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Communicating Uncertainty and Risk
in Air Quality Maps

Annie Preston and Kwan-Liu Ma

Abstract—Environmental sensors provide crucial data for understanding our surroundings. For example, air quality maps based on
sensor readings help users make decisions to mitigate the effects of pollution on their health. Standard maps show readings from
individual sensors or colored contours indicating estimated pollution levels. However, showing a single estimate may conceal
uncertainty and lead to underestimation of risk, while showing sensor data yields varied interpretations. We present several
visualizations of uncertainty in air quality maps, including a frequency-framing “dotmap” and small multiples, and we compare them
with standard contour and sensor-based maps. In a user study, we find that including uncertainty in maps has a significant effect on
how much users would choose to reduce physical activity, and that people make more cautious decisions when using
uncertainty-aware maps. Additionally, we analyze think-aloud transcriptions from the experiment to understand more about how the
representation of uncertainty influences people’s decision-making. Our results suggest ways to design maps of sensor data that can
encourage certain types of reasoning, yield more consistent responses, and convey risk better than standard maps.
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1 INTRODUCTION

Air pollution is a “slow disaster,” affecting more people
than widely understood [1]. Worldwide, 90% of people
breathe polluted air, contributing to an annual death toll of
7 million [2]. The particulate matter PM2.5 is an especially
insidious pollutant causing long-term health problems [3].
Though governments have made some successful efforts
to reduce pollution, air quality in many countries is get-
ting worse, and recent research has highlighted previously
underestimated health risks and inequities from air pollu-
tion [4] [5]. Despite progress reducing emissions from cars
in the United States through 2016, traffic-related pollution
contributed to one-fifth of childhood asthma cases nation-
wide [6]. Small increases in long-term exposure to PM2.5
may lead to a large increase in the COVID-19 death rate [7].

Physicians have advocated for better tools to inform their
patients about air pollution and its dangers [4]. Informatics
and mapping are crucial for communicating environmental
hazards like air pollution, yet information is often presented
in a way that reinforces biases, including underdisclosing
risk [8]. As with all disasters, air pollution “reflects the
underlying stratification of a society,” with marginalized
groups most at risk [1]. Equipped with better maps, people
could make more informed choices about limiting exposure,
understand sources and characteristics of pollution, and
reduce their own contributions to poor air quality.

In this study, we explore whether including uncertainty
in maps of air quality—and potentially in maps of other
sensor data—could help address the need to better commu-
nicate risk. Our contributions include:

• A mixed methods user study with visualization de-
signs that vary the amount of uncertainty shown;

• A quantitative analysis of decision making with
geospatial uncertainty visualizations;

• A qualitative think-aloud analysis illuminating how
people make decisions about uncertain maps;

• Evidence about ways to visualize this uncertainty
and elicit certain decision-making patterns.

2 BACKGROUND

2.1 Air Quality Communication

Publicly available sources of air quality data exist world-
wide. Many governments operate air quality sensors and,
to varying degrees, make their data available online. In
the United States, the Environmental Protection Agency
operates AirNow, a site showing a contour map colored by
estimated air quality category (Figure 1a). This estimate is
an interpolation of the data from air quality sensors across
the country. Colors indicate categories of health risk, each
with corresponding guidelines (see Fig. 3).

Recently, low-cost, internet-connected air quality sensors
have become popular, such as those from PurpleAir. These
sensors are installed by individuals in and around homes
and buildings; their data are available online in real time.
Low-cost sensors, offering better availability and wider spa-
tial coverage of air quality data, could have a transformative
effect on the public’s awareness [9]. Websites like IQAir
and PurpleAir show estimates of air quality from these
sensors. These visualizations may show contours, indicate
sensor values directly as in Figure 1b, and/or show glyphs
with aggregated sensor data. The interface gives a number
summarizing the current pollution level in that location.

(a) AirNow (b) PurpleAir

Fig. 1: Common websites for checking air quality in the U.S.
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2.2 Uncertainty
In general, publicly available sources for air quality informa-
tion do not include uncertainty. By neglecting uncertainty,
predictions shown on sites like AirNow may often be inac-
curate or misleading, and may underestimate air pollution
in general. The raw data from sensors and the interpolation
used to create a map are both sources of uncertainty, but
users typically see no indication of either.

The placement of sensors is a primary source of uncer-
tainty. For example, sensors are not evenly spaced across
the U.S., and their distribution does not reflect the popula-
tion distribution or the most significant pollution sources.
For example, the interpolations shown on AirNow often
do not capture variations on the scale at which pollution
from traffic on highways is present, and sensors are often
placed away from the population centers of cities. While
government-owned sensors are helpful for monitoring long-
term, large-scale air quality trends, they may not be offering
completely truthful information in places where pollution is
a chronic risk to public health. Air pollution from wildfires
is also increasing drastically; many heavily affected areas
are sparsely measured by the government’s network of air
quality sensors. Air quality estimates that users see, then,
often do not reflect the most relevant sources of pollution
and the potential variability in air quality.

Another source of uncertainty in air quality maps is the
algorithm used to convert air sensor readings into a contour
map. The contours shown on AirNow are based on Inverse
Distance Weighting (IDW), a deterministic algorithm that
predicts the value at a location by weighting detections from
nearby sensors. IDW is widely used, but its output is highly
variable depending on the specific parameters used (see
Figure 2). The parameters used for the AirNow site differ
significantly from parameters found to be optimal in other
studies of air pollution interpolation [10]. Techniques like
cross-validation can be used to optimize the parameter val-
ues, but this is less effective when interpolating over large
spaces, such as the vast distances between sensors in some

Fig. 2: Varying interpolation based on inverse distance
weighting parameters for two sets of air quality sensor data
(A and B). The parameters p=5, k=10 are used on AirNow,
while p=1, k=3 are more commonly used for air pollution.

parts of the United States. More sophisticated approaches
exist (kriging is the most prominent alternative) but any
approach requires assumptions and is prone to error.

Though contour maps created from interpolations are
widely used in geospatial communication, their uncertainty
properties are not well-studied [11]. Uncertainty in how
sensors are labeled, or artifacts from their binning, have
a significant impact on the resulting contours. Researchers
have proposed a method for identifying areas in choropleth
maps where labeling has a strong effect on visual bound-
aries [12]. With this information, a map designer could ad-
just labeling to reduce potential bias. In the air quality case,
guidelines exist for ranges of Air Quality Index (AQI) values
(see Figure 3), so a standard binning is already established.
Maps need to be updated with evolving air quality readings,
so manually adjusting maps is not feasible.

2.3 Uncertainty Awareness and Decision-Making

Research suggests that uncertainty information may help
people make better decisions in their daily lives. For exam-
ple, mobile transit apps showing uncertainty in bus arrival
times may help people optimize when to leave for the
bus [13]. Including numeric uncertainty in weather forecasts
may increase trust and help people make more holistic deci-
sions [14], and the general public understands and expects
uncertainty information in weather forecasts [15].

For risk communication in particular, research suggests
that well-designed visual aids can be transparent, effective
tools for un-biasing people’s perception of danger [16].
Some recent human-computer interaction work has focused
on informing the public about underreported risks they
face from flooding [17]. Uncertainty visualization enhances
risk communication: users may be more willing to take
appropriate precautions when shown an uncertain weather
forecast compared to a categorical warning [18]. If an
uncertainty-aware map shows the competing claims from
air quality data sources, people may be able to make more
informed decisions and understand the sources and charac-
teristics of air pollution in their city compared to others.

Fig. 3: Guidelines for each category of air pollution, from
AirNow. Concentrations of a given pollutant are mapped to
the Air Quality Index (AQI); AQI ranges correspond with
certain health guidelines. For this study, we replace the
default color map with a perceptually uniform map.
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2.4 Survey: Air Quality Awareness

One challenge in characterizing people’s understanding of
air quality information is that many people in the United
States may not regularly engage with it. One study found
that about 12% of the population had changed their behav-
ior within the past year in response to poor air quality,
but those with respiratory conditions are more likely to
take action [19]. We conducted an online survey to gauge
people’s awareness of local air quality, their sources of
information, and their responses to poor air quality.

We decided to focus on users who already have some
awareness of air quality, in order to yield respondents who
are motivated to pay attention to their health and may have
taken preventative action in the past. We targeted people 18
and older in our local community, which had experienced
significant air pollution from wildfires within the past year.
We had 54 respondents, 40 of whom fully completed the
survey. Of the respondents who indicated being aware of
poor air quality within the past year (n = 34), 91% specified
that this unhealthy air was due to a wildfire.

In general, our survey indicated that people aware of air
quality issues are interested in simple AQI information and
are likely to make changes and trust sources of information,
but may not have a consistent rationale or source for these
decisions. When asked whether they feel they have accurate,
complete information about the air quality near them, 72%
(n = 39) at least somewhat agreed.

We asked respondents whether they had used any web-
sites in the past 12 months to check air quality; 78% indi-
cated they had. Of those who did, 35% used AirNow alone,
32% used another site alone, and 32% used a combination
of AirNow and another site. At least 67% of respondents,
then, use a contour-based air quality map.

Most respondents (91%, n = 34) indicated that they had
changed their behavior within the past year due to poor air
quality. The changes these respondents have made are often
significant: 90.3% of those people said they had avoided
time outside, 74% cancelled or skipped activities, and 65%
did less strenuous exercise.

3 METHODOLOGY

Our goal is to test visualization designs that might help
improve people’s decision-making, align with their desires
and needs for air quality tracking, and accurately represent
risk. To assess the potential of these designs in realistic set-
tings, we use real air quality data representative of what is
currently available. We also aim to quantify the uncertainty
in the data in a way that is representative of actual variation.

3.1 Sources of Data

In this study, we focus on the harmful pollutant PM2.5,
which comes from automobiles and wildfires, among other
sources. AirNow is considered the ground truth in the U.S.
for air pollution readings, but the sensor coverage is limited
in many areas of the United States, and in more densely
populated states, sensor coverage is disparate from the
distribution of people and sources of pollution (e.g. roads).

PurpleAir is one of the most prominent sources for low-
cost air quality sensors. Individuals around the world can

purchase sensors to install inside or outside homes or other
buildings (we consider only outdoors sensors here). These
sensors are connected to the internet and their data are made
available at purpleair.com in real time. Because PurpleAir
sensors are not maintained by the company once they are
installed by individuals, their accuracy may worsen over
time. In particular, dust and other debris accumulates over
the laser-based sensors, and without cleaning, the readings
may drift. These sensors do not directly measure PM2.5
concentration, instead inferring it from other measurements.

3.2 Quantifying Uncertainty

One source of uncertainty is the interpolation approach,
as described in section 1.1.1. Two common approaches
in geospatial applications are inverse distance weighting
(IDW), which is deterministic, and kriging, which is prob-
abilistic. IDW, used for AirNow, predicts values at points
by taking a weighted average of the k nearest neighbors.
The results of IDW are highly dependent on the parameters
used, k and p, where the k nearest sensors are weighted by
their distance to a location, 1

(distp) .
Kriging is a statistical approach based on characterizing

the autocorrelation between pairs of detections. This ap-
proach requires more tuning than IDW, such as specifying
the shape of the semivariogram describing the autocorrela-
tion. Previous work examines the use of kriging vs. IDW
for interpolating air quality, finding that which method is
superior depends highly on the scenario and on the partic-
ular pollutant [10]. In this study, we use kriging to generate
visualizations because of its more natural relationship with
uncertainty; kriging algorithms estimate a mean value and
standard deviation at each grid point.

4 VISUALIZATION DESIGN

We explored possible designs of static uncertainty-aware air
quality visualizations to compare with standard contour- or
sensor-based designs. For perceptual uniformity across the
AQI scale, we use an updated color map (Figure 3) reminis-
cent of the AirNow version (Figure 1a). This map might con-
tribute helpful associations: one study suggests that people
choose darker colors in “negative” and “disturbing” color
schemes [20]. In another study, people associating darker
colors with “more” (more pollution in this case) may have
had a stronger influence on risk belief than other factors
such as number of colors and level of focus used, leading
the authors to conclude that “incrementally darker shading
was very effective for conveying incremental risk” [21].

We chose designs along a spectrum of uncertainty aware-
ness. Standard designs (Section 4.1) show no uncertainty
(interpolation only) or show it implicitly (interpolation with
sensors). Uncertainty-aware designs (Section 4.2) involve ex-
plicitly encoding uncertainty with either 2 (risk contour map)
or 9 (small multiples, dotmaps) possible outcomes. Previous
work [22] studied how visualizations representing differ-
ent amounts of uncertainty information influence the way
users interpret data aggregated from sensors. Their research
suggests that the amount of uncertainty shown affects our
mental models for interpreting data. We expect, then, that
our designs might elicit different types of reasoning. In these
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designs, we consider only the uncertainty due to the non-
systematic locations of air quality readings.

4.1 Standard Views
Interpolation only (Figure 4) shows no uncertainty, repre-
senting the status quo in air quality visualization. Contours
are based on the mean interpolated kriging estimate from
sensor detections (see Section 4.2). We include this view as
a baseline to understand typical reasoning.

Fig. 4: Interpolation only. The contours represent one esti-
mate based on sensor data, with no uncertainty information.

Fig. 5: Interpolation with sensors. Uncertainty is implied by
the conflict between sensor data and the best-fit interpola-
tion (larger=government-owned; smaller= PurpleAir).

Interpolation with sensors (Figure 5) represents a stan-
dard type of visualization available on air quality monitor-
ing sites. (Often, these views only show sensors and do not
include interpolation; we left that case out of this study.)
Research suggests that users prefer to be able to view con-
flicting individual data sources even when an aggregation—
in this case, the contour map—is available [23]. We indicate
relative reliability by encoding the government-owned sen-
sors with larger circles.

This view lets us ask how people’s understanding of
an interpolation changes if the underlying information is
also shown. Discrepancies between the raw data and the
chosen interpolation are an implicit representation of uncer-
tainty. Conflicts between different sensors show users some

ambiguity, perhaps encouraging thought about how the
interpolation was derived from the data, especially when
the measurements seem disparate from the interpolation.

Prior work suggests how users might interpret these
maps: people may aggregate information differently if given
access to uncertainty information, weighing each source
of information and taking its reliability into account [22].
Specifically, users are likely to mentally average the sensor
information together to reach a conclusion, maybe using a
weighted average if the sensors have different reliability.

4.2 Uncertainty Views

Researchers have proposed thinking of a set of possible
outcomes in an uncertain situation as multivalued data [24].
Distinct from multivariate or multidimensional data, in multi-
valued data, each datum has a collection of values for a single
variable (in our case, possible AQI values at each location).
The authors pointed out that few geospatial visualizations
had treated uncertainty as multivalued data without using
animation. Multiple linked displays have been used for
exploring ensembles of outcomes of simulated geospatial
data [25]. In the interest of public accessibility and distribu-
tion potential, however, we limit ourselves to static views.
Integrating uncertainty into the map itself is likely to be
more influential for people’s decisions than providing an
adjacent uncertainty view, and it may be easy to ignore
uncertainty information presented separately [26].

Significant work in geospatial visualization has focused
on techniques that can be integrated into static views, in-
cluding textures, transparency, hue, and value [27]. For ex-
ample, bivariate color maps have been proposed to integrate
data and uncertainty into one image [28]. A variant of this
idea is the Value-Suppressing Uncertainty Palette (VSUP);
encoding information and uncertainty in a VSUP encour-
ages reasoned, uncertainty-aware decision making [29].

In general, these approaches are more suited to showing
the magnitude of uncertainty rather than depicting the rela-
tive probabilities of possible outcomes. Texture and color-
based approaches work by downplaying or obfuscating
more uncertain information. Their underlying premise is
that differences among more certain data are more impor-
tant than differences among highly uncertain data [29].

Another approach to uncertainty visualization is to fairly
represent the relative likelihoods of different outcomes. Re-
cent work in uncertainty visualization has shown promise
in direct displays of these ensembles of potential outcomes.
For example, showing a sampled ensemble of hurricane
predictions can improve users’ ability to estimate danger
over summary displays, which depict the mean and its
spread [30], [31]. In this study, we focus on transferring
direct displays into a map context. We considered a wide
range of designs that could show direct displays of uncer-
tainty, ultimately using the following four designs.

To quantify the uncertainty information underlying
these views, we use kriging to describe a range of possi-
ble outcomes from measured sensor data. Figure 6 shows
how we sample this kriging grid to convey uncertainty for
different visual designs. The mean kriging-based estimate
for each grid cell is used to create the contours in the
standard views in Section 4.1. For the interpolation only
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Fig. 6: Creating small multiples and dotmaps from kriging
results. Uncertainty information is used to create an ensem-
ble of nine outcomes for each set of air quality readings.

option—showing a contour map without any uncertainty—
the interpolated visualization has a higher resolution, i.e.,
it samples more points on the kriging grid. When we add
in uncertainty information, we sacrifice some of the space
available for showing the mean estimate in exchange for
more information about the standard deviation.

Small multiples (Figure 7) align with current research
in uncertainty visualization. They are a frequency-framing
way to understand the uncertainty inherent in an estimate,
showing the different possibilities all at once. Showing
uncertainty with discretized outcomes may improve user
recall [32] and help with confident, optimal decisions [13].

In general, small multiples are not used to convey dis-
cretized uncertainty, though encoding comparisons of “mul-
tiple realizations” in geospatial uncertainty visualization
has been proposed [33]. In our case, it is a way to show
uncertainty via a direct display of possible outcomes. We
propose that this view might help users make optimization
judgments like whether to reduce their outdoor activity.

Previous work in visualizing multiple kriging results of
air quality data suggests that interactivity is vital, for users
to see how the probabilities change according to thresh-
old [34]. Without interactivity at our disposal, small mul-

Fig. 7: Small multiples. Uncertainty is depicted using nine
different possible interpolation outcomes given the same air
quality data, ordered from best-case to worst-case scenario.

tiples capture representative snapshots reflecting this type
of reasoning, showing the map at each of nine thresholds.
Note that in our case, the small multiples can be ordered
from most optimistic to most pessimistic scenario, while it
is not always possible to order uncertain outcomes this way.

Fig. 8: Ordered dotmap. The nine possibilities depicted in
the small multiples are overlaid here onto a single map, with
each 3x3 group of cells depicting nine possible outcomes.

Dotmaps (Figures 8, 9) are a way to show a discretized
representation of uncertainty at each point on the map. We
use groups of colored grid cells to represent the distribu-
tion of possible air quality estimates at that location (see
Figure 6). This idea was inspired by dotplots [13].

Similar static techniques have been proposed, using pix-
elation on maps to convey uncertainty. Building on previous
ideas including using texture and flickering pixels to convey
uncertainty, researchers have proposed a pixelated choro-
pleth map to convey uncertainty of a value within coun-
ties [28]. Using a monochromatic scale, pixels are assigned
colors based on random draws within the margin of error.

We include two different dotmaps in our study. One is
an “ordered” dotmap, with cells large enough to discern
individually, and ordered within their groups. This might
encourage users to compare relative frequencies of colors
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Fig. 9: Smoothed dotmap. The information is the same as in
the ordered dotmap, but each cell is smaller and the order
of the colors is randomized within each set of cells.

in different areas of the map. The second version is the
“smoothed” dotmap. To create these, we transform each 3x3
group of cells into a 9x9 group of smaller cells with the same
percentage of cells per color. These smaller cells are each
placed randomly within the outline of the original 3x3 grid.
Smaller grid cells may encourage users to visually interpo-
late the colors to come up with intermediate values. It may
be difficult to discern values in highly uncertain areas, since
they will look noisy. Previously proposed uses of texture
and pixelation for uncertainty in maps sometimes have
this goal of obfuscating more uncertain information [28], or
using lack of focus to suggest uncertainty [21].

In addition to encoding the ensemble of estimates,
dotmaps may also reduce the appearance of boundaries,
which have a strong effect on people’s perception of uncer-
tain map data [12]. Reducing firm borders may encourage
users to think more about uncertainty [21]. We also want
to see if people can use the ordered dotmaps to interpret
probabilities, or relative frequencies of outcomes. A similar
approach such as stippling may allow visualization design
that more finely tunes the tradeoff between clear borders
and local details [35].

Fig. 10: Contour map. The most likely interpolation is
shown, overlaid with contours and arrows depicting one
worst-case estimate.

Risk contour maps (Figure 10) are a hybrid approach,
emphasizing the default estimate but highlighting the pos-
sibility of the 75th percentile. This option presents a less
“fuzzy”-seeming view of uncertainty. The discrete bound-
aries in contour-based maps may have a strong impact on
how air quality is perceived; users may be judging the
significance of different air quality regions based on the size
of each area [36].

To create the maps, we show the median estimate map,
and overlay isocontours from the map of the 75th percentile
estimate. Due to some ambiguity in the contour shapes, we
include arrows in these visualizations to indicate the direc-
tion of worsening prediction. (For example, in Figure 10, the
median estimate for the orange area is shown, while the
75th percentile estimate for this area outlined in orange;
there is a chance the orange area might be as large as
the outlines.) This view shows less uncertainty information
than the small multiples or dotmaps, depicting two possible
estimates rather than nine. Contours are a familiar repre-
sentation, so using them to encode areas of heightened risk
may be intuitive and help acclimate users to thinking about
uncertainty. However, depicting uncertainty by adding dis-
crete boundaries to a map may be misleading by drawing
attention to the particular border placement [12].

5 EVALUATION

Evaluating uncertainty visualizations is notoriously diffi-
cult; defining evaluation tasks that consider uncertainty is
much more complex than those that do not [37]. In one sim-
ilar set of studies evaluating uncertainty-aware visualiza-
tions of bus arrival times, users were asked to decide when
to reach the bus stop in a given scenario, then they were
shown the outcome (the bus’s actual arrival time) [13] [38].
Users tended to learn to use the uncertainty visualization
designs to make better decisions over the trials, perhaps
aided by seeing the outcome of their decisions immediately.

With air quality visualization, defining tasks is even
more difficult. The decisions that one might make in re-
sponse to an air quality visualization are more categori-
cal than numerical (e.g., choosing to take actions such as
wearing a mask or staying indoors). There is no meaningful
immediate feedback to give on a user’s decision: the effects
of air pollution are often hidden and long-term, and in real
life, people have very little indication of how good their
decision-making around air pollution is.

For these reasons, we focus on aspects of the decision-
making process, rather than the outcomes of users’ choices.
One desired result is a set of explanations for how users
reach decisions in each view. We consider relative changes in
answers, and users’ confidence in their answers, rather than
soliciting probabilities directly, which may not translate well
to real-world decisions. These suggestions are outlined in a
recent survey of uncertainty visualization evaluation [39].

Our primary question is: How does the uncertainty rep-
resentation affect people’s decision-making? Does their under-
standing of the data change with different uncertainty rep-
resentations? We especially want to investigate how an ex-
plicit representation of the probability distribution compares
with an implicit suggestion of uncertainty.
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(a) Interpolation only. (b) Interpolation with sensors.

(c) Ordered dotmap. (d) Smoothed dotmap.

(e) Small multiples. (f) Risk contours.

Fig. 11: A set of stimuli for one of the user study scenarios. Users were asked to assume that they live and exercise primarily
within the circle indicated on the map.

5.1 User Study

Applying our study to the real world assumes that people
will put effort into understanding their air pollution risk,
and would make the same effort in reality. Answers to
this study may or may not reflect actions people would
take in their lives. To mitigate this, we recruited members
of our local community who had been exposed to fire-
related air pollution within the past year, corresponding to
the sample population in Section 2.4. Personal experience
has a significant impact on how people interpret maps,
and this group has a relatively small range of personal
experiences with air pollution compared with the global

population, which may help us hone in on the factors that
people use to make decisions with these maps. However, we
must be cautious generalizing results to the general public.
Of the 17 individuals (age 20-30) in the study group (7
female/10 male), 12 were Computer Science students and
5 were employed in other fields.

The in-person study followed a within-subjects design,
where each participant (n = 17) saw each of five scenarios
in each of six map types (30 total stimuli). We use scenario
to mean a particular time and location, with all available air
quality readings from PurpleAir and government sensors.
Each scenario was generated within a bounding box near an
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urban region in northern California. We chose dates during
2017 and 2018 with significant air pollution from wildfires in
these areas (for example, see Figure 11). (Participants were
only told that these were real scenarios.) Each stimulus im-
age contained a circle representing the region within which
the user would live and be active outside. Each scenario had
one circle location that was used for all six map types. The
circle locations were chosen to be away from edges and to
contain some amount of uncertainty. Each participant used
the same computer, which had a large enough screen size
for the grid cells in the ordered dotmaps to be discernible.

We first performed a pilot study of two test subjects,
using three of the scenarios. In the full study, each user was
shown each stimulus, first the interpolation-only view for
each scenario, then each other stimulus, in a rotating order
so that scenarios were not repeated before seeing each of the
others. The order of scenarios and map types was balanced
for each user, except for the interpolation-only map type.
For example, if a user was assigned the scenario order S0,
S1, S2, S3, S4 and the map type order M0, M1, M2, M3, M4,
they would first see: S0 × interp.-only, S1 × interp.-only,
..., S4 × interp.-only. Then, they would rotate through each
combination: S0 ×M0, S1 ×M1, S2 ×M2, S3 ×M3, S4 ×
M4; then S0 ×M1, S1 ×M2, and so on.

Before the study, each user was guided through the
same presentation which showed and explained each of the
map types for a sample scenario; they were allowed to ask
clarifying questions before starting the study.

For each stimulus, users were asked three questions:

• Q1. If you had plans to run/bike outside today,
would you reduce your plans? User answers on a 7-
point scale from “strongly disagree” to “strongly agree.”

• Q2. Where, if anywhere, would you go for relief?
User clicks on a point on the map.

• Q3. How confident are you in your answer? User
answers on a 5-point scale from “not at all confident”
to “strongly confident.”

Users were asked to think aloud as much as possible
while answering; we transcribed these answers and then
identified different types of phrases from among the re-
sponses. Q2 was included to elicit more discussion from
users about their decision-making process. Next to each
stimulus, a legend appeared showing the colors correspond-
ing to each AQI level (good, moderate, unhealthy for sensi-
tive groups, unhealthy, very unhealthy, hazardous). Each of
17 users answered the questions using all six map types for
all five scenarios, for a total of 510 observations.

6 RESULTS

To assess whether map type influenced users’ reported
reduction in physical activity and their confidence in their
decisions, we analyzed responses to Q1 (P ) and Q3 (C)
using generalized linear mixed models. We also performed
non-parameteric tests for P and C .

6.1 Quantitative Analysis: Physical Activity Change
For P , the model included scenario (S), map type (M ), and
the interaction between scenario and map type (S ∗ M ) as
fixed effects; we included individual (I) as a random effect

to account for the fact that an individual’s responses to
different stimuli are not independent. The sample included
510 responses (17 users × 5 scenarios × 6 map types).

P ∼ S +M + S ∗M + 1|I

We found that scenario (df = 4, F = 113.5, p < 0.0001),
map type (df = 5, F = 12.1, p < 0.0001), and scenario ×
map type (df = 20, F = 3.1, p = 0.0001) all had highly
significant effects on P .

Fig. 12: Values for users’ answers to Q1, grouped by map
type, after normalizing by individual and by scenario. Pos-
itive values (blue) reflect a higher reduction than the user’s
average for that scenario; negative values (red) reflect a
lower reduction than average. Mean and standard error
are within the gray boxes. The differences are statistically
significant for map types between groups A, B0, and B1.

To differentiate the effects of map types—ones that in-
clude uncertainty versus ones that do not—we performed
a post-hoc least-squares mean contrast, finding that P was
significantly lower for the Interpolation and Interpolation +
Sensors views than for the other four views (F = 50.9, p <
0.0001). That is, including uncertainty in a view led to a
higher reduction in physical activity. Within the uncertainty
map types, the Ordered Dotmap and Small Multiples led
to lower P responses than the Smoothed Dotmap and
Contours views (F = 7.54, p < 0.0063) (Table 1).

Still, the effect of map type was highly dependent on sce-
nario. Specifically, in one scenario, which showed extremely
high air pollution levels, individuals chose to reduce their
activity regardless of map type, leading to a significant effect
of S ∗M . Prior work suggests that the risk level has a higher
effect on users’ responses than the visual features of the
map, such as contours, focus, and how risk is encoded [21].

To check that this analysis is robust to deviations
from normalcy, we used a matched pairs non-parametric
Wilcoxon Signed Rank test. For a given individual in a given
scenario, responses to Q1 (P ) for the Interpolation and Inter-
polation + Sensors map types were, on average, significantly
lower than responses for the other four views (Test Statistic:
−883, p < 0.0001). In 54/85 cases, mean participant P
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map type mean P std. dev. std. error
interpolation 4.76 1.58 0.17

interpolation + sensors 4.92 1.76 0.19
ordered dotmap 5.32 1.43 0.16
small multiples 5.34 1.28 0.14

smoothed dotmap 5.59 1.22 0.13
contours 5.61 1.01 0.11

TABLE 1: Mean response to Q1. Each of the outlined pairs
has significantly different effects on users’ responses to Q1.

response to the non-uncertainty map types was lower than
it was for the four uncertainty map types, compared to
only 23/85 times where the other pattern was observed
(and 8/85 where they were equal). This test showed a less
significant difference between P responses for the Ordered
Dotmap and Small Multiples views vs. Smoothed Dotmap
and Contours views (Test Statistic: −442, p = 0.05).

These results suggest that our six visualization designs
can be categorized into two, or perhaps three, types, each
with different effects on users’ decisions (see Figure 12).
The first type (group A) includes the standard map types:
interpolation only and interpolation with sensors. Users
were most willing to continue their exercise outside when
judging air quality based on these maps. The second group
includes the uncertainty views, which may be broken into
two categories. Group B0 includes the frequency-framing
designs: small multiples and the ordered dotmap. (Though
smoothed dotmaps are created with the same frequency
information as the maps in groupB0, their resolution makes
it difficult to discern frequency.) Users’ responses to the
map types in group B0 were intermediate. The maps in
group B1 (risk contours and smoothed dotmap) are the
non-frequency-framing uncertainty views. Users reduced
physical activity the most in response to these maps.

The consistency of responses for P also varied depend-
ing on map type. We used a loglinear variance modeling
approach and found that in a model including scenario and
map type as mean effects, and map type as a variance effect,
map type had a significant effect on the variability of a
participant’s P responses (df = 5, χ2 = 29.4, p < 0.0001).
Variability of responses was highest for the Interpolation +
Sensors view, followed by Interpolation only. (In section 6.3,
we discuss reasons this might be the case.)

6.2 Quantitative Analysis: Confidence

We created a similar generalized linear mixed model to
analyze users’ confidence in their responses (C):

C ∼ S +M + S ∗M + 1|I

While scenario still had a highly significant effect on C
(F = 5.3, p = 0.0004), map type showed a less significant
effect (F = 2.3, p = 0.041), and scenario ∗ map type
was not significant (F = 0.9, p = 0.61). Using a Least
Squares Mean Contrast, we found that the Interpolation
and Interpolation + Sensors views led to significantly lower
confidence than the other views (F=9.8, p=0.002), but there
was no significant difference between Ordered Dotmaps
and Small Multiples vs. Smoothed Dotmaps and Contours
(F = 0.005, p = 0.95). Wilcoxon Signed Rank tests con-
firmed a significant difference between Interpolation and

Fig. 13: Q3 answers, grouped by map type, after normalizing
for scenario and individual. Positive values (blue) reflect
higher confidence relative to the user’s average for that
scenario; negative values (red), lower confidence. Mean and
standard error are within the gray boxes. The difference
in users’ responses is statistically significant between map
types in groups A and B.

map type mean C std. dev. std. error
interpolation + sensors 3.73 1.09 0.12

interpolation 3.89 1.04 0.11
small multiples 4.04 0.82 0.09

smoothed dotmap 4.04 0.97 0.11
contours 4.05 1.00 0.11

ordered dotmap 4.07 1.00 0.11

TABLE 2: Mean response to Q3. The first two map types
have a significantly different effect on users’ confidence than
the other four map types.

Interpolation + Sensors versus the uncertainty map types
(Test Statistic= −532, p = 0.016).

Users’ confidence was significantly higher for the uncer-
tainty views than for the two standard views (see Figure 13).
One caveat is that because we are not considering the
“correctness” of users’ answers, we cannot correct for the
“hard-easy effect” of confidence reporting [39]. Users often
deliberated for longer while making their decisions for the
uncertainty views, perhaps resulting in users perceiving
these decisions as more difficult and therefore reporting
higher confidence ratings for these map types.

6.3 Think-Aloud Results
We analyzed think-aloud transcriptions to understand how
users made decisions with each of the map types. We
transcribed users’ think-aloud feedback during the studies,
then identified types of phrases or reasoning that came up
repeatedly, grouping them into four categories:
Probability

• proportion: the user discusses ratios, such as “six of
the nine say it’s unhealthy” or “half and half.”

• cases: the user considers the best, worst, or likeliest
scenarios, usually using that phrasing.
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Fig. 14: Occurrences of each type of reasoning that was spoken aloud for each view. Outside information use was highest
for the non-uncertainty views, especially interpolation + sensors, which also led users to express the most doubt. Frequency-
based reasoning, especially using proportions or best and worse case scenarios, was very common for small multiples.
Both types of dotmaps led users to express similar types of reasoning.

• potential: the user talks about what the pollution
level “could” or “might” be.

Appearance

• colors: the user describes which colors are present in
the map, and their amounts.

• distance: the user makes judgments based on relative
distances away from areas of concentrated pollution.

• shape, size, area: the user makes judgments based
on the shape of the contours, or the overall map area
covered by a color.

• comparison: the user compares areas in the map to
one another based on appearance.

Outside Information

• forecast: the user speculates about how the pollution
will behave over time.

• external factors: the user discusses their own poten-
tial factors such as a friend coming into town, or says
that they would see how they feel on that day.

• speculate: the user speculates about information not
specified in the map, like nearby air polllution.

Distrust

• doubt: the user disbelieves the data shown or ex-
presses that an optimal choice cannot be made.

• difficulty: the user expresses difficulty in making a
choice or interpreting a map.

Figure 14 shows the number of occurrences of each of
these categories per view. Several patterns emerge:

6.3.1 Non-Uncertainty Views Encourage Qualitative Judg-
ments and Outside Information
For views without any uncertainty information, users most
often used external information to supplement the maps.
With the interpolation-only view, users considered shape,

size, area, or distance, often in conjunction with specu-
lating about variation over time or personal factors. With
the added information of the sensor data, users relied on
these factors less, often identifying aloud the colors in the
map. However, users in the interpolation-and-sensors case
more often used broad qualitative judgments and expressed
skepticism about the information. Decision-making became
dependent on personal judgment. Those with more experi-
ence with interpolating sensor data preferred this: “Showing
the sensors is good because I can build up my own interpolations.”

However, many users expressed doubt with the inter-
polation+sensors view, and, as shown in the quantitative
analysis, these views resulted in the widest variance in user
response. Research suggests that most people dislike ambi-
guity, preferring more certain information about risks [21].
This research finds that this ambiguity may increase or
decrease people’s risk reduction related to health, and that
personal experience also has a strong effect on people’s in-
terpretation of visualizations and maps. For a broader study
population reflective of the general public, these views are
likely to result in a wide range of interpretations, varying
due to individuals’ background knowledge and personal
response to ambiguous risk information. Designs that en-
courage reasoning independent of personal experience are
more likely to translate successfully to the general public.

6.3.2 Small Multiples Encourage Frequency Reasoning
Users mentioned probabilities and ratios most frequently for
the small multiples view. Some users were initially confused
by this view, but many developed their own strategies
for interpreting it over the course of the study, and some
commented in particular on its utility.

“I feel that it’s easier than I thought to use the nine views
because I can compare, and I can see the worst case. If it’s the
worst case, I won’t go there, it made me confident.”

The results from the quantitative analysis—small mul-
tiples yielded the least varied responses (see Figure 12)—



11

suggest that in general, users were able to apply consistent
reasoning to the small multiple maps. However, users occa-
sionally had low confidence when using the small multiples;
many people may need more help interpreting these maps.

6.3.3 Dotmaps: Similar Reasoning at Both Resolutions
The reasoning types were similar between the ordered
dotmap and smoothed dotmap, including a similar amount
of difficulty. The quantitative results suggest that though
reasoning was similar, the ordered dotmap led to more cau-
tious answers than the smoothed dotmap. Ordered dotmaps
and small multiples led to similar decisions, but frequency-
based reasoning was vocalized more for small multiples.

Particular visual features may contribute to increased
risk perception in the smoothed dotmaps. These maps often
left users uncertain of which colors in the AQI legend were
being represented, but gave them the impression of “a lot of
bad dots” and, therefore, increased risk. This effect indicates
that users’ interpretation of the smoothed dotmap view was
more similar to “noise annotation lines” [40].

The dotmap views were often the most difficult to inter-
pret, particularly the smoothed version. This was most true
with greater variation, since it became difficult to pick out
individual colors. Some of the stimuli lended themselves to
easier judgments about ratios for ordered dotmaps; users
mentioned proportion the second-most frequently using
this view. Users also again turned to qualitative judgments
or impressions of the shapes of polluted areas, sometimes
commenting that these maps made it easier to spot patterns
than to identify individual AQI values.

One user preferred these views, saying that the ordered
dotmaps are more effective when there is less variation:

“I like the one like random dots, and the little squares, the
matrix ones - those are relatively the same to me...but I prefer the
random one, because it’s more smoothly spread. Except for one
case, there is an area that’s all yellow but others, there are lines
and dots; for that one I notice it’s different and it’s easier to use
the matrix one. Maybe for some cases, this one is better and for
some cases, that one is better.”

Users’ ease in interpreting the dotmap views was
scenario-dependent. More work is needed to figure out op-
timal grid sizes given an amount of variation in air quality.

6.3.4 Contour Maps Suggest High Risk Potential
Looking at the contour view, users were most likely to
express potential, such as, “this area could be orange.” Iden-
tifying this potential often corresponded with choosing a
more cautious answer for the stimulus. This was sometimes
misinterpreted as showing how the air pollution might
evolve over time—an example of a deterministic construal
error, in which an easier explanation is substituted for a
more difficult one [14]—but decisions based on “potential”
and “forecast” were similar despite different rationales.
The contour view also often yielded the fastest and most
decisive-seeming answers. Some users mentioned feeling
particularly confident with the risk contour view:

“I think the arrows did a good job of me being confident in a
region being fine when you could see some boundary that...ended.”

“If I need to spend more time on analyzing the visualization, I
tend to have more confidence. So the boundaries with the arrows,
I feel more confident about those visualizations.”

Prior work supports the idea that users prefer the “cer-
tainty” of a contoured map like this, even though it is a sim-
plification of the underlying range of risk levels. Compared
to unfocused views like the dotmaps, focused contours may
result in stronger beliefs for higher risk levels [21].

7 CONCLUSION

Our results support that uncertainty information can help
users make decisions more confidently and with a higher
perception of risk, and that the choice of visualization
significantly affects users’ decisions. In particular, including
uncertainty information made people more cautious. In
line with recent research on uncertainty visualization and
decision-making in other domains, our results suggest that
users were most able to optimize their decisions—align their
choice with their risk tolerance—using a frequency-framing
rationale with a small multiples view. Standard maps that
show no or implicit uncertainty result in a more unpre-
dictable range of user responses, while using discretized
uncertainty may encourage more consistent responses, al-
lowing users to apply robust reasoning.

There are some important limitations to these findings
that we hope can be addressed in future studies. First, our
sample population was chosen for its specific recent expe-
rience with wildfire smoke, but generalizing these maps
to a wider population will involve a much broader range
of personal experience. While the users in our study were
able to ask clarifying questions about the maps, we did
not explicitly test to see whether users understand how
to correctly interpret the map types, just as might happen
in the real world. More work is needed to ensure that
people can interpret uncertainty views correctly, especially
outside of a study environment. Finally, to mimic a typical
experience, we showed the interpolation-only views to users
first, before they saw other views, so that their reasoning
would be closer to reasoning in the real world. Our findings
on non-uncertainty views compared to the others included
the interpolation+sensors map, which was shown in the
blocking order among the others. Still, there may have been
a bias resulting from this ordering choice.

Our results show potential for people to use uncertainty-
based maps to understand environmental risks, but the
designs presented here can be improved upon by combining
some of their strengths and optimizing features. We found
that scenario had a strong effect on users’ reported reduction
in physical activity, meaning that scenario and map type
both determine interpretation; more work is needed to
understand how each design behaves with a real range of
datasets. A larger follow-up study on a broader population
could inform designs that can be adopted by the general
public under a range of scenarios.
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