
Gesture Spotter: A Rapid Prototyping Tool for Key Gesture Spotting

in Virtual and Augmented Reality Applications

Junxiao Shen, John Dudley, George Mo, and Per Ola Kristensson

Abstract—In this paper we examine the task of key gesture spotting: accurate and timely online recognition of hand gestures. We

specifically seek to address two key challenges faced by developers when integrating key gesture spotting functionality into their

applications. These are: i) achieving high accuracy and zero or negative activation lag with single-time activation; and ii) avoiding

the requirement for deep domain expertise in machine learning. We address the first challenge by proposing a key gesture spotting

architecture consisting of a novel gesture classifier model and a novel single-time activation algorithm. This key gesture spotting

architecture was evaluated on four separate hand skeleton gesture datasets, and achieved high recognition accuracy with early

detection. We address the second challenge by encapsulating different data processing and augmentation strategies, as well as

the proposed key gesture spotting architecture, into a graphical user interface and an application programming interface. Two user

studies demonstrate that developers are able to efficiently construct custom recognizers using both the graphical user interface and the

application programming interface.

Index Terms—Gesture interaction, prototyping tools, machine learning, augmented reality, virtual reality.

1 INTRODUCTION

A critical component for developing compelling interactive Virtual
Reality (VR) and Augmented Reality (AR) applications not reliant on
controllers is an online system for real-time recognition of hand ges-
tures. In this paper, we explore a sub-class of online gesture recognition
which we refer to as key gesture spotting (KGS). KGS is online recog-
nition with the additional requirement that only a single-time activation
should be triggered upon recognition of a new gesture. In VR and AR,
KGS involves detecting key hand gestures within a continuous flow of
data that also contains many incidental gesticulations (e.g., pointing,
swiping, grasping, etc.) that occur as part of normal interface interac-
tion tasks. Robustly and rapidly recognizing intended gestures while
reliably ignoring these incidental gesticulations is what makes KGS
particularly challenging.

Our goal in this work is to streamline the process of prototyping KGS
functionality for deployment into VR and AR applications. Developers
of these types of applications may want to design their own custom
gestures and implement a gesture recognizer for these novel gestures
during the early development phase. For example, a VR game developer
may wish to design several gestures to activate various skills, but at this
early stage in development wants to quickly explore which gestures
will provide the right user experience and support reliable recognition.
To do this currently, the developer would require a certain degree of
expertise and need to spend significant time building, training, and
implementing an effective and efficient deep learning-based gesture
recognizer. This current state motivates our goal of providing a simple
to use tool that developers and researchers can use to create a robust
real-time gesture recognizer. We share the same philosophy espoused
in the $-family [3,46,48], which is to “take what are typically complex,
arcane technologies understood only by specialists and make them easy
to convey, implement, and deploy on any platform for non-specialists
whose objective is quickly enhancing interactivity” [1].

Different modalities of hand gesture data can be used as input for
recognition, including RGB, optical flow, depth, IR, IR-disparity and

• Junxiao Shen is with University of Cambridge. E-mail: js2283@cam.ac.uk.
• John Dudley is with University of Cambridge. E-mail: jjd50@cam.ac.uk.
• Geroge Mo is with University of Cambridge. E-mail: gm621@cam.ac.uk.
• Per Ola Kristensson is with University of Cambridge. E-mail:

pok21@cam.ac.uk.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

2D/3D skeletons [33]. Modern AR and VR head mounted devices
(HMDs) track the user’s hands and provide real-time access to 3D hand
skeleton data. In this paper, we focus on 3D hand skeleton data as the
input for KGS given that it is readily available in modern HMDs as
well as the fact that it is largely sensor/device agnostic. Furthermore,
skeleton-based recognition algorithms tend to have fewer parameters,
resulting in faster real-time recognition performance which is especially
pertinent for mobile computing device applications.

Delivering on this vision of efficient and simple to deploy KGS
functionality, however, requires careful navigation of the various re-
quirements briefly identified above and summarized below:

1. Ignore incidental gestures: The incidental gesticulations that
occur naturally as part of interacting in VR and AR must not
produce false activations of key gestures.

2. Single-time activation: Only a single activation should be trig-
gered when a key gesture is performed (i.e. during the whole
period of the key gesture).

3. Early detection: A key gesture must be spotted as soon as pos-
sible. Ideally the gesture is recognized before it is completed
to minimize latency in triggering gesture-driven events. Such a
recognition with zero or negative lag is called early detection.

4. Deployability: The gesture recognizer should be practically sized
and efficient in terms of memory and power, and the data input
should not require onerous online preprocessing.

5. Low data overhead: The KGS implementation needs to be
data efficient as hand gesture data in new applications is usually
limited in volume. This is particularly true when developers wish
to evaluate a set of completely novel key gestures and can only
collect data by themselves.

6. Facilitate feature selection: Data preprocessing is crucial in
training a stable gesture recognizer as hand skeleton data may
include in excess of 20 joints per hand to choose from. Each joint
has both a position and an orientation which could be included
in the model input. A tool for building KGS functionality must
therefore facilitate the process of experimenting with different
model input alternatives.

7. Support rapid evaluation: Although some gestures may be vi-
sually distinct from others, the latent representations may be very
similar. This can result in a trained deep learning model confusing

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

different gestures. Therefore, a rapid prototyping tool for KGS
must provide a way to perform fast training and evaluation of a
model to help developers better design distinct gestures.

Most prior research in hand gesture recognition has focused on im-
proving the offline recognition accuracy of gestures with sufficient
training data, and many of the real-world integration and deployment
challenges described above are not fully addressed [21]. In addressing
this gap, we approach the KGS problem by proposing a novel archi-
tecture that includes a light-weight classifier model and a single-time
activation algorithm. This enables rapid prototyping of online ges-
ture recognition functionality with small amounts of data. Figure 1
demonstrates that the proposed KGS architecture can deliver reliable
single-time activations and early detections when applied on the On-
line DHG dataset [10]. To ensure this functionality is easily adapted
and deployed, we encapsulate the proposed KGS architecture into a
Graphical User Interface (GUI) and a simple Application Programming
Interface (API) for exercising key supporting functionality, including
a variety of data preprocessing and augmentation techniques. These
tools enable rapid prototyping of KGS functionality on custom gesture
sets. Developers can then evaluate different configurations, explore
alternative parameter settings, and confirm that the key gestures are
distinguishable both from a visual perspective as well as from a model
learning perspective in the latent space. This helps bridge the gap be-
tween the domain-specific knowledge required to implement such deep
learning-based recognizers and the usability required for developers
that want to simply create, use, and deploy these recognizers for their
desired applications.

To demonstrate the effectiveness of our KGS architecture we present
evaluations on four datasets: i) the SHREC’17 Track dataset [10],
which is a public dataset that contains a 14-gestures setting and a 28-
gestures setting, ii) the Online DHG dataset, which is a pre-segmented
version of the SHREC’17 Track dataset [10], is used to simulate an
online recognition scenario; iii) an AR-specific dataset from Mo et
al. [32], which is a first-person-view dataset collected with a Microsoft
HoloLens 2, and which we subsequently refer to as the Gesture Knitter
dataset; and iv) the SHREC’2021 Track dataset [6] in which gestures
were captured during generic user interaction and so executed gestures
occur within long sequences of hand gesticulation.

To demonstrate the usability of the GUI and API we present the
results of two user studies, which demonstrate that participants were
able to efficiently construct custom recognizers using both the GUI and
the API.

Overall, in this paper, we make the following contributions:

1. We propose a key gesture spotting architecture consisting of a
novel hand gesture classifier, which we call Attention-Enhanced
Residual LSTM (A-ResLSTM), and a novel single-time activa-
tion algorithm. We demonstrate that A-ResLSTM delivers robust
and data-efficient key gesture spotting while the single-time ac-
tivation algorithm achieves an effective balance between online
recognition accuracy and early detection.

2. We present Gesture Spotter: a tool implemented as a GUI and
API that enables rapid prototyping of KGS functionality. This
tool integrates different data preprocessing and augmentation
techniques and facilitates model training and evaluation.

The remainder of the paper is organized as follows. Section 2 dis-
cusses the related work of offline gesture recognition, online gesture
recognition, and developer tools for buidling such recognition systems.
Section 3 presents the structure of the novel classifier, A-ResLSTM,
and the single-time activation algorithm. Section 4 describes the de-
tails of our implementation and evaluation methods and metrics. Sec-
tion 5 reports both offline and online recognition performance for the
SHREC’17 Track dataset, Online DHG dataset, Gesture Knitter dataset
and SHREC’2021 Track dataset. Section 6 presents a user evaluation
of the graphical interface for rapid prototyping of a KGS system. Sec-
tion 7 presents a user evaluation of the Python API for developing a
bespoke KGS system. Section 8 discusses limitations and future work
and Section 9 provides concluding remarks.

0.0

0.5

1.0

Pr
ed

ict
ed

 S
co

re
s

0.0

0.5

1.0

Tr
ue

 S
co

re
s

0 200 400 600 800 1000
Time

0.0

0.5

1.0

Si
ng

le
-T

im
e

Ac
tiv

at
io

ns

Early
Detection
Threshold

Time

Sliding window

Fig. 1: The KGS architecture recognizing and acitvating on distinct
gestures in the DHG dataset [10]. The Predicted Scores show the
normalized scores of the predictions from the key gesture spotting
model. The True Scores show the true labels of each gesture performed
along the time axis. Each square wave represents a class of gesture
and its duration. The Single-Time Activations show the activations
fired by our model when the predicted score passes the threshold. The
light vertical line shows the corresponding activations and the early
detections. In this example, the detection threshold is set to 0.8.

2 RELATED WORK

Hand and gesture-based interactions can provide a natural and immer-
sive interaction experience in AR and VR. There are, however, signifi-
cant technical and usability challenges to delivering compelling hand-
based interactions that continue to attract research attention [14, 51].
Predating the hand tracking capabilities of modern AR and VR HMDs,
WeARHand [14] allowed users to manipulate virtual 3D objects with
their bare hand in AR. Yoon et al. [51] investigated the effect of hand
model fidelity on user experience and social presence during hand-
based 3D remote collaboration.

A key requirement for delivering smooth gesture interactions in
these types of AR and VR user interfaces is robust and rapid gesture
recognition. In this section, we briefly discuss the related work on
offline and online gesture recognition before providing a brief overview
of gesture-focused developer tools.

2.1 Offline Gesture Recognition
Much prior work has focused on gesture classification performed of-
fline, i.e., where the gesture is recognized from within a deliberately
segmented portion of data as opposed to a continuous stream. Gesture
recognition algorithms employed for this purpose can be categorized
into five main methods: 1) hand-crafted methods; 2) Convolutional
Neural Network (CNN)-based methods; 3) graph-based methods; 4)
manifold-learning-based methods; and 5) Recurrent Neural Network
(RNN)-based methods. Hand-crafted methods, such as HON4D [36],
use a histogram capturing the 4D representation distribution of the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

surface normal orientation (time, depth and spatial coordinates) to rec-
ognize gestures from depth sequences. Deep learning methods using
CNNs and RNNs have become more popular with the success of deep
learning. Further, graph and manifold learning has also had success
in gesture recognition recently, such as DG-STA [8] and ST-TS-HGR-
NET [34]. With regards to applications in AR and VR, there has been
an interest in gesture recognition in terms of 3D hand pose estimation
with an infrared camera [37] and fast recognition of foot gestures for
virtual locomotion [42].

However, most of these models are not suitable for a real-time
gesture recognition system in AR/VR for three key reasons. First, the
models are large and cannot run efficiently on local devices, such as
the Microsoft HoloLens 2 or Oculus Quest 2. Second, some of these
models require heavy preprocessing, such as converting depth images
into point data [31], which makes real-time performance difficult to
achieve. Third, very few of these methods are designed to perform
classification on hand skeleton data.

2.2 Online Gesture Recognition
There is limited prior literature on modern online hand gesture recog-
nition suitable for AR/VR headsets. Hegde et al. [16] proposed recog-
nition of simple hand gestures (up/down swipes etc.) using feature
points. Chalasani et al. [7] generated augmented data by using a green
screen to capture hand gestures and then overlaid these on different
backgrounds. Xie et al. [49] performed simultaneous detection of hands
and tracking of keypoints to support gesture recognition while Wang
et al. [47] examined online gesture recognition for interaction with
a vehicle HUD. However, all these prior studies use image data. In
contrast, in this work we rely on hand skeleton data. Gunduz et al. [21]
separated the online gesture recognition problem into two stages: 1)
detection; and 2) classification. They first explicitly trained a light-
weight CNN-based detector to detect whether a gesture is present in
a continuous sliding window. This acts as a switch to activate another
CNN-based classifier to classify the gesture classes while ignoring the
no gesture class representing when the hand is out-of-view. Notably,
the detector is light-weight, allowing it to run in real-time. This ap-
proach means that the second classifier has less stringent constraints
on size or complexity since it only operates when a gesture is detected
by the first classifier. However, such a method requires the training
and implementation of two different models, and this can potentially
complicate the system. Molchanov et al. [33] addressed online gesture
recognition by applying connectionist temporal classification (CTC),
which is a training technique for recognizing unsegmented handwrit-
ing [20]. The recognition model is a recurrent 3D CNN that performs
detection and classification simultaneously. This approach introduces
another issue: it does not implement a single-time activation algorithm
to prevent multiple activations for one key gesture, which may lead to a
high false-positive rate and be impractical for real-world applications.

Both Gunduz et al. [21] and Molchanov et al. [33] evaluated their
proposed methods on the NVIDIA Dynamic Hand Gesture Dataset
which was collected under a very different setting to one typically
experienced in an AR/VR use case. Specifically, this is a dataset that
contains data of different modalities such as RGB, optical flow, depth,
IR, and IR-disparity but it does not contain any hand skeleton data.
Further, the dataset was collected in an automotive interaction scenario,
and provides a clear indication of when there is no gesture performed,
as the hand is outside the tracking area. Hence, these systems are not
optimized for scenarios in AR/VR where the hand is mostly present
in the tracking area and the two-stage “first detect and then classfy”
approach may not be suitable for key gesture spotting. We are inter-
ested in spotting key gestures from a continuous stream of different
gestures with the hand constantly present in the sensor’s field-of-view,
and where sporadic key gestures are performed interspersed between
much more frequent incidental gesticulations, such as pointing, grasp-
ing or swiping. This is a much more difficult task but we believe this is
critical for successful gesture spotting in AR/VR applications. Caputo
et al. [6] introduced a hand skeleton gesture dataset collected to repre-
sent a head-mounted AR/VR context. However, the dataset contains
key gestures interleaved between periods of time during which the hand

is predominantly stationary. This lack of incidental gesticulations in
between key gestures also fails to accurately reflect typical interaction
scenarios in an AR/VR setting. In practice, users are likely to continu-
ally interact with both the physical and virtual environment while only
sporadically performing key gestures. Detecting key gestures when the
hand is otherwise not moving is a much simpler problem than detecting
key gestures while the hand is actively engaged in other interaction
tasks.

2.3 Developer Tools
With respect to systems that allow users to construct gesture recogniz-
ers, there have been many systems proposed to make it easier for users
to create recognizers with low data overhead for rapid prototyping.
The $-family of gesture recognizers [3, 46, 48] addresses the need for
quick integration of recognizers for simple unistroke and multistroke
2D gestures. At the conceptual level, there are similarities between our
work and the objectives of the $-family of gesture recognizers in terms
of prototyping ease. To aid in prototyping, many systems propose meth-
ods to synthetically generate gesture samples, such as employing the
kinetic theory of rapid movements to create synthetic human-like 2D
stroke gestures in Gestures à Go Go [23] and re-sampling and pertur-
bation methods to rapidly create synthetic stroke gesture samples [45].
Other tools that allow developers to automatically create recognizers
by demonstration include Gesture Coder for multi-touch gestures [29]
and Gesture Script for 2D stroke gestures [28]. Recently, in the do-
main of hand gesture recognition for immersive headset applications,
Gesture Knitter was proposed to allow the creation of novel hand ges-
ture recognizers with low data overhead and novel synthetic sample
generation methods using a visual declarative script [32]. However,
the online recognition accuracy was relatively poor in Gesture Knitter
at 72.5%. This lack of suitable tools motivates our focus on tackling
the problem of online hand gesture recognition for AR/VR HMDs by
providing functionality to developers allowing them to easily create
neural network-based recognizers with good performance accuracy.

3 KEY GESTURE SPOTTING RECOGNIZER

There are no existing design tools involving neural network architec-
tures available to developers for key gesture spotting (KGS) on skeleton
data in AR/VR. Therefore, we propose, to the best of our knowledge,
the first design tool specifically tailored for KGS on skeleton data in
AR/VR. Rapid prototyping of hand gesture recognizers for AR/VR
is more suitable to be performed on hand skeleton data instead of
raw RGB video or depth signals. Video-based real-time hand gesture
recognition models do exist but they are significantly more complicated
to integrate into modern AR/VR HMDs, which provide streamlined
access to hand tracking data.

The key gesture spotting model must provide early detection and
single-time activation for each gesture performed. We did not separate
the detector and the classifier for several key reasons: i) detection and
then classification leads to longer response times due to a two-stage
system; ii) the window of data which activates the detector may not
necessarily contain the whole gesture performed; and iii) there is no
clear no gesture class in a continuous stream of hand gestures performed
with the hand continuously present in the field-of-view.

To aid in assessing the performance of our KGS system, we first
outline the main components of a dynamic hand gesture. Pavlovic
et al. [38] describe how dynamic gestures have a preparation phase,
nucleus phase, and retraction phase, among which the nucleus phase
is the most discriminate. Each of these three phases is now briefly
defined below. Preparation phase: This is the hand movement when
the user starts to move the hand from the rest position to a ready
position. Most gestures will have a similar preparation phase. Nucleus

phase: This is the most critical part of a hand gesture since it is the
most distinctive phase. It is the phase where the most distinguishable
spatial and temporal movement is performed. Recognition early in
the nucleus phase enables early detection, leading to negative or zero
lag. Retraction phase: This is the post-execution phase containing the
motion corresponding to the user returning their hand to a rest position.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

softmax layer

attention layer

bi-LSTM layers

6x4 conv. 64

3x2 maxpool

batch normalization

res. module 64

3x2 maxpool

res. module 128

dense 512

Fig. 2: Figure showing the neural network architecture of A-ResLSTM.
3⇥2 maxpool is a max pooling layer which is added to downsample
the input along its spatial dimensions by taking the maximum value
over an input window of size 3⇥2. The batch normalization was
introduced to standardize the inputs to the layer. The dense 512 layer
is a regular densely-connected neural network layer of 512 neurons.
The bi-LSTM layer is composed of two bi-directional LSTM layers
with 256 neurons on each layer. The attention layers implement a dot-
product attention layer, a.k.a. Luong-style attention [27]. The softmax
layer is used to normalize the output from the attention layer into a
probability distribution consisting of K probabilities proportional to the
exponentials of the input numbers, where K is the number of gesture
classes in the classifier.

3.1 Gesture Classifier
Deep neural networks are especially well-suited for our domain as the
network depth increases the expressiveness of the recognizer. A gesture
can be decoupled into hand posture variations and hand movements.
The former reflects the spatial layout changes of hand joints, and the
latter captures the global motion trajectories [25]. Intuitively, the differ-
ence between the two representations motivates us to develop a model
that can inspect both the spatial and temporal features simultaneously.
Convolutional Neural Networks (CNNs) have had groundbreaking re-
sults in image processing [9, 24]. CNNs use local receptive fields to
efficiently extract spatial information and share weights to significantly
reduce the number of parameters. Recurrent neural networks (RNNs)
have gained success with sequential data of variable lengths, with ap-
plications including language modeling [30], video captioning [13],
RGB-based and skeleton-based activity recognition [26]. However,
when the gap between the relevant input data is large, conventional
RNNs can no longer connect the relevant information. LSTMs are then
proposed to handle such “long-term dependency” [18, 31, 39]. There-
fore, we utilize a mixture of CNN and LSTM components in our model
since skeleton gesture data is a data representation that consists of both
spatial and temporal features, with the posture variants featuring more
spatial information and the hand movements reflecting more temporal
information.

Figure 2 shows the detailed structure of the A-ResLSTM model we
propose. This architecture design is inspired by that introduced by He
et al. [15], where the residual module blocks with the skip connections
are employed to combat the vanishing and exploding gradient problem.
The original domain application of He et al.’s [15] architecture was
image recognition, and this problem has some similar qualities to our
domain of skeleton-based gesture recognition, such as the need for
invariance to translation. Below we detail features of the A-ResLSTM
model that are bespoke to our application.

First, key gesture spotting is used in a continuous flow of data which
contains incidental gesticulations or what we subsequently refer to as

null gestures. When a sliding window approach is used, a window may
only partially contain a key gesture, and the rest in the window consists
of null gestures. Therefore, enabling the gesture recognizer to pay
different ‘attention’ to the preparation, nucleus and retraction phases is
critical in early detection. We use an attention mechanism to empower
the recognizer with such an ability to learn weight coefficients that
capture the relationship between time points in input data samples after
the CNN and LSTM layers as shown in Figure 2.

Many researchers currently solving real-world problems using deep
neural networks have discovered that problems tend to arise when a
large number of hidden layers are used. During training, updates in
weights of a previous layer change the distribution of input values for
the current layer. In this process the network learns more complex
features. However, deep neural networks do have limitations as He et
al. [15] empirically demonstrated in the context of traditional CNNs and
the existence of practical constraints on the maximum of number layers.
The failure of very deep neural networks is a result of the network
initialization and the vanishing or exploding gradient problem [15]. To
solve this issue, training deep networks has been alleviated with the
introduction of a new neural network layer—the residual block. The
residual block provides skip connections between layers and adds the
outputs from previous layers to the outputs of stacked layers. The skip
connection allows the gradient of the higher layer to be directly passed
to the lower layers during backpropagation, mitigating the vanishing
gradient or exploding gradient problem [15]. We thus added residual
blocks into the CNN layer.

3.2 Single-Time Activation Algorithm

The single-time activation algorithm for key gesture spotting outputs
the predicted gesture class and the associated probability. We first set
the window length l to feed to the classifier model, as well as the slide
step size s of the sliding window. When a particular window is passed
to the classifier model, it returns the predicted gesture class and its
corresponding detection probability.

Two thresholds determine if a gesture is spotted: the detection prob-
ability threshold and the recurrence threshold. For a particular gesture
class to be deemed to be spotted the following must be true. First,
the gesture’s detection probability must be greater than the detection
probability threshold for gesture detection. Second, the number of
times the same gesture has been detected in a row (its recurrence) must
be above the recurrence threshold.

Both thresholds are important in determining the trade-off between
recognition accuracy and early detection performance as setting low
threshold values could lead to better early detection performance but
lower accuracy, whereas higher threshold values could lead to the
reverse. The choice of an appropriate recurrence threshold is influenced
by the slide step size s and the frame rate of the device. Developers can
set the recurrence threshold by determining the minimum time required
to complete a gesture and the refresh rate of the tracking sensor.

4 EXPERIMENTS

4.1 Implementation Details

We used TensorFlow 2 in the implementation of the classifier. For the
classifier, we used Adam as the optimizer, and the learning rate was set
to 0.0001. The learning rate scheduler was set to be reduced on plateau
and we set the patience to 3. The learning rate is chosen by performing
grid search to optimize for the model’s performance. We used early
stopping and we set the patience to 5. Patience is the number of epochs
to wait before reducing the learning rate, or an early stop when no
progress is made on the validation set. The patience value for early
stopping is set using an established rule-of-thumb. Varying the patience
does not play an important role in determining the model performance.
We used sparse categorical accuracy to evaluate the performance of the
model. The training batch size was 64, which is the maximum number
that does not exceed the capacity of the GPU. We added null gesture
classes to the training data to reflect the fact that sporadic key gestures
are interspersed between more frequent incidental gesticulations.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

4.2 Evaluation Datasets
We performed evaluations on the four datasets enumerated below. The
first dataset mainly serves as a comparison of our system with state-
of-the-art approaches in offline recognition. The second dataset is the
unsegmented version of the first dataset. The third dataset, which is
the Gesture Knitter dataset [32], serves to illustrate performance in a
real-world setting using data collected from a Microsoft HoloLens 2.
The fourth dataset, which is the SHREC’2021 dataset [6], provides an
evaluation dataset for analysis of the choice of data dimensions.

1. Smedt et al. [10]: The SHREC’17 Track dataset [10] is an of-
fline dataset that has 2,800 sequences containing 14 gestures
performed by 28 individuals in two ways—using a single finger
and the whole hand. The 14 gestures include Grab, Expand,
Pinch, Rotation Clockwise (CW), Rotation Counter Clockwise
(CCW), Tap, Swipe Right, Swipe Left, Swipe Up, Swipe Down,
Swipe X, Swipe X, Swipe +, Shake, among which Grab, Expand,
Pinch, Rotation CW, Rotation CCW are fine gestures. Fine ges-
tures always involve hand posture changes, while coarse gestures
involve hand movements. The dataset provides depth images and
skeleton joint data. The split between training and testing for
offline performance is defined and well-established in the liter-
ature [10]: 1,960 sequences for training and 840 sequences for
testing.

2. Smedt et al. [10]: Online DHG [10] is the online (unsegmented)
version of the SHREC’17 Track, which provides 280 sequences
of 10 unsegmented gestures occurring sequentially. The online
performance is evaluated under a leave-one-subject-out proto-
col. The 3D coordinates of 22 joints are provided for each hand
skeleton.

3. Mo et al. [32]: The Gesture Knitter dataset taken from Mo et
al. [32] contains an offline dataset with 10 gestures. The online
dataset contains 40 samples, and each has three gestures per-
formed in a 20-second sequence. Each subject performed each
of the five predefined sequences of three different gestures. This
dataset was collected using the Microsoft HoloLens 2. It provides
skeletal data of the hand and fingers corresponding to six joints.
We used a leave-one-subject-out experimental protocol for test-
ing the online recognition performance. For offline recognition
performance evaluation, we trained the model using a different
set of subjects than the test data to perform cross-validation.

4. Caputo et al. [6]: The SHREC’2021 Track dataset [6] is a dataset
made for practical application scenarios where gesture recogniz-
ers need to work in real-time and to be able to detect and correctly
label gestures “in the wild” within a continuous sequence of hand
movements. The dataset includes 18 gesture classes belonging
to different types. A subset of 7 classes are static, 5 classes are
coarse dynamic gestures, and 6 classes are fine dynamic gestures.
Static gestures are characterized by keeping a fixed hand pose for
a minimum amount of time, while dynamic gestures are character-
ized by a single trajectory with an unchanged hand pose or with
finger articulation over time. The hand skeleton data is collected
using a Leap Motion device mounted on a headband worn by the
participants to simulate a sensor mounted on an HMD.

4.3 Evaluation Metrics
As key gesture spotting is still in its infancy, the literature on evaluation
metrics is limited. To separate the measures of recognition accuracy
and early detection ability, we evaluate the model using Levenshtein
distance for accuracy and Normalized Time to Detect (NTtD) for early
detection performance.

1. Early Detection: We use Normalized Time to Detect (NTtD) [17]
to evaluate early detection performance. Given a correct key
gesture spotting, define the time for the start of the gesture as
idxstart and the time for the end of the gesture as idxend . Further,
define the time the key gesture spotting model fires as idxactivation.

Category Method Modality
Accuracy (%)

14G 28G

Hand-crafted Boulahia et al. [5] skeleton 90.50 80.50

CNN HPEV+HMM
+FRPV [25] skeleton 94.88 92.26

Graph DG-STA [8] skeleton 94.40 90.70
Manifold
learning

ST-TS-HGR
-NET [34] skeleton 94.29 89.40

Ours skeleton 95.27 91.57

Table 1: Offline recognition accuracy and comparison with the state-
of-the-art approaches on the SHREC’17 Track dataset. 14G and 28G
represent a 14 and a 28 gesture configuration respectively.

For a successful gesture recognition without any lag, idxstart
idxactivation idxend . NTtD is the fraction of the gesture that has
occurred before the system fires a detection:

idxactivation � idxstart +1
idxend � idxstart +1

(1)

NTtD is 0 for a false detection (idxactivation < idxstart) and • for
a false rejection (idxactivation > idxend). We report NTtD only for
gestures for which there is early detection. Therefore, we stress
that the only valid range of values for NTtD is NTtD 2 [0,1].

2. Recognition Accuracy: Recognition accuracy for online recogni-
tion is different compared to offline settings. Offline recognition
only considers the class accuracies. However, an online recogni-
tion system needs to consider other scenarios: 1) False activation:
the key gesture spotting system falsely fires when there is actually
no key gesture performed; and 2) Multiple activations: the key
gesture spotting system fires multiple times when the gesture
is only performed once. These scenarios make it complicated
to calculate the actual performance of the real-time key gesture
spotting system, considering we do not know the actual start and
end times of the actual gesture. To address this we use the Lev-
enshtein distance as the evaluation metric for online recognition
performance [21]. The Levenshtein distance is used to capture the
recognition accuracy irrespective of whether the recognition is an
early or late detection. Levenshtein distance (sometimes referred
to as minimum edit distance) is a metric defined as the minimum
number of single-character insertions, deletions and substitutions
required to transform one string into another. The accuracy for
online performance is defined as:

accuracy = 1�
levenshtein(ypredict ,ytrue)

length(ytrue)
(2)

where ypredict and ytrue are the predicted and true list of labels of
the gestures respectively.

Caputo et al. [6] used the Jaccard Index to measure the average rela-
tive overlap between the ground truth and the predicted label sequences
for the gesture sequences recording. They also used detection rate and
false-positive rate to measure the performance of the models.

5 RESULTS

We split the results section into offline and online gesture recognition
performance.

5.1 Offline Gesture Recognition
We first tested our classifier model’s offline recognition performance.
The state-of-the-art methods are shown for comparison with our model
on the SHREC’17 Track dataset in Table 1. The results of the compared
methods are collected from Liu et al. [25]. Among the alternative
models evaluated, our approach ranked top on the 14 gestures setting
and ranked second on the 28 gestures setting for the skeleton joint

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

(a) Accuracy vs Threshold (b) NTtD vs Threshold (c) Accuracy vs NTtD (d) NTtD

Fig. 3: Detect probability threshold values ranging from 0.1 to 0.9 with step 0.1 to determine the trade-off between recognition accuracy (a) and
NTtD (b) for the Online DHG dataset [10]. Larger threshold values lead to higher accuracy but also higher NTtd. We arrived at a balance between
accuracy and NTtD at a threshold equal to 0.8, as shown by the pink triangle marker in (c). (d) shows NTtD values averaged over all testing
sequences for the 14 gestures in the Online DHG dataset [10] using key gesture spotting with the threshold set to 0.8. The bars show NTtD
standard error. Gestures which are either falsely rejected or falsely detected are not presented in this plot.

data. This result demonstrates that our model achieves state-of-the-art
accuracy performance on the simpler problem of offline recognition.
However, a model that performs well in offline gesture classification
may not necessarily perform well in key gesture spotting as data from
real-time gesture recognition is more noisy and does not have a clear
indication/boundary of the start and end of a gesture.

Finally, our model is lightweight. A suitable metric for effectively
measuring the computational efficiency of a model is floating-point
operations per second (FLOPs). The second-best performing model in
Table 1, HPEV+HMM+FRPV [25], performs 1.46 GFLOPs while our
model performs 59 MFLOPs. In other words, our mo22del requires
roughly 25⇥ fewer operations. A modern HMD can easily run dozens
of GFLOPs.

5.2 Online Gesture Recognition
As previously suggested, the detect probability threshold determines
the trade-off between recognition accuracy and the normalized time
to detection (NTtD). Increasing this threshold helps to prevent false
activations and classifications but setting the threshold too high may
delay activation on valid gestures. It is therefore necessary to find a
detect probability threshold value that maximizes recognition accu-
racy while minimizing detection time. This reasoning is illustrated
by Figure 3 which plots the trade-off between accuracy and NTtD
values averaged over all testing sequences for the 14 gestures in the
Online DHG dataset [10]. Both Figure 3a and Figure 3b indicate that a
high threshold will likely lead to a high accuracy and NTtD, which is
expected as a high threshold for detection results in fewer false posi-
tives but also later detections. We can inspect Figure 3c to determine
an appropriate threshold by finding the highest accuracy while still
maintaining a low NTtD. By setting the threshold to 0.8 we achieved
an online recognition accuracy of 86.70% and an NTtD of 0.94. The
recognition accuracy is calculated using the Levenshtein distance which
captures accuracy independent of early or late detection. The NTtD is
reported by computing the average of the NTtD values of the gestures
that are early detected. Falsely rejected gestures, despite being correctly
recognized, are not included in the average. These cases typically occur
when the detection happens outside the gesture’s start/end window.
Figure 3d shows the NTtD values for the gestures in the Online DHG
dataset when the detect threshold is set to 0.8. In particular, we note
that the NTtDs for Expand and Pinch are not included as they are either
falsely detected or falsely rejected, resulting in invalid values for the
NTtD as per the definition in subsection 4.3. The static hand gestures
require a larger portion of the nucleus to be seen before a decision with
high confidence is given, while coarse gestures exhibit a larger standard
error since they involve hand movements that can be determined before
the whole movement is seen.

The online recognition performance on the Gesture Knitter dataset
was tested using a leave-one-subject-out experimental protocol. Using

Fig. 4: Confusion matrix for the SHREC’2021 Track dataset. The
vertically listed labels represent the true class whereas the horizontally
listed labels represent the predicted class.

a threshold value of 0.8 we achieved an online recognition accuracy of
89.74% and a NTtD of 0.94.

Caputo et al. [6] introduced four different models to be tested on the
SHREC’2021 track dataset using the aforementioned Jaccard Index,
detection rate, and the false-positive ratio. We also used these three
metrics to evaluate our model on this dataset to enable a comparison
with the four models introduced by Caputo et al. [6]. Our system
achieved a detection rate of 0.9032, a false positive rate of 0.053, and
a Jaccard index of 0.8785. We outperformed the best model in the
literature, which has a detection rate of 0.8993, a false positive rate of
0.066, and a Jaccard index of 0.8526. The comparable performance
achieved by the best model in Caputo et al. [6] is in part down to the fact
that their model has been hand-crafted and optimized for this specific
dataset. As a result, the Caputo et al. [6] model is unlikely to offer good
generalizability to different forms of gestures, as demanded by a rapid
prototyping tool.

The confusion matrix in Figure 4 shows the recognition accuracy for
the 18 gestures in the SHREC’2021 track dataset, and illustrates that our
model has effectively learned both spatial and temporal relationships.
We see that dynamic gestures are much harder to recognize than static
ones. Circle, V and Cross are frequently confused with each other,
which is expected given that they are similar in terms of both posture
variants and hand movements.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

Config A1 Config A2 Config A3 Config B1 Config B2 Config B3
Position
Orientation
Jaccard Index 0.8896 0.8600 0.8785 0.6267 0.8007 0.8674

Table 2: Caputo et al. [6] included 20 keypoints of the hand’s skeleton in the data. We introduce two configurations of keypoints. Config A: all
the hand keypoints; Config B: palm and all fingertips. The sub-configurations are represented by 1,2,3 and contain position, orientation, or both
respectively.

5.2.1 Selection of Model Input

We further analyzed the impact of altering the model inputs (including
the choice of hand skeleton keypoints and their positional and orien-
tation information) on the KGS recognizer performance in order to
highlight the importance of model input selection on the hand skeleton
data. Our Gesture Spotter tool provides a rapid prototyping functional-
ity to quickly test what model inputs can deliver optimal performance in
online recognition. Specifically, we evaluated how many keypoints of
the hand skeleton data to include and the choice between using position,
orientation or both. We assessed two different configurations based on
the number of keypoints included. Config A includes all the keypoints
while Config B includes just the palm and the fingertips (ThumbTip,
IndexTip, MiddleTip, RingTip, PinkyTip using the notation of the fin-
ger keypoints from [2]). Intuitively, Config A contains both the posture
variants from the fingertips and global hand trajectory from the palm
movement. Config B includes the global hand movement information
but lacks information from posture variants.

The inclusion of position and/or orientation informs the model from
different perspectives. A gesture involving extensive rotation of the
hand may need the orientation to be more distinctive to the model, while
a gesture involving a complicated global trajectory may need the posi-
tion data to be more informative. We define three sub-configurations
per configuration reflecting the the choice of including position, orienta-
tion or both (termed as sub-configurations 1, 2, 3 respectively). Table 2
shows the results from the nine different configurations evaluated. Con-
figuration A1 outperforms other configurations in terms of Jaccard
Index. However, this configuration is only the best on average for the
18 gestures and there does not exist an absolute best configuration for
all gestures. It is important to note that the comparisons of the Jaccard
Index from the different configurations given in Table 2 do not reflect
a universal rule on the importance of the selection of data dimensions.
For example, inclusion of orientation is only superior to inclusion of
position data for Config B but not for Config A.

Our results suggest that the choice of configuration must also con-
sider the qualities of the key gestures to be recognized. A static gesture
may only require the fingertips. Dynamic fine gestures that only involve
the variants of the thumb may only require the palm and the full set of
thumb keypoints. Including all keypoints and both position and orienta-
tion as the model inputs should be avoided because this will lead to a
large input dimension that may be detrimental to model performance.

6 GRAPHICAL USER INTERFACE

To facilitate rapid prototyping, we implemented a GUI to enable devel-
opers to build and evaluate a key gesture spotting model out-of-the-box.
The GUI has five different tabs to support the critical tasks of prepro-
cessing, augmentation, training, evaluation and visualization.

1. Preprocessing: The preprocessing tab offers different types of
preprocessing strategies, such as decoupling the gesture data into
hand movement data and posture variant data, as well as making
the trajectories relative to the wrist position. It also allows for
selection of the model input, for example, choosing which of the
23 different hand keypoints (adopted from the skeleton hand bone
guideline from [2]) to include and whether to use position and/or
orientation data.

2. Augmentation: The augmentation tab supports different aug-
mentation strategies, such as generating synthetic data from a
Generative Adversarial Network (GAN). GANs have been used

to generate realistic samples in image [12, 43, 50], speech [19],
and motion trajectory [41] synthesis. We adopted the Imaginative
GAN from Shen et al. [40] as one of our data augmentation strate-
gies, which can approximate the true distribution of the input data
and sample new data from the approximated distribution. The
goal of the Imaginative GAN is to learn the latent attributes, such
as behavioral attributes (for example, the speed of performing
the actions/gestures) and physical attributes (for example, hand
sizes). Thereafter, these learned latent attributes are applied to
other data from different gesture classes. The GUI also supports
other classical data augmentation strategies, such as adding noise,
scaling and shifting which are adopted from Nunez et al. [35].

3. Training: The training tab allows the user to tune the hyperpa-
rameters of a machine learning model, such as the input/output
dimension, the learning rate, the number of epochs and the batch
size. Different models, in addition to the proposed A-ResLSTM
model, are also provided in the GUI for the user to select from
such as a conventional CNN by Nunez et al. [35] and an LSTM
model by Lai et al. [22]. These models can then be evaluated and
compared as different gestures may result in distinct performance
with different models. For example, a CNN may be more suitable
for gestures with more spatial variation while an LSTM model
may be more suitable for gestures with more temporal variation.

4. Evaluation: The evaluation tab enables tuning of the parameters
in the single-time activation algorithm, which are the detect prob-
ability threshold, recurrence threshold, and the slide step used
in the sliding window strategy. We also support the generation
of a plot similar to Figure 1 so that users can use this plot to
inspect the predicted scores at every prediction step and utilize
the understanding obtained to tune the parameters.

5. Visualization: A visualization tab is also provided to visualize
the gesture skeleton data with a slide bar controlling the index of
the logged sequence. This tool is useful when determining the
index of the start and end of a gesture to evaluate the NTtD.

6.1 User Study
6.1.1 Participants

We recruited 10 participants (3 female, 7 male, average age: 23.5, stan-
dard deviation: 2.64, min: 20, max: 29) using opportunity sampling
from within our institution. Participants represent a range of back-
grounds: nine participants had prior experience with programming; six
participants had prior experience with VR/AR; four participants had
prior experience with software development in VR/AR; and one par-
ticipant had previous experience in programming gesture recognition
systems. We also gauged participants’ level of pre-existing familiarity
with machine learning (ML). Participants were categorized into one of
two groups depending on their level of familiarity: 1) having experience
in programming with ML (‘experience’); and 2) having some passing
knowledge of ML terminology (‘exposure’), such as training epochs,
learning rate, batch size, etc. Out of the 10 participants in this study,
two had ‘experience’ with ML and six had ‘exposure’.

6.1.2 Apparatus

We used the Oculus Quest 2 to collect gesture data. The training of the
deep learning models are performed on a PC with GPU Nvidia GeForce
RTX 2080 Ti, and CPU Intel Core i7-9800X. We replicated on-device

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

recognition with the Oculus Quest by sending the gesture data in a
continuous live stream to the PC. We currently make use of a clien-
t/server architecture for recognition as this enables rapid development
and convenient separation of function. This aligns with our focus on
rapidly producing hand gesture recognizers for pre-deployment evalua-
tion, thereby allowing developers to quickly prototype and test different
forms of gesture interaction. We anticipate the system will be able to
run on-device in the near future.

6.1.3 Procedure

Participants were asked to design six novel hand gestures corresponding
to six hypothetical commands relevant to AR/VR. The six commands
were: answer call; bring up the main menu; exit from the application;
confirm; enable pass-through mode (VR specific); and shutdown the
device. We also introduced null gestures, which include the coarse
dynamic gestures from [6]. The null gestures were treated as one
class in the model training and prediction. Ten scenarios were created,
composed of the six key gestures interspersed with fifteen randomly
chosen null gestures. These scenarios serve to provide a realistic evalu-
ation setting given that key gestures are not performed as frequently as
incidental gesticulations.

Participants were instructed to use a Unity application running on the
Quest 2 over USB (using Oculus Link) to collect hand skeleton gesture
data for the null gestures and the six custom key gestures. The null
gestures were collected using a 200 second clip where participants were
instructed to perform the null gestures repeatedly and randomly. Each
of the six custom key gestures was collected with a 100 second clip
where the gesture was performed repeatedly with deliberately random
rest positions, that is, the positions before the preparation phase and
after the retraction phase. The training and testing sets were generated
by sliding windows, with window length l and step size s configurable
in the GUI, over the recorded clips so that each window contained part
or all of a gesture’s nucleus. The purpose of this data collection scheme
was to provide the model with realistic data, rather than data containing
clear gesture segments, so that the model can achieve better robustness
in key gesture spotting. Participants were then instructed to perform
the corresponding gestures in three scenarios to provide the evaluation
dataset used in the GUI.

Once all gesture data was recorded, participants started the GUI
session. Participants were instructed to perform the following steps: 1)
load the data and perform preprocessing; 2) perform data augmentation;
3) select and train a model; 4) visualize the data and annotate the start
and end index of the key gestures; and 5) evaluate the recognizer in
terms of accuracy and NTtD. Participants could either use the default
setting, or freely use the GUI and test different configurations of the
data structure, the augmentation strategies, the model parameters, the
single-time activation strategy parameters, and so on. Participants were
encouraged to find an optimal configuration for the KGS recognizer
by testing different configurations. Model training took around two
minutes and the whole process of finalizing a particular configuration
of KGS recognizer took approximately 5–10 minutes. When partic-
ipants were satisfied with the performance of their KGS recognizer,
as evaluated in the GUI, they were asked to deploy the newly trained
model for direct use with the Quest 2. Participants then performed the
remaining seven interaction scenarios as part of a real-time evaluation
of the constructed recognizer.

Throughout all stages of the study, participants were asked to de-
scribe what they were thinking and doing using a think-aloud protocol.
After completing all tasks, participants completed the System Usability
Scale (SUS) to evaluate the usability of the GUI. Participants also com-
pleted a post-experiment questionnaire to capture additional feedback
on the performance and usability of the GUI. The entire duration of
the study was approximately two hours and participants received a $25
voucher in appreciation for their involvement.

6.2 Results
6.2.1 Quantitative

The GUI received an average System Usability Scale score of 77.5.
This score is generally classified as “Good” usability according to

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

SA A N D SD

The functionality that Gesture Spotter
provides is useful.

The GUI for Gesture Spotter is easy to
use.

The GUI for Gesture Spotter is easy to
understand.

I was able to create the gesture
recognizer for the gestures I had in mind.

The process of creating a gesture
recognizer is straightforward.

Fig. 5: The five-point Likert responses to the GUI post-study question-
naire. Likert responses are color coded and the scale shows the number
of participants with the same rating. SA is strongly agree, A is agree,
N is neutral, D is disagree, and SD is strongly disagree.

Bangor et al. [4]. Each user managed to arrive at a final recognizer
that achieved, on average, an accuracy of 87.95%, and a NTtD of 0.96.
Note that these performance results were achieved by only trialing 2–3
different design configurations, that is, experimenting with different
choices of model input, data augmentation techniques, model choices
and hyperparameters. We suggest that although these performance
measures are good, they could be further improved if participants were
allowed more time to optimize the configurations.

Figure 5 summarizes participants’ responses to the post-study ques-
tionnaire. All participants strongly agreed that Gesture Spotter provided
useful functionality. The GUI was generally considered easy to use
and understand. Participants also responded positively to statements
regarding the ability to create a recognizer with custom gestures and
the straightforward process for doing this.

6.2.2 Qualitative

In the post-study questionnaire, participants were also asked to provide
written responses to questions asking what they liked/disliked about
the Gesture Spotter GUI, as well as what aspects of the GUI could be
improved. A range of responses were captured regarding what partici-
pants liked about the GUI. P4 commented that, “I can clearly identify
the functions of the GUI, and the parameters are easy to adjust. The
interface is user-friendly and gives users flexibility and freedom to
adjust the parameters.” Similarly, P9 commented that, “The GUI made
a task that seems very complicated and hard to do, very straightforward
and surprisingly robust.” Reflecting on the alternative to using the Ges-
ture Spotter GUI, P7 observed that, “I like the fact that it provides an
alternative for fast model training without going through code line by
line.” We grouped the participants’ responses regarding what they liked
about the GUI by identifying related key words referring to attributes of
the system: i) accurate, accuracy, fast, robust; ii) easy, simplify, straight-
forward, convenient, user-friendly; iii) flexibility, flexible, freedom;
and iv) personalize, new. The common feedback that emerged from
participants’ comments about what they liked is summarized below:

1. The GUI allows for creation of an accurate gesture recognizer by
just using the default settings. (P1, P3, P5, P7, P9, P10)

2. The GUI is easy to use and the process of designing a gesture
recognizer is straightforward. (P4, P10)

3. The GUI offers good flexibility in that it supports experimentation
with different parameters and configurations in the preprocessing,
augmentation, and model training stage. (P1, P5, P6, P8)

4. The GUI allows users to quickly design new and personalized
gestures. (P2, P6)

Examining participants’ responses to the question regarding what
they disliked about the GUI allowed us to identify opportunities for

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

further improvements. Several participants commented on the poor
aesthetics of the GUI (“vintage”, “old school”). This suggests that the
GUI would benefit from a more modern appearance. P7, who was
experienced in gesture recognition programming, commented that, “I
dislike the GUI being slightly over-simplified. I want to ask for more
flexibility, such as the number of neurons and number of layers of the
model. ” This comment highlights a difficult design trade-off between
simplicity and complexity. Our goal in this work focuses on supporting
developers with limited existing expertise as this is the group likely to
benefit the most from using Gesture Spotter.

A user with basic ML experience will benefit from additional knowl-
edge and flexibility when interacting with the Gesture Spotter GUI.
However, the GUI does not demand advanced ML expertise. A user
with little or no prior experience of ML can still use the default settings
provided in the GUI and produce an effective recognizer. Indeed, the
two participants in our study who had no prior exposure to ML were
still able to create robust KGS systems.

7 APPLICATION PROGRAMMING INTERFACE

Gesture Spotter also provides a Python API enabling developers to
build and evaluate a key gesture spotting model with only a few lines of
code. We carried out a developer-focused study to assess the usability
of the Gesture Spotter API.

7.1 User Study
7.1.1 Participants

We recruited four participants from within our institution (3 female, 1
male, average age: 24.5; standard deviation: 1.91; min: 23; max: 27).
All participants were right handed, had at least two years experience
with Python, and at least one year of experience with machine learning.
Three participants had experience working with AR/VR immersive
headsets and with Unity. We deliberately recruited participants to
have some degree of experience in Python programming and machine
learning as we envision the API will used by individuals who wish to
exercise more control over the model development and deployment
than afforded by the GUI.

7.1.2 Procedure

We asked each participant to declare a new gesture that they will then
append to the Gesture Knitter gesture set. To achieve this, participants
needed to collect samples of the new gesture, perform data augmenta-
tion, train and assess the model, and evaluate performance on device.
At the beginning of the study, we deployed a model supporting online
recognition of the ten one-handed gestures from the Gesture Knitter
dataset. We gave the participants a tutorial on how to perform these 10
gestures when wearing an Oculus Quest headset and running a Unity
application over Oculus Link. Note that the Gesture Knitter dataset
was collected using the HoloLens 2 and the ability of Gesture Spotter
to provide accurate recognition on a different device highlights the
flexibility of the method and the benefits of working with hand skeleton
data. We made sure that participants could perform all gestures by
confirming that each gesture was recognized at least once. We then
used a Python notebook to guide the participants through the API calls
for data preprocessing, augmentation, classifier training, and evaluating
the performance. In particular, we explained how to assess recognition
rate using the confusion matrix as well as how to tune hyperparame-
ters to trade-off between accuracy and the normalized time to detect.
Following this introduction, participants were asked to declare their
novel gesture and collect 30 samples, each of five seconds in length,
for which 25 samples are used for training and five are withheld for
offline validation. Participants were then asked to utilize the API calls
to assess the offline performance using the visualizations provided in
order to tune the hyperparameters appropriately. The computed recog-
nition results were then relayed back to the device for the developer to
observe while wearing the headset. They were finally asked to perform
five online recognition trial sets to assess the online performance of the
deployed model, each trial lasting 20 seconds and containing the novel
gesture which was just created. The five trial sets were: (1) Shrink, New,
Execution; (2) Push, MadRiddles, New; (3) Flamingo, Shrink, New; (4)

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

SA A N D SD

Geture Spotter is useful.

The API is easy to use.

The API is easy to understand.

I was able to create the recognizer for the
gesture I had in mind.

The gesture recognizers are easy to
create.

The gesture sample augmentation
process is useful.

The gesture recognizers can be easily
deployed for online recognition on device.

The visualizations to assess the
performance are useful.

Fig. 6: The five-point Likert responses to the API post-study question-
naire. Likert responses are color coded and the scale shows the number
of participants with the same rating. SA is strongly agree, A is agree,
N is neutral, D is disagree, and SD is strongly disagree.

New, CheshireDance, PeaceOut; (5) Grow, New, TickTock. New here is
a placeholder for the novel hand gesture which each participant created.
These gesture sets were selected to diversify the gestures and the order
in which they were performed. Each participant was asked to perform
two practice sessions for each online gesture set before we recorded
the 20 second log.

We followed a think-aloud protocol to capture the design process
employed by participants during the study. At completion, participants
also responded to a questionnaire examining the usefulness and usabil-
ity of the different functions provided by the API. Participants were
given 90 minutes for the entire study and they were provided with a
workstation with a keyboard and mouse. Participants received a $15
voucher in appreciation for their involvement.

7.2 Results
All participants completed the design study by creating a novel hand
gesture. Most participants were inspired by the more involved gestures
in the Gesture Knitter dataset when creating their own gesture. The
responses to the post-study questionnaire are summarized in Figure 6.
Notably, all participants agreed that Gesture Spotter was useful, the
API was easy to use, recognizers were easy to create, and that the
recognizers were easily deployable for use with the device.

By examining the online recognition logs we can also assess the
detection accuracy achieved for the novel gestures declared by the par-
ticipants. Recognition accuracy for the online gesture sets is calculated
as follows: for each set, we deem a gesture as being recognized if it is
detected and then add one to the total of recognized gestures, which we
then divide by the total number of distinct gestures. Aggregating all
four participants, we find that the average recognition rate was 86.7%.
This indicates that developers are able to easily add new gestures with
little data overhead while achieving good recognition accuracy for an
online application scenario.

The following observations were made as part of the think-aloud
protocol used in the study. It was observed that participants were able
to follow the major steps in the Gesture Spotter workflow, suggesting
that the API is intuitive and easy to use. Participants were also able to
analyze the visualizations provided by the API calls, thereby illustrating
that they are useful in aiding the user in understanding the model and
its behavior due to particular hyperparameter settings.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

After the design process, some participants commented on their
experience of the API and workflow. P1 commented on how the vi-
sualizations for the trade-off between accuracy and NTtD was useful
in understanding how the detection threshold affected the final per-
formance. P4 suggested making Gesture Spotter more accessible to
non-programmers by offering a guided GUI for each step of the proce-
dure. This point highlights the benefit of our approach to providing a
tool containing both an API and GUI.

8 LIMITATIONS AND FUTURE WORK

One limitation of the current GUI is that it lacks explanatory and tutorial
features aimed at users with no prior ML experience. Despite this, we
did observe that users with no machine learning knowledge could still
create a robust decoder using the default settings. One aspect users
without ML experience are likely to struggle with is in understanding
the different hyperparameters in the model. This may in turn lead to the
creation of a sub-optimal model in terms of recognition performance
for their custom gesture set. Possible solutions include offering users
more interactive assistance and access to visualization tools that can
guide inexperienced users through the use of the GUI.

Different single-time activation methods may lead to different recog-
nition results. Therefore, it may be fruitful to explore implementing
more single-time activation methods. The current method is based
on a deterministic approach with a predefined threshold. For future
work, we suggest investigating using tools from signal processing, such
as matched filters, to detect the sudden peak from the raw prediction
scores. We conjecture this will further improve online recognition
accuracy and early detection. Another fruitful avenue of future work
is exploring transfer learning [44] for skeleton-based data to enable a
pre-trained model to be fine-tuned for user-defined gestures. Transfer
learning is a common technique in computer vision and natural lan-
guage processing that enables a heavily pre-trained model to be used
on new data to achieve better performance than merely training the
model on the new data. Moreover, meta-learning approaches [11] can
potentially enable few-shot learning.

9 CONCLUSIONS

We have presented a key gesture spotting architecture and encapsulated
the architecture into a GUI and a series of API calls for quickly building
and evaluating real-time key gesture spotting recognizers for AR and
VR applications. Thanks to the different subcomponents included, such
as the data preprocessing and data augmentation scheme, developers re-
quire less training data and can spend less time and effort collecting and
annotating hand gesture data, which are expensive and time-consuming
activities. We demonstrated the efficacy of the KGS architecture by
evaluating its performance on four datasets. We then demonstrated the
usability of Gesture Spotter’s GUI and the API in two user studies.

In summary, this paper has presented a key gesture spotting architec-
ture consisting of a novel hand gesture classifier and a novel single-time
activation algorithm. We have demonstrated that the hand gesture classi-
fier delivers robust and data-efficient key gesture spotting functionality
while the single-time activation algorithm achieves an effective balance
between online recognition accuracy and early detection. Finally, we
introduced Gesture Spotter as a tool that provides developers with an
easy-to-use GUI and API for rapid prototyping of KGS functionality.
We hope Gesture Spotter will stimulate further research in this impor-
tant research area which ultimately serves to provide users with more
fluid hand gesture interaction in AR/VR.

OPEN SCIENCE

Complete source code for the GUI and the API, as well as data from
the study can be found here: https://github.com/CambridgeIIS/
Gesture_Spotter.

ACKNOWLEDGMENTS

John Dudley and Per Ola Kristensson were supported by EPSRC (grant
EP/S027432/1).

REFERENCES

[1] Impact of $-family. https://depts.washington.edu/acelab/proj/
dollar/impact.html.

[2] Oculus - set up hand tracking. https://developer.oculus.com/
documentation/unity/unity-handtracking/.

[3] L. Anthony and J. O. Wobbrock. A lightweight multistroke recognizer for
user interface prototypes. In Proceedings of Graphics Interface 2010, GI
’10, p. 245–252. Canadian Information Processing Society, CAN, 2010.

[4] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. J. Usability Studies,
4(3):114–123, may 2009.

[5] S. Y. Boulahia, E. Anquetil, F. Multon, and R. Kulpa. Dynamic hand
gesture recognition based on 3d pattern assembled trajectories. In 2017
seventh international conference on image processing theory, tools and
applications (IPTA), pp. 1–6. IEEE, 2017.

[6] A. Caputo, A. Giachetti, S. Soso, D. Pintani, A. D’Eusanio, S. Pini,
G. Borghi, A. Simoni, R. Vezzani, R. Cucchiara, et al. Shrec 2021: Track
on skeleton-based hand gesture recognition in the wild. arXiv preprint
arXiv:2106.10980, 2021.

[7] T. Chalasani, J. Ondrej, and A. Smolic. Egocentric gesture recognition
for head-mounted ar devices. In 2018 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 109–114,
2018.

[8] Y. Chen, L. Zhao, X. Peng, J. Yuan, and D. N. Metaxas. Construct dynamic
graphs for hand gesture recognition via spatial-temporal attention. arXiv
preprint arXiv:1907.08871, 2019.

[9] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber.
Flexible, high performance convolutional neural networks for image clas-
sification. In Twenty-second international joint conference on artificial
intelligence, 2011.

[10] Q. De Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. Le Saux, and
D. Filliat. SHREC’17 Track: 3D Hand Gesture Recognition Using a Depth
and Skeletal Dataset. In I. Pratikakis, F. Dupont, and M. Ovsjanikov, eds.,
3DOR - 10th Eurographics Workshop on 3D Object Retrieval, pp. 1–6.
Lyon, France, Apr. 2017.

[11] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine
Learning, pp. 1126–1135. PMLR, 2017.

[12] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. Syn-
thetic data augmentation using gan for improved liver lesion classification.
In 2018 IEEE 15th international symposium on biomedical imaging (ISBI
2018), pp. 289–293. IEEE, 2018.

[13] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen. Video captioning with
attention-based lstm and semantic consistency. IEEE Transactions on
Multimedia, 19(9):2045–2055, 2017.

[14] T. Ha, S. Feiner, and W. Woo. Wearhand: Head-worn, rgb-d camera-based,
bare-hand user interface with visually enhanced depth perception. In 2014
IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 219–228, 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[16] S. Hegde, R. Perla, R. Hebbalaguppe, and E. Hassan. Gestar: Real time
gesture interaction for ar with egocentric view. In 2016 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 262–
267, 2016.

[17] M. Hoai and F. De la Torre. Max-margin early event detectors. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2863–2870, 2012.

[18] S. Hochreiter and J. Schmidhuber. Lstm can solve hard long time lag
problems. Advances in neural information processing systems, pp. 473–
479, 1997.

[19] T. Kaneko, S. Takaki, H. Kameoka, and J. Yamagishi. Generative adver-
sarial network-based postfilter for stft spectrograms. In Interspeech, pp.
3389–3393, 2017.

[20] K. Kawakami. Supervised sequence labelling with recurrent neural net-
works. Ph. D. thesis, 2008.

[21] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll. Real-time hand ges-
ture detection and classification using convolutional neural networks. In
2019 14th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2019), pp. 1–8. IEEE, 2019.

[22] K. Lai and S. N. Yanushkevich. Cnn+ rnn depth and skeleton based

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

dynamic hand gesture recognition. In 2018 24th International Conference
on Pattern Recognition (ICPR), pp. 3451–3456. IEEE, 2018.

[23] L. A. Leiva, D. Martı́n-Albo, and R. Plamondon. Gestures à Go Go:
Authoring Synthetic Human-Like Stroke Gestures Using the Kinematic
Theory of Rapid Movements. ACM Transactions on Intelligent Systems
and Technology, 7(2):15:1–15:29, Nov. 2015.

[24] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen. Medical
image classification with convolutional neural network. In 2014 13th inter-
national conference on control automation robotics & vision (ICARCV),
pp. 844–848. IEEE, 2014.

[25] J. Liu, Y. Liu, Y. Wang, V. Prinet, S. Xiang, and C. Pan. Decoupled repre-
sentation learning for skeleton-based gesture recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5751–5760, 2020.

[26] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal lstm with
trust gates for 3d human action recognition. In European conference on
computer vision, pp. 816–833. Springer, 2016.

[27] M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-
proaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

[28] H. Lü, J. A. Fogarty, and Y. Li. Gesture script: recognizing gestures and
their structure using rendering scripts and interactively trained parts. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pp. 1685–1694. Association for Computing Machinery,
New York, NY, USA, Apr. 2014.

[29] H. Lü and Y. Li. Gesture coder: a tool for programming multi-touch
gestures by demonstration. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2875–2884. Association for
Computing Machinery, New York, NY, USA, May 2012.

[30] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur. Ex-
tensions of recurrent neural network language model. In 2011 IEEE inter-
national conference on acoustics, speech and signal processing (ICASSP),
pp. 5528–5531. IEEE, 2011.

[31] Y. Min, Y. Zhang, X. Chai, and X. Chen. An efficient pointlstm for
point clouds based gesture recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[32] G. B. Mo, J. J. Dudley, and P. O. Kristensson. Gesture knitter: A hand
gesture design tool for head-mounted mixed reality applications. CHI ’21.
Association for Computing Machinery, New York, NY, USA, 2021.

[33] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz. Online
detection and classification of dynamic hand gestures with recurrent 3d
convolutional neural network. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 4207–4215,
2016.

[34] X. S. Nguyen, L. Brun, O. Lézoray, and S. Bougleux. A neural network
based on spd manifold learning for skeleton-based hand gesture recogni-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12036–12045, 2019.

[35] J. C. Nunez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Velez.
Convolutional neural networks and long short-term memory for skeleton-
based human activity and hand gesture recognition. Pattern Recognition,
76:80–94, 2018.

[36] O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d normals for activ-
ity recognition from depth sequences. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
716–723, 2013.

[37] G. Park, T.-K. Kim, and W. Woo. 3D Hand Pose Estimation with a
Single Infrared Camera via Domain Transfer Learning. In 2020 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
588–599, Nov. 2020. ISSN: 1554-7868.

[38] V. Pavlovic, R. Sharma, and T. Huang. Visual interpretation of hand
gestures for human-computer interaction: a review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):677–695, 1997.

[39] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. Ntu rgb+ d: A large scale
dataset for 3d human activity analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1010–1019, 2016.

[40] J. Shen, J. Dudley, and P. O. Kristensson. The imaginative generative
adversarial network: Automatic data augmentation for dynamic skeleton-
based hand gesture and human action recognition. In 2021 16th IEEE
International Conference on Automatic Face and Gesture Recognition
(FG 2021), pp. 1–8, 2021.

[41] J. Shen, J. Dudley, and P. O. Kristensson. Simulating realistic human
motion trajectories of mid-air gesture typing. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 393–402, 2021.

[42] X. Shi, J. Pan, Z. Hu, J. Lin, S. Guo, M. Liao, Y. Pan, and L. Liu. Accurate
and Fast Classification of Foot Gestures for Virtual Locomotion. In 2019
IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 178–189, Oct. 2019. ISSN: 1554-7868.

[43] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image
generation. arXiv preprint arXiv:1611.02200, 2016.

[44] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on
deep transfer learning. In International conference on artificial neural
networks, pp. 270–279. Springer, 2018.

[45] E. M. Taranta, M. Maghoumi, C. R. Pittman, and J. J. LaViola. A Rapid
Prototyping Approach to Synthetic Data Generation for Improved 2D
Gesture Recognition. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, UIST ’16, pp. 873–885.
Association for Computing Machinery, New York, NY, USA, Oct. 2016.

[46] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock. Gestures as point clouds:
A $p recognizer for user interface prototypes. In Proceedings of the 14th
ACM International Conference on Multimodal Interaction, ICMI ’12, p.
273–280. Association for Computing Machinery, New York, NY, USA,
2012.

[47] J. Wang, J. Chen, Y. Qiao, J. Zhou, and Y. Wang. Online gesture recog-
nition algorithm applied to hud based smart driving system. In 2019
IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct), pp. 289–294, 2019.

[48] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries,
toolkits or training: A $1 recognizer for user interface prototypes. In
Proceedings of the 20th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’07, p. 159–168. Association for Computing
Machinery, New York, NY, USA, 2007.

[49] H. Xie, J. Wang, B. Shao, J. Gu, and M. Li. Le-hgr: A lightweight and
efficient rgb-based online gesture recognition network for embedded ar
devices. 2019 IEEE International Symposium on Mixed and Augmented
Reality Adjunct (ISMAR-Adjunct), pp. 274–279, 2019.

[50] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He.
Attngan: Fine-grained text to image generation with attentional generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1316–1324, 2018.

[51] B. Yoon, H.-i. Kim, S. Y. Oh, and W. Woo. Evaluating remote virtual
hands models on social presence in hand-based 3d remote collaboration.
In 2020 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 520–532, 2020.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3203004

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on September 08,2022 at 17:28:10 UTC from IEEE Xplore. Restrictions apply.

