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Traveler: Navigating Task Parallel Traces for Performance Analysis
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Fig. 1. The Traveler interface. Traveler is a visualization platform supporting visual performance analysis of asynchronous task parallel
programs. The Utilization View (a) shows the selected primitive (task type) accounts for most of the utilization in the program. The
Gantt View (b) shows how individual tasks are scheduled across the system while the Aggregated Gantt View (c) shows utilization
and extents due to groups of tasks. A Functional Box Plot View (d) summarizes performance metrics across resources and over time.
Selection details are shown in the Selection Info View (e) and source code in the Source Code View (f). The Dependency Tree View (g)
shows relations among task types. The distribution of task durations can be explored in the Interval Histogram View (h).

Abstract— Understanding the behavior of software in execution is a key step in identifying and fixing performance issues. This is
especially important in high performance computing contexts where even minor performance tweaks can translate into large savings in
terms of computational resource use. To aid performance analysis, developers may collect an execution trace—a chronological log of
program activity during execution. As traces represent the full history, developers can discover a wide array of possibly previously
unknown performance issues, making them an important artifact for exploratory performance analysis. However, interactive trace
visualization is difficult due to issues of data size and complexity of meaning. Traces represent nanosecond-level events across
many parallel processes, meaning the collected data is often large and difficult to explore. The rise of asynchronous task parallel
programming paradigms complicates the relation between events and their probable cause. To address these challenges, we conduct
a continuing design study in collaboration with high performance computing researchers. We develop diverse and hierarchical ways to
navigate and represent execution trace data in support of their trace analysis tasks. Through an iterative design process, we developed
Traveler, an integrated visualization platform for task parallel traces. Traveler provides multiple linked interfaces to help navigate trace
data from multiple contexts. We evaluate the utility of Traveler through feedback from users and a case study, finding that integrating
multiple modes of navigation in our design supported performance analysis tasks and led to the discovery of previously unknown
behavior in a distributed array library.
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1 INTRODUCTION

High performance computing (HPC) is essential in scientific simulation
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Understanding the performance of these programs, a first step to-
wards optimization, is difficult due to the complicated nature of underly-
ing hardware components, intermediate execution scheduling systems,
and the applications themselves [37]. One common approach to exam-
ining this behavior is to analyze an execution trace—a chronological
record of per-resource events captured during program execution.

Traces permit reconstruction of what occurred during execution,
but gaining such insights at a useful level is challenging as the scale
of events is orders of magnitude smaller than the length of the trace.
Identifying behaviors of the program or system from the trace events
that lead to them requires navigating a large space where details matter.

Execution traces are typically visualized using a Gantt chart. To
view details, users must examine very small time slices due to the
short duration of trace events. Statistical overviews, such as stacked
area charts showing the mix of executing items, help navigate to some
degree, but the vastness of the trace still requires a lot of manual
searching. We design Traveler, a multiple coordinated view system for
execution traces, with multiple levels of meaningful abstraction for task
parallel programs. Traveler links the expression tree of the program
and provides aggregated Gantt views to help users relate trace events to
code and show how individual iterations manifest on the system.

We designed Traveler through an iterative process with an active
HPC development team. We followed the Design Study Methodol-
ogy [35] with the recommendations for evolving data and concerns of
Williams et al. [38]. Through this process, we documented the chang-
ing needs of our collaborators over time and extended an existing task
analysis for performance analysis. We discuss benefits and challenges
of an ongoing, evolving design study in Sect. 7.

We validate Traveler through a case study, an interview with an
expert user of several months, and feedback sessions with novice users.
Our case study describes how Traveler was used to explain performance
differences between two program implementations and to identify a
performance bug, leading to a fix in the application’s source code.

The contributions of this study are as follows:

* A data and task analysis for performance analysis of task parallel
traces with evolving concerns,

* The design and implementation of Traveler, a visualization system
for performance analysis of task parallel traces, and

* Reflections and recommendations for ongoing design study col-
laborations and for visualization design of large execution traces.

2 TAsSK PARALLEL PROGRAMS AND EXECUTION TRACES

Parallel programs aim to achieve faster computation by dividing work
among many resources (e.g., CPUs, hardware threads) executing in
parallel. We refer to concerns such as the time-to-solution and effi-
ciency of resource use as performance. Good performance allows the
scientific community to run larger or more numerous simulations and
computations. In some cases performance improvements are required
for a particular problem to be feasibly computed at all. Analyzing per-
formance is difficult because “good performance” does not have a clear
definition and there is a vast space of possible performance problems.
It is unknown whether the observed execution time of a program is near
optimal or longer than necessary due to a performance issue.

We consider a class of parallel programs that are managed by an
Asynchronous Tasking Runtime (ATR). We call these programs task
parallel. In the ATR paradigm, the program will break a problem
into numerous fasks—units of computational work. Some tasks will
generate other tasks as the problem is further divided. The assumption
is that there will be many more tasks than resources. The ATR then
schedules the tasks for execution on the parallel resources and may
move tasks between these resources to better utilize them. Hence, one
performance metric of interest for ATRs is utilization—the amount of
parallel resources active (i.e., not idle) throughout the execution.

ATRs are different from bulk synchronous parallel applications,
where resources run the same computation on different parts of the data,
synchronize, and repeat the cycle. In a bulk synchronous paradigm,
when the work required for each portion of the data is different, re-
sources with less work may be idle while waiting for others. ATRs

aim to take advantage of this waste by assigning the idling resources to
other, potentially different work. In comparison to bulk synchronous
applications, task parallel programs have smaller and more numerous
tasks that may not be scheduled in a regular fashion due to a more
complicated scheduling approach, making it difficult to determine what
the system is doing and why at any given time.

Execution Traces are a form of performance data that logs temporal
events and their location, i.e., the resource on which they occurred.
In ATRs, task start time and end time are typically recorded as point
events and then interpreted as a single durational event. The duration
of these events is typically many orders of magnitude smaller than
the entire length of the trace. In some execution traces, including
ours, dependency data between tasks is also recorded. In our case, a
dependency indicates a parent-child relationship, that one task caused
another task to be created and ultimately executed.

Execution traces can be seen as event sequence data. In terms of the
survey by Guo et al. [14], traces are high-dimensional—task types are
defined by their method/source code and thus there may be hundreds,
if not more, different types; traces are (ideally) dense, at least when
utilization is high; traces are irregular as tasks are asynchronously
scheduled; and trace events occur in parallel across resources. Unlike
prevalent forms of event sequence data, execution traces describe events
generated by computer programs rather than human actors. Thus, rather
than discovering frequent patterns of events, analysis tasks for execution
traces are often more focused on identifying events, correlating them
with code, and understanding how the state of the system and the code
worked in tandem to achieve the observed performance. We discuss
performance analysis tasks further in Sect. 4.3.

3 RELATED WORK

Visualization has been widely-used for performance analysis and debug-
ging in high performance computing [11, 19]. Among them, execution
trace data is typically visualized with Gantt charts [4,9,13,28,30, 32,
39,41,42]—a visual idiom where parallel timelines for each computing
resource are arranged as rows and events, such as function calls, are
drawn as rectangles within those rows, spanning their time of execution.
Dependencies, if depicted, are represented as lines connecting events.

Gantt charts are often paired with other statistical views. Overviews
of event type or utilization are particularly common. SmartTraces [29]
implemented a drag-and-drop system of linked views, including a data-
flow graph. Traveler similarly has a configurable system of auxiliary
views. We add two structural views, an Aggregated Gantt View and
a Dependency Tree View to show meaningful levels of abstraction
between overview and detail.

Data scale has been a persistent issue in execution trace visualization.
In addition to responsiveness issues, the vast difference in scale between
the length of the trace and the individual events can make Gantt charts
hard to interpret, especially when dependencies are present. Sync-
Trace [20] has a resource-centric approach where the timeline of one
resource is shown in multiple levels of detail with the most zoomed in
showing connections to other resources. Ravel [18] used an idealized
unit time axis to show dependency patterns. However, this approach
assumes a bulk synchronous paradigm that is not present in our data.
Haugen et al. [16] show dependencies only for a selected interval. We
similarly provide dependencies on interaction, but show the entire chain
of dependencies related to an event rather than just direct connections.

Several approaches eschew the Gantt chart and plot events or metrics
about resources in the same space [12,22,24,26,27]. We also aggregate
metric data by resource in our metric views. However, these approaches
do not preserve dependencies between the events, one of the reasons
we choose to preserve the Gantt chart.

Non-timeline approaches use summaries, animation, or networks.
Sigovan et al. [36] show events bubbling up a duration axis, using
animation for time. Sanderson et al. [34] show streaming data for per-
formance analysis and steering, with statistical plots and the projecting
of metrics onto the 3D simulation space and machine room layout.
Chuimbuko [21] also shows streaming data, with statistical plots and a
call stack plot of streaming data. Of these, only Chimbuko’s call stack
plot shows dependencies and like SyncTrace it is limited to a specific



time range and focus resource. Our users have tasks requiring more
fidelity in how resources, events, and dependencies work in concert.

As scheduling in task parallel programs is defined by an execution
graph, per-event layered node-link diagrams have also been used [17,
25,33], but the simplification techniques to keep the graph scalable rely
on a fork-join parallelism model that does not match our data.

4 OUR DESIGN PROCESS

We describe the design process of Traveler in terms of the Design Study
Methodology of Sedlmair et al. [35]. We first describe the context
of the collaboration in which Traveler was designed, in support of a
highly active open-source research software endeavor, making day-to-
day needs a “moving target” [38]. From this framing we describe roles
in the project and our discovery process. Finally, we present our task
analysis, which extends and modifies an existing goal-task lattice [38].

4.1 Collaboration Overview and Background

We designed and developed Traveler in support of and as one of the
goals of a multi-institutional research project, Phylanx. The overall
goal of the project is to support distributed processing of data science
programs, thus increasing the size of programs that can be computed
and the speed in which they are computed. The Phylanx workflow
transpiles Python/NumPy programs and runs them as distributed HPX
applications. HPX is an asynchronous tasking runtime.

Performance analysis and visualization support are sub-goals of the
Phylanx project supporting the development of both the core Phylanx
library as well as HPX, application analysis by advanced Phylanx users,
and communication of Phylanx concepts to potential users.

As both Phylanx and HPX are actively developed, specific (visual)
analysis goals of focus change over time, requiring careful observation
of evolving needs in designing visualizations. Williams et al. [38]
documented this process in the design of another performance visu-
alization, Atria. While Traveler focuses on execution trace analysis,
Atria was designed for profile data—a different type of performance
analysis data where measurements are aggregated rather than presented
in time. We discuss these implications of this difference in Sect. 4.3.
The assignment of general roles and the discovery process we use here
are consistent with that of Atria.

Participants and Roles. The Phylanx project is composed of three
teams. The Runtime Team develops the HPX and the core Phylanx
library. The Performance Analysis Team develops performance col-
lection tools, automated performance optimization approaches, and
nightly regression scripts. The Visualization Team develops perfor-
mance visualization tools. This structure is unchanged from Atria’s
development, though the membership of each team has changed over
time as people joined or left the project.

As with Atria, the Runtime Team lead served as the primary gate-
keeper and encouraged the casting of students and post-doctoral fellows
in their team as frontline analysts.

4.2 Data

We describe the data and data abstractions used in Traveler.

Execution Trace Data. Traveler visualizes execution trace data
from Open Trace Format version 2 (OTF2) [10] archives, a widely-
used format in HPC. As previously stated, traces are a form of event
sequence data. We abstract the fundamental unit of the trace (i.e., the
durational event) as an interval. In ATR terms, an interval is similar
to a task, but we avoid using the term “task” because HPX tasks can
be further divided, so some intervals are not full tasks, and because
the word “task” has a different meaning in visualization, one we use
throughout the rest of the document.

An interval has a start and end time, a globally unique identifier
(GUID), a location (computational resource, e.g., hardware thread) on
which it executed, and a primitive name describing what was executed
(e.g., function name or programming construct). The primitive is
essentially the event fype. An interval may also have a Parent GUID,
the GUID of the interval that spawned it, if its parent was collected
during execution.

GUID and Parent GUID data in HPX were not collected prior to the
Phylanx collaboration. These attributes were added to the trace data
collection capabilities by the Performance Analysis Team lead after
discussion with the Visualization and Runtime teams for some of the
sub-goals we present in our task analysis, an example of evolving data
that arose from the collaboration.

The trace file may also include performance counter data. A per-
formance counter accumulates a metric over time such as the number
of CPU cycles or L1 cache misses. The value of this accumulator
can be sampled at regular temporal intervals or at trace point events.
Subtracting the counter value from its previously sampled one results
in an absolute count of the events it measured in the past interval.

Execution Tree. We derive an execution tree from the trace data,
using the relationships described by Parent GUIDs. The execution tree
aggregates the intervals by primitive name and sequence of primitives
leading to it, similar to a calling context tree. We thus refer to each node
as being a primitive context. Each node in the tree has an associated
primitive name and aggregated duration of all intervals with the same
context (i.e., sequence of parent primitives). Recursive calls may thus
generate deep subtrees. The execution tree is different from Atria’s
execution graph which was collected directly rather than derived from
the trace. Typically the derived execution tree is more detailed due to
instrumentation differences.

Source Code. Source code is an optional data source in Traveler.

Four Types of Data Entities. The most fine-grained entity we asso-
ciate data with is the interval. However, performance analysts often
think in terms of other entities that can be associated through the data:
the computational resources, functions in program (primitives), or lines
of source code. We discuss these in our task analysis.

4.3 Task Analysis

Williams et al. [38] developed a task analysis with the goal of not
only supporting Atria, but of informing performance data collection
efforts in the other teams and preparing for future visual analysis needs
as the Phylanx project continued. The task analysis was based on
full team meetings, focused visualization or performance meetings,
e-mail messages, and informal interviews. Through this process, the
occurrence of tasks was tracked over time to prioritize tasks which
remained relevant despite by the shifting needs of the project. We
continued this discovery process in developing Traveler, adding an
additional 181 note artifacts to the prior 152, and in turn continued to
build and refine the task analysis.

Two authors separately reviewed notes and proposed extensions
to the existing task analysis and then discussed and integrated their
proposals, resulting in the task analysis we present here.

We originally organized tasks from broad umbrella concerns, to goals
and sub-goals, and then finally low-level tasks, referring to the structure
as a goal-task lattice as there were multiple connections between layers.
For example, some goals support multiple umbrella concerns. Our
revised goal-task lattice recognizes connections between layers that
became apparent in our analysis.

Another significant change was that we originally analyzed tasks for
aggregated execution graph data only, using the network task taxonomy
of Lee et al. [23]. However Traveler focuses on execution traces, a
form of event sequences, but also incorporates an execution graph
view, preserving those network-based tasks. We thus chose to apply
the interaction task taxonomy of Yi et al. [40] for non-network tasks.
We chose this task taxonomy due to the prevalence of connect tasks
suggested by our sub-goals.

We describe the unchanged parts of the task analysis briefly and
elaborate on the changes. Fig. 2 provides an overview of the new
analysis and its differences from the previous ones.

Umbrella concerns. The three umbrella concerns did not change.
U1, Program Comprehension, describes how people want to understand
and build mental models of how a program translates to execution. U2,
Performance Analysis, describes understanding efficiency concerns
of the execution. U3, Communication, describes concerns in explain-
ing the system and approach to others, such as potential users or the
academic community through publications.



Umbrella Concerns
U1 Program Comprehension
U2 Performance Analysis

U3 Communication
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Fig. 2. A goal-to-task lattice, showing relationships between high-level
umbrella concerns, goals, sub-goals, tasks, and the task taxonomies in
Lee et al. [23] and Yi et al. [40]. Additional goals, sub-goals, tasks, and
frameworks, relative to Williams et al. [38], are shown in

Goals. The six original goals did not change, but four of them were

designated additional sub-goals and a seventh overall goal was added.

We describe each goals and its sub-goals and tasks, with focus on the
additions for execution trace data.

G1: Overview of Execution. In all three umbrella concerns, people
wanted an overview of the execution—a general sense of how the
code was translated into parallel tasks, which were run frequently, and
how time and resources were allocated. With the execution graph,
this can be viewed with overview, follow dependencies, and finding

substructures tasks. We add abstract and explore tasks from Yi et al.

with the inclusion of trace data.

G2: Relate Code. Understanding how behavior relates to code is
important because the code is what the developers can change. Runtime
developers need to know relationships to code to improve runtime
policies. This is thus an important goal for program comprehension and
performance analysis. In Atria, the sub-goals were relating primitive to
code (analyze attributes) and code to primitives (find subsets). Intervals
are the fundamental unit in trace data, so we add sub-goals that also
relate intervals. These, as well as the previous sub-goals, are described
by Yi et al.’s connect task.

G3: Understanding Timing Information. Timing information
is at the core of performance analysis. People want to know what
took a significant or an abnormal amount of time and also want to
compare timings across iterations or runs. Thus, we keep previously

declared sub-goals of finding hot spots, hot paths, timing anomalies,
and comparing across runs.

The detailed temporal data about intervals and resources available in
execution traces led our collaborators to discuss sub-goals focusing on
them, three of which cross-cut several goals. The cross-cutting sub-
goals are (a) correlating intervals with time, (b) correlating resources
with time, and (c) correlating primitive use with time. People want to
know the arrangement of intervals and resources in time and at a higher
level of abstraction: the primitive use in time. As the time span is vast
in comparison to interval durations, several levels of detail are needed,
leading us to assign abstract/elaborate, reconfigure, and encode tasks.

We identified two more timing information sub-goals which are
highly related: analyze the interval distribution and find extreme inter-
vals. Developers and performance analysts have questions regarding
the duration and distribution of intervals. Long intervals may indicate
an anomaly or target of optimization depending on numeracy. Many
short intervals can also lead to poor performance due to the overhead
in managing them. Understanding these in a timeline is unmanageable,
suggesting an encode task.

G4: Understand Runtime Decisions. An ATR manages parallel
tasks to achieve good performance. Understanding the decisions made
during execution is thus important for developers to best use the ATR
and for Runtime Team members to improve the ATR. Our original
task analysis recognized several network tasks. With execution trace
data, the cross-cutting sub-goals also explain runtime decisions as the
assignment of intervals and resources is managed by the runtime.

G5: Understand Utilization. Utilization describes how computa-
tional resources are exercised during execution. High utilization means
most of the resources are working at capacity and thus likely will
achieve the result more quickly. Low utilization means many resources
are idle, wasting power without contributing to the result. In our prior
study, utilization was identified as a goal, but not one the data yet
permitted. All utilization sub-goals are thus newly identified.

The cross-cutting sub-goals are central to utilization as refer to
state information about resources in time. Additional sub-goals are (a)
correlating intervals with resource use, explaining what computation
is occurring if a resource is in use, and (b) correlating resource use
with resource use—comparing across resources. Again as the time
scale is large, abstract/elaborate and arrange tasks are necessary. Some
questions, like other attributes of resources, require an encode task.

Goals G3, G4, and G5 influence each other, leading to the cross-
cutting sub-goals. Runtime decisions affect the utilization, but utiliza-
tion informs runtime decisions. Similarly, timing information is an
outcome of runtime decisions, but like utilization, also informs them.
This relationship became more apparent to us as the Utilization goal
was expanded upon.

G6: Export/Save. Sharing of results supports the Communication
concern. This is unchanged from the original task analysis.

G7 (New): Manage Datasets. With more datasets as well as regres-
sion analyses and comparisons across versions or processor counts, our
collaborators started discussing the need to manage multiple datasets
during their analyses. We focus on execution trace visualization in this
work and thus do not further discuss this goal.

5 TRAVELER

We present the design of Traveler (Fig. 1), a visualization platform for
performance analysis of task parallel execution traces. In Sect. 5.1, we
provide an overview of Traveler’s views, explaining how they match
with the four data items types in our data (intervals, primitives, re-
sources, and code) and how we build a hierarchy of levels of abstraction
that are meaningful in the trace. We then discuss designs of the major
views, temporal (Sect. 5.2) and non-temporal (Sect. 5.3), and how they
fulfill our data and task analysis. Finally we discuss our implementation
(Sect. 5.4) and strategies we used to keep the visualization responsive.

5.1 An Overview of Traveler Views

In support of the data and numerous tasks discussed in Sect. 4, Traveler
is a configurable multiple coordinated view system. Users can re-size,
arrange, hide, and close views as needed for their analysis goals.



There are nine types of views in Traveler, some of which the user
may place multiple times with different facets of the data. Of the views,
we consider three to be the native views of the four data item types
in execution traces. Intervals and resource state are shown together
in a Gantt View, a widely-used idiom for trace data (see Sect. 3) that
leverages user familiarity. Primitives are shown with their context (i.e.,
creation provenance) in a node-link diagram showing the program’s
execution tree, following the idiom used in Atria [38]. Source code is
shown in its native text format (Fig. 1(f)) with syntax highlighting.

Complimenting the Gantt chart, which can show individual event
details, we provide two other temporal views at higher levels of ab-
straction that are meaningful to performance analysis: a utilization
view and an aggregated Gantt chart which summarizes the behavior of
meaningful groups of tasks.

Traveler has two additional views for showing summarized interval
or resource attributes (metrics) in time, a different facet of the intervals
and resources. A histogram view of interval duration provides another
selection and navigation mechanism into the trace data.

Selections in the non-temporal views highlight the corresponding
intervals in the Gantt View and show their distribution in time on the
Utilization View. Analysts can then use the Utilization View to coarsely
navigate to a time-span of interest and then use pan and zooming
features to fine-tune the Gantt View.

The Selection Info View (Fig. 1(e)) shows details such as additional
attribute data for any set of selected items from the other views.

5.2 Temporal views

Traveler has five views that use time for the horizontal axis, a Gantt
chart, the novel Aggregated Gantt chart, a Utilization View, and two
metric views: a simple Line Chart and the Functional Box Plot View.
The Utilization View is fixed to the full duration of the execution trace.
All other temporal views have linked panning and zooming as well as
linked random access through Ultilization View brushing.

The Utilization View (Fig. 1(a)) shows the total utilization over time
using an area chart. The height of the area chart at any pixel is the total
amount of resource activity in that time span divided by the total time
span, such that the maximum would be the total number of resources.
This view supports G5 (understanding utilization) and at a summary
level, cross-cut sub-goal CC.2, correlating resource use with time.
The Utilization View also acts as a navigation aid and provides
context to the other views. An interactive rectangular brush shows
and can alter the time span in the other temporal views, supporting
abstract/elaborate and reconfigure tasks. Primitive or group interval
selections from other views will draw a second area in yellow, denoting
the utilization due to the selection. This feature supports cross-cut
sub-goals CC1 and CC3, correlating intervals and primitives with time.
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Fig. 3. Gantt View representing parent-child dependency between two
intervals. Here, the highlighted yellow interval bar b has parent a. b has
three children—c, d, and e.

The Gantt View (Fig. 1(b)) represents resource state over time as rows
and intervals in time as rectangular bars on the resources on which
they executed. This view supports cross cutting sub-goals CC.1 and
CC.2, correlating intervals and resources with time, as well as G5.1,
correlating intervals with resources. We label resources by their CPU
and thread ID as core ID — thread ID. In addition to panning and
zooming in time, users can pan and zoom over the space of resources.

Users can select an individual interval on click, which will highlight
the interval in yellow and update the Selection Info View and Utilization

View. Additionally, parent-child relationships related to the selected
interval will be shown using yellow lines drawn between the bars
(Fig. 3). By showing these relationships, users can pan and zoom to
follow hot paths (G3.2). The relationships also give them insight into
understanding runtime decisions (G4).

We chose to show parent-child relationships on-demand-only be-
cause showing all of them is infeasible to interpret. While intervals of
interest can be selected for further examination through visual inspec-
tion, the non-temporal views that help pick primitives by name, context,
or duration help navigate to potential targets of investigation.

As the Gantt View is the native display of the infervals, it makes
the details of individual events and dependencies available, but cannot
summarize their behavior. The Utilization View on the other hand is too
high-level to see all but the largest collections of events. We thus add a
view in between that summarizes smaller groups of related intervals:
the Aggregated Gantt View.

DEPENDENCY TREE VIEW
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Fig. 4. Selecting a primitive in the Dependency Tree View will high-
light instances of that primitive’s subtree in the Gantt View and create
aggregated bars for the subtree in the Aggregated Gantt View.

The Aggregated Gantt View (Fig. 1(c)) provides a temporal layout to
meaningful groups of intervals, as defined by the execution tree of the
program. It is populated using the Dependency Tree View (Sect. 5.3).
The Aggregated Gantt View provides a simplified view at a higher
level of abstraction than individual intervals of the Gantt View but a
more detailed level of abstraction than the aggregated primitives of the
execution tree, further supporting the correlation of primitives in time
(cross-cut sub-goal CC3).

Each bar in the Aggregated Gantt View represents a specific instance
of a primitive created by a sequence of dependencies as shown in Fig. 4.
For example, consider a primitive block of code within a for loop.
Though there are several blocks throughout the program, the chain
of dependencies leading to a particular block uniquely defines it in
comparison to the others. Because it is in a for loop, it runs & times. If
shown in the Aggregated Gantt View, the block will generate k bars,
showing where each was executed in time.

Rather than showing only the block interval, new aggregated in-
tervals are created from all the intervals originally spawned by that
particular block instance, in other words, any interval the block was
an ancestor of. The horizontal position and length of each bar shows the
starting time of its first interval and the ending time of its last. Because
the different intervals spawned by the block instance may occur on
different resources, we cannot assign it to a single resource. Instead,
we lay out the bars in a greedy fashion to avoid collision. Thus, the
vertical position shows how many of these bars (e.g., loop iterations)
run concurrently.

Within each aggregated bar, we draw a yellow area chart showing
the utilization due to that instance of the subtree. The background of
each bar is shaded in purple with the subsumed intervals in the main
Gantt View colored the same shade, aiding users in correlating intervals
with primitives (sub-goal G2.4).

Functional Box Plot and Line Chart Views. As explained in
Sect. 4.2, performance counter (metric) data can be collected along
with the trace in one of two ways: sampled with the interval events or
sampled in time. Performance counters describe some attribute of the
resource on which they are sampled. Traveler offers two views to show



these metrics in time, supporting cross-cut sub-goal CC.2, correlating
resource use with time. Furthermore, since these views are linked with
the Gantt View and multiple of each of these views may be opened with
different performance counters, they also support correlating resource
use with resource use, sub-goal G5.2.

As performance counter data may be sampled irregularly, they
are more meaningfully represented as a rate. For a consecutive
(timey,valuey) and (timey,valuey) pairs where time| > timey, the rate
va/uel 7vqluez

time; —time)
performance counter views.

The Functional Box Plot view summarizes performance counter
rates across resources. We draw three lines representing the maximum
value across resources, the minimum, and the average. A shaded gray
area around the average shows a standard deviation. Fig. 1(d) shows
the Functional Box Plot view for the PAPI (Performance Application
Programming Interface) [7] metric CPU cycles.

is calculated as, rate = . We use this derived rate in our

5.3 Non-temporal views

Traveler has four non-temporal views: the Dependency Tree (execution
tree) View, an Interval Histogram View, a Source Code View, and a
Selection Info View. We have previously described the Source Code
View and Selection Info View. We discuss the other two views below.

The Dependency Tree View (Fig. 1(g)) is the native view for primitives.
We leverage this knowledge and design from Atria. It is a node-link
tree visualization where every node represents a distinct primitive call
as defined by its dependencies (e.g., the yellow lines in the Gantt
View). As an example, a while primitive may be generated from
multiple places in the source code. By defining the sequence of tasks
that generated a particular while interval, we can group all while
primitives associated with the same overall action in the code. This is
similar to a calling context tree in serial or synchronous programs. The
difference is that the parent node—the primitive that created the child
node—need not wait for its children to complete.

The Dependency Tree View is also an expression tree describing
how the source code is transformed into task types with dependencies
which are then scheduled for execution. Each node in the Dependency
Tree View represents numerous intervals all with the same primitive
type and context. As we build the Dependency Tree View from the
interval dependencies found in the trace, we can also derive aggregate
metrics for the total time attributable to each node. We use a purple
value ramp to indicate this aggregated time value, supporting subgoals
G3.1-G3.4 in the same way Atria did.

Selecting a node in the Dependency Tree View will highlight the
corresponding intervals in the Gantt View, draw a highlighted area on
the Utilization View showing utilization due to the node, and generate
the corresponding bars in the Aggregated Gantt View. This linking
supports the cross-cutting subgoal CC3, correlating primitives with
time. The link to the Gantt chart in particular also supports subgoal
(2.4, relating primitives to intervals.

As the execution tree can get quite large, we only draw out the first
five levels by default. Users can collapse or expand subtrees by clicking
on the arrow in the upper right of each node. To reduce clutter, we do
not label every node. Primitive names are available on hover.

The Interval Histogram View (Fig. 1(h)) shows intervals binned by
their duration. By default, all intervals are shown. A dropdown menu
enables filtering to a particular primitive context as in the Dependency
Tree view. Bins in the histogram can be selected via brushing. When
selected, all intervals contributing to a bin will be highlighted in the
Gantt View and Utilization View. This view directly supports the sub-
goals G3.5 and G3.6, analyzing the interval distribution and finding
extreme intervals. Outliers appear as isolated clusters of bars on far
ends of the histogram, as shown in Fig. 5(d).

5.4 Implementation

Traveler is a web-based client-server application. It uses a Uvicorn
server that communicates with the front-end using fastapi in a REST-
ful manner. The back-end pre-processes the OTF2 file, building all data
structures needed for data look up and fast rendering and storing them

using DiskCache [3]. Additionally, the back-end renders the primary
drawing space of all temporal views as well as the Interval Histogram
View for displaying on the front end using HTMLS Canvas. Axes and
brushes are implemented on the front-end in Javascript using D3 [6].
We provide a system diagram in the supplemental material.

Data Structures. We used summed area tables [8] to enable fast
generation of the temporal and histogram views and we used an interval
tree for fast lookup of data attributes for the Selection Info View. These
data structures are calculated at the time the data is initially given to
Traveler, in a process we call bundling. Bundled datasets are saved by
Traveler so the pre-processing step only occurs once.

Specifically we pre-calculate summed area tables for CPU utilization,
hardware counters, and duration count for each of the thread-core
location and primitives, both individually and combined. When the
front-end sends a request with the number of pixels available and the
time range selected, we use the relevant summed area tables to generate
a bitmap of pixel values which are rendered on the front end using
HTML canvas. Retrieving new bitmap information induces latency, so
we overdraw to hide this overhead when the user pans the view.

6 [EVALUATION

We validate Traveler through a case study which identified a previously
unknown performance bug and resulted in changes to our collaborator’s
code. This study was done collaboratively between one member of the
Runtime Team and one member of the Visualization Team and verified
by the Runtime Team PI.

We then provide feedback from a non-author member of the Runtime
Team who used Traveler over the course of several months. We also
discuss feedback from novice Runtime Team members that we gathered
during hour-long evaluation sessions on a cloud deployment.

6.1 Case Study

We present a case study showing the utility of Traveler in analyzing
performance in a real scenario. The work was collaboration between a
Runtime Team member (RTM, a post-doc with several years of Phy-
lanx experience) and a Visualization Team member (VTM, a graduate
student) trying to understand the differences in performance between
different implementations of Phylanx for a line of research the RTM
was leading. The analysis took place over the course of four months in-
terspersed with other priorities and activities for both team members, as
performance analysis is only one part of the domain expert’s activities.

We show how Traveler assisted in identifying and comparing com-
putational resource utilization among multiple executions and helped
reveal and ultimately fix a performance bug.

Analysis Problem and Data. The Runtime Team member is investi-
gating potential benefits of using Halide in Phylanx in comparison to
Blaze. Halide [31] is a framework for automatically synthesizing code
for multi-platform systems with highly customizable task scheduling
and data management features. Blaze [1] is an open-source C++ library
supporting high performance parallel linear algebra. We refer to the
Phylanx using Halide as Phylanx-Halide and the Phylanx using Blaze
as Phylanx-Blaze.

In exploring the differences between Phylanx-Halide and Phylanx-
Blaze, the RTM used dgemm [2], a well-known matrix-matrix kernel,
as an example application because it exercises matrix multiplication,
scaling, and addition. Initial performance results showed that the
Phylanx-Halide version was nearly twice as fast as the Phylanx-Blaze
version. To try to understand why, the RTM collected execution traces.
The VTM used Traveler to investigate these traces and then shared
findings with the RTM via text, screenshots, and movies.

Investigation with Traveler. Viewing both execution traces in Trav-
eler, we opened the Interval Histogram View (Fig. 5) to compare (Goal
G3.4) the distributions in interval durations (G3.5). The Phylanx-Blaze
distribution is much wider, with many intervals longer than the longest
ones in Phylanx-Halide, indicating some tasks are taking much longer
in Phylanx-Blaze. We select the long intervals in both traces (G3.6).
The highlighted intervals in the Gantt show us the tasks are shorter and
more evenly distributed in Phylanx-Halide. The Selection Info View



Fig. 5. The distribution of intervals in Phylanx-Blaze (left) and Phylanx-Halide (right). The Selection Info View (a) shows the exact duration of the
selected bars while the Gantt View (b) shows where they occur in time and on what resources. The Utilization View (c) shows their impact compared
to the whole program, which is much higher in Phylanx-Blaze. The Interval Histogram View (d) shows the longest intervals in both have been selected

via brush.

reveals the extreme Phylanx-Blaze interval is six times longer than the
longest one in Phylanx-Halide, contributing to the longer execution
time. Insight: Phylanx-Blaze intervals require more time for the same
work and are more unbalanced.

The RTM suspects that there may be data movement differences
because data management is a feature of Halide. We open multiple
Functional Box Plot views to check the L1 and L2 Cache miss rates
(Sub-goal CC.2). (Figures are available in the supplemental material.)
A higher miss rate suggests more time is being spent reading from
slower memory. We brush over the Utilization View to focus on the
second area of high activity in the computation. We see that while the
fluctuations in L1 cache misses are similar, the Phylanx-Blaze version
has a steadily increasing rate of L2 cache misses while the Phylanx-
Halide version remains flat. Insight: the Phylanx-Halide version is
managing data more effectively as suspected.

During the previous analyses, we noted the long low-utilization
periods between the two high-utilization phases of the program in the
Utilization View (Goal G5). We used the Dependency Tree View to
understand the mapping between primitives near the root (high level
operations) and utilization (Sub-goal CC.3). As shown in Fig. 6(left),
some of the low utilization can be attributed solely to the declaration of
the variable A, as seen with the yellow area in the utilization view. We
repeated the process with neighboring nodes for variables B and C—
each was the only active primitive in a separate area of low utilization.
Insight: The declarations are serialized.

In the source code view, we saw that each declaration was of the form
variable = np.ones((N, N)).Insight: The declarations could be
executed concurrently. The RTM was not sure why this was happening,
so we brought it to the attention of the Runtime Team lead. The
Runtime lead explained it was a performance error because the way
in which the dgemm was implemented did not indicate the operations
could be parallelized safely. He suggested a way that takes advantage
of Phylanx’s expression tree parallelization.

After updating the code, we regenerated the OTF2 data, resulting in
Fig. 6(right). The smaller gap between the two peaks in the utilization
view verifies that the declaration of the variables A, B, and C occurred
in parallel. This bug fix was merged into the Phylanx repository.

6.2 Feedback from Runtime Team

We discuss feedback collected from Runtime Team members. First,
we interview a former Runtime Team member who used Traveler for
several months. Then, we introduce Traveler to novice Runtime Team
members and gather their feedback.

Feedback from an Expert User. One Runtime Team member (R1)
used Traveler over a period of seven months. R1 communicated ques-
tions and reported bugs via e-mails. After they left the Runtime Team,
we conducted a semi-structured interview with R1 regarding their expe-
rience. We summarize R1’s feedback and associate their goals with our
task analysis (Sect. 4.3).

R1 said they switched from Vampir [28] to Traveler because the latter
is free. They noted “it was as satisfying as Vampir”. R1 described
their typical process as annotating their code, collecting a trace with
the annotations, and then checking in Traveler to verify the annotated
intervals were scheduled as their annotations expected. This analysis
relates to sub-goal G5.1, correlating intervals with resource use. R1
frequently used the Gantt View, the Utilization View, and the Selection
Info View in this endeavor. They said they primarily navigated via
scrolling as their traces were not large.

Later, they switched from the program comprehension and verifi-
cation concern to a performance analysis one. For their performance
analysis work, they said they focused on the distribution of intervals
(“tasks”) on resources (“cores”) and the dependencies between them:
“I think we were mostly wanting to see how tasks are distributed among
the cores and how they are being, how are the dependencies, how
another core takes that part, what gets continued on another core”.
This is another example of G5.1, along with G4 in terms of following
dependencies set by the runtime.

We asked about the Interval Histogram and the Dependency Tree
Views as other support for their goals. However, they noted these
features were not yet available while they were using Traveler.

We asked if they also used VTune for their general performance
analysis, as we are aware of other Runtime Team members who use
it. They explained once they figured out Traveler, they mostly used it,
noting, “Traveler was giving us everything we needed.”

We asked about issues in Traveler. R1 discussed the bugs discovered
during the development process, which they had previously e-mailed us
about, and our in-development tagging system for managing datasets.

Novice Team Member Sessions. We conducted feedback sessions
with four novice Runtime Team members (P1-P4) individually. Each
session was one hour long and conducted over videoconferencing. The
session started with a briefing, followed by a demonstration with the
dgemm dataset. Participants were then asked to share their screen and
attempt a series of tasks with a new dataset collected from an execution
of the kmeans algorithm. We then asked the participants about their
experience and then debriefed them.

Prior to the session, the participants were provided with Traveler
documentation, a video tutorial, and a link to a live demonstration.
Only P4 said they viewed these materials.

We designed the following tasks to exercise the goals from the task
analysis, as annotated in parentheses. Each task could be completed in
multiple ways. Participants started in the base Traveler configuration
with only the Utilization, Gantt, Selection Info, and Source Code views.
We asked the participants to load the Functional Box Plot View for ES:

El.
E2.
E3.

Take 5 minutes to explore the dataset. What do you notice? (G1)
Locate the longest interval bar. (G3, G4)

Find the primitive with highest occurrence, in terms of total exe-
cution time. (G3)
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Fig. 6. Traveler helped us identify a performance bug related to serialization of variable instantiation (left) leading to a fix that shortens execution time
(right) and was merged into the Phylanx repository. On the left, we select a primitive A in the Dependency Tree View (d) that it is executing alone as
show in all temporal views (a, b, c). After we identified and fixed this bug, we are able to create multiple variables concurrently (right).

E4. Locate highest CPU utilization and find the responsible primi-
tive(s). (G2, G5)

ES. Explore the relationship between utilization and L1/L.2 data cache
misses. (G3, G4, G5)

We then conducted a semi-structured interview with the participants.
The following questions were asked during the interview:

Q1.
Q2.
Q3.
Q4.
Q5.
Q6.

P1 had no prior experience with HPX, P2 had nine months, and P3
had “a few” months. P4 had been with the team for two years, but not
worked with HPX for the entire time. P1-P3 had no experience using a
performance visualization tool. P4 had experience with VTune.

During the task phase, P1 and P3 struggled with the system as a
whole, including operations such as adjusting tabs and panning the view.
They did not complete any tasks except finding the highest utilization,
so we omit discussing them further. The transcripts for their sessions
along with the others are available in the supplemental materials.

In E1, P2 explored most of the views, starting by reading the source
code, explaining it, and then using the Dependency Tree View and Uti-
lization View to recognize high utilization due to a primitive k_means_t.
As P2 was familiar with HPX but not Phylanx, they asked questions
about what some leaf nodes in the tree did. P4 took a different strategy
of browsing the Gantt View via zooming. We asked why they did not
use the Utilization View to zoom faster—they did not notice the brush
which was scaled to the full chart at first. P4 noted the intervals were
much shorter in comparison to the tutorial trace.

P2 completed E2, finding the longest interval, quickly with the
Interval Histogram View. P4 tried browsing the Gantt View but was
confused by the illusion of many tiny intervals as one large bar. With a
suggestion from the facilitator, they completed the task.

In E3, finding the primtive with the highest occurrence, P2 looked
at the Interval Histogram View before browsing the Dependency Tree
View and determining the answer. P4 browsed the Dependency Tree
View but did not suggest an answer. When we explained the result,
P4 said he had not understood what was being asked and had actually
noticed the node of interest fairly early.

E4 had two sub-trials—locating highest CPU utilization and finding
out the responsible primitive for the highest CPU utilization. Both P2
and P4 were able to quickly determine the highest utilization and then
successfully determined the source using the Dependency Tree View
and trace-back dependencies in the Gantt View, although some hints
were provided to P4 in the second part.

Which view helped the most to perform the tasks?

which feature did you like most?

What other tools you have used and how do they compare?
Are there additional features which we could include?
How long have you been working with the HPX team?

Do you have any other comments?

In ES5 participants were asked to explain data cache misses in asso-
ciation with CPU utilization. P2 discerned the relationship between
the level 1 data cache miss and how CPU utilization affected that. P4
also identified the fluctuations in level 1 data cache misses. Neither
participant commented on level 2 data cache miss.

Novice Feedback Discussion. P2 was able to complete all tasks. In
El, the overview (G1) task, they explained the program and went a
step further with the insight of identifying high utilization (G5) and
attribute it to a primitive (CC.3), preemptively performing task E4.
They accomplished the extreme interval (E2: G3.6) and correlation
of L1 cache and utilization (E5: CC.4, G5) quickly. The latter led
to the insight that higher utilization led to more cache misses. E3,
finding the primitive responsible for the most time (CC.3) took more
time as they first selected the view showing distribution of lengths
rather than aggregated time. P4 was able to complete most tasks but
needed reminders despite being the one who had consulted the materials
beforehand. While P2’s results were encouraging, we acknowledge
these are limited results.

During the interview, both P2 and P4 said the Dependency Tree
View was useful. P2 also spoke about the Utilization and Functional
Box Plot Views, with the Functional Box Plot being their favorite. P4
also mentioned the Gantt View, saying they needed both that and the
Dependency Tree View for their work. The linking between multiple
views was their most-liked feature.

In terms of requested features, P2 suggested a multi-select for inter-
val bars in the Gantt View. P4 suggested coloring the interval bars by a
metric, such as the performance counters.

We noticed some usability issues. Participants were less familiar
with brushing, wanting to click on the Interval Histogram View bars or
not noticing the brush in the Utilization View. Also, when the Gantt
View has many small intervals, it draws them with the outline color
(dark gray) only. Familiar users can distinguish, but new users thought
they were seeing one large bar, suggesting other signifiers are needed
when intervals are dense.

Local versus Cloud Performance. In the evaluation sessions, we
noticed additional latency in updating the Gantt View. We profiled a
variety of interactions on the kmeans test dataset (29K trace events)
deployed locally and online for the study. Locally, Gantt View updates
took between 446ms (single click selection) and 3,643ms (zooming).
In the cloud deployment, the interaction extents were between 907ms
and 4,018ms respectively. Both versions took between 63 and 1,863ms
for client-side rendering, but the cloud version experienced a 56.8%
increase in network transfer and resource loading times. Some of the
difference may also be due to the limitations of the cloud service tier
used, which offers 500MB of RAM compared to the 16GB in the
local deployment. More details regarding this preliminary performance
analysis are in the supplemental materials.

Even in the local case with this relatively small dataset, some updates
could take seconds, though not all zoom interactions took that long.



Further performance analysis and optimization is needed to improve
interactive scalability, including across other views and with focus on
both client and server side operations.

6.3 Limitations and Threats to Validity

In the case study, the Visualization Team member was the primary user
of Traveler for the findings shown, though the Runtime Team member
had used it for overviews previously. The case study resulted in new
insights, but did not exercise the usability of Traveler directly with a
member of the target user group.

The interview with the expert user R1 was over three months since
they had last used Traveler and said they did not remember some details.
Also, R1’s case did not require a large dataset. Their use of Traveler
was before all of the views presented here were completed, so we do
not have deployment feedback related to those newer views.

We collected feedback from only five people, of which only one was
a true expert. Thus, our results are preliminary and limited. Further-
more, as we are collaborators with the Runtime Team, and though we
had not met the novice users before, all users may have been biased
towards positive feedback.

Many of the novice users had been working with the Runtime Team
for a year or less and thus had very little experience. We had piloted
the evaluation session with one expert and one person with passing
knowledge, because at the time we did realize how new the team
members would be compared to previous sessions we had done with the
Runtime team. Thus, our explanations may not have been appropriate
to the participants’ experience levels.

The cloud deployment of Traveler incurred more interaction latency
than the local version, which may have affected the participants’ analy-
sis process. However, both versions can sometimes experience several
second delays with the given datasets, mitigating the differences.

7 REFLECTIONS AND LESSONS LEARNED

We reflect on the design of Traveler, in particular on (a) our observa-
tions regarding a new visualization in an ongoing collaboration with
rapidly changing concerns as well as (b) our experience with multi-
scale, configurable designs for execution trace data.

We were able to leverage an existing task analysis, but there were
challenges as the data significantly changed. The task analysis pre-
sented in Sect. 4.3 is a revision of a task analysis performed earlier
in the collaboration when we were focusing on execution tree profile
data—data that is aggregated by primitive context. As we had before,
we continued to track tasks over our meetings, reinforcing tasks that re-
peated over time while de-prioritizing tasks that appeared infrequently.
The higher levels of the task analysis, which we referred to as um-
brella concerns and goals, were mostly unchanged, while sub-goals
proliferated. The relative stability of goals gave us confidence in our
prioritization of features, especially ones where the new data allowed
us to expand our support for an existing goal or sub-goal. Furthermore,
as the many of the goals behind the earlier work were maintained over
time, we were able to transfer parts of the previous visualization de-
sign as a view in Traveler, again with a prioritization of which design
features should be ported.

However, we ran into difficulties at the abstract visualization task
level because the primary data abstraction changed from the execution
tree graph to a parallel execution trace. With the execution tree, we had
applied the network task taxonomy of Lee et al. [23], which no longer
fully described our data. We chose to use another task taxonomy [40]
in tandem and describe needs to our best effort. We did not find this
process as helpful as in the previous project, where the tasks so clearly
pointed to a visual idiom. We question how much richness was added
over our sub-goals. These experiences may indicate that either the
sub-goals are enough, we need to further sub-divide sub-goals, or we
need to find a better fit in describing the performance analysis process.

There is much more opportunity to design across experience lev-
els, but it is unclear how to prioritize. The newest Runtime Team
members struggled to use Traveler. Those with a little more experience
completed most tasks, though some with help. Our domain expert user

said they were able to switch from a commercial trace visualization
tool seamlessly but did not explore newer views. Integrating some form
of training into Traveler may help all of those classes of users.

We offered documentation with example analyses, images, and a
movie, but the one participant who engaged with them still had diffi-
culties. It is unclear how much training is necessary and how it can be
done in a scalable manner.

Immersive practices [15] during the case study helped refine the
tool. Early Traveler development used several data sets to test features
and visualization performance, but there were not analysis goals as-
sociated with them. The case study provided a real analysis goal. By
driving the visualization through the case study, the Visualization Team
identified new bugs and performance bottlenecks in Traveler as well as
workflow and interaction issues.

It is beneficial to automate techniques for deployment as soon as
possible, but unfortunately not always practical. As this design
study is a collaboration with a rapidly developed open-source project,
meaningful data, e.g., data representing the latest state of the runtime,
was constantly changing. Automating the pipeline from library updates
to application updates to new trace data representing those updates to
Traveler’s pre-processing and ultimately the visualization was a boon
to keeping the Visualization Team in step. However, having automated
our own pipeline, we overlooked the pipelines of our collaborators.
Runtime Team members were often unaware of new features and did
not fetch the latest Traveler version.

Multiple levels of abstraction between overview and detail helped
us navigate the trace. The scale difference between the entire exe-
cution length of the trace, represented by the Utilization View, and
individual intervals, shown in the Gantt View, is vast. We implemented
multiple levels of abstraction in between, leveraging the known struc-
tures of the source code, which organizes by line, and the individual
primitives within a line of source code, as accessed through the Depen-
dency Tree View and Aggregated Gantt View. We used these intermedi-
ary abstractions to discover the variable instantiation performance bug
in our case study.

Participants made much use of the configurable views. The
overview was the only constant. During our evaluation sessions, we
observed that each participant rearranged and resized views throughout
the tasks. This behavior is resonant as Traveler has many views, some
of which support fewer sub-goals than others, so users configuring the
views for a sub-goal of focus was intended by the design.

We did not notice trends in their arrangements, but our number of
participants was small. We did notice one constant in their choice of
views—the Utilization View was always present. It served as a major
navigational aid for temporal views as well as represented one of the
high level goals of performance analysis, G5, understanding utilization.

8 CONCLUSION

We presented the design of Traveler, a highly linked multi-view coor-
dinated visualization for visual exploration of task parallel execution
traces. To manage the vast scale differences in the trace data and the
irregular nature of asynchronous task scheduling in a way users could
relate to their code, we introduced linked execution tree and aggregated
Gantt views. We further supported analysis tasks with through linked
performance counter summaries and an interval histogram. In our case
study, we were able to explain performance behavior of a runtime
and found a performance bug that was ultimately fixed and commit-
ted to our collaborator’s repository. In addition to our visualization
design and strategy, through this design study we contribute further
insights about ongoing design collaborations, adapting task analyses
and considerations for the changing team.
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1 GUIDE TO SUPPLEMENTAL MATERIALS

This document contains description of all supplemental material files
(below). We then provide more details regarding the Traveler system
design, including links to the repository and live demo. We follow this
with details about the case study settings and figures that we could not
fit in the main document. Finally, we provide details regarding the
procedure for our preliminary quantitative performance analysis for the
Gantt View.

2 INCLUDED FILES

All materials are included in the accompanying .zip file as:

¢ TravelerDemonstration.mp4 (Length 6 minute 28 seconds) -
Video demonstration of available features offered by Traveler for
performance analysis of task parallel traces.

» TaskAnalysisUpdateAnonymized.md - Task analysis.

¢ CaseStudyAnalysis.md - Case Study Summary Presented to the
Runtime Team.

¢ cache_misses.JPG - Cache miss reported to the Runtime team.

¢ CaseStudyFeedbackEmail_1.txt - First feedback emails on the
case study by the runtime team.

¢ CaseStudyFeedbackEmail 2.txt - Second feedback emails on
the case study by the runtime team.

ContinuousDeploymentEmails.txt - Emails during continuous
deployments.

interview_script_R1.txt - Interview script for collecting feedback
from non-authoer member (R1) of runtime team.

recording_transcript_R1.txt - Interview Recording transcript of
R1.

transcript_R1_coded.txt - Coded interview recording transcript
of R1.

¢ R1_code_summary.md - Merged codes and summary of inter-
view recording transcript of R1.

interview_script_2.txt - Interview script for collecting feedback
from novice team members of runtime team.

Sayef Azad Sakin and Connor Scully-Allison are with the University of

Arizona. E-mail: sayefsakin@email.arizona.edu.

e Alex Bigelow is with Stardog.

¢ R. Tohid, Steven R. Brandt, and Hartmut Kaiser are with Louisiana State
University

e Carlos Scheidegger is with RStudio.

Christopher Taylor is with Tactical Computing Labs.

Katherine E. Isaacs is with the University of Utah. E-mail:

kisaacs@sci.utah.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints @ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

* TravelerIntro.md - An introductory documentation of Traveler
describing all available features.

* TravelerSampleTasks.md - A step by step walk-through with
screenshots of some sample tasks in Traveler.

* interview_recording_transcript_P1.txt - Interview recording
transcript of P1.

¢ interview_recording_transcript_P1_coded.txt - Coded inter-
view recording transcript of P1.

¢ interview_recording_transcript_P1_summary.md - Merged
codes and summary of interview recording transcript of P1.

¢ interview_recording_transcript P2.txt - Interview recording
transcript of P2.

* interview_recording_transcript_P2_coded.txt - Coded inter-
view recording transcript of P2.

* interview_recording_transcript_P2_summary.md - Merged
codes and summary of interview recording transcript of P2.

interview_recording_transcript_P3.txt - Interview recording
transcript of P3.

interview_recording_transcript_P3_coded.txt - Coded inter-
view recording transcript of P3.

interview_recording_transcript_P3_summary.md - Merged
codes and summary of interview recording transcript of P3.

interview_recording_transcript_P4.txt - Interview recording
transcript of P4.

interview_recording_transcript_P4_coded.txt - Coded inter-
view recording transcript of P4.

interview_recording_transcript_ P4_summary.md - Merged
codes and summary of interview recording transcript of P4.

traveler_geval.xlsx - Quantitative analysis spreadsheet.

QuantitativeEval.zip - Inspection records of Google Chrome
during quantitative analysis.

3 TRAVELER

Traveler live demo link (herokuapp.com): Traveler
Traveler Github location link: Traveler-git

Traveler System Architecture: Traveler system architecture is pro-
vided in Fig. 1. The Traveler follows MVC (model-view-controller)
design pattern for developing the user interface, partitioning program-
ming logic, and backend data handling. While logic and components
for the frontend (view and controller) are written on javascript and
presented on an interactive web-interface, the logic for backend data
structure, handling, parsing, storing, querying are written on python.

The libraries and programming languages used in the backend and
fronted are summarize in Table 1 and Table 2 respectively.
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Fig. 1. Traveler System Architecture. The Frontend interface contains
the interactive views. The backend reads, stores, and preapre trace data
for the frontend interface. An intermediate API interface is used to supply
data between the backend and frontend interface.

Table 1. Libraries and languages used in the backend

newick > 1.0.0,
sortedcontainers > 2.4.0,
aiofiles > 0.5.0,

fastapi == 0.65.2,
uvicorn == 0.11.7,
python-multipart > 0.0.5,
diskcache > 4.1.0,
numpy > 1.19.1,

cffi > 1.14.1,

interval tree - [Redacted]

4 CASE STUDY

Fig. 2 shows the differences between cache behavior that Traveler
helped us identify.

All relevant experiments for the case study was conducted on the Ros-
tam cluster at the Center for Computation and Technology at Louisiana
State University (LSU). The platform specification is summarized in Ta-
ble 3. The libraries used during the case study have been summarized
in Table 4.

5 GANTT VIEW PERFORMANCE ANALYSIS

We conduct a quantitative profiling of Traveler by estimating the in-
teraction time, the time difference between user’s interaction with the
interface (mouse click, scrolling, panning) and interface update finish
time. We utilized the performance profiling tool of Google Chrome to
conduct the quantitative analysis. We execute our experiment while run-
ning the Traveler server both locally and on a Cloud platform. We used
Google Chrome client browser to browse the Traveler interface. Then
using the inspect feature, we recorded our interactions and conducted
profiling. The local platform specification is,

¢ CPU: Intel Core 17-8750H CPU @ 2.20GHz

Table 2. Libraries and languages used in the frontend

ukijs/ui > 0.2.5,
codemirror > 5.60.0,
d3 > 6.6.1,
golden-layout > 1.5.9,
jquery > 3.6.0,

less > 4.1.1,

oboe > 2.1.5,

uki > 0.7.9

Table 3. Rostam Cluster Specification

CPU Model Intel(R) Xeon(R) Gold 5118
CUU Clock Speed | 2.30GHz

Number of Cores 24

RAM 96GB

Table 4. Library versions

library Commit
HPX dc79a36c92
Phylanx 295b5f82cc
Halide Version 12.0.1
Phylanx-Halide 12ab9%4bc3a
Blaze c4d9e85414
Blaze Tensor 4b6ec2c6b2
Traveler ea668d7349
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UTILIZATION VIEW

Fig. 2. Traveler helps identify cache behavior differences between
Phylanx-Blaze (top) and Phylanx-Halide (bottom). The Functional Box
Plots of L1 (a) and L2 (b) cache miss rates show the L2 rate rises steadily
during the execution in Phylanx-Blaze while the Phylanx-Halide version
remains flat.

« RAM: 16GB
* OS: Windows 10
During the analysis, the remote platform specification is,
¢ Cloud Platform: Free Heroku Dyno.
« RAM: 512MB.
e OS: Ubuntu 20.04

The recorded profiled data is in QuantitativeEval.zip and summarized
interactions over the Gantt View is in traveler_geval xlsx.



