one of the views, or meeting a
specific criteria, then looked at how these relate to other dimensions.

In section 6.1 we discuss the differences between our identified
tasks and these reported in past work on trade-off analysis in
operations research [7], and reflect on the generalizability of these
tasks. In the next section we will see how the additional provenance
tools aided specific trade-off tasks, like keeping track of coverage,
and what provenance needs they met.

5.2 Refined provenance purposes and objects

We next looked at how provenance purposes manifest within
trade-off analysis. We report on aspects of provenance that we
observed or were reported to us by our domain experts (74.15%
of coded events). When analyzing these events, not only did we
observe all of the provenance purposes discussed in [4] (Figure 5),
but we also identified aspects central to the trade-off analysis
process or the data records that participants were interested in.
We call these aspects objects of provenance purposes, and in our
coding, they were identified by asking ourselves this question:
“What do our experts want to X here to support trade-off analysis?”
Where X is a provenance purpose [4], either recall, replicate,
recover, meta-analyze, or present. We categorize these provenance
objects into the following eight types:

[O1] Interest zones (27.27%): Constraints that decision mak-
ers are willing to accept for one or multiple dimensions, such as a
threshold, range, boundary, or distribution.

[02] Exploration structure & steps (25%): The analytics
steps taken during trade-off analysis, or the general phases
and scenarios that constitute the exploration, which can include
refinement, branching and alternative paths.

[O3] Focus & priority (15.90%): The dimensions that the
experts focus on, either as single, multiple or combined dimensions.

[04] Coverage (11.36%): The extent to which the trade-off
space has been explored, such as in terms of data dimensions and
views visited, or the data files loaded into the tool.

[O5] Data semantics & origin (8.33%): The meaning con-
veyed by the data dimensions, specific values or interest zones, and
the context and data collection methods used to interpret them.
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Recall Replicate  Recover Meta Present  #Events
Interest zones % 78 3 11 3 6 36
Exploration structure & steps % 48 27 15 9 33
Focus & priority % 95 5 21
Coverage % 100 15
Data semantics & origin % 100 11
Exploration approach % 100 10
Verification & validation % 75 25 4
Annotation % 100 2

Fig. 5. Our identified objects and how they are distributed across Prove-
nance purposes [4] ("Present” purpose also includes Collaboration).

[06] Exploration approach (7.57%): High-level reflections
on the exploration strategy, which often includes a motivation, a
rationale or an evaluation of the approach.

[O7] Verification & validation (3.03%): Confirmation of
known insights or findings, such as to verify or validate a dataset.

[O8] Annotation (1.51%): Notes and labels to document
important aspects of the exploration such as key views, useful
insights, or the rationale behind the exploration.

Interest zones [O1] appears to be the most important prove-
nance object in trade-off analysis as experts were interested in
their recall, replication, recovery, meta-analysis and presentation
(Figure 5). This is followed by exploration structure & steps [02]
(e.g., alternatives or branches), where experts were also interested
in using this information for all purposes except for presentation,
presumably because the trade-offs and insights expressed as interest
zones, were more valuable to share with others than the exact steps
to get there. Other objects were tied to specific purposes, such as
recall for both coverage [04] and data semantics & origin [O5],
meta-analysis for the exploration approach [O6], and presentation
for annotation objects [O8].

Our experts were interested in remembering all provenance
objects, apart from the exploration approach. This could be because
experts did not experiment with different approaches to explore
trade-offs given their brief exposure with our tool, and so they did
not feel the need to be reminded. However, they still reflected on
their choice of exploration approach, and sometimes also on their
exploration structure & steps, and interest zones. They were mostly
interested in reproducing past exploration structure & steps, and, to
a lesser extent, past interest zones, the dimensions they focused on
[O3], and the results of any verification & validation they carried
out [O7]. Finally, they mostly wanted to recover interest zones
and their past exploration steps. Coincidentally, these are the two
aspects they struggled with the most, either by accidentally loosing
selections, or because the exploration had too many steps.

It is interesting to note that some objects have a direct mapping
to the identified tasks. We discuss the importance of these identified
objects for trade-off analysis design in section 6.2.

5.3 Provenance supports trade-off analysis [RQ2, RQ3]

We report next observed events of experts’ using provenance views
in trade-off analysis. These events are either direct observations of
the experts using the provided tools based on pointing gestures or
direct references, or cases where experts mention explicitly having
used the tools. We rely on deictic and verbal references, as most
of our provenance tools are non-interactive and thus we cannot
log their use. The 41 events collected were distributed across case
studies (CS-eco: 8, CS-ml: 13, CS-w: 20).

5.3.1 How provenance tools were utilized

We first report on how experts made use of theVisProm probe. Our
goal in this section is to identify when the provenance views met
the experts’ provenance needs, sometimes in unexpected ways.

We explain how each provenance tool supports the tasks identi-
fied in section 5.1 (in bold) and the provenance purposes (in italics).
A contribution of our work is introducing objects of provenance
purposes, i.e., what the experts want to recall/replicate/annotate
... (section 5.2), so we report these explicitly (in underlined). For
example in the sentence “X helped experts Recall details of their
dimension Coverage [T7: ObserveCoverage]”, the word Recall refers
to the original provenance purpose [4], the notation [T7] is a trade-
off task identified in section 5.1 related to dimension coverage, and
the word Coverage refers to a refined object for provenance (Recall
Coverage) related to trade-off analysis.

ViewCount that colors the SPLOM thumbnails based on use
frequency, was the most used provenance tool (16/41). It aided
Recall (13/16) and Action Recovery (3/16). In half the cases
ViewCount helped experts keep track of Coverage [T7] in their
exploration, i.e., objective dimensions they had already considered
and ones they had not (7/16). They also used it as a reminder of
the objective dimensions that were a Priority ([T4:Rank&prioritize]
- 4/16). As one participant mentioned “Because for example
this [unvisited SPLOM thumbnail], 1 ignored completely.”, to
which their colleague responds about priorities and unvisited
regions “Yeah but it’s also a matter of priorities right? Maybe
after you get all you can from these visualizations you might in
the end go there [unvisited thumbnail] just to check.” (CS-eco).
Although ViewCount does not provide temporal information, it
sometimes (4/16) triggered experts’ memory and helped retrace
their Exploration Steps. When the red borders appeared, one expert
that was struggling to remember their past analysis looked at
the SPLOM and exclaimed “Uh, now I remember something, we
probably started from here” (CS-ml).

History & Favorites followed in use (8/41). History was
surprisingly used rarely (3/41), but always for Action Recovery.
Participants used History thumbnails to recreate lost selections
that represented Interest zones and trade-offs between objectives
they had considered (1/3), and to retrace Exploration Steps (2/3).
Favorites (5/41) were sometimes used for storing selections that
corresponded to Interest zones (4/5) [T2 & T3: Locate&characterize;
Cascade&refine] that participants wanted to share and discuss further,
serving the broader purpose of Presentation/Collaboration (2/5); or
for Action Recovery instead of the History in a few cases (2/5) to
recover important lost selections. Experts also used them to reflect
on the effectiveness of their past exploration (1/5) (Meta-Analysis).

SelectionRange presents in text the range selected points fall
under each dimension (Min/Mid/Max/-), and came next in terms
of use (4/41). Participants used it mainly to Recall (3/4) if the
datapoints they were considering were in specific zones of the
objective dimensions (Interest zone [T1:Minimize&maximize]). For
example, when two experts were discussing a selection, one showed
the SelectionRange bar to point out the solutions considered: “Since
we did not want to use a lot of energy, we have Eco in the mid-
range [points to the SelectionRange]” (CS-wh). In one event (1/4),
our experts used the range bar to Replicate a past action, such
as when they remembered their past strategy of giving Priority
[T4:Rank&prioritize] to some criteria: “So we try to find sub-groups
of datasets that are like, small number of features [referring to
SelectionRange]” (CS-ml).
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DimensionCount bars indicate how often a dimension was
viewed. It was used less (4/41), in all cases to Recall information.
Participants used it to keep track of Coverage [T7:ObserveCoverage]
of the important objective dimensions they wanted to optimize
(3/4), and to Validate that they remembered correctly their past
exploration (1/4).

Queries allowed experts to make selections that ex-
press choices about datapoints that fit specific Interest zones
[T2:Locate&characterize]. It was used extensively during exploration
as experts explored alternatives [T5:CreateBranches& Compare Alter-
natives], but we observed a few events where it was explicitly used to
support provenance (4/41), in particular to retrace Data Semantics
(3/4). The visuals in the SelectionOrigin of whether they were
created from group operations on other selections, helped in one
event experts Recall the meaning of a selection (1/4). In another,
changing the name and color of their query (e.g., call a selection
“optimum”, CS-w) helped them at a later stage to Recall what
selections represented a good subset and what they were optimizing
(2/4). In one event (1/4) seeing the number of datapoints in
a selection allowed them to reflect on their exploration (Meta
Analysis) and comment “yes, here instead of selecting 73 points
for the green selection [...] as we did in the past exploration we
Jjust selected 3 or 4 points, it’s the same idea in today’s exploration
we drew a line on which we aligned points [...]” (CS-wh.

Our participants also mentioned verbally (5/41) that loading
and viewing their past history with the different provenance
tools helped their analysis. They did not single out specific
tools, but commented in the Discussion (Part 5 of the study)
on how the visualizations holistically helped them retrace their
past Exploration Steps (1/5) for Action Recovery; allowed them
to Recall what they Focused on in past explorations in terms of
dimension coverage [T7:ObserveCoverage] and also the combined-
dimensions they created [T6:CombineInterestZones&dimensions]
(2/5); helped them Recall selections that represented Interest zones
[T1,T2: Minimize&maximize; Locate&characterize] (1/5); and enabled
them to reflect (Meta-Analysis) on the effectiveness of their
Exploration Approach (1/5).

Overall, we observed that our tools were used to help experts:
(1) recall important areas in the trade-off space in the form
of selections (Interest zones [T2:Locate&characterize]), and
what these selections represented and optimized (Semantics
[T1:Minimize&maximize]). In total 13/41 events (SelectionRange,
History, Favorites, Query);
(i1) keep track of the Coverage [T7:ObserveCoverage] of objective
dimensions they had already visited and what remained. In total
10/41 events (ViewCount, DimensionCount); and
(iii) recall what objectives were of high Priority
[T4:Rank&prioritize] (7/41 events - ViewCount, SelectionRange);
(iv) retrace past Exploration Steps (7/41 - ViewCount, History);
(v) or to Validate and reflect on the effectiveness of their
Exploration Approach (4/41 - DimensionCount, Query).

5.3.2 Provenance at different exploration parts [RQ2,RQ3]

To understand if the provenance tools were used to recall past
exploration [RQ2] or to aid the current analysis [RQ3], we focus
respectively on events that happened during the Reproduce Insight
With Log Part and the Open Explore Part (28/41). The remaining
events come either from the Discussion or before the logs were
loaded in the provenance tools (when only Favorites and History
were available) and are not discussed further in this section.

Interestingly, the provenance tools were used actively both
during the Reproduce Insight With Log when they were revisiting
past explorations (17/41 events), and during the active Open
Explore (11/41 events). The longer Open Explore (30 min) had
fewer events than the Reproduce Insight With Log (15 min), but
this can be expected, as in the latter the participant’s goal was to
reflect and reproduce their past analysis - so provenance was at
the forefront; whereas in Open Explore their primary goal was to
explore new aspects of the dataset. Thus we are more interested in
trends of use between the two parts, rather than a direct comparison
of numbers. To that end we provide percentages of events within
each exploration Part.

[RQ2] In Reproduce Insight With Log where participants were
trying to reconstruct their past analysis, they mainly used the
ViewCount tool (41.2%), followed by DimensionCount (23.5%)
and Favorites (11.8%). We also observed use of the Query tool
to reflect on the size of a past selection (5.9%). The remaining
events are general comments about how the tools helped them to
revisit past findings, but without specifying which tools. We did
not observe use of the SelectionRange, the SelectionOrigin, nor of
the History tool.

Unsurprising, most events relate to the general provenance
purpose [4] of Recall-ing the past exploration (70.6%), with a few
events where experts reflected on the quality of past exploration
(Meta Analysis) (17.6%), or attempted Action Recovery (11.8%).
When looking at the more specific provenance objects, participants
mainly used the tools to track the Coverage of dimensions they
had visited in the past exploration (35.3%) and to remember
which ones were their Focus & Priorities (23.5%). The other
provenance objects were less represented in this study part, with
only a few events where participants tried to Validate (5.9%)
or reflect on their Exploration approach (17.6%), retrace de-
tailed Exploration Structure & Steps (11.8%) or remember specific
Interest zones (5.9%).

Overall, we confirmed that participants used the in-visualization
provenance when revisiting past findings. Based on the provenance
objects they focused on, high-level summaries of what was covered
and what were the priorities in the past exploration, are key.

[RQ3] The use patterns differ in Open Explore, with tool use
being more distributed. ViewCount and SelectionRange were the
most used (27.3% each), followed by History (18.2%), SelectionO-
rigin and Favorites (9.1% each). The few remaining events are
general comments about their usefulness without specifying which
tools. We did not observe any use of the DimensionCount tool.

These events point out to a different distribution of Ragan
et al. [4] provenance purposes. While Recall remains important
(45.5%), the main purpose is now Action Recovery (54.5%). The
reasons why participants used the tools also differed. More than half
the time it was to keep track of Interest zones (54.5%), followed
by retracing their Exploration Structure & Steps (27.3%). Less
frequently, they used it to verify Coverage and Data semantics
(9.1% each).

Overall, we confirmed that experts also used in-visualization
provenance while conducting a traditional exploration analysis.
Based on the provenance objects they focused on, here participants
were mainly interested in tracking more detailed information, such
as keeping a trace of specific areas in the trade-off space that were
of interest to them and their characteristics, as well as their analysis
steps. Nevertheless, we did observe events where higher level goals,
such as keeping track of dimension coverage, were met.




This is the author version of the article. The final version is published in IEEE Transactions on Visualization and Computer Graphics 2022, at: 10.1109/TVCG.2022.317107411

5.4 Opportunities for provenance visualization [RQ4]

Our goal in using VisProm as a technology probe was to identify
situations were new designs could aid users in their tasks. We
coded several events across use cases that presented opportunities
for provenance (CS-w: 35, CS-eco: 29, CS-ml: 27). We chose
to report such events as they provide concrete and actionable
opportunities for provenance in trade-off analysis.

We found opportunities in Study Part 2 where experts were
tasked to replicate past events without the additional aids of log
data and provenance visualization (31.86%), but also in Reproduce
Insight With Log (27.47%), Open Explore (24.17%), and the
Discussion (16.48%). These provenance opportunities are analytical
in nature (93.4%), although we also describe opportunities for data
provenance related to data semantics and origin (6.6%). Below,
we report on these opportunities using the general provenance
purposes in [4]: recall (73.62%), replication (12.08%), meta-
analysis (12.08%), and presentation & collaboration (2.19%).

5.4.1 Recall Opportunities

We observed more opportunities for provenance Recall than any
other type, as oftentimes experts struggled to remember previous
interest zones (35.82%), focus & priority (20.89%), exploration
structure & steps (20.89%), data semantics & origin (11.94%),
coverage (7.46%), and verification & validation (2.98%).

Recall Interest zones: When trying to recall previous inter-
est zones, expressed in VisProm as colored selections, experts
discussed but often struggled to fully remember what they saw
as important trade-offs and their characteristics. We observed
opportunities for tracking and visualizing provenance of: (i) the
view/s in which the interest zone (or selection) was defined; (ii)
selection size, range and distribution; (iii) the thresholds and cut-
off points they used to constrain the selection; (iv) when relevant
the decision boundary they used to interpret the selection, for
instance, whether the data points are above or below the bisector;
(v) the nature of the trade-off selection, e.g., minimization versus
maximization. In addition, experts also raised the need for tracking
contextual information (vi): for example to differentiate between
past selections that express an insight from the intermediate ones
that led to it; sometimes even remembering the research questions
or hypotheses that motivated them to create selections can be hard.
Interestingly, experts used unexpected cues to help them recall
the reasons behind selections such as green color for preferable
solutions, and red for undesirable or costly ones.

Opportunities. Creating and refining interest zones (e.g., via
selections) is crucial in trade-off analysis, as it helps analysts
progressively learn the multi-criteria problem characteristics,
determine most preferred solutions and compare alternative ones.
However, experts struggled to remember key aspects of those
selections not only when revisiting them after a period of time,
but also during the same exploration session. We need to enrich
trade-off selections with summary information and visual cues to
help analysts quickly understand or recall the nature of the trade-
off, and the rationale that led to create those selections (e.g., to
minimize or maximize certain objectives) [T2:Locate&characterize].
Color is an interesting visual encoding for provenance as it appears
experts assign meaning to hue and are sometimes able to remember
this meaning without access to labels. While in some cases experts
were able to reconstruct what objectives were maximized, what
selections were important and fell within specific boundaries or
had specific patterns, we believe there is an opportunity to help

them track this more explicitly. For example, we can allow them
to set thresholds that the system can keep track of (beyond min
and max), and let them express what patterns are of interest (data
above bisector, or of a specific distribution) and why, and allow
them to differentiate between selections that are intermediate steps
in their analysis and ones that express important findings [T1,T2:
Minimize&maximize, Locate&characterize].

Recall Focus & priority: Domain experts often mentioned
some objectives are more important than others and this drove
their exploration strategy. They sometimes reported they could
not remember all of the objectives that they tried to optimize, but
VisProm (DimensionCount, ViewCount) helped them with recall.
We observed that participants were likely to remember plots they
found interesting, such as in terms of their dimensions and shape,
but not so accurately or easily the steps they took to get there.
Moreover, sometimes participants were also able to guess why they
did not focus on a particular dimension or view.

Opportunities. During trade-off exploration, analysts need to
recall what objectives drove the exploration and their priority
[T4:Rank&prioritize]. Showing the individual or combined criteria
they created, and the interesting views they visited (even high-
lighting those that are not interesting) can help them infer their
overall trade-off exploration approach. Besides communicating
focus and priority, analysts can themselves express these, possibly
visually to indicate objectives that have not been explored yet
[T7:ObserveCoveragel. It is interesting to note that we observed
participants attempting to keep track of priorities both when
revisiting past exploration, but also during the time they were
actively exploring to help strategize and plan their next actions.

Recall Exploration structure & steps: Participants had diffi-
culty remembering the successive steps they took during the
analytical process. Experts from CS-w also struggled to recall the
first step that triggered a particular exploration path, and this was
important as the order in which they visited the trade-offs mattered
to them. When reasoning in terms of stages of exploration [2]
rather than individual steps, participants were able to remember
more, such as the part of the exploration where they analyzed an
important trade-off, or when they found an important insight.

Opportunities. Overall participants were able to remember
phases of the exploration more than they did for steps, but not
all stages were remembered indicating that different parts of
the exploration may require different support. Besides showing
phases of exploration as part of provenance, trade-off exploration
might benefit from explicitly showing alternative or branching
paths taken during the analysis, and emphasizing similarities and
differences, as analysts are interested in making comparisons
[T5:CreateBranches&CompareAlternatives].

Recall Data semantics & origin: We had several events where
participants failed to remember the semantics of the data they
were exploring. This happened at three different granularities: (i)
Dataset: we had events where participants mentioned explicitly
the origin of data and relations that were not captured in the
dataset; (ii) Dimension: In some cases experts struggled to
remember what each dimension of their dataset captured. This
is particularly important for trade-off analysis, as often experts
combine dimensions that express objectives that are related (e.g., in
CS-eco one expert had to reflect before confirming that a dimension
in the dataset combined two others, and in CS-w another expert
mentioned how remembering this is important); (iii) Value: We
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also observed events where experts were attempting to optimize
dimensions, but could not remember if the objective needed to be
maximized or minimized. There were also cases where they had
trouble remembering the meaning of specific values or ranges.

Opportunities. We need to provide data provenance at different
levels - not only to enable experts to keep track of the origin of
data, but also to capture and be able to retrieve the semantics of
dimensions and values. This is particularly important for trade-off
analysis, where some dimensions may capture more than one objec-
tive, and where the experts need to track the direction (range) that
optimizes specific objectives [T6:CombinelnterestZones&dimensions].

Recall Coverage: Participants had difficulties keeping track of
data dimension coverage when they had limited provenance support
(Reproduce Insight Without Log). However, when we provided
them with provenance visualization tools, they commented on how
these aided them in their task. When recalling past exploration,
they also wanted to know whether the dimensions they visited
came from single or multiple sources (data files).

Opportunities. Given the high dimensional nature of trade-
off spaces, there are opportunities to improve the exploration
by keeping track, as the analysis progresses, of what data
dimensions or sources have been explored, and highlighting areas
that are under-explored. This can potentially show an implicit
exploration bias or an intended prioritisation in analysing trade-
offs [T7:ObserveCoverage].

Recall Verification & validation: Our experts were also in-
terested in finding out whether important known insights were
confirmed in their previous (and current) analysis, thus validating
the approach which was used to generate the trade-off dataset.

Opportunities. Provenance visualization could make it clear
whether the explored dataset has gone through a validation
procedure (whether manual or automatic). This can give analysts
confidence in the data and avoids them repeating the verification
& validation procedure in any future explorations.

5.4.2 Replication Opportunities

The provenance opportunities we observed to support Repli-
cation during trade-off analysis are mostly related to
Exploration structure & steps (81.81%). Experts attempted to re-
produce sequences of events in order to replicate an insight or a
lost selection. The replication of previous analysis could be an
important step when resuming work carried out a long time ago.
We found that experts might want to repeat previous analysis from
the beginning to refresh their memory, or to gain more confidence
in their findings, but often with variations, such as by examining
additional dimensions or a new dataset. This could occur in a
branching or refining manner. Another sub-goal of replication is
to compare alternatives. For example, experts were interested in
comparing alternative solution sets in terms of differences and
similarities.

Opportunities. There are opportunities to support replication
during trade-off analysis by assisting analysts in resuming major
or key phases of their exploration, including important selections
and dimension groupings. Different types of replications should be
supported, whether to continue the same analysis, or to create a
new branch or a refinement from an old one [T3,T5:Cascade&refine,
CreateBranches& CompareAlternatives].

5.4.3 Meta-Analysis Opportunities

Participants reviewed the analysis process, often to understand their
Exploration approach and structure (90.90%), or to reflect on their
choice of Interest zones. The majority of those opportunities relate
to events that occurred during Parts 3 and 4 of the study (72.72%),
both with provenance visualization tools enabled. For example,
participants in CS-ml wondered whether the next step would be a
fresh start, or a new branching session extending from the previous
analysis. In CS-eco, when we asked participants to reflect on why
they wanted to keep the provenance history, even though they were
starting the open exploration (Part 4), they stated that previous
analysis could provide new inspiration or good starting points.

Opportunities. Automatic provenance tools can support meta-
analysis, for instance, by showing similarities and differences
between exploration sessions. They may provide useful information
and metrics, to help analysts reflect more deeply on their trade-off
analysis choices. This in turn, may provide inspiration and valuable
starting points for the following steps of the exploration.

5.4.4 Presentation & Collaboration Opportunities

The views experts visit can become complex over time as they
create combined dimensions and new selections (e.g., using
intersection). They might want to Annotate such views or take notes,
to facilitate revisiting and sharing. Whereas one domain expert
noted that it could be useful to directly annotate interesting views,
another expert found annotations a burden and add complexity to
the tool. The question of annotation was also raised in CS-w where
domain experts came to our study prepared with notes describing
the research questions and hypotheses they wanted to test.

Opportunities. The role of annotations as a provenance tool for
trade-off analysis merits further investigation, as our observations
show that annotation support could help analysts address the
growing complexity of views as the analysis progresses, but with
caution as to not distract from the main trade-off task.

6 DISCUSSION

The use of our provenance-augmented probe by three groups of
domain experts, allowed us to study trade-off analysis, and to distill
new findings with regards to the tasks people engage in during
trade-off analysis, and how provenance can support these tasks
both when conducting a-posteriori and active analysis. Moreover,
it helped us identify opportunities on how to better support such
analysis tasks.

6.1

In section 2.2 we theorized that five of the tasks presented in
Hakanen et al. [7] are relevant to our work, even though unlike
their approach, we do not integrate an interactive multi-objective
optimization procedure. While this is generally true, we went
beyond this past work. First, we found a case where our tasks
are more refined and detailed, and second we identified additional
trade-off analysis tasks not reported in [7]. We contributed a set
of refined tasks that fall under their determine most preferred
solution: minimize & maximize, rank & prioritize, and combine
interest zones & dimensions, which are all tasks our participants
followed to narrow down and converge to their preferred solutions.
We also further contribute two new tasks: cascade & refine and
observe coverage, that our participants found to be important for
trade-off analysis.

Trade-off analysis tasks
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Their other tasks have a direct correspondence to the ones we
identified. Their task compare Pareto optimal solutions corresponds
to our more general task create branches & compare alternatives.
Their learn about problem characteristics and detect correlations
tasks directly map to our locate & characterize and find clusters,
correlations & outliers tasks respectively. Thus, together with
the refinement of the determine most preferred solution task,
we independently identified several tasks reported in operations
research work [7]. This replication indicates our technology
probe was effective in aiding us to identify high-level tasks that
are generalizable across tools and research domains. The post-
processing task is beyond the scope of our study, as we did not
do a follow-up with our participants to investigate whether the
insights gained from the exploration session helped them conduct
new experiments or generate new trade-off datasets.

Our trade-off tasks of finding clusters, correlations & outliers,
also correspond directly to high-level tasks in traditional analytic
task taxonomies, such as the tasks identified by Amar et al. [46] on
finding anomalies, clustering and correlating. Other high-level
trade-off tasks like observing coverage and defining focus &
priorities (that are key in trade-off analysis), do not have a direct
correspondence. This is also the case for trade-off tasks such as
creating branches & comparing alternatives, looking for interest
zones that maximize/minimize objectives, and characterizing
interest zones. These different tasks remain fairly high-level and
do not have a direct equivalent in analytic tasks; nevertheless, in
order to achieve these trade-off tasks, our experts engage in a
combination of low-level analytic activities [46], such as deriving
threshold values, filtering, sorting, characterizing distributions,
finding extremums, etc.

While scatterplot matrix tools are popular in trade-off analysis
visualization [29], [30], it is natural to consider if these refined and
new tasks may be specific to the scatterplot matrix design of our
probe, that favors sculptured selections. We believe the majority
of our identified tasks are generalizable and not specific to our
probe design. A scatterplot matrix view favors the identification of
relationships between two dimensions at a time (e.g., correlation
[40]). Nevertheless, our tasks relate either to tracking progress
and prioritizing (rank and prioritize dimensions, track coverage of
multiple dimensions), or to understanding possible solutions in the
search space across multiple dimensions (e.g., identifying possible
solutions that minimize or maximize a dimension of interest, and
characterize zones of interest across multiple dimensions).

It is possible that other tasks, such as cascading & refining of
interest zones, may indeed be influenced by how analysts select
regions of interest in our tool, using sculptured queries; or the
combine multiple dimensions task may be due to the fact that a
single scatterplot can only show two dimensions at a time. For the
latter, we feel combining dimensions makes sense irrespective of
visualization, our experts often had dimensions (like aromas) that
they semantically grouped together and wanted to treat as a group.

6.2 Provenance objects in trade-off analysis

We identified eight provenance objects that characterize provenance
purposes from previous work [4]. These are objects that our experts
wanted to recall, replicate, recover, reflect upon or present &
communicate. Out of these objects, we found that interest zones and
exploration structure & steps are the most important, as our domain
experts frequently used or mentioned them during their exploration.
They should thus be supported by provenance visualizations in
future trade-off analysis tools.

Our provenance objects do not all reside on the same analyt-
ical or abstraction layer [6], [47]. Some are directly related to
exploration actions [47] and thus can be tracked using low-level
user interactions such as view and query selections (interest zones,
exploration structure & steps, focus & priority, coverage). Other
provenance objects are situated at a higher level pertaining to
insight actions (data semantics & origin, annotation, verification
& validation), or meta-actions (exploration approach). Tracking
and visualizing provenance data related to exploration actions
is more straightforward and is easily supported in interactive
systems, whereas provenance for higher abstraction layers is
more challenging to capture and visualize, although progress is
being made for example in automated data insights [48]. This
highlights the need for further research in detecting and visually
summarizing insight actions and exploration structure to support
trade-off analysis.

Provenance objects express ‘what’ aspects of the analysis
experts need support with (to recall/replicate/etc), and were
observed either through the use of the provenance tools and experts’
discussions (section 5.3.1), or observed opportunities (section 5.4).
Some of these provenance objects directly map to, and support,
identified trade-off tasks (section 6.1). For example the direct
mapping between the Focus & priority object and Rank & prioritize
task, and between the Coverage object and the Observe coverage
trade-off task. We also observed analysts recall/replicate/reflect
upon other objects, namely interest zones, especially for trade-
off tasks such as Minimize & maximize and Create branches &
compare alternatives. Or the "Exploration structure & steps’ object
that often appeared as an opportunity, expressing the need to keep
track of past branches and alternatives for the task Create branches
& compare alternatives. These tasks of Minimize & maximize and
Create branches & compare alternatives relate to trade-off tasks
from previous work [7]: determine most preferred solution and
Compare Pareto optimal solutions respectively.

We thus feel the objects ‘Focus & Priority’, ‘Coverage’,
‘Interest zones’ and ‘Exploration structure & steps (to create
branches and compare alternatives) are central to trade-off analysis
and require further exploration in order to design provenance views
that are well-adapted to such analysis. The remaining objects
we observed (Exploration structure & steps for action recovery
rather than branches and alternatives, Data semantics & origin,
Exploration approach, Verification & Validation, and Annotation)
could be relevant to any type of visual analysis exploration. Future
work may also identify more trade-off tasks and related objects.

The nature of our study (revisiting past findings and active
exploration), naturally relies on our participants remembering their
past analysis, and thus focuses on replication or recovery of past
results or choices. Thus our findings often link provenance objects
with the provenance goals of Recall or Replication (section 5.2).
We see these same objects (e.g., Interest zones) also appear with
other purposes such as ‘Recover’ and ‘Present, so we expect
these objects are applicable across provenance goals. Nevertheless,
further studies are needed to investigate whether different types
of analysis, focusing less on recall and replication, and more
on reflection and meta-analysis, could clarify which objects are
important for which provenance purposes, or even reveal other
types of provenance objects associated with other purposes.
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6.3 How in-visualization views support trade-off tasks
and provenance objects: during a-posteriori analysis
and ongoing exploration

Most work evaluating provenance considers provenance itself as
the main user goal, for example to understand and recall past
exploration. Fewer consider the impact of provenance views during
the exploration itself (see section 2.1). We consider both together,
in a structured evaluation of experts conducting real-world analysis.

This poses a challenging question of design balance: as data
exploration is the focus of our experts, can we use provenance
to support both a-posteriori analysis and active exploration?
Motivated by past informal observations that experts largely ignored
separate provenance views, we decided to integrate in the analysis
environment simple designs that do not add visual complexity but
are always accessible. We set out to see if and how these designs
were used, both a-posteriori and during the analysis, and how they
tied to trade-off needs.

Our findings show that our domain experts found in-
visualization provenance views useful both when revisiting old
analyses and when starting new ones.

In a-posteriori exploration, when revisiting old analysis, do-
main experts were able to first confirm past findings in the use
of traditional views, such as History and Favorites. The use of
a stripped down History that only showed a final snapshot of
last exploration, and Favorites were a great aid for recall. Our
experts explained that they preferred these few snapshots rather
than detailed step-by-step recollection of previous analysis. Other
studies investigated what granularity or level of detail of provenance
information is appropriate for different tasks [42], [49], [SO]. Most
relevant to our work is a user study by Ragan et al. [42] who found
that even lightweight provenance visualizations (such as ours),
including simple in-visualization cues and low fidelity snapshots
of final workspaces or important views that contain an insight, can
be beneficial for recall and helping the process memory.

We were also able to extract patterns of use from our new
in-visualization views during this a-posteriori exploration. Our
experts used provenance views that mainly communicated high-
level information, such as views with counts of dimensions explored
or scatterplots visited. In particular, we identified that these views
aided experts mainly to recall or reflect on: their coverage of the
objective dimensions, their focus and priorities in terms of objective
dimensions in their past analysis, and to a lesser extend their past
exploration strategy. As mentioned, understanding coverage and
focus & priority were identified both by us, but also previous
work [7], as critical for trade-off analysis irrespective of the tool
used. As such, this finding highlights the importance of providing
provenance support for them when a-posteriori analysis is expected.

Whereas in the ongoing analysis, experts used our in-
visualization views focusing on more detailed information. For
example, they used them to keep a trace of specific areas in the
trade-off space that were of interest to them and their characteristics,
as well as their analysis steps. Our experts often consulted what
range their selections fall in in the trade-off space, or what
selections were grouped to generate new ones. These point to
the need to support recall exploration steps, but most importantly
the recall of aspects related to interest zones (one of the trade-
off provenance objects identified in our work). Aspects that may
be interesting to recall relate to several trade-off tasks that are
associated with characterizing preferred solutions or interest zones:

for example if the interest zones maximize or minimize objectives,
if they fall under specific thresholds, if and how they have been
refined, if they represent an alternative branch, etc.

As our observations of ongoing analysis stem from a scatterplot
matrix probe, it is possible that the importance of interest zones
may be influenced by the existence of visual sculptured query
selection. However, as discussed earlier, the task of ‘determine
preferred solution’ [7] that optimizes some dimensions is very
general in trade-off analysis. And the characterization of these
possible solutions or areas of interest (e.g., where they fall across
other important dimensions) includes simultaneously maintaining
awareness of multiple dimensions and thus is very likely applicable
to any multi-dimensional visualization tool.

Provenance is a secondary task supplementing data exploration,
but we observed many cases where our visually simple and in-
visualization provenance tools were used effectively, both when
reconstructing past trade-off analysis and during an open-ended
analysis. More work is needed to investigate whether provenance
support needs to adapt to more specific and refined stages of
these analysis. For example, during an active exploration, we
can expect that the start of the analysis will be similar to
a-posteriori analysis: verifying and validating past knowledge,
checking coverage of dimensions and setting priorities, in order to
ground the upcoming exploration. Whereas in the middle of a trade-
off analysis exploration, it is possible that the main considerations
are keeping track of alternatives or of characterizing the identified
interest zones. And towards the end of an exploration, when
experts are close to converging and sharing of results, it is possible
that tracking coverage and reflecting on the exploration strategy
may once again become important. More studies are needed to
compare different design choices for provenance as a secondary
task, including understanding better potential exploration phases
[41], what provenance objects are important in these more refined
phases, and how to draw user’s attention and awareness [51] to the
visual cues when the information is needed.

6.4 Trade-off specific opportunities

The use of provenance tools by our study participants helped us
identify different types of opportunities for recall, replication, meta-
analysis, representation and collaboration. These opportunities are
directly related to actual challenges our study participants faced
during trade-off analysis, for which we thought provenance could
help overcome. The general provenance opportunities that are
discussed in the literature confirm some of the provenance needs
we identified for trade-off analysis, such as the recommendation
for capturing provenance information with varying levels of detail
[4] and the associated opportunities for multi-layer provenance
[14]. The overlap between our recommendations and those in the
provenance literature is expected, as trade-off analysis is a subset
of and a specific type of data exploration.

Moreover, we covered new ground with regards to the prove-
nance objects associated with the identified trade-off tasks. Our
opportunities for helping analysis recall/replicate/reflect indicate
these act upon objects that can inspire future designs, focusing
on: interest zones, exploration structure and steps (like refining
and comparing alternatives), focus & priority, and coverage. In
particular, our call for supporting provenance capture, recall and
replication of focus & priority argues for storing and exploiting
information highly relevant to trade-off analysis such as the
objectives users focus on, and how these are prioritized, which
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is intrinsic to trade-off analysis, but less pertinent in general data
exploration and provenance.

7 CONCLUSION AND LIMITATIONS

We conducted an observational study with three groups of domain
experts who used a provenance-augmented probe to explore their
own trade-off datasets. Our aim was to investigate whether and
how in-visualization provenance can support real-world trade-off
analysis. Our findings show that domain experts engage in different
high-level tasks that are key in trade-off analysis, such as observing
coverage, defining focus & priorities, branching alternatives,
and looking for interest zones that maximize/minimize specific
objectives. These tasks were supported by our in-visualization
provenance views, which helped our experts recall, replicate,
recover, reflect upon or present & communicate different aspects of
their exploration, that we identified as trade-off provenance objects.
From these, keeping track of coverage and priorities, and to a lesser
extent exploration strategy, was the most important provenance
aspect (or object) for our experts when revisiting past trade-off
analysis; whereas interest zones and exploration structure & steps
were crucial when starting new trade-off explorations.

While the use of the provenance probe helped us identify
opportunities and challenges, it may have also influenced our
findings. Our participants had access to a specific visual repre-
sentation (SPLOM) and in-visualization provenance views, which
may have focused their feedback to tool-specific issues. We believe
the high-level findings, such as many of the identified trade-off
tasks, provenance objects and opportunities hold irrespective of
the underlying analysis tool, nevertheless it remains future work
to replicate them in different trade-off analysis environments.
Our probe was also used by experts from different domains
and we report our findings collectively. This we hope provides
a broad coverage of user needs when it comes to trade-off analysis,
but it does not help us understand if the nature of provenance
requirements is common across experts. Future work should
consider if domain plays a role in both trade-off analysis tasks and
provenance needs. Finally, we looked at pairs of analysts exploring
trade-offs simultaneously. It is possible different provenance objects
and even tasks emerge when analysts work asynchronously, for
example during hand-off or when establishing common ground.
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