
1

CreatureShop: Interactive 3D Character
Modeling and Texturing

from a Single Color Drawing
Congyi Zhang, Lei Yang, Nenglun Chen, Nicholas Vining,

Alla Sheffer, Francis C.M. Lau, Guoping Wang, Wenping Wang

Abstract—Creating 3D shapes from 2D drawings is an important problem with applications in content creation for computer animation
and virtual reality. We introduce a new sketch-based system, CreatureShop, that enables amateurs to create high-quality textured 3D
character models from 2D drawings with ease and efficiency. CreatureShop takes an input bitmap drawing of a character (such as an
animal or other creature), depicted from an arbitrary descriptive pose and viewpoint, and creates a 3D shape with plausible geometric
details and textures from a small number of user annotations on the 2D drawing. Our key contributions are a novel oblique view
modeling method, a set of systematic approaches for producing plausible textures on the invisible or occluded parts of the 3D
character (as viewed from the direction of the input drawing), and a user-friendly interactive system. We validate our system and
methods by creating numerous 3D characters from various drawings, and compare our results with related works to show the
advantages of our method. We perform a user study to evaluate the usability of our system, which demonstrates that our system is a
practical and efficient approach to create fully-textured 3D character models for novice users.

Index Terms—character modeling, character texturing, interactive techniques

F

Fig. 1: CreatureShop converts arbitrary bitmap character drawings (left), using a set of intuitive user annotations
(second left), into watertight textured 3D meshes (right). Fox by Natalia Linnik (https://www.twitter.com/natalia
linn); used with permission.

1 INTRODUCTION

W ITH recent advances in virtual reality and bespoke
manufacturing, it is increasingly desirable to em-

power amateur users to create compelling digital content.
Character creation, in particular, has applications ranging
from animation and games to toy manufacturing and virtual
environments [1] [2] [3].

Creating a 3D character involves two major steps: mod-
eling the 3D shape of the character, and defining its surface
texture. Unlike professional modeling tools such as 3DS

• Congyi Zhang, Lei Yang, Nenglun Chen and Francis C.M. Lau
are with the University of Hong Kong. Email: cyzhang@cs.hku.hk,
lyang@cs.hku.hk, nolenc@hku.hk, fcmlau@cs.hku.hk.

• Nicholas Vining is with both NVIDIA and the University of British
Columbia. Email: nvining@cs.ubc.ca

• Alla Sheffer is with the University of British Columbia. Email:
sheffa@cs.ubc.ca

• Guoping Wang is with Peking University. Email: wgp@pku.edu.cn.
• Wenping Wang is with Texas A&M University. Email: wen-

ping@tamu.edu.

Manuscript received April, 2022; revised July, 2022.

MAX [4] or ZBrush [5], content creation tools for novice
users are usually domain-specific and aim to make their
operation as intuitive as possible. Diverse modeling tools
have been proposed for modeling character shapes, either
using free-hand sketching interfaces [1], [6], [7] or by taking
advantage of existing 2D drawings [3], [8], [9], [10]. Many
separate solutions have also been proposed for texturing
3D models; several interactive tools [11], [12], [13] focus on
painting the surface texture directly [11], or synthesize a sur-
face texture from multiple images capturing different views
of the object [12]. While these methods produce compelling
texture on 3D shapes in the hands of professional artists,
they rely on the artistic skill of the users or assume complete
surface coverage by multiple-view images.

Exploiting 2D drawings for 3D character creation offers
numerous advantages. Perhaps the most notable advantage
of 2D drawings is that they can specify both a character’s
shape and its surface texture at the same time. Characters
are also typically drawn with poses and in views that con-
vey a maximal amount of information about the character’s

ar
X

iv
:2

20
8.

05
57

2v
1

 [
cs

.G
R

]
 1

0
A

ug
 2

02
2

https://www.twitter.com/natalia_linn
https://www.twitter.com/natalia_linn

2

shape and appearance, allowing viewers to ideate the drawn
character from novel poses and views. 2D drawings also
allow users to create characters from a wealth of legacy
content, and to create characters by first drawing or painting
with traditional media and then digitizing the results using
a consumer scanner or phone.

Many existing techniques for converting character draw-
ings to 3D shapes [2], [3], [10], [14] only operate on char-
acters drawn orthogonally from the side; other approaches
[8] let users create characters based on 2D drawings with
arbitrary views by defining a series of simple geometric
proxies, then letting users manipulate them to approxi-
mately represent reference drawings. The resulting shapes
do not produce high-fidelity reconstructions that represent
the input drawings faithfully, and are therefore not suit-
able for downstream applications such as 3D printing or
digital media. Generally speaking, previous methods either
generate character surface geometry without considering
surface texture, or obviate the need for sophisticated texture
reconstruction by exploiting the requirement that characters
are drawn from the side view only. In both cases, these
methods fail to take full advantage of the descriptive ability
of 2D character drawings. Creating a fully textured character
from a drawing from an arbitrary descriptive view remains
an open problem.

To address this problem, we present CreatureShop, an
interactive system that enables amateur users to construct
varied creatures and characters from a single input drawing
of a reference character drawn from a descriptive viewpoint.
As adjusting a 3D viewport is considered demanding for
amateur users [8], we restrict user interactions to a single
view and image, and only require that the user annotates the
drawing with a set of simple 2D annotations (Fig. 2a); from
these annotations, we generate complete, plausible surface
shapes and textures that are consistent with the reference
image.

A key challenge in modeling individual creature body
parts, or components, from a single drawing is that only
the outline of the component is provided; these outlines
are inherently ambiguous and often non-planar [9]. We ob-
serve that bilateral symmetry in creature images, specifically
visual clues such as eyes and noses, serves as a crucial
cue that viewers use when ideating both the shape and
orientation of individual creature body parts. We therefore
design a set of simple user tasks to identify these cues in
an input drawing, and then solve for bilaterally symmetric
shapes with projected drawing-plane constraints given by
part outlines; we can then exploit these outlines and anno-
tations further in order to produce plausible surface textures
for the geometry of individual components (Fig. 2b). After
modeling and texturing individual components in a part-
based fashion, we then merge the textured components into
a watertight character model, and combine multiple texture
patches from individual components to produce a seamless
texture over the character surface geometry with smooth
transitions. As some portions of the creature are invisible in
the input drawing, they may not have texture information
that can be directly leveraged; we therefore use a surface-
based inpainting technique to tackle this challenge, which
generates seamless textures on occluded or invisible texture
regions using context from faithful regions (Fig. 2c).

Our technical contributions are as follows:

1) We propose a character modeling method that can
create creature geometries with details from a single
reference image using a minimal set of 2D annota-
tions;

2) We show how to automatically produce plausible
seamless textures for the generated creature models
by leveraging the 2D texture of the input drawing;

3) Finally, we design a user-friendly interactive system
that integrates the modeling and texturing steps
to create a fully textured character from a single
reference drawing.

As shown in our results, CreatureShop fulfills our design
goals of taking bitmap drawings, leveraging simple user
tasks, and producing high-quality character geometry with
visually pleasing textures. We evaluate the performance of
CreatureShop by showing a number of models created from
color drawings by artists of various skill levels and using
various media. We validate our approach by a pilot user
study, which shows that our chosen interactions are natural
and intuitive and that our generated models agree with
viewer expectations. We also exhibit high-quality, watertight
models made by novice users with no prior modeling ex-
perience within 14 minutes using our system. We compare
our work to prior automatic and semi-automatic systems
for character modeling from images, producing models of
comparable or better quality from their input drawings and
showing how their systems fail on inputs that CreatureShop
successfully handles. Finally, since we generate textured
watertight meshes, we show colored 3D printed toys created
from drawings by our system.

2 RELATED WORK

Our work is related to three areas of previous work: single-
view character modeling, character texturing, texture in-
painting and generation.

Single-View Character Modeling. The key challenge when
generating a character model from a single character draw-
ing is that arbitrary character drawings can be extremely
ambiguous or open to multiple interpretations; producing a
valid character model requires resolving these ambiguities.

Prior knowledge is often useful for specific tasks, or
for assisting sketch-based modeling. [15] models 3D ani-
mals from user-clicked single images by fitting 3D mesh
templates to drawings. The modeling category is confined
to the animal template being used, which makes it hard
to extend to more general cases in character drawings.
[16] uses a convolutional neural network model to process
both single- and multi-view sketches. For the single view
case, their method can create faithful surfaces patches for
the original view, but cannot complete the back side to
compose a watertight model. [17] recovers a single 3D object
from its single-view image and produces coarse shape and
texture on it. A recent neural rendering based symmetric
geometry inference method has been proposed to generate
depth maps for realistic single-view photos [18]. Complete
and complex shapes and delicate textures are still hard to
generated with learning-based methods, especially for non-
realistic drawings.

3

Non-learning based approaches use domain-specific as-
sumptions to resolve such ambiguity, as shown in [9]. As-
sumptions are typically made to restrict the shapes under
consideration - e.g. mirror-symmetric shapes in [19], sweep-
ing surfaces in [20], and generalized cylinders as geometric
primitives in [8] and [9]. Further assumptions are made in
different approaches, such as limiting the input drawings to
frontal views [21] or side views [3], [10], or assuming that the
silhouette of the body part is planar and perpendicular to
the view direction [19], [22]. Our system requires no specific
views in the input drawings and makes no assumption
of planar silhouettes. Instead, we exploit mirror symmetry
to simplify the user interactions required to create organic
parts with fine details.

Our method is similar to prior art (e.g. [8], [23], [20],
[24]) in that it asks users to outline parts of the drawing to
denote component elements; we further ask users to provide
additional strokes with respect to the reference drawings,
since these additional inputs provide useful information for
both modeling and texturing. The key difference between
the modeling section of our method and Gingold et al. [8]
is that their method solely creates generalized cylinders and
ellipsoids; our created parts are more general and directly
agree with the original outline specified by the user, im-
proving geometric fidelity. Olsen et al. [23] assume that user
strokes and consequently part outlines always lie on the
fixed canvas drawing plane; by allowing users to specify
part midlines and symmetry points, we do not have any
such restriction. The tool developed by Andre and Saito [20]
requires users to draw certain cross-sectional profiles of the
shape satisfying specific geometry relationships; manually
specifying these geometric relationships is demanding for
novice users. Similar curves are used in CreatureShop, but
the geometric relationship is automatically determined by
our modeling system rather than by users. Yeh et al. [24]
provide a set of interactive tools allowing users to create
2.5D high relief models from photos. Unlike CreatureShop,
the outputs of their method are not fully textured 3D
models, and are thus not suitable for 3D printing or other
downstream applications.

Character Texturing. Many previous works on 3D model
creation from reference drawings have presented their mod-
els with textures; however, the texture is directly projected
onto the surface ([3], [9], [21], [23]) resulting in distorted
textures and poor quality results. [21] expands the boundary
of the texture region for frontal view drawings to resolve
the distortion caused by this parallel projection approach,
but the success of this method largely depends on texture
complexity near the boundary. Recently, a category-specific
learning-based automatic modeling and texturing method
has been proposed [25] which estimates the pose, shape,
and plausible texture of zebras in photographs; it is unclear
how this method can be generalized to arbitrary drawings.
We propose a general approach for texture mapping that
alleviates distortion near outlines for arbitrary views.

Another category of character texturing work lets users
paint textures onto 3D surfaces interactively [11] [26], to
create texture maps for models using given decals [13], or
use multi-view images for texture synthesis [12] [27]. Those
approaches require additional workflow following model
creation. To the best of our knowledge, no previous work

has addressed the problem of simultaneously extracting a
character model and texture from a single input drawing.
Additionally, no previous work that we are aware of has
explored how best to generate plausible textures for oc-
cluded and back-facing regions of models from character
drawings when only a single view is available. To the best
of our knowledge, an integrated pipeline for seam repair as
well as texture completion using the same user input as the
modeling phase has not been devised yet.

Image inpainting and texture synthesis. Our surface textur-
ing method is related to the image inpainting problem in
patch based synthesis; see [28] for a recent survey. [29] is
capable of merging two source images or complete missing
regions in a image using a content-aware manner based on
PatchMatch [30]. Direct use of image inpainting methods
requires a planar parameterization that contains the target
region, which would produce either distortion or discon-
tinuity, especially in regions with complex geometry. This
motivates our approach, which performs inpainting on the
manifold surface rather than the image domain. [31] [32]
both extend texture synthesis algorithms from rectangular
domains to arbitrary manifold surfaces, and [33] transfers
properties such as color texture between two surfaces using
a mesh-based PatchMatch algorithm; however these meth-
ods all discretize texture information to colors on mesh
vertices, resulting in low resolution inpainting unless the
number of vertices on the mesh is sufficiently high. Con-
sequently, the newly generated texture will be blurry and
will have obvious seams between the visible and inpainted
regions. To address this, we develop a surface-based inpaint-
ing to generate seamless high resolution results without
increasing time consumption.

3 SYSTEM OVERVIEW

CreatureShop takes a bitmap drawing and a series of user
annotations as input, and produces a watertight character
model with a plausible texture in a part-based manner. As
lifting a 2D character from a single drawing to 3D is an
ill-posed problem, the system relies on two assumptions
to produce satisfactory results. First, we require that the
input drawing is sufficiently descriptive; more specifically,
we require that the input drawing presents a character from
an oblique or side view with an orthogonal projection, and
that the target character is not drawn in the frontal view.
Second, we assume that the output character has bilaterally
symmetric geometry and texture, in order to allow us to
make the best use of the textural information contained in
the input drawing. In what follows, we first introduce the
four user annotations (and tasks) that are provided in the
interface for creating individual components with textures,
and then present a general pipeline to produce a textured
character model.

3.1 User Annotations.
CreatureShop provides four simple, intuitive user annota-
tion tools that are applied to the 2D drawing plane to create
individual textured components; we then leverage these
annotations and components to create the final 3D textured
character. We allow the user to perform four basic an-
notations: component outlining; specifying the orientation

4

(a) User annotations (b) Components and their symmetry planes (c) A novel view

Fig. 2: CreatureShop workflow. Starting with a set of user annotations (a), CreatureShop produces a set of individual
components (b) that are combined to create a fully textured character model (c, here seen from a novel view). Tiger
obtained from https://www.pngwing.com/en/free-png-zzzye, under license for non-commercial use.

of the symmetry plane; identifying symmetric component
features; and defining the midline. The first two operations
create basic shapes, and the second two are used to refine
the basic shape.

The outline of a component, denoted o, is the planar curve
that bounds the region occupied by the component in the
drawing (purple lines in Fig.2a). Component outlines are
used to confine the projection of the overall shape of the
component to be in correspondence with the reference shape
in the input drawing. The outline of each component is
depicted by refining the outline of the overall character in
our user interface.

The orientation of the symmetry plane defines the orienta-
tion of the component with which it is bilaterally symmetric.
The orientation of the symmetry plane is useful for assign-
ing symmetric textures by reflection, maximizing the use
of the visible texture from the reference drawing, and for
defining the geometry of each component. Users can drag a
line segment to imply the normal direction of the symmetry
plane in the drawing plane.

Pairs of symmetric landmarks, such as eyes, form important
cues from the drawing for establishing bilateral symmetry.
Users are quickly able to identify such landmarks in Crea-
tureShop by linking a line segment to connect them (green
dashed line in Fig.2a); we then exploit these pairs to create
more details to the geometry.

The midline of a component, denoted m, is the 2D pro-
jection, in the drawing plane (blue lines in Fig.2a), of the
symmetry curve M (blue lines in Fig.2b). The symmetry
curve is intersected by the shape and its unique symmetry
plane. The midline is useful for controlling local shape
features around the symmetry plane of components, such
as a protruding nose on a face, which are unique features
in the symmetry plane and cannot be defined solely by
symmetric landmarks. Users are able to adjust the initial
shapes of midlines generated by our system and see real-
time feedback in 3D view, which is presented next to the
drawing canvas in our user interface.

3.2 Pipeline

Our algorithm can be divided into two stages, a modeling
stage and a texturing stage. Both stages operate from the
same input bitmap and user annotations; the modeling stage
defines a set of body parts based on the input bitmap and
user annotations, while providing real-time visual feedback
as annotations are defined. The texturing stage, in turn, em-
ploys the same set of annotations as the modeling stage to
define texture information for the entire creature, including
areas of the creature where texture information is occluded
or otherwise not present in the original drawing.

The major steps taken to create a fully textured character
in CreatureShop are as follows:

User Part Annotation. Given an input drawing sat-
isfying our descriptive view assumption, the user starts
by extracting the overall character region from the input
drawing, and then segments each body part of the character.
The result of this stage is a set of partially overlapping
subregions.

Creation of Individual Body Parts. Given a sparse set of
planar annotations with different semantics, we formulate
the creation of plausible 3D geometry as a constrained
optimization problem. Using the outline as a constraint,
the user can orient the symmetry plane for each body
part to produce components in a satisfactory pose and
with plausible textures. Pairs of symmetric landmarks and
midlines can be identified and adjusted interactively at this
stage, as the user wishes, to add geometric details to the
components (Section 4.2). Each individual body part is then
automatically textured using the previously specified user
annotations (Section 4.3).

Character Composition with Complete Texture. Finally,
we assemble components and assign texture information
to the complete creature to produce the final model. For
individual body parts, we provide users two ways to specify
their desired depths and symmetry planes: individually or
as a pair (for parts with intrinsic symmetry). For body parts
that are created in pairs (e.g. legs), we also transfer the
texture from the body part at the near-view side to that at the

https://www.pngwing.com/en/free-png-zzzye

5

far-view side, so as to ensure the indicated part symmetry
during modeling (Section 5.2). Users may further adjust
these default estimations as they wish.

The well-positioned body parts are then unified into a
seamless, watertight mesh. However, there are still some
ill-textured regions to be handled due to self-occlusion or
occlusion between components. The system automatically
detects and fills these ill-textured regions (Section 5.1). The
resulting output is a 3D character model with a fully de-
fined, plausible texture.

4 CREATION OF A SINGLE BODY PART

In this section, we focus on how a single component is
created from the outline and additional annotations fur-
nished by users. We formulate this as a shape optimization
problem that must reliably lift the user’s 2D annotations to
form a smooth surface mesh in 3D. We first describe the
shape optimization framework, and then show how differ-
ent annotations are incorporated to help shape the geometry.
Finally, we introduce a simple yet versatile texturing scheme
to produce reliable texture information on the visible side of
the 3D surface mesh; this reliable texture information will
then be extended over the entire creature during the final
component merge phase.

4.1 Shape Optimization Formulation

CreatureShop uses a set of visual cues, such as body part
outlines, to find a smooth shape to approximate the un-
derlying component. As identified in the drawing, these
visual cues are two-dimensional and have only X and Y
coordinates; our first task is therefore to find the depths (or
Z values) for these visual cues. For simplicity and without
loss of generality, throughout the paper we will define the
drawing plane to be located at Z = 0, and the Z-axis is
assumed to be opposite to the view direction.

We derive a smooth, plausible and bilaterally symm-
metric surface geometry by extending the Fibermesh shape
optimization framework proposed in [7], which finds a
smooth shape from a set of definite spatial curves con-
straints by interleaving smoothing surface curvatures. In
our case, we extend this framework by adding a set of
depth-variable spatial constraints with inherent symmetric
shape constraints. We first compose an initial discrete trian-
gular mesh structure and then deform it to the final shape
using our proposed optimization. The initial mesh struc-
ture is symmetric about the outline curve o; we generate
one side of the mesh structure via constrained Delaunay
triangulation using the outline o as a boundary constraint.
Specifically, we triangulate the target region with dense
triangles (> 1600), controlling those triangles to be uniform
and as close to equilateral as possible by imposing a maxi-
mum triangle area constraint and a minimum triangle angle
constraint. This triangulation strategy helps convergence
when solving Fibermesh, which was observed to be unstable
in certain conditions [34]. We then reflect the triangles across
the symmetry plane π (initialized as Z = 0, the drawing
plane) and join the boundaries together. We then inflate
this shape using the Fibermesh algorithm. The collection of
vertices lying in π form a set M delineating the midline of

the shape. For all other vertices on one side of π we can
find corresponding vertices on the opposite side, forming
symmetric pairs about π. The set of all pairs of symmetric
vertices about π is denoted S . For efficiency, during the
optimization, the mesh connectivity remains unchanged.

We use the first step of the optimization framework
proposed in [7] to solve Laplacian magnitudes {ci} and
edge lengths {ei} both of which smoothly vary over the
surface:

arg min
c

{∑
i

‖L(ci)‖2 +
∑
i

‖ci − c′i‖
2

}

arg min
e

{∑
i

‖L(ei)‖2 +
∑
i

‖ei − e′i‖
2

} (1)

where L(·) denotes the discrete graph Laplacian, and {c′i}
and {e′i} are the current Laplacian magnitudes and average
edge length incident on vertex i on surface respectively.

Fig. 3: The mesh vertices in the green region forms the set
S, each of which has a symmetric correspondence at the
other side of the symmetry curve M (blue line), which is
composed by a closed loop of vertices lying on the symme-
try plane π. The projection constraints set B, for example,
are illustrated as purple vertices in the right figure; their
projection on the drawing plane lies on the outline (purple
line in the left).

To account for the variability of the depth of the shape
silhouette whose projection on the drawing plane is the
outline, we augment this basic formulation with a set of
symmetry-related constraints to recover the surface geom-
etry along with the Laplacians and edge lengths solved
above, as well as constraints derived from the user-specified
planar annotations. The formulation of the second step
yields:

arg min
v
{αcEc + αeEe + αsEs + αmEm + αpEp} . (2)

In Eq.2, the discrete Laplacians termEc and edge lengths
term Ee are chosen to ensure the smoothness and mesh
quality of the surface mesh, respectively, as per [7]; they
are defined as follows:

Ec =
∑
vi∈V

‖L(vi)− δi‖2, (3)

Ee =
∑

(vi,vj)∈E

‖vi − vj − ηij‖2, (4)

6

where δi = Ai · ci · ni, Ai and ni are area and normal
estimates for the vertex i; V is the set of all vertices,
E the set of pairs of vertices connected by edges, and
ηij =

ei+ej
2 · v′

i−v
′
j

‖v′
i−v′

j‖
.

The symmetry-related constraints include two terms,
Es and Em. The first term is a symmetric vertex pair
constraint that ensures pairs of symmetric vertices residing
on either side of the mesh remain symmetric during the
modeling process. The second term is designed to encourage
the midline vertices to stay in the symmetry plane during
optimization.

Es =
∑

(vi,vj)∈S

‖nπ ·
vi + vj

2
+ d‖2 + ‖nπ × (vi − vj)‖2,

(5)

Em =
∑

vi∈M
‖nπ · vi + d‖2. (6)

where π is the symmetry plane with equation ax+by+cz+
d = 0, nπ(a, b, c) is the unit normal of π, S is the set of all
symmetric pairs of vertices about π in the mesh, and M is
the set of vertices in the symmetry plane.

The last term in Eq.2 is a projection constraint term that
incorporates the user-specified annotations in the drawing
plane:

Ep =
∑
vi∈B

‖P (vi)− p̄i‖2. (7)

where B is the set of projection constraints, p̄i are the target
positions in the drawing plane of the vertices and P is the
orthogonal projection that maps v(vx, vy, vz) ∈ R3 to the
drawing plane, i.e. P (v) = (vx, vy).

The linear least squares problems Eq.1 and Eq.2 can
be optimized by solving two linear systems separately. We
alternately minimize those two objective energies to obtain
a result shape.

All α’s in Eq.2 are coefficients to balance those energies.
We use fixed values of αe = 1 and αs = αm = αp = 1000
for all our examples; αc = k #E

#B is estimated dynamically
relative to the mesh connection and projection constraints.
We allow users to adjust k to control the thickness of results
as shown in Fig.4.

(a) (b) k = 1 (c) k = 0.1

Fig. 4: The effect of the thickness term k. (a) shows the
outline and midline on drawing plane (front view). (b) and
(c) are top views of the result shape using different values of
k, symmetry curves are in blue lines, projection constraints
are in purple points.

As the mesh connectivity is unchanged after deforma-
tion, the pre-factorized matrices in the least-squared system

of Eq.1 can be re-used with new constraints in an interactive
rate. We found that alternating between Eq.1 and Eq.2 for
approximately 5 iterations quickly converges to a satisfac-
tory solution.

4.2 Modeling the Surface Geometry

4.2.1 Creating base shapes with the outline and symmetry
plane

Based on our proposed method, modeling a base shape
requires only the outline and a well-posed symmetry plane
π given the user. To help users specify the symmetry plane
easily, CreatureShop adopts the following user interaction
strategy. The system initially creates a symmetric surface
mesh with the outline and the symmetry plane at z = 0,
in which case the optimization formulation is equivalent to
FiberMesh [7]. The user is then asked to rotate the symmetry
plane (and thus the shape) to a new pose from the drawing
plane z = 0 to approximate the depicted body part in the
2D drawing.

Given the properly rotated shape and its symmetry
plane, we seek an optimal sequence of one-to-one matchings
between points from the outline {p̄i} and the mesh vertices
{vj} from the shape silhouette. We find this sequence by
employing a Hidden Markov Model approach, as proposed
in [35]. We then enforce the requirement that vertices in the
optimal sequence {voi } must have their projections in the
drawing plane to be {p̄i} by adding projection constraints
using Eqn. 7 during the meshing process, with vi as 3D
vertices and p̄i as their 2D targets.

4.2.2 Refining base shapes via user annotations

The base shape created by the previous method only makes
use of the outline and the orientation of the symmetry plane,
and thus lacks details to enhance the underlying body part.
Other user-specified cues, such as the symmetric landmarks
and the shape of the midline, are valuable when defining
the user’s intended body part shapes. To this end, we allow
users to incorporate these cues as additional constraints for
shape refinement.

4.2.2.1 Symmetric landmarks as constraint: Given
a specified symmetry plane π and a pair of symmetric
landmarks, p̄1 and p̄2, in the drawing plane, we can easily
find the nearest pair of symmetric vertices vi and vj on the
mesh that best approximates the 3D positions p1 and p2 of
the landmark points. (We note that Bae et al. [36] provides
a single-view symmetric curve epipolar sketching tool for
expert designers by adopting similar geometric principles
to recover 3D curves from single-view 2D curves.) In our
method, 3D coordinates of symmetric landmarks are solved
in a least-square manner that both enforces the symmetry
and accounts for any imprecision made by users or in the
reference drawing.

arg min
vi,vj

{‖nπ ·
vi + vj

2
+ d‖2 + ‖nπ × (vi − vj)‖2

+ ‖P (vi)− p̄1‖2 + ‖P (vj)− p̄2‖2}
(8)

By adding the indices i and j of v1 and v2 to the projection
constraint set B, we can solve for the refined shape by Eq. 2.

7

4.2.2.2 Midline as constraint: The midline m pro-
vides important information for inferring the underlying
shape, but it is well-established [37] that even expert artists
have a hard time drawing an accurate midline for a shape
in a single stroke; we therefore allow users to reshape the
underlying geometry by interactively editing the midline in
the drawing plane. This amounts to specifying the projected
coordinates of the vertices in the symmetry curve, which
again contributes to the projection constraint set B. We
note that the in-the-symmetry-plane term Em only restricts
vertices in M to reside in the symmetry plane; thus the
additional midline constraint and term Em serve as com-
plementary terms for yielding the user’s desired 3D shapes.

As shown in Fig.5, the midline can be used to reshape
the geometry near the symmetry plane, while adding sym-
metric landmarks can enhance details of the geometry.

(a) (b) (c) (d)

Fig. 5: Modeling a gorilla’s head with an outline and ad-
ditional inputs. The midline and the symmetric features
largely enhance the visual quality of the geometry. In the
reference drawing, the outline, midline and symmetric pairs
are edited by the user (a). The final textured shape is shown
in (b). The symmetry plane is rotated with only the outline
constraint to produce the base shape (c). The base shape
is then refined by editing the midline and adding several
pairs of symmetric landmarks, as shown in (d). Gorilla from
https://www.vectorstock.com, purchased under standard
license.

4.2.3 Manipulating the orientation of the symmetry plane
So far, we have assumed that a reasonable orientation of
the symmetry plane is given for modeling a 3D shape
by the outline and a few pairs of symmetric landmarks.
However, accurately specifying the orientation of a 3D plane
is challenging for novice users in the modeling system. To
obtain a reasonable orientation for the symmetry plane, we
assume that the symmetry plane can be found by rotating
the drawing plane. The applied rotation can be represented
by an axis and an angle of rotation; the axis of rotation can
be inferred from the drawing, and the user then only needs
to specify the rotation angle by dragging the mouse. (Please
see the supplementary video to see this system in action.)

Our system uses a simple geometric relationship to find
the rotational axis Ω. On the one hand, Ω must also be the
intersection line that lies in both planes; thus its direction
can be represented as (Ωx,Ωy, 0). On the other hand, as we
assume that the symmetry plane can be found by rotating
the drawing plane z = 0 around Ω, it follows that Ω must
always be perpendicular to the symmetry plane normal nπ ,
and thus to P (nπ), the projection of nπ in the drawing
plane. P (nπ) can be determined easily from the direction of

Ω

Fig. 6: The rotation axis (shown in blue) is approximately
orthogonal to the feature pairs (shown in green) in the
drawing.

any pair of symmetric landmarks, such as a pair of eyes, in
the reference drawing; the rotational axis Ω perpendicular
to it and passing through the center of the outline is then
uniquely defined (see Fig. 6).

Since determining the depth information with 2D planar
constraints is an ill-posed task, the rotation angle θ must be
inferred by the user by dragging the mouse.

CreatureShop provides users with an interactive way to
estimate the rotation angle θ. The estimation is achieved by
asking users to drag a line whose direction is orthogonal to
the rotational axis of the symmetry plane and whose length
reflects the magnitude of the rotational angle. In this way,
the user is able to interactively rotates the symmetry plane
by dragging the line in the drawing plane, and is provided
with a real-time visualization of the projection of a rotated
circle (please refer to the demo of modeling process in the
supplementary video).

4.3 Texturing the individual component

Visible texture

Texture from symmetry

View plane

Invisible texture

Symmetry plane

View direction
(a) (b)

Fig. 7: Texture visibility. When there is an angle from the
view plane (or the drawing plane) to the symmetry plane,
there must be an invisible region (red region), even under
our assumption of bilateral symmetry. We refer to this
region as ill-textured. To handle this region, we propose a
surface-based texture inpainting method to equip the final
character model with a high-resolution texture.

We make use of the content in the reference drawing
to texture the created shape. As the outline confines the
region of the component in the drawing and bounds the 3D

https://www.vectorstock.com

8

geometry surface as well, a natural starting point is simply
to map the content in the confined region to the surface
via orthogonal projection. This method produces a pleasing
texture when viewed at the original viewpoint, but usually
leads to distortion near the silhouette observed from novel
views. To tackle this problem, we adopt the orthogonal
projection as the initial state, and fix the texture coordinates
on the silhouette and the midline (purple dots and the blue
line in Fig.7b) as a boundary condition; we then solve for
a harmonic mapping h that maps (x, y, z) from the surface
mesh to the desired texture coordinates (u, v) ∈ R2:

∆u = 0, ∆v = 0, s.t.(ui, vi) = (ūi, v̄i), i ∈ I, (9)

where ∆ is the discrete Laplace operator computed on
the surface mesh, (u, v) are the texture coordinates of the
surface, (ū, v̄) are the texture coordinates of the drawing
computed via orthogonal projection, and I are the indexing
set of constraint vertices.

To avoid texture distortion near salient features (e.g.
eyes), CreatureShop allows the user to add identified pairs
of symmetric landmarks to the boundary conditions I to
make sure that they look faithful from arbitrary views.

Using only a single reference drawing, it is impossible
to faithfully recover the texture on the invisible side of the
shape. As we have assumed that all body parts are bilateral
symmetric, we simply mirror the texture on the half side
of the shape with larger visibility to fill the other side of
the shape to cover as much region as possible. This works
perfectly only when the body part is presented from an exact
side view; otherwise a small portion of the surface mesh is
still ill-textured (the red region in Fig.7b). We resolve this
final ill-textured region via a texture completion pass once
all body parts are positioned correctly and merged together.

5 CREATING A CHARACTER

Our system infers a default depth for each created body
part, so that they can be positioned for assembly; users
may further adjust the depth when needed. Once all body
parts are correctly positioned, the system merges them by
performing a series of boolean union operations, smoothing
the joining regions of the parts, and finally outputting a wa-
tertight character model with a full texture. The remaining
issue of ill-textured regions is addressed automatically at
this stage by a surface-based texture completion method.

In the following section, we detail the surface-based
texture completion for the fully textured character creation.
This is followed by brief discussions of other implementa-
tion details (i.e. default depth estimation and detection of
ill-textured regions).

5.1 Texture Inpainting over the Surface

As explained in Section 4.3, incomplete textures are in-
evitable even when bilateral symmetry is leveraged for
texturing surface geometry. We therefore aim to use content
from the well-textured regions to inpaint any incompletely
textured regions, with the eventual output being a seamless
texture over the entire surface geometry of the character
model after all constituent body parts are merged. Ill-
textured regions may be disconnected and scattered over

the surface. To avoid cluttered notation, we first consider the
problem of surface-based inpainting in the case where there
is only one connected ill-textured region. Our approach can
then be easily generalized to handle multiple regions.

To avoid possible artifacts (including distortion or un-
expected seams) due to one global planar parameterization,
we perform the texture completion directly on the surface
geometry by extending an image inpainting method [29]
to surface meshes. We fulfill this goal by using the local
Geodesic Polar Map (GPM) and Geodesic Polar Coordinates
(GPC) [38]. The GPM provides a local parameterization
of a given region from curved meshes, while the GPC
provides a local geodesic-preserving coordinate system in
the parametric domain.

This extension from images to 3D surface meshes
requires addressing the conflict between low-resolution
meshes for efficient computation and high-resolution tex-
ture images for quality output. We note that while some
previous work on surface-based texture synthesis and in-
painting (e.g. [32], [33]) simply processes colors at mesh
vertices, this approach is not sufficient for our needs as it
fails to capture delicate patterns and details that may be
present in the reference drawing. To attain high-resolution
textures with a low-resolution mesh, we therefore create
a new texture image with sufficiently high resolution for
the ill-textured target region under a new texture param-
eterization, which is built via a locally injective mapping
approach [39]. Other parameterizations can be used as well;
our results do not depend on the choice of parameterization,
unless squeezed regions lead to insufficient resolution in
areas when the parameterization is far from isometric.

We denote the ill-textured region as target region T and
the complement of T on the surface as the source regions
S. Our task is to generate a consistent texture over T using
the content from S. Two major steps are alternated in the
general patch-match framework, namely a search step for
finding similar patches from S and a color voting step to
generate texture in T the concerned region.

Geodesic discs centered at mesh vertices are used as
a substitute of the patches in image-based tasks. Each
geodesic disc D(vi) covers a small number of faces sur-
rounding its center vertex vi. We build a local GPM for each
vertex, which parameterizes covered faces in a geodesic
preserving manner; we then construct a GPC within a
geodesic disc of radius r. The collection of discs cover-
ing a portion of the target region is termed the target
set T = {D(vi)|D(vi) ∩ T 6= ∅}, and the collection of
discs covering only the source region forms the source set
S = {D(vi)|D(vi) ⊆ S}.

The geodesic disc is sampled uniformly in GPCvi
with

respect to the polar coordinates defined on it. The sample
points on the disc can be represented as {(θj , rk)|1 ≤ j ≤
n, 1 ≤ k ≤ m} in the GPCvi

. The source texture image
has five channels: three color channels in LAB color space
and two gradient channels of luminance. We operate on
L*a*b color space following [29] and [30], and employ the
gradient following Darabi et al.’s conclusion that gradients
are helpful when extending PatchMatch to preserve struc-
tural textures. Colors and gradients at sample points are
concatenated (denoted as I(θj , rk) = (L, a, b, λ∇xL, λ∇yL);
λ = 0.2 is a constant balancing magnitudes between colors

9

and gradients); we may therefore define the distance be-
tween two discs D(vs) and D(vt) as below:

d(D(vs), D(vt)) = min
0≤`≤n−1

∑
j,k

‖Is(θj+`∆θ, rk)−It(θj , rk)‖.

(10)
where {θj} are uniformly sampled in a counterclockwise
direction with a step of ∆θ = 2π/n, The optimal matching
angle between the two geodesic fans can be represented as
α = ˜̀∆θ.

To efficiently find the optimal matching disc in S for
every disc in T using the disc similarity distance defined
above, we use a search method similar to [33] which extends
the well-known image patch-based search method Patch-
Match to meshes. We call the mapping from a disc to its
optimal matching disc the Nearest-Neighbour Field (NNF).

After finding NNFs in the search phase, a new texture
is generated via voting; the colors and gradients of each
pixel in the target texture image is voted on by all the
discs that cover it in the texture domain. Backtracking the
colors (and gradients) of a pixel in the target image from
the source image is not straightforward, requiring passing
through two GPCs defined on target and source geodesic
discs, respectively; see Fig.8. In this process, the pixel of
interest needs to be located in each GPC by interpolating
the texture coordinate in the corresponding parameter do-
main. For a median-resolution target texture image with
500K pixels, this location query could be computationally
prohibitive. To accelerate this procedure, we propose the
following approach that is well suited to parallel processing
using GPU shader pipelines.

Target Image

T

S

p

q

GPCp

D(p)

NNF(D(p))

GPMp

Source Image

GPCq

GPMq

fq
-1

fp

Fig. 8: Voting procedure in our surface inpainting method.
For an unknown p in the target surface region T , the colors
in its disc D(p) are voted on by its optimal matching disc
D(q) = NNF(D(p)).

As illustrated in Fig.8, for each disc D(p) from target set
T , we have its NNF D(q) from source set S obtained in
the searching step. First, we rotate the GPCq clockwise by
the optimal matching angle α about its center GPMq(q)
to generate GPCq. A new texture mapping fq can then
be obtained which maps GPCq to the source image do-
main. Second, we rasterize the textured GPCq to a high-
resolution intermediate image Ĩ and apply to Ĩ a Gaussian
falloff filter centered at GPMq(q), which can be finished
via GPU pipeline. Third, using the intermediate image Ĩ

as the texture of GPCp, we map Ĩ to the target image
via the texture mapping fp. Each pixel in the target image
contains (three) color channels, (two) gradient channels and
a counting channel, where the color and gradient channels
accumulate relevant values voted from Ĩ, and the counting
channel keeps record on the number of votes. This phase
can be finished by alpha blending using GPU. Finally, we
compute the colors and gradients at each pixel in the target
voting image Ivote by dividing the accumulated colors and
gradients at this pixel by the number of covering discs. To
finalize the voting results, the new color Inew can then be
computed by minimizing the energy

E =
∑

(Inew − Ivote)
2 + λ‖∇Inew −∇Ivote‖2 (11)

to correctly blend colors and gradients; this is a discrete
screened Poisson equation that can be solved efficiently [29].

After each voting phase, the geodesic fans in T and the
optimal disc distances d(D(p)) are updated. We compute
the total energy E =

∑
D(p)∈T d(D(p)), and compare it

to the previous pass. We iterate the search and vote steps
until the difference of total energies between two sequential
passes is less than some threshold (we use 0.01 in our im-
plementation). We then rebuild all the discs using a smaller
disc radius r̃, update set S and T , and repeat the search
and voting phases. This process terminates once the radius
reaches the pre-defined threshold. The pseudo-code of our
algorithm is shown in Alg.1.

5.2 Assembling and unifying body parts
To facilitate the positioning of body parts created, we design
two ways for users to indicate whether body parts are
paired (or intrinsically symmetric) that reside at both sides
of the existing parts. If a body part is created alone, then its
initial depth and symmetry plane are inferred using a central
positioning scheme; otherwise, we use a biased positioning
scheme to estimate depths and symmetry planes for both
body parts. In the latter case, the textures of the two body
parts are enforced to be as similar as possible as well via a
further step of texture transfer from one to the other.

5.2.0.1 Central Positioning: When a new individual
component Mi is created and its outline oi overlaps those
of other existing parts, we find the part Mj whose outline
has the largest overlapped region with oi. Reusing the
symmetry plane πj ofMj , we can create the base shape of
Mi automatically. Sometimes this rule will lead to a result
where Mi and Mj have no actual intersection in 3D. In
such a situation, we shoot a ray passing through the center
of overlapped region of the two outlines and find first two
intersection points withMj in 3D space. We then compute
their average depth d and set the symmetry plane ofMi to
πi : z = d to create a base shape.

5.2.0.2 Biased positioning: When two intrinsically
symmetric components Mi and Mj are created together,
their outlines should overlap with a common parent part
Mk. We shoot a ray passing through the center of the
overlapped region of outlines oi and ok and find the first
intersection point pi(xi, yi, zi) with Mk. Set πi : ak(x −
xi)+bk(y−yi)+ck(z−zi) = 0 to be the symmetry plane of
Mi, where (ak, bk, ck) is the normal of plane πk. Then the

10

Algorithm 1: Texture inpainting over the surface
Input : Well textured source regions S and target

regions T to be filled
Output: Compatible textured entire surface

Initialize T by solving Poisson equation with
boundary condition on ∂T ;

Assign a large fan distance d(p) to each disc
D(p) ∈ T ;

for scale r from rmax → rmin with step size rs do
while True do

Compose geodesic discs set S and T with
radius r;

Randomly select a disc D(p0) ∈ T ;
foreach p visited in breadth-first traversal
order started from p0 on the mesh and
D(p) ∈ T do

Collect all adjacent points that have
been traversed in {ai(p)};

foreach q that is the center of
NNF(D(ai(p))) do

Randomly select a disc D(q̃) ∈ S ;
d(p)←
min{d(p), dist(D(p), D(q)),
dist(D(p), D(q̃))};

Update NNF(p);
end

end
Vote(NNF);
Recompute all the geodesic fans and d(p);
if Total energy unchanged then break;

end
end

base shape of Mi can be generated. The same way can be
adopted again to assemble Mj except that the intersection
point pj should be found on the opposite side of πk against
pi.

This system provides users with only an initial guess
which can be further edited easily. Users can adjust the
depth of each component to change the assembly relation
to its connected components according to user preference.
Users may pose the shape by orienting its symmetry plane
as described in section 4.2.3. The rotation center in this case
is the center of junctions, so that connectivity between the
new shape and its parent shape is ensured.

When two body partsMi andMj are created as intrin-
sically symmetric, the partially occluded one Mj usually
has the wrong texture (see Fig.9a), since its texture directly
comes from its projected region in the image. We therefore
must copy the texture from the occluded-free body part
Mi toMj . We compute a set of pointwise correspondences
between the symmetry curvesMi andMj via inner-distance
shape context [40] (Fig.9b). By confining the matching re-
sults to have at least one pair that maps from one junction
region to the other, we can get rid of the upside down
mismatch between two tube-like limbs. We also enable
users to specify several key correspondence pairs if the
poses of two parts are largely different. We then compute
planar parameterizations of Mi and Mj , both bounded

(a) (b)

(c) (d)

Fig. 9: Texture transfer between two intrinsically symmetric
body parts. (a) illustration of two body parts, and the right
one has the wrong texture; (b) pointwise correspondences
achieved by IDSC method [40]; (c) the proxy circle domains
(left) and the planar parameterization generated by [39]
(right); (d) the transferred texture from the left one to the
right one.

by the symmetry curves. To avoid severe flips in such a
parameterization, we first transform the entire region to a
proxy convex planar region (a circle in our implementation)
using a Harmonic mapping (see Fig.9c); we then deform
the boundary of each circle to the shape of the symmetry
curveMi, which is based on the correspondences built in the
first step for the occluded one, and compute the positions
of inner points using [39], see Fig.9c. Finally, for arbitrary
position on the occluded body partMj , we can interpolate
a position on Mi via this parameter domain. Hence, the
texture coordinates fromMi can be transferred toMj , see
Fig.9d.

We then unify the geometries and their texture data by
performing boolean union operations among all connected
parts. The merged geometry is smoothed by Laplacian
smoothing to avoid unnatural junction, and we interpolate
texture coordinates of vertices in the new mesh by querying
the closest point in the original mesh. Texture may have dis-
continuities around junctions especially on occluded sides;
to overcome such issues we compute harmonic mappings in
all junction regions to stitch their texture coordinates. Tex-
ture coordinates continuity will result in seamless textures,
since the original drawing image is used as the sole common
texture image for all parts before the inpainting phase.

After merging the geometries as well as stitching the tex-
tures, we obtain a unified model with watertight geometry
but implausible textures in regions that were occluded or
not present in the original drawings. To address this prob-
lem, we detect all ill-textured regions and furnish them with
textures using a surface-based texture inpainting technique
as described in Section 5.1. Detecting ill-textured regions is

11

made non-trivial, owing to the harmonic mapping applied
to minimize texture distortion. Since we leverage mirror
symmetry to texture individual body parts, we determine
the so-called positive facets in the mesh which reside at the
positive side of the symmetry plane, and then determine
visibility of the negative facets based on their symmetric
correspondences, reducing the complexity of the problem.
As harmonic maps are used to transfer texture from the
drawing to the surface, we rely on the UV texture co-
ordinates of each facet, instead of its spatial coordinates,
to determine its visibility over the texture. In particular,
when a texture coordinate may be referenced by several
facets, we set only the facet which is least distant from the
original viewing position to visible; all others are considered
invisible as they are occluded by the visible facet.

6 EXPERIMENTAL RESULTS AND VALIDATION

We demonstrate the versatility of our method by exhibiting
a dozen character models with full textures that are created
using CreatureShop. Additionally, we validate our algo-
rithms and design choices by comparison against ground
truth models; comparisons to previous work; a small-scale,
informal user study; and by 3D printing toy creature models
made using our system.

If not explicitly marked by annotations, body parts
shown in this section are made without thickness/depth
adjustments. We find that torsos and limbs sometimes need
additional rotation when they do not share the same ori-
entation as heads; ears and tails always need thickness
adjustment.

6.0.0.1 Results: The gallery in Fig.10 presents sev-
eral 3D textured models created by CreatureShop, includ-
ing characters of different types from reference drawings
realized in different media or styles. In each row, we show
(from left to right): the input drawing; the input drawing
with user annotations; the output of CreatureShop from
the original view; the output of CreatureShop from a novel
view; and the unshaded surface geometry. User annotations
are colored as follows throughout the paper: outlines in
purple, midlines in blue, user’s specified rotation axes in
orange, and symmetric features in green.

As the heads of all creatures have plenty of features in
the reference drawings, we use the outline and the symme-
try plane rotation for each as obligatory inputs when shap-
ing them. We incrementally edit midlines or add symmetric
texture features as optional operations until satisfying de-
tails are added to the shape. Torsos and limbs usually lack
symmetric landmarks, and thus are shaped purely using
the outlines. The orientation can be evaluated by inheriting
from the adjacent part automatically. If the user’s desired
orientation is not achieved, users can further drag rotation
instruction segments to change the orientation (orange lines
in our gallery show such additional interaction by users).
In our user interface, outlines are furnished by segmen-
tation from character contours; symmetric texture features
can be indicated from visual cues; midlines can be edited
by picking the control points on midline and dragging to
its target position in drawings. When symmetric features
are absent, rotation instruction segments are dragged by
users to obtain an oblique symmetry plane according to

its direction and length (following the rules described in
4.2). Modeling oblique parts with symmetry features can
generate satisfying results directly without further adjusting
the orientation of the symmetry plane in all of our results.

The rotation preview can give users a real-time feedback
in the modeling process. Some objects with thinner geom-
etry (e.g. ears) can be shaped by adjusting a slider bar in
our user interface which controls αc in equation.2 in the
modeling section. These user’s operations yield compelling
geometries as shown in the output models from both origi-
nal and novel views, supporting our design choices and the
claim that quality geometry can be created easily with the
designed set of user annotations.

We also exhibit several character models produced from
drawings with complicated textures. We are able to con-
vincingly synthesize seam-free textures for the entire model.
Fig.11 shows details of our texture inpainting result on the
tiger model with zoom-in views. No visible seam can be
seen on the boundary of the ill-textured region and the
colors in the region are seamless and correctly blended
across the entire model. The result appearance is natural
and reasonable, considering they were generated from only
a single view drawing with no additional human editing or
repainting.

6.0.0.2 Runtime Efficiency.: The efficiency of our
inpainting method is related to the number of vertices and
the size of new texture images. In our implementation, the
vertices number of models ranges from 10k to 20k. The
new texture images are set to 400 × 400. It costs less than
2 minutes each model to complete the texture inpainting
process in our experiments.

6.1 Validation
We quantitatively validate our geometry modeling method
by comparing the created character to a ground-truth model,
shown in Fig.12. The ground truth is a given 3D model
and the reference image is rendered from a known view
angle. The model was created with CreatureShop using the
following order of operations: segmentation to body parts,
modeling separate (pick eyes as symmetric features to com-
pute symmetry plane of the head and other parts inherit the
head orientation), and finally blending together and inpaint-
ing ill-textured regions. Geometry errors are depicted in the
color map with red indicating larger errors. The mean error
is 0.8262% with regard to the bounding box diagonal of the
reference model and the max error is 5.6287%. One of the
hindmost legs of the cat deviates notably from the ground
truth, which is because the symmetry plane of the torso is
not evaluated accurately. The ground-truth normal of the
symmetry plane is (0.695,−0.228, 0.683), while the esti-
mated normal is (0.617,−0.248, 0.746), the angle between
them is 0.0946 in radian (no more than 6 in degree). We
consider this deviation tolerable for an interactive modeling
tool that converts 2D bitmap drawing to 3D models.

6.2 Printed Toys
As the created models by CreatureShop are watertight and
readily for fabrication, we also present some of the 3D
printed version of character models by our system in Fig.13.
The models are printed using a ProJet CJP 660Pro with
VisiJet PXL material.

12

Fig. 10: Left to right: input drawings, user’s markers with CreatureShop, output models and textures presented from the
original and novel viewpoints. Original images in Row 1, 3, 7 are purchased under license from https://www.dreamstime.
com. Levantado by Mark Adlington in Row 2 licensed for journal publication use from https://www.bridgemanimages.
com. Dinosaur in Row 5 is purchased under standard licensing terms from https://www.canstockphoto.com. Zebra in
Row 6 obtained under CC-by-SA license from https://www.wikihow.com.

https://www.dreamstime.com
https://www.dreamstime.com
https://www.bridgemanimages.com
https://www.bridgemanimages.com
https://www.canstockphoto.com
https://www.wikihow.com

13

(a) Before inpainting (b) After inpainting

Fig. 11: Texture inpainting result. The occluded region
(marked as the inner region within the green dash line) is
completed by reasonable textures.

(a) Input image (b) Result created
by CreatureShop

(c) Visualization of
the per-vertex error

Fig. 12: Validation of our method through comparison
between a ground-truth model (left) and a reconstructed
model using CreatureShop.

6.3 User Studies

The UI design is examined through a small-scale, informal
user study to collect feedback. This user study consisted
of 10 amateur users with few prior modeling experience,
4 female and 6 male. All the participants had no artistic
inclinations; none of our users were professionals. Subjects
were asked to create, with CreatureShop, a single part with
symmetric landmark pairs and an entire character as shown
in Fig.5a and Fig.1, respectively.

A 20-min tutorial was provided prior to the modeling
test, which introduced the four annotations and basic op-
erations in CreatureShop. The subjects were given 20 min-
utes to get hands-on experience with the system, and they
all agreed that specifying symmetric features and editing
midlines were easy tasks for them. During the tutorial, they
only practiced basic operations using reference images that
are different from target images.

After the tutorial, they were given two modeling tasks
as described above. From the result, we can see the time for
modeling the single body part (the gorilla’s head shown
in Fig.5a) ranges from 2 to 4 minutes. Modeling the fox
character (shown in Fig.1) required more time, ranging from
8 to 14 mins. We consider this reasonable because the fox
character has 7 body parts in total. Most of the body parts
are created with outlines and rotated symmetry planes.

From the interview with the subjects after the model-
ing tests, we were told that all the interactions are easily
mastered and both the resulting shape and texture are
satisfactory.

Fig. 13: 3D printed toy models using the textured character
models made by CreatureShop.

To compare our system against prior art, we asked
users to model the fox character using RigMesh [1] as
well. Similarly, we provided a 20-min tutorial and a 20-min
practice for RigMesh. Users were then required to create a
3D model based on a reference image that was imported to
RigMesh as the background image within 30 mins. We then
compared the usability of CreatureShop and RigMesh by
using the System Usability Scale (SUS) [41]. The SUS score
of CreatureShop is 72.5; in contrast, RigMesh is 47.25. The
significance of the comparison was verified by a Wilcoxon
Signed-Rank test (p = 0.0215). We conclude that for the task
of creating 3D models from single images, CreatureShop is
more user-friendly for novice users than RigMesh. We show
the user models created during this comparison in Fig. 14;
we observe that the models created by CreatureShop are
more plausible than those created by RigMesh, especially
when seen from a novel view.

6.4 Comparison to Prior Art

Our results are compared to several state-of-the-art methods
for character modeling.

We compare our system to that proposed in Andre &
Saito [20] (Fig.15). Besides tracing a silhouette curve, the
method by Andre & Saito [20] requires users to specify
multiple intersecting ellipsoids that form a local orthogonal
frame for lifting the 2D curves to 3D space (Fig.15a), which
seems to be demanding for amateur users to do so. While we
require users to draw only one curve each part based on the
visual cues from the reference (purple lines in Fig.15c) and
pairs of symmetry features to estimate orientation (green
lines in Fig.15c). The parts without symmetry features can
directly inherit the orientation of its adjacent parts. After the
shape is created, users can further adjust midlines (blue lines
in Fig.15c) to fit the drawing. This is made possible at the
only expense of allowing interactions and providing a 3D
preview for examination. But this effortless demand from
users largely ensures the quality of our created characters,
being not susceptible to low-fidelity annotations marked by
amateurs.

14

Fig. 14: Character models created by our users in the user study. The top 4 rows were created with CreatureShop, showing
the original and novel views with and without textures. The bottom 2 rows were created with RigMesh, showing the
original view and a side view.

(a) (b) (c) (d)

Fig. 15: Comparison with the interactive modeling method
in Andre & Saito [20]. Their user’s annotations (a) are more
complex than ours (c) in that segmentation of the head and
cross-sections for modeling are required. With fewer and
more intuitive annotations, we show a comparable result
(d) to theirs (b).

We also compare CreatureShop to NaturaSketch [23],
which allows viewport selection and rotation of created
components for assembly, by creating a textured model from
one of their inputs. As shown in Fig.16, our results generally
better capture the shape and fine geometric and textural
details of the fish; the body looks more streamlined than
theirs, and the dorsal fin on the top of the model by our

(a) Input image (b) NaturaSketch [23] (c) CreatureShop

Fig. 16: Comparison of our outputs to NaturaSketch [23].
The fish obtained by our system, in particular the eyes and
fins, looks more natural when compared to that by [23].

system is thinner. The separately created eyes of our model
are correctly angled as well. Finally, the pectoral fins at
both sides of the model in ours are created separately and
assembled to the body, while only the texture of these fins
are mapped to the surface mesh in theirs. This comparison
shows that CreatureShop can create models at a higher
level of complexity compared to NaturaSketch, but in a
much easier environment, which requires neither view-port
selection nor 3D rotations of body parts.

A third comparison is made to the method of Bessmelt-

15

(a) (b) (c) (d)

Fig. 17: Comparison of our output with Bessmeltsev et al.
[9]’s using the same input image (a). The result mesh of
Bessmeltsev et al. is shown in (b). Our method produce not
only watertight integral mesh model (d), but also faithful
texture on it (c).

sev et al. [9] as is shown in Fig. 17. Bessmeltsev et al. [9]
require that the user creates a fully articulated 3D skeleton in
a CAD program such as Maya in order to realize a character
model. This process of making a plausible skeleton by
referring to only 2D drawings may be difficult for amateur
users, as no 3D preview can be relied on for visual examina-
tion. We produce a similar model without this cumbersome
requirement. Unlike their output, our mesh is watertight
with smooth junctions.

(a) User’s annotations (b) Our textured character

(c) The original view (d) A novel view

Fig. 18: Our textured model (b) made with Gingold et al.
[8]’s data (a). (c) and (d) are the underlying geometry from
different views.

We make a fourth comparison to Gingold et al. [8],
which uses generalized cylinders as building blocks for
character modeling. Although the two systems bear a lot
of similarities in UI designs, the essential difference is that
our annotations are designed for texturing purposes while
theirs for constructing structural relationship among the
body parts. A character model was created with one of
their reference drawings, shown in Fig.18. As our results can
faithfully reflect both the global pose and detailed muscular
curvatures, our results are more desirable when a greater
details are in favor.

Finally, we compare CreatureShop to Monster Mash [3],
which focuses more on character animation and is limited
to side-view modeling and parallel projection texturing. We
created a bull model (the input drawing can be seen in the
second row in Fig. 10) using Monster Mash [3]. Although

(a) Monster Mash [3] (original
view)

(b) Monster Mash [3] (novel view)

(c) CreatureShop (original view) (d) CreatureShop (novel view)

Fig. 19: Our result compared with Monster Mash [3]. (a) and
(b) show the model made by Monster Mash [3], rendered
from original view and a novel view respectively. (c) and
(d) show the model made by our method from original view
and a novel view respectively.

Fig. 20: Limitations of our system. From left to right: the
input reference, the 3D models from the original view and
from a novel view. Both original images are purchased
under license from https://www.dreamstime.com.

the original view created by MonsterMash shows plausible
visual effects (Fig. 19a), the 3D model has problematic
geometry and texture, which can be viewed from a novel
view (Fig. 19b). In contrast, CreatureShop is designed for
oblique-view modeling and therefore produces better re-
sults compared to Monster Mash [3].

Limitations and Future work Our system makes use of a
mirror-symmetry assumption and thus has difficulty deal-
ing with extremely asymmetric shapes like ears. For shapes
like paws and legs with slight asymmetry, our results are
still visually satisfactory. More effort is required for creat-
ing a shape with high levels of fine-scale details, such as
asymmetric paws of the cat due to the different toes. We
handle spatially curved geometry, such as the tail of the
mongoose shown in the top row of Fig.20, by treating it as

https://www.dreamstime.com

16

a planar contour, which makes CreatureShop unsuitable for
modeling body parts such as intertwined limbs. We cannot
properly handle parts depicted from a frontal view due to
incomplete information; for instance the face of the cat at
the bottom line of Figure 20 can only be produced with the
outline and treat the shape as a round shape with no other
features on it. In future work we hope to exploit perceptual
cues or drawing tactics for the frontal view case, and to
leverage more intelligent techniques or geometric insights
for the latter. For the texturing part, we cannot cope with
asymmetric facial expressions which are often important
in drawings. This is because the structural information is
missing, which leads to implausible texture completion.
CreatureShop generates textures that are symmetric about
the midline; this may be unnatural for many limbs, where
the front-facing texture on a creature limb may be different
from the back (i.e. the front and back of each leg on the
tiger). Two-side textures are often presented in input images
(Fig.10), with one or more limbs providing an ideal view
of the front texture, and one or more limbs providing an
ideal view of the back texture. An optimal solution would
be to stitch both front and back textures, taken from dif-
ferent limbs, together for each individual limb. However,
we found that it is hard to do so, because textures drawn
separately on different limbs are not always compatible with
each other (for instance, the limb stripes for the tiger in Fig.2,
or the stripes on the zebra in Fig.10). In the future we would
like to incorporate data-driven techniques to help tackling
the texturing and modeling challenges where severe occlu-
sion occurs. Finally, some hyperparameters are fixed in our
current implementation (e.g. the size of smoothed regions
after merge operations), which could easily be exposed in
future versions of the software.

7 CONCLUSION

We present CreatureShop, an interactive system that allows
amateur users to quickly create a fully textured character
model from a reference bitmap drawing. To provide an
interface for modeling and texturing tasks suitable for am-
ateur users, we design a set of simple, intuitive annotations
that are effectively used in both modeling and texturing
sessions. These user-specified annotations help the system
to resolve ambiguities inherently present in character draw-
ings, and to create compelling geometries with details. The
same set of annotations used to create geometry can also
be used to fully texture the resulting meshes based on the
reference drawing. With our system, users can produce fully
textured, high-quality character models within 14 mins,
validating our design choices. We also show that our results
are comparable or better than those made by prior art.

ACKNOWLEDGMENTS

Wenping Wang’s research was partially supported by the
Research Grant Council of Hong Kong (GRF #17211017).
We acknowledge the support of Adobe and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN-2018-03944 (“Broad-Based Computa-
tional Shape Design”). The authors would like to thank Bin
Chan, Kun Zhou, Yotam Gingold, Hao Pan, Loretta Yi-King

Choi, Chengkun Cao, and Yanhong Lin for their instructive
suggestion and generous help on the project. Finally, the
authors deeply appreciate the assistance of Natalia Linnik
and her willingness to allow us to feature her fox art.

REFERENCES

[1] P. Borosán, M. Jin, D. DeCarlo, Y. Gingold, and A. Nealen,
“Rigmesh: Automatic rigging for part-based shape modeling and
deformation,” ACM Trans. Graph., vol. 31, no. 6, pp. 198:1–198:9,
Nov. 2012.

[2] L. Feng, X. Yang, and S. Xiao, “Magictoon: A 2d-to-3d creative
cartoon modeling system with mobile ar,” in 2017 IEEE Virtual
Reality (VR), 2017, pp. 195–204.

[3] M. Dvorožňák, D. Sýkora, C. Curtis, B. Curless, O. Sorkine-
Hornung, and D. Salesin, “Monster mash: A single-view approach
to casual 3d modeling and animation,” ACM Trans. Graph., vol. 39,
no. 6, Nov. 2020.

[4] “3DS MAX,” https://www.autodesk.com/products/3ds-max/
overview, 2021.

[5] “ZBrush,” http://pixologic.com/features/about-zbrush.php,
2021.

[6] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketching
interface for 3d freeform design,” in Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 409–416.

[7] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Fibermesh:
Designing freeform surfaces with 3d curves,” ACM Trans. Graph.,
vol. 26, no. 3, Jul. 2007.

[8] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations for
2d-to-3d modeling,” ACM Trans. Graph., vol. 28, no. 5, pp. 148:1–
148:9, Dec. 2009.

[9] M. Bessmeltsev, W. Chang, N. Vining, A. Sheffer, and K. Singh,
“Modeling character canvases from cartoon drawings,” ACM
Trans. Graph., vol. 34, no. 5, pp. 162:1–162:16, Nov. 2015.

[10] E. Entem, L. Barthe, M.-P. Cani, F. Cordier, and M. van de Panne,
“Modeling 3d animals from a side-view sketch,” Computers &
Graphics, vol. 46, no. Supplement C, pp. 221 – 230, 2015, shape
Modeling International 2014.

[11] T. Igarashi and D. Cosgrove, “Adaptive unwrapping for inter-
active texture painting,” in Proceedings of the 2001 Symposium on
Interactive 3D Graphics, ser. I3D ’01. New York, NY, USA: ACM,
2001, pp. 209–216.

[12] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y. Shum,
“Texturemontage,” ACM Trans. Graph., vol. 24, no. 3, pp. 1148–
1155, Jul. 2005.

[13] R. Schmidt, C. Grimm, and B. Wyvill, “Interactive decal composit-
ing with discrete exponential maps,” ACM Trans. Graph., vol. 25,
no. 3, pp. 605–613, Jul. 2006.

[14] S. Ramos, D. F. Trevisan, H. C. Batagelo, M. Costa Sousa, and J. P.
Gois, “Contour-aware 3d reconstruction of side-view sketches,”
Computers & Graphics, vol. 77, pp. 97–107, 2018.

[15] A. Kanazawa, S. Kovalsky, R. Basri, and D. Jacobs, “Learning
3d deformation of animals from 2d images,” Computer Graphics
Forum, vol. 35, no. 2, pp. 365–374, 2016.

[16] C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang, “Robust
flow-guided neural prediction for sketch-based freeform surface
modeling,” ACM Trans. Graph., vol. 37, no. 6, pp. 238:1–238:12,
Dec. 2018.

[17] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik, “Learning
category-specific mesh reconstruction from image collections,” in
Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchis-
escu, and Y. Weiss, Eds. Cham: Springer International Publishing,
2018, pp. 386–402.

[18] S. Wu, C. Rupprecht, and A. Vedaldi, “Unsupervised learning of
probably symmetric deformable 3d objects from images in the
wild,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020, pp. 1–10.

[19] F. Cordier, H. Seo, J. Park, and J. Y. Noh, “Sketching of mirror-
symmetric shapes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 11, pp. 1650–1662, Nov 2011.

[20] A. Andre and S. Saito, “Single-view sketch based modeling,” in
Proceedings of the Eighth Eurographics Symposium on Sketch-Based
Interfaces and Modeling, ser. SBIM ’11. New York, NY, USA: ACM,
2011, pp. 133–140.

https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
http://pixologic.com/features/about-zbrush.php

17

[21] P. Buchanan, R. Mukundan, and M. Doggett, “Automatic single-
view character model reconstruction,” in Proceedings of the Interna-
tional Symposium on Sketch-Based Interfaces and Modeling, ser. SBIM
’13. New York, NY, USA: ACM, 2013, pp. 5–14.

[22] O. A. Karpenko and J. F. Hughes, “Smoothsketch: 3d free-form
shapes from complex sketches,” ACM Trans. Graph., vol. 25, no. 3,
pp. 589–598, Jul. 2006.

[23] L. Olsen, F. Samavati, and J. Jorge, “Naturasketch: Modeling
from images and natural sketches,” IEEE Computer Graphics and
Applications, vol. 31, no. 6, pp. 24–34, Nov 2011.

[24] C.-K. Yeh, S.-Y. Huang, P. K. Jayaraman, C.-W. Fu, and T.-Y. Lee,
“Interactive high-relief reconstruction for organic and double-
sided objects from a photo,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 7, pp. 1796–1808, 2017.

[25] S. Zuffi, A. Kanazawa, T. Berger-Wolf, and M. Black, “Three-d
safari: Learning to estimate zebra pose, shape, and texture from
images “in the wild”,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 5358–5367.

[26] N. A. Carr and J. C. Hart, “Painting detail,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 845–852, Aug. 2004.

[27] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or, “Seamless
montage for texturing models,” Computer Graphics Forum, vol. 29,
no. 2, pp. 479–486, 2010.

[28] C. Barnes and F.-L. Zhang, “A survey of the state-of-the-art in
patch-based synthesis,” Computational Visual Media, vol. 3, no. 1,
pp. 3–20, Mar 2017.

[29] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen,
“Image melding: Combining inconsistent images using patch-
based synthesis,” ACM Trans. Graph., vol. 31, no. 4, pp. 82:1–82:10,
Jul. 2012.

[30] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: A randomized correspondence algorithm for struc-
tural image editing,” ACM Trans. Graph., vol. 28, no. 3, pp. 24:1–
24:11, Jul. 2009.

[31] G. Turk, “Texture synthesis on surfaces,” in Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 347–
354.

[32] L.-Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold
surfaces,” in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’01. New York,
NY, USA: ACM, 2001, pp. 355–360.

[33] X. Chen, T. Funkhouser, D. B. Goldman, , and E. Shechtman, “Non-
parametric texture transfer using MeshMatch,” Adobe Technical
Report 2012-2, Nov. 2012.

[34] J. Andrews, P. Joshi, and N. Carr, “A linear variational system for
modelling from curves,” Computer Graphics Forum, vol. 30, no. 6,
pp. 1850–1861, 2011.

[35] V. Kraevoy, A. Sheffer, and M. van de Panne, “Modeling from
contour drawings,” in Proceedings of the 6th Eurographics Symposium
on Sketch-Based Interfaces and Modeling, ser. SBIM ’09. New York,
NY, USA: ACM, 2009, pp. 37–44.

[36] S.-H. Bae, R. Balakrishnan, and K. Singh, “Ilovesketch: As-natural-
as-possible sketching system for creating 3d curve models,” in
Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 151–160.

[37] R. Schmidt, A. Khan, G. Kurtenbach, and K. Singh, “On expert
performance in 3d curve-drawing tasks,” in Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling, ser.
SBIM ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 133–140.

[38] E. L. Melvær and M. Reimers, “Geodesic polar coordinates on
polygonal meshes,” Computer Graphics Forum, vol. 31, no. 8, pp.
2423–2435, 2012.

[39] M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung,
“Scalable locally injective mappings,” ACM Trans. Graph., vol. 36,
no. 2, pp. 16:1–16:16, Apr. 2017.

[40] H. Ling and D. W. Jacobs, “Shape classification using the inner-
distance,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 2, pp. 286–299, Feb 2007.

[41] J. Brooke et al., “SUS-A quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

Congyi Zhang is a postdoctoral fellow at the
University of Hong Kong. He received his B.Sc.
degree from the School of Mathematical Sci-
ence, Fudan University, in 2012, and his Ph.D.
degree from the School of Electronics Engineer-
ing and Computer Science, Peking University, in
2019. His research interests include 3D recon-
struction and modeling, augmented reality and
virtual reality, and human–computer interaction.

Lei Yang is a postdoctoral fellow at the Univer-
sity of Hong Kong. He received the bachelor’s
degree and PhD degree from Dalian University
of Technology, in 2012 and 2018. His research
interests include geometric modeling, computer
vision, and robotics.

Nenglun Chen received the bachelor’s degree
and master’s degree from Ningbo University, in
2013 and 2016. He is currently working toward
the PhD degree with the University of Hong
Kong. His research interests include shape anal-
ysis, 3D modeling, 3D reconstruction and self-
supervised learning.

Nicholas Vining is a Senior Research Scientist
at NVIDIA, and a Ph.D student at the Univer-
sity of British Columbia; he holds a M.Sc in
Computer Science (2011) and a B.Sc (Hon.)
in Mathematics (2009) from the University of
Victoria. His research interests include connec-
tions between geometric mesh processing, real-
time rendering, and cloud computing; content
creation for video games; and hexahedral mesh
generation. He is also well known for his work
on the award-winning independent video game

Dungeons of Dredmor.

Alla Sheffer is a professor at the University
of British Columbia, Canada, where she inves-
tigates algorithms for geometry processing in
the context of computer graphics applications.
She is best known for her research on mesh
parameterization, hexahedral meshing, compu-
tational garment design, and perception driven
shape modeling. Dr. Sheffer is a Fellow of ACM,
IEEE, and the Royal Society of Canada. She is a
member of SIGGRAPH Academy and a recipient
of the Canadian Human Computer Communica-

tions Society Achievement Award’18. She served as an Associate Editor
of ACM TOG, IEEE TVCG, and CGF. She is the Technical Papers Chair
for SIGGRAPH’23.

18

Francis C.M. Lau received the Ph.D. degree
from the Department of Computer Science, Uni-
versity of Waterloo, in 1986. He joined The Uni-
versity of Hong Kong in 1987 where he became
department head and professor in computer sci-
ence, and associate dean of engineering. He
was the Editor-in-Chief of the Journal of In-
terconnection Networks during 2011-2020. His
research interests include computer systems,
networks, machine learning, and application of
computing in arts and music.

Guoping Wang is Boya Distinguished Profes-
sor at the School of Computer Science, Peking
University, engaged in the research of computer
graphics and virtual reality. He is the director of
Beijing Virtual Simulation and Visualization Engi-
neering Center. He has won the first prize of the
Science and Technology Progress Award from
the Ministry of Education, the National Science
Fund for Distinguished Young Scholars, and the
China Graphics Outstanding Award. He is cur-
rently the director of the Technical Committee on

CAD and Graphics of CCF.

Wenping Wang got his Ph.D. in computer sci-
ence in 1992 at the University of Alberta. His
research interests include computer graphics,
computer vision, geometric modeling, robotics,
and medical image processing. He has been
with the University of Hong Kong from 1993 to
2020 and is now with Texas A&M University. He
is IEEE Fellow and ACM Fellow.

	1 Introduction
	2 Related Work
	3 System Overview
	3.1 User Annotations.
	3.2 Pipeline

	4 Creation of a Single Body Part
	4.1 Shape Optimization Formulation
	4.2 Modeling the Surface Geometry
	4.2.1 Creating base shapes with the outline and symmetry plane
	4.2.2 Refining base shapes via user annotations
	4.2.3 Manipulating the orientation of the symmetry plane

	4.3 Texturing the individual component

	5 Creating a character
	5.1 Texture Inpainting over the Surface
	5.2 Assembling and unifying body parts

	6 Experimental Results and Validation
	6.1 Validation
	6.2 Printed Toys
	6.3 User Studies
	6.4 Comparison to Prior Art

	7 Conclusion
	References
	Biographies
	Congyi Zhang
	Lei Yang
	Nenglun Chen
	Nicholas Vining
	Alla Sheffer
	Francis C.M. Lau
	Guoping Wang
	Wenping Wang

