
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Recursive-NeRF: An Efficient and Dynamically
Growing NeRF

Guo-Wei Yang, Wen-Yang Zhou, Hao-Yang Peng, Dun Liang, Tai-Jiang Mu, Shi-Min Hu, Senior
Member, IEEE,

Abstract—View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural
Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution.
However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken to
render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a
complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a
simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient
and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates,
representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are
forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a
composition of results from neural networks of all levels. Our evaluation on three public datasets shows that Recursive-NeRF is more
efficient than NeRF while providing state-of-the-art quality. The code will be available at https://github.com/Gword/Recursive-NeRF.

Index Terms—scene representation, view synthesis, image-based rendering, volume rendering, 3D deep learning.

F

1 INTRODUCTION

Image-based rendering (IBR) is a popular topic in com-
puter graphics with demonstrated value in virtual reality
and deep learning for novel view synthesis and data aug-
mentation. The basic idea is to reconstruct the underlying
geometry and appearance from a set of images, using repre-
sentations which may be mesh-based [1], [2], [3], [4], volu-
metric [5], [6], [7], [8], [9], [10] or implicit [11], [12]. These
are used to synthesize novel views by interpolation [13]
or rendering techniques [11], [12]. A recent development,
the Neural Radiance Field (NeRF) method [14] implicitly
encodes a scene or object using a fully-connected neural
network, optimized by a naturally differentiable method.
It provides excellent novel high-resolution photorealistic
views using a continuous volumetric representation. It thus
has been extended to large-scale scenes [15], non-rigidly de-
forming scenes [16], dynamic lighting and appearance [17],
etc.

Though NeRF achieves unprecedented synthesis quality,
its rendering process is extremely slow and makes high
memory demands, so is unattractive for practical use. The
bottleneck is the calculation of each pixel value by inte-
grating along a rendering ray, which is approximated by
hierarchical volume sampling in a similar way to impor-
tance sampling. For each ray, NeRF samples 192 coordinates,
each forward passing through the whole neural network,
and in total millions of rays are required to render a single
moderate-resolution image (say 800 × 800 pixels). Previ-
ous work [18] has improved NeRF’s rendering speed by
sampling more carefully using a sparse set of voxels, and

• G.-W. Yang, W.-Y. Zhou, H.-Y. Peng, D. Liang, T.-J. Mu and S.-M. Hu
are with the BNRist, Tsinghua University, Beijing 100084, China.
Shi-Min Hu is the corresponding author. E-mail: shimin@tsinghua.edu.cn

Manuscript received May 17, 2021.

avoiding evaluations on empty voxels.
Let us consider some drawbacks of NeRF’s rendering

process. Firstly, NeRF uses the same network for all sample
points, so NeRF encodes the whole scene using a single
neural network model. For more complicated scenes, it
is necessary to ensure the neural network has sufficient
representational power. This is done by using an increased
number of network parameters, additional hidden layers,
or increased dimensions of the latent vectors. As a result,
for every individual query sample, both the training and
inference time of the network increase with greater scene
complexity. Furthermore, NeRF cannot self-adapt to scenes
of different complexity. Secondly, regardless of whether
inidividual query samples are complicated or simple, NeRF
treats them equally and passes them through the entire neu-
ral network, which is overkill for regions which are empty
or have simple geometric structures and textures. These
limitations seriously affect large-scale scene rendering.

Related problems in other rendering methods have been
solved by using a level of detail (LOD) approach [19]. We
suggest that it can be carried across to give an adaptive and
efficient neural rendering approach based on NeRF: the ren-
dered value of a sample needs to be further processed if and
only its rendered quality is not high enough at the current
level of the neural network. Moreover, a coarser level may
be represented with a smaller neural network while more
detailed levels are represented with larger neural networks.
The rendering of a sample adaptively passes through the
neural network according to that sample’s complexity.

We embody this concept in a method we call Recursive-
NeRF (see Fig. 1) , which recursively applies the NeRF
structure with various number of linear layers in each stage
when needed. Starting with a small neural network, at each
level, in additional to the color and volumetric intensity,

ar
X

iv
:2

10
5.

09
10

3v
1 

 [
cs

.C
V

] 
 1

9 
M

ay
 2

02
1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

…

𝑥, 𝑦, 𝑧, 𝑑

…

Stage I Stage II Stage III

…

Recursive Rendering

Uncertain Point Classification

MLP Module

Branch Module

∅2 ∅3 ∅4 ∅6

∅5 ∅7 …

…

…
∅1

∅2

∅3

∅4

∅5

∅6

∅7

∅1

Fig. 1: Pipeline of Recursive-NeRF. Given a position (x, y, z) and viewing direction d, the initial network Φ1 outputs color
c1, density σ1, and uncertainty δ1. All uncertain points are divided into several categories, and then Φ1 dynamically grows
several branch networks to continue training for each subset of uncertain points until the network is believes that all points
are reliably predicted. When rendering, early termination allows different points to exit at different times, reducing the
network load.

Recursive-NeRF also predicts an uncertainty, indicating the
quality of the current results. Recursive-NeRF then directly
outputs results for those query coordinates in the current
level with low uncertainty, instead of passing them for-
ward through the rest of the network. Query coordinates
with high uncertainty are forwarded in clusters to the next
level, represented as multiple neural networks with more
powerful representational capability. The training process
terminates when the uncertainties for all query coordinates
are less than a user-specified threshold, or some maximal
number of iterations is reached. In this way, Recursive-
NeRF splits the work adaptively to decouple different parts
of the underlying scene according to its complexity, help-
ing to avoid unnecessary increase in network parameters.
Experiments demonstrates that Recursive-NeRF achieves
significant gains in speed while providing high quality view
synthesis.

In summary, our work makes the following main contri-
butions:

• a recursive scene rendering method, where early
termination prevents further processing once out-
put quality is good enough, achieving state-of-the-
art novel view synthesis results with much reduced
computation, and

• a novel multi-stage dynamic growth method, which
divides uncertain queries in the shallow part of the
network, and continues to refine them in differently
grown deep networks, making the approach adap-
tive for scenes with areas of differing complexity.

2 RELATED WORK

Our approach uses a neural 3D shape representation and
dynamic neural networks for image based synthesis. A full
review of these ideas is outside the scope of this paper,
and we refer interested readers to [20] for classical IBR and
[21], [22] for neural rendering. We consider the most closely
related works below.

2.1 Neural 3D shape representations for view synthesis

Recently, there has been work training an MLP network to
continuously represent a 3D scene, mapping 3D coordinates
to an implicit representation, e.g. the signed distance func-
tion (SDF) [23], [24] or an occupancy field [25], [26]. Such
approaches usually need to be supervised with ground-
truth 3D geometry. An an alternative, learning from a set of
images has benefits, since images are more readily available,
and supervision can be implemented with neural rendering
techniques [2], [27]. Scene Representation Networks (SRN)
[11] uses an MLP network to learn scene geometry and
appearance, proposing a differentiable ray-marcher to train
the network end-to-end in an unsupervised manner. Neural
Volumes (NV) [6] learns a dynamic irregular warp field
during ray-marching. Local Light Field Fusion (LLFF) [8]
expands each input view into a local light field through
a multiplane image (MPI), then mixes adjacent local light
fields to render novel views.

Recently proposed, NeRF [14] uses a sparse set of input
views to optimize an MLP network which inputs a query
point and outputs color and density. NeRF trains the net-
work and renders the scene by sampling points in space by
ray marching; it can generate high resolution images of high



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

quality. This approach has been adapted to handle more
complicated scenarios. For example, Zhang et al. [15] solve
the parameterization problem arising when applying NeRF
to object capture in 360◦ large-scale scenes. Srinivasan et
al. [17] enhances NeRF for view synthesis under any lighting
conditions. Schwarz et al. [28] propose generative radiance
fields for 3D-aware image synthesis. Park et al. [16] optimize
an additional continuous volumetric deformation field for
non-rigidly deforming scenes.

However, these NeRF-based methods need a large num-
ber of samples in the rendering line of sight, so are slow.
NSVF [18] focuses on the sampling strategy and introduces a
sparse voxel octree on the basis of NeRF; speed is improved
by avoiding calculating integrals in empty voxels. Lindell et
al. [29] propose automatic integration to estimate volume
integrals along the viewing ray in closed-form to avoid
sampling, but their method suffers from quality degradation
due to the piecewise approximation.

Although these methods have significantly accelerated
NeRF, there is still much room for further improvement.
Our dynamic network adapts to the complexity of the
scene, significantly reducing the amount of calculation. It
is complementary to NSVF [18], and could be combined for
further speed.

Recently, a series of good speed improvements have been
achieved by caching neural network results [30], [31], but
these methods will bring additional memory consumption.
In the future, we will consider researching ways to improve
rendering speed without additional memory consumption.

2.2 Dynamic Neural networks

Dynamic neural networks dynamically adjust the network
architecture according to equipment resources.

Multi-scale dense networks [32] train multiple classifiers
according to different resource demands and adaptively
apply them during testing. [33] proposes switchable batch
normalization and slimmable neural networks, which can
adjust width according to device resources. [34] extends this
idea to execute at arbitrary width. [35] extends slimmable
neural networks to change numbers of channels for better
accuracy with constrained resources.

These approaches adjust the network architecture ac-
cording to equipment resources, whereas we adaptively
adjust the network architecture according to the network
training situation. Also, previous dynamic networks solve
a classification task. Since the output of the classification
network is the probability of predicting each category, the
probability can naturally be used as the confidence. Ours is
a regression task, which determines whether the network is
exited by predicting a confidence value. This is harder to
train than a classification task.

3 ANALYSIS OF NEURAL RADIANCE FIELDS

3.1 Neural Radiance Fields

NeRF inputs continuous 5D coordinates, composed of a
3D position and a 2D viewing direction, and estimates
view-dependent radiance fields and volume density at the
corresponding position. By producing radiance fields, NeRF
can simulate highlights and reflections well. NeRF calculates

26

27

28

29

30

31

25 50 100 200 400 800

2 4 6 8

PSNR

25

26

27

28

29

30

31

25 50 100 200 400 800

64 128 256

PSNR

Fig. 2: Correlation between parameters and scene complex-
ity. Different curves in the top and bottom plots represent
various network depths and widths, respectively. The hori-
zontal axis is the resolution of the square image, represent-
ing the complexity of the model. The vertical axis is the
PSNR of the image, the higher the better.

the color C(r) of a pixel in an image by integrating the ray
from the camera to the pixel:

C(r) =

∫ +∞

0

T (t)σ(r(t))c(r(t),d) dt (1)

where r(t) = o + td is the camera ray emitted from o in di-
rection d, and T (t) represents the cumulative transparency
from 0 to t:

T (t) = exp

(
−
∫ t

0

σ(r(s)) ds

)
. (2)

c and σ are directional emitted color and volume density
which are calculated via an MLP network Fθ :

Fθ : (x,d)→ (c, σ) (3)

3.2 Parameters and Scene Complexity
Scenes of greater complexity need to be represented using
a larger number of parameters. At the same time, simple
scenes can be represented by a small number of parameters.

We tested the PSNR of NeRF [14] on the Lego dataset
for different numbers of network layers (2, 4, 6, 8), network
widths (64, 128, 256) and image sizes (25, 50, 100, 200, 400,
800). The capacity of the network is positively corelated with
the number of network layers and the network width. Here,
image size is a proxy for complexity of the scene. It can
be seen that as the complexity of the scene increases, the
PSNR first increases and then decreases. It is because when
the scene is too simple, there is too little information for
learning, while the scene will be beyond the capability of the
network as it gets too complicated. It can be seen from Fig. 2
that when the scene is relatively simple, the representational
capabilities of different networks are similar. As the scene
becomes complex, the gap between the representational
capabilities of different networks widens.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

There is an intuitive solution: simply split the scene into
several parts, with each part being represented by an iden-
tical individual network. However, this solution has prob-
lems. Each part uses the same network architecture, while
the complexity of different parts of the scene may differ, so
ideally networks with different capabilities should be used
to represent them. Furthermore, coarse-grained information
will be learned repeatedly. Recursive-NeRF overcomes both
of these issues using a more sophisticated approach.

4 RECURSIVE NEURAL RADIANCE FIELDS

Recursive-NeRF use the NeRF approach in an LOD manner
to adapt to the complexity of the underlying scene, which is
trained in stages and changes dynamically, as shown in Fig.
1. At each stage, according to the predicted uncertainty, a
query coordinate will be finalised or forwarded to the next
stage which uses more powerful neural networks, controlled
by an early termination mechanism. All finalised predictions
of color and intensity from each stage are gathered to render
the final image.

In this section, we first introduce neural recursive fields
(Sec. 4.1) which represent the whole scene from coarse to
fine. Early termination (Sec. 4.2) allows our network to
finalise the prediction when the uncertainty is low enough,
avoiding unnecessary calculations and speeding up render-
ing. We use the k-means algorithm to cluster the high un-
certainty points in the current stage, thus dividing the scene
into several parts for finer-grained prediction. Additionally,
the network grows several child branch networks to achieve
dynamic growth (Sec. 4.3). Overall, we recursively render
(Sec. 4.4) the entire scene, with input coordinates entering
different branches for network prediction based on previous
clustering results.

4.1 Recursive Neural Fields
A recursive neural field takes its parent branch’s output ypi
and the viewing direction d as inputs, and predicts color ci,
density σi, uncertainty δi and a latent vector yi:

FΦi
: (ypi , d)→ (ci, σi, yi, δi) (4)

where FΦi
represents the ith subnetwork. FΦ1

is the root of
our recursive network; in this case, ypi is set to the query
coordinate (x, y, z).

As shown in Fig. 1 and 3, sub-network FΦi
consists of

three main components: an MLP module, a Branch module
and an Out module. The MLP module includes two or more
Linear layers to ensure that the MLP module performs suffi-
ciently complex processing of features. The Branch module
predicts the uncertainty δi of each query point, forwards the
points with low uncertainty to the Out module for output,
and distributes points with high uncertainty to different
sub-networks according to their distances to the ki cluster
centers of FΦi

. The Out module is responsible for decoding
features into ci and σi.

4.2 Early Termination
Our early termination mechanism allows the query coordi-
nate to be finalised early (so not processed further) when
its predicted uncertainty is less than a certain threshold. We

MLP Module

MLP Module

Branch Module Out Module

MLP Module

MLP

Branch Module

MLPMLP

Branch Module

MLP

𝑥, 𝑦, 𝑧, 𝑑

𝛿1

𝑐1, 𝜎1

𝛿3𝛿2

𝑐3, 𝜎3𝑐2, 𝜎2

… … … …

Out 

Module
Out 

Module

Fig. 3: Network architecture of Recursive-NeRF. For every
query (x, y, z, d), the network predicts an uncertainty δ used
to decide if the query should be finalised early. If so, it will
enter the OutNet to predict its color c and density σ. If
not, the point split unit determines which branch it should
subsequently enter.

next present our novel uncertainty prediction method for
ray marching, then explain the special training method for
Recursive-NeRF.

4.2.1 Uncertainty prediction
Each branch network predicts an uncertainty for the query
coordinate, which we use to determine where the branch
network exits. We use the original NeRF loss to help us
predict uncertainty. NeRF adopts mean square error (MSE)
between rendered images and real images as the loss for
training coarse and fine networks:

LMSEc =
∑
r∈R

∥∥∥Ĉc(r)− C(r)
∥∥∥2

2
(5)

LMSEf =
∑
r∈R

∥∥∥Ĉf (r)− C(r)
∥∥∥2

2
(6)

where R contains rays in a mini-batch, Ĉc(r) and Ĉf (r) are
rendered colors from coarse and fine networks, respectively,
and C(r) is the ground truth. Our coarse and fine networks
have the same network structure and training. The coarse
and fine architecture is dedicated to sampling points since
our network is designed to avoid unnecessary calculation
for each sample point. Indeed, the previous uncertainty
response can be used as sampling guidance for NeRF’s fine
network. For simplicity, we no longer distinguish coarse and
fine networks, and use Ĉ(r) to represent the color rendered
by any network.

We introduce two regularization losses to train the un-
certainty effectively. We use a Linear layer following the
output feature ypi of FΦi to calculate the uncertainty δi. We
use the squared error of the pixel to supervise δi, the intent
being that if a pixel has large error, δi of the sample points
that generate the uncertainty associated to the sample points
should also be large. Therefore, we punish δi less than the
squared error:

LSE =
∑
r∈R

N∑
i=1

max(E(r)− δci , 0) (7)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4: Alpha linear initialization comparison. Left: ground
truth. Middle: our full model’s result. Right: result of model
without alpha linear initialization.

E(r) =
∥∥∥Ĉ(r)− C(r)

∥∥∥2

2
(8)

where E(r) is the squared error of ray r, ci is the sample
point of ray r, and δci is the predicted uncertainty for query
coordinates ci.

To prevent δi from blowing up, we introduce another
regularization loss: for every query point, we encourage δi
to be as close to zero as possible:

L0 =
∑
r∈R

N∑
i=1

max(δci , 0) (9)

A weighted sum of LSE and L0 gives the overall uncer-
tainty loss:

Lunct = α1LSE + α2L0 (10)

where α1 and α2 are weights, here set to α1 = 1.0 and
α2 = 0.01.

We use regularization loss instead of directly using L1

loss to train δi because the difficulty of accurately predicting
E(r) is about the same as directly predicting the color
of the query coordinates for the neural network. In our
network structure, it is difficult for a shallow network to
have accurate E(r). Therefore, we use regularization loss
with unbalanced values for α1 and α2, so that the network
can use larger penalties for points with uncertainty lower
than loss, while uncertainty higher than loss will be less
punished. In this way, the network learns the uncertainty
into the upper bound of the complex loss function, so that
only a truly certain point can terminate early.

4.2.2 Multi-scale joint training
We thus finalise queries with uncertainty lower than ε
early, and forward points with uncertainty greater than
or equal to ε to the deeper network. This early termina-
tion mechanism can reduce unnecessary calculations, but
unfortunately, also brings training difficulties. For a query
coordinate (x, y, z, d), the uncertainty may exceed ε at some
stage, and the coordinate will be sent to a deeper network.
However, if the deeper network has not been trained on this
coordinate before, it will output an almost random value.
This will cause great instability in the loss, affecting the
training and may even cause gradient explosion.

To solve this problem, we follow the practice in multi-
scale dense networks [32]: each time, all query coordinates
are output through all outlets; images with early termina-
tion are also output, and their losses are weighted with

alpha

concat rgb
256 256

24

1 1

128 3 3

Fig. 5: Left: network structure of OutNet. Green block: fully
connected layer. Yellow blocks: input and output variables
of the network.

equal weight during training. Our overall loss function is
thus:

L =

D∑
i=1

β1LiMSE + β2L
i
unct (11)

where D is current number of stages (also D − 1 times
of network growth), and LiMSE and Liunct are the MSE
loss and uncertainty loss of the output image of layer i,
respectively. β1 and β2 are weights, set to β1 = 1.0 and
β2 = 0.1.

4.3 Dynamic Growth

We now explain our adaptive dynamic growth strategy
which clusters the uncertain queries at the current stage, and
grows deeper networks according to the clustering result.

As shown in Fig. 1, in the initial stage, the network
contains only one sub-network Φ1 which consists of two
linear layers. After I1 iterations of training for the initial
network, we sample a number of points in space and
calculate their uncertainties. We then cluster those points
for which the uncertainty is higher than ε; the clustering
result determines the growth of the next stage network. To
ensure that clustering is simple and controllable, we use
the k-means algorithm, which can be replaced by a more
efficient clustering algorithm such as methods in [36], with
k ∈ [2, 4]. The network grows k branches according to the
cluster centers; these are e.g. Φ2 and Φ3. Downstream, query
points are assigned to the branch with the closest cluster
center.

When scenes become complicated, NeRF has to deepen
its network, while we can simply add further branches to
get the same result. There are two reasons why we split
the grown network into two. Firstly, splitting the points
will reduce the complexity of the network, otherwise, a
deeper network is required for all points. Secondly, each
child-network is only responsible for part of the scene inde-
pendently, making it more effective and adaptive. Ablation
experiment named “no branching” in Table 3 shows that our
full model are better than using a single branch .

The growth-based network is trained for several itera-
tions, and then clustered and grown. This process can be
repeated successively until the uncertainty of most points
is less than ε. In order to finish training in a reasonable
amount of time, we specify that Recursive NeRF grows 3
times in total. The value of k used for each growth step can
be different, but by default, we set k for each to be 2.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Stage I Stage II Stage III Stage IV Mixed results

Fig. 6: Scene segmentation at different stages. Left: segmentation at different stages. Right: blocks owning each query point,
indicating early termination.

Stage I Stage II Stage III Stage IV

Fig. 7: Recursive rendering. Various query points are fi-
nalised early in different stages, and finally all points are
aggregated to form the rendered image at the upper left.

During training, sample points can exit at multiple
stages, while points will exit only once at a specific stage
during inferencing. Points found earlier to be reliable will
immediately exit and be rendered. Which branch is taken
depends on the results of clustering. We cluster the uncer-
tain points in the current stage and feed them to different
child-branches with the same structure in the next stage.

Trials show that direct growth of a randomly initialized
network results in instability in the staged training, causing
the density of some of the grown networks to reduce to 0. As
a result the rendered scene can lack pieces, as shown in Fig.
4. The specific structure of the network’s Outnet module
is shown in Fig. 5, where alpha linear is responsible for
decoding features into the density of query points. Our ap-
proach to overcoming this problem is to initialize the alpha
linear weights of grown sub-network to be same as those of
the parent. This enables the density generation network of
the subnet to inherit part of the density information of the
parent, avoiding this instability.

We show staged clustering results for the Lego model in
Fig. 6. It can be seen that the image includes finer and finer
detail from the initial to final stage.

4.4 Recursive Rendering
Unlike NeRF which outputs the color and density for all
points in the last layer of the network, Recursive-NeRF
renders the final image recursively. In the current view, all

points whose uncertainty is lower than the threshold at the
current stage can render a relatively fuzzy image. All points
with uncertainty higher than the threshold enter the next
stage network to be further refined and other points of low
uncertainty can exit from this stage. These points together
with ones from all previous stages can render a clear image.
Fig. 7 renders images using the points finalised at different
stages, these being merged to form the final image at top-
left. The uncertainty is implicitly visualized in Fig. 7, where
areas of low uncertainty at earlier stages are mainly empty
spaces and surfaces with simple structure, such as the floor
of the Lego model.

Each input query point r(t) exits from the first branch
network in which its uncertainty probability is less than ε.
We use the color ci and density σi predicted by the branch
network to represent c(r(t)) and σ(r(t)) needed by Eq. 1.
Then we use Eq. 1 to calculate the color of the query point.

σ(r(t)) = σi, i = min{i|δi < ε ∧ r ∈ Ri} (12)

c(r(t)) = ci, i = min{i|δi < ε ∧ r ∈ Ri} (13)

where Ri is the set of points contained in the i-th branch.

5 EXPERIMENTS AND DISCUSSION

In this section, we first evaluate our Recursive-NeRF on
different datasets and compare it with state-of-art alter-
natives. Then we conduct ablation studies to validate the
design choices of our approach, including early termination,
uncertain point clustering and the branching mechanism.

5.1 Experimental Settings

5.1.1 Deep Learning Framework
All of our experiments were implemented using the Jit-
tor deep learning framework [37]. Jittor supports dynamic
graph execution, allowing the neural network to be dynam-
ically changed during each training stage, so is well suited
to training our Recursive-NeRF.

5.1.2 Datasets
We evaluated our method on Synthetic-NeRF [14], and
Cornell Box dataset [38]. Synthetic-NeRF contains eight
man-made objects with complicated geometry and materi-
als. Each object is realistically rendered in 300 views at a
resolution of 800 × 800 pixels. We used the same split into



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1: Quantitative Comparison on the Synthetic-NeRF
dataset [14]

Method PSNR↑ SSIM↑ LPIPS↓ FLOPs↓ Time↓

SRN [11] 22.26 0.846 0.170 - -
NV [6] 26.05 0.893 0.160 - -
LLFF [8] 24.88 0.911 0.114 - -
NeRF [14] 31.01 0.947 0.081 591488 26.14

Ours 31.34 0.953 0.052 377159 17.68

training and testing data as NeRF [14]. Cornell Box is a rel-
atively simple synthetic scene, mainly composed of boxes.
We adopted this dataset to demonstrate the effectiveness
of our method. We rendered 400 pictures at a resolution
of 800 × 800 pixels from views uniformly sampled with
the camera moving along a spiral curve, and randomly
selected 200 pictures as the training set, and the remainder
for testing.

5.1.3 Baseline
Using the above datasets, we compared our approach to
several current state-of-the-art methods: SRN [11], NV [6],
LLFF [8], and NeRF [14]. As explained in Sec. 2.1, NSVF
focuses on avoiding calculating integrals for empty voxels
by using a more reasonable sampling strategy, while each
sampled point still goes through a whole NeRF. Recursive-
NeRF improves upon NeRF in a complementary way by
avoiding unnecessary calculation for each sample point by
using an adaptive early termination strategy based on the
learned uncertainty, which can be combined with NSVF to
further improve the original NeRF. We thus do not make a
comparison between ours and NSVF in what follows.

5.1.4 Implementation details
The batchsize was set to 4096 in our training stage, 64
and 128 sampling points were used for the coarse and
networks respectively, and each model was trained for 300k
iterations, all as in the NeRF paper. Our network underwent
four stages of training, as it was grown three times. The
initial and grown networks had 2, 2, 4, and 4 linear layers
respectively. We used Adam as our optimizer and set a
learning rate with initial value of 5 × 10−4 and 10 times
exponential learning rate decay after 250k iterations.

5.2 Results
5.2.1 Qualitative comparison
We show different rendering results on Synthetic-NeRF
dataset in Fig. 8. Comparative results on the Cornell Box
dataset are shown in Fig. 9. Our method generates much
clearer local details than the baseline NeRF on the Synthetic-
NeRF dataset and achieves comparable results on Cornell
Box dataset. Fig. 10 galleries more results Recursive-NeRF
renders at other viewpoints on both Synthetic-NeRF and
Cornell Box dataset.

5.2.2 Quantitative comparison
We also used PSNR and SSIM to enable a quantitative com-
parison of the results (higher is better), as well as LPIPS [39]

TABLE 2: Quantitative Comparison on Cornell Box
Method PSNR↑ SSIM↑ LPIPS↓ FLOPs↓ Time↓

NeRF 49.237 0.996 0.015 591488 26.14
Ours 48.010 0.996 0.010 198361 10.82

(lower is better). Results for the Synthetic-NeRF dataset are
shown in Table 1, and demonstrate that our method can
perform well on the general dataset. Results for the Cornell
Box dataset are shown in Table 2. We have reduced the
amount of calculation by about 2/3, with only a slight loss
of accuracy.

5.2.3 Speed comparison
We show the number of floating point operations FLOPs
and rendering time in both Table 1 and 2. Our network re-
quires fewer operations for both simple and complex scenes,
with greater speed improvement for the simple scenes as to
be expected. The maximum depth of our network can reach
12 layers, which is deeper than NeRF’s 8 layers. Using on
our early termination strategy, we are able to finalise a large
number of simple query points in the shallow part of the
network, leaving the deep network to focus on the complex
information, thereby providing better results. Although the
number of deepest layers in our network is greater, our early
termination strategy results in Recursive-NeRF reducing
NeRF’s computational effort by 37%, and 32.36% less time
to render a image at the same time.

5.2.4 Distribution of sample termination
The distribution of sample point termination shows that
the ratios of points terminated in the 2nd, 4th, 8th, and
12th layers are 45.3%, 27.9%, 7.2%, and 19.6%, respectively.
The sample points will go through 4.95 layers on average
in our network, while 8 layers are required in NeRF, and
only 19.6% of points go through a deeper network than in
NeRF. Thus, our adaptive approach can effectively reduce
the computation according to the learned uncertainty: it is
more than a simply deeper NeRF.

5.3 Ablation Study
We conducted ablation experiments as described below; the
results are shown in Table. 3. A qualitative comparison of
results on the Lego dataset is shown in Fig. 11.

5.3.1 Effect of early termination
Early termination is a key part of our method. We trained
our model without early termination, which means all sam-
pling points leave at the last exit. It can be seen that the
amount of computation increased significantly. The early
termination mechanism greatly improves performance and
only causes a very minor degradation of the results.

5.3.2 Effect of uncertain point classification
We use K-means to divide the scene into blocks. As an
alternative, we randomly divided the scene into blocks and
compared the outcomes. Fig. 12 shows the results. Without
clustering, many blocks contain many discontinuous parts,
and the block size is also uneven, reducing the quality of the
final image.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Ship Lego Microphone

Ground Truth NeRF Ours Ground Truth NeRF Ours Ground Truth NeRF Ours

Fig. 8: Qualitative results. Top: scene. Middle, below: Two close-ups of the scene. We show the ground truth, the results of
NeRF rendering, and of our method in turn.

Ground Truth NeRF Ours

Fig. 9: Qualitative comparison for Cornell Box. Left: original
image . Middle: NeRF’s result. Right: our result.

Fig. 10: Further rendering results from Recursive-NeRF.

5.3.3 Effect of branching

To demonstrate the effectiveness of our network block struc-
ture, we compare the results with a chain structure of the
same depth network (No branch in Table 3). The chain
network had a #2FC−#2FC−#4FC−#4FC structure
where #iFC represents a fully connected layer with i-

TABLE 3: Ablation experiment
Method PSNR↑ SSIM↑ LPIPS↓ FLOPs↓

No classification 32.697 0.966 0.035 326463
No branch 32.374 0.962 0.040 349504
No early termination 33.118 0.970 0.032 854656

Full model 32.900 0.967 0.033 347765

layers. The query points could terminate early from the 2nd,
4th, 8th, and 12th levels. The branching strategy divides
complex parts into different branch networks for learning,
allowing the network to decouple complex scenarios and
conduct targeted learning. Thus branch strategy brings a
significant increase in quality.

5.4 Limitations and future works

Recursive-NeRF rendering for large-scale scenes is still chal-
lenging. Inaccurate camera position and motion blur will de-
grade the performance of both Recursive-NeRF and NeRF,
which restricts their application to real scenes. Although the
speed of Recursive-NeRF is better than that of the original
NeRF, it is still not adequate for real-time use. We hope
to further improve the performance of Recursive-NeRF, to
adapt it to more complex scenes.

In principle Recursive-NeRF can add as many stages as
desired to represent a large and complicated scene. Cur-
rently, however, the maximal number of stages is fixed to 4.
Also, the injection of sub-networks for a query coordinate
is also fixed during training once the cluster centers of
uncertain points at each stage has been determined, mak-
ing it unadjustable in later training processes. This could
be improved in two ways to make our approach more
suitable for large and complicated scenes. Firstly, we could
select an appropriate number of stages to best represent the
whole scene by using techniques from neural architecture
search [40]. Secondly, learnable clustering [41] of uncertain



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

No early termination No classification No chunking Full modelGround Truth

Fig. 11: Qualitative comparison of ablation experiment.

Fig. 12: Scene segmentation results. Left: original Lego
scene. Middle: result using random division (no clustering).
Right: result of clustering uncertain points using K-means.

points could be exploited to make the branched networks
more adaptive to complexity of parts of the underlying
scene.

6 CONCLUSIONS

In this paper, we have proposed the idea of adaptively mod-
eling parts of a scene with different complexity using neural
networks of different representation capability, analogous
to level of detail. We have used it to construct a dynam-
ically growing neural network for novel view synthesis,
called Recursive-NeRF. It extends basic NeRF by addition-
ally predicting uncertainty for the results, and uses it to
dynamically branch new, more powerful neural networks
to represent more uncertain regions, allowing it to efficiently
learn implicit geometric and appearance representations for
complicated scenes. Our experiments have demonstrated
the effectiveness of our method and show that, compared
to NeRF, Recursive-NeRF can generate more photorealistic
views in a more efficient computation.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Founda-
tion of China (Project Number 61521002). We would like to
thank Guo-Ye Yang for his kindly help in experimentation
and Prof. Ralph R. Martin for his help in writing.

REFERENCES

[1] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2:
a retargetable forward and inverse renderer,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 203:1–203:17, 2019.

[2] S. Liu, W. Chen, T. Li, and H. Li, “Soft rasterizer: A differentiable
renderer for image-based 3d reasoning,” in ICCV. IEEE, 2019, pp.
7707–7716.

[3] T. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” ACM Trans. Graph.,
vol. 37, no. 6, pp. 222:1–222:11, 2018.

[4] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen,
“Unstructured lumigraph rendering,” in SIGGRAPH. ACM, 2001,
pp. 425–432.

[5] S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction
by voxel coloring,” Int. J. Comput. Vis., vol. 35, no. 2, pp. 151–173,
1999.

[6] S. Lombardi, T. Simon, J. M. Saragih, G. Schwartz, A. M.
Lehrmann, and Y. Sheikh, “Neural volumes: learning dynamic
renderable volumes from images,” ACM Trans. Graph., vol. 38,
no. 4, pp. 65:1–65:14, 2019.

[7] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and
M. Zollhöfer, “Deepvoxels: Learning persistent 3d feature embed-
dings,” in CVPR. Computer Vision Foundation / IEEE, 2019, pp.
2437–2446.

[8] B. Mildenhall, P. P. Srinivasan, R. O. Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion:
practical view synthesis with prescriptive sampling guidelines,”
ACM Trans. Graph., vol. 38, no. 4, pp. 29:1–29:14, 2019.

[9] E. Penner and L. Zhang, “Soft 3d reconstruction for view synthe-
sis,” ACM Trans. Graph., vol. 36, no. 6, pp. 235:1–235:11, 2017.

[10] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo
magnification: learning view synthesis using multiplane images,”
ACM Trans. Graph., vol. 37, no. 4, pp. 65:1–65:12, 2018.

[11] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3d-structure-aware neural scene represen-
tations,” in NeurIPS, 2019, pp. 1119–1130.

[12] M. Niemeyer, L. M. Mescheder, M. Oechsle, and A. Geiger, “Dif-
ferentiable volumetric rendering: Learning implicit 3d representa-
tions without 3d supervision,” in CVPR. IEEE, 2020, pp. 3501–
3512.

[13] W. Chen, H. Ling, J. Gao, E. J. Smith, J. Lehtinen, A. Jacobson, and
S. Fidler, “Learning to predict 3d objects with an interpolation-
based differentiable renderer,” in NeurIPS, 2019, pp. 9605–9616.

[14] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” in ECCV (1), ser. Lecture Notes
in Computer Science, vol. 12346. Springer, 2020, pp. 405–421.

[15] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Ana-
lyzing and improving neural radiance fields,” arXiv preprint, vol.
arXiv:2010.07492, 2020.

[16] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M.
Seitz, and R. Martin-Brualla, “Deformable neural radiance fields,”
arXiv preprint, vol. arXiv:2011.12948, 2020.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

[17] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and
J. T. Barron, “Nerv: Neural reflectance and visibility fields for re-
lighting and view synthesis,” arXiv preprint, vol. arXiv:2012.03927,
2020.

[18] L. Liu, J. Gu, K. Z. Lin, T. Chua, and C. Theobalt, “Neural sparse
voxel fields,” in NeurIPS, 2020.

[19] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and
R. Huebner, “Chapter 1 - introduction,” in Level of Detail for 3D
Graphics, ser. The Morgan Kaufmann Series in Computer Graphics,
D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and
R. Huebner, Eds. San Francisco: Morgan Kaufmann, 2003, pp. 3
– ii.

[20] C. Zhang and T. Chen, “A survey on image-based rendering -
representation, sampling and compression,” Signal Process. Image
Commun., vol. 19, no. 1, pp. 1–28, 2004.

[21] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi,
K. Sunkavalli, R. Martin-Brualla, T. Simon, J. M. Saragih,
M. Nießner, R. Pandey, S. R. Fanello, G. Wetzstein, J. Zhu,
C. Theobalt, M. Agrawala, E. Shechtman, D. B. Goldman, and
M. Zollhöfer, “State of the art on neural rendering,” Comput. Graph.
Forum, vol. 39, no. 2, pp. 701–727, 2020.

[22] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and
A. Gaidon, “Differentiable rendering: A survey,” arXiv preprint,
vol. arXiv:2006.12057, 2020.

[23] C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and T. A.
Funkhouser, “Local implicit grid representations for 3d scenes,” in
CVPR. IEEE, 2020, pp. 6000–6009.

[24] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in CVPR. Computer Vision Foundation
/ IEEE, 2019, pp. 165–174.

[25] L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy networks: Learning 3d reconstruction in
function space,” in CVPR. Computer Vision Foundation / IEEE,
2019, pp. 4460–4470.

[26] K. Genova, F. Cole, A. Sud, A. Sarna, and T. A. Funkhouser, “Local
deep implicit functions for 3d shape,” in CVPR. IEEE, 2020, pp.
4856–4865.

[27] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in
CVPR. IEEE Computer Society, 2018, pp. 3907–3916.

[28] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger, “GRAF: gener-
ative radiance fields for 3d-aware image synthesis,” in NeurIPS,
2020.

[29] D. B. Lindell, J. N. P. Martel, and G. Wetzstein, “Autoint: Auto-
matic integration for fast neural volume rendering,” arXiv preprint,
vol. arXiv:2012.01714, 2020.

[30] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“Fastnerf: High-fidelity neural rendering at 200fps,” arXiv preprint
arXiv:2103.10380, 2021.

[31] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoc-
trees for real-time rendering of neural radiance fields,” arXiv
preprint arXiv:2103.14024, 2021.

[32] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient
image classification,” in ICLR. OpenReview.net, 2018.

[33] J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, “Slimmable neural
networks,” in ICLR (Poster). OpenReview.net, 2019.

[34] J. Yu and T. S. Huang, “Universally slimmable networks and
improved training techniques,” in ICCV. IEEE, 2019, pp. 1803–
1811.

[35] J. Yu and T. Huang, “Autoslim: Towards one-shot architecture
search for channel numbers,” arXiv preprint, vol. arXiv:1903.11728,
2019.

[36] D. Xu and Y. Tian, “A comprehensive survey of clustering algo-
rithms,” Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[37] S.-M. Hu, D. Liang, G.-Y. Yang, G.-W. Yang, and W.-Y. Zhou,
“Jittor: a novel deep learning framework with meta-operators
and unified graph execution,” Science China Information Sciences,
vol. 63, no. 12, pp. 222 103:1–222 103:21, 2020.

[38] Cornell.edu. (2021) The cornell box. [Online]. Available:
http://www.graphics.cornell.edu/online/box/

[39] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR. IEEE Computer Society, 2018, pp. 586–595.

[40] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” J. Mach. Learn. Res., vol. 20, pp. 55:1–55:21, 2019.

[41] F. Williams, J. Parent-Lévesque, D. Nowrouzezahrai, D. Panozzo,
K. M. Yi, and A. Tagliasacchi, “Voronoinet : General functional
approximators with local support,” in CVPR Workshops. IEEE,
2020, pp. 1069–1073.

Guo-Wei Yang is currently a Ph.D. student in the
Department of Computer Science and Technol-
ogy, Tsinghua University. His research interests
include computer graphics, image analysis, and
computer vision.

Wen-Yang Zhou is currently a Ph.D. student
in the Department of Computer Science and
Technology, Tsinghua University, Beijing. His re-
search interests include computer graphics, im-
age analysis, and computer vision.

Hao-Yang Peng is an undergraduate student
at Tsinghua University. His research interests
include computer graphics and computer vision.

Dun Liang is a Ph.D. candidate in the De-
partment of Computer Science and Technology
at Tsinghua University, where he received his
B.S. degree in computer science and technol-
ogy, in 2016. His research interests include com-
puter graphics, visual media learning and high-
performance computing.

Tai-Jiang Mu is currently an assistant re-
searcher at Tsinghua University, where he re-
ceived his B.S. and Ph.D. degrees in computer
science and technology in 2011 and 2016, re-
spectively. His research interests include com-
puter vision, robotics and computer graphics.

http://www.graphics.cornell.edu/online/box/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Shi-Min Hu received his Ph.D. degree from Zhe-
jiang University, in 1996. He is currently a pro-
fessor with the Department of Computer Sci-
ence and Technology, Tsinghua University. He
has authored over 100 papers. His research
interests include digital geometry processing,
video processing, rendering, computer anima-
tion, and computer-aided geometric design. He
is the Editor-in-Chief of Computational Visual
Media, and on the Editorial Board of several
other journals, including Computer Aided Design

and Computer & Graphics (both Elsevier).


	1 Introduction
	2 Related Work
	2.1 Neural 3D shape representations for view synthesis
	2.2 Dynamic Neural networks

	3 Analysis of Neural Radiance Fields
	3.1 Neural Radiance Fields
	3.2 Parameters and Scene Complexity

	4 Recursive Neural Radiance Fields
	4.1 Recursive Neural Fields
	4.2 Early Termination
	4.2.1 Uncertainty prediction
	4.2.2 Multi-scale joint training

	4.3 Dynamic Growth
	4.4 Recursive Rendering

	5 Experiments and discussion
	5.1 Experimental Settings
	5.1.1 Deep Learning Framework
	5.1.2 Datasets
	5.1.3 Baseline
	5.1.4 Implementation details

	5.2 Results
	5.2.1 Qualitative comparison
	5.2.2 Quantitative comparison
	5.2.3 Speed comparison
	5.2.4 Distribution of sample termination

	5.3 Ablation Study
	5.3.1 Effect of early termination
	5.3.2 Effect of uncertain point classification
	5.3.3 Effect of branching

	5.4 Limitations and future works

	6 Conclusions
	References
	Biographies
	Guo-Wei Yang
	Wen-Yang Zhou
	Hao-Yang Peng
	Dun Liang
	Tai-Jiang Mu
	Shi-Min Hu


