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Fig. 1: ArchExplorer: (a) the architecture visualization to show the architecture clusters; (b) three selected sub-clusters after zooming
into cluster A; (c) a detailed comparison of the selected architectures.

Abstract— Recent advances in artificial intelligence largely benefit from better neural network architectures. These architectures are a
product of a costly process of trial-and-error. To ease this process, we develop ArchExplorer, a visual analysis method for understanding
a neural architecture space and summarizing design principles. The key idea behind our method is to make the architecture space
explainable by exploiting structural distances between architectures. We formulate the pairwise distance calculation as solving an
all-pairs shortest path problem. To improve efficiency, we decompose this problem into a set of single-source shortest path problems.
The time complexity is reduced from O(kn>N) to O(knN). Architectures are hierarchically clustered according to the distances between
them. A circle-packing-based architecture visualization has been developed to convey both the global relationships between clusters
and local neighborhoods of the architectures in each cluster. Two case studies and a post-analysis are presented to demonstrate the
effectiveness of ArchExplorer in summarizing design principles and selecting better-performing architectures.

Index Terms— Machine learning, visual analytics, neural architecture search, design principle, knowledge discovery.

1 INTRODUCTION

Recent progress in artificial intelligence largely benefits from better
neural network architecture design [19, 33]. The successful design
of these architectures relies on costly trial-and-error processes. With
the development of large GPU clusters, neural architecture search
(NAS) [17] has been proposed to parallel the architecture design pro-
cess. It automatically selects well-performing architectures in neural
architecture spaces by training and evaluating a large number of archi-
tecture candidates. Since the NAS method aims to find well-performing
architectures for given datasets, it depends on the evaluation of the spe-
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cific datasets. Accordingly, the generalization ability of the searched
architectures may be limited. Design principles, which describe how
specific structure components, such as layers or their combinations, in-
fluence the performance of architectures, have been shown to be useful
in designing more explainable architectures with better generalization
ability [58]. Moreover, they can be used to reduce the search space and
computation cost of the NAS method. A recent study indicates that a
comprehensive analysis of architecture spaces facilitates the summa-
rization of such design principles [49]. It is therefore of theoretical
and practical significance to analyze these spaces for advancing our
understanding of the influence of the structure on model performance.

There are two technical challenges in analyzing an architecture
space. First, the number of architectures brings the scalability issue.
Previous research has demonstrated that understanding the structural
distances between architectures enables users to derive general design
principles for architecture design [58]. However, the space usually
contains tens of thousands to millions of architectures [35], which leads



to at least millions of distance calculation. Thus, how to efficiently
calculate so many distances is still an open question. Second, it is
non-trivial to identify the architectures of interest and analyze them
in context for summarizing design principles. Given a large number of
architectures, a scatterplot is commonly used to show the performance
(e.g., accuracy or speed) versus a numerical property associated with
the architectures (e.g., the number of parameters or floating-point
operations). Although it can provide a performance overview of the
architectures, it fails to reflect their structural distances. This hinders
the understanding of the structural connections between architectures,
and thus brings difficulty in summarizing design principles. It is
therefore technically demanding to provide an interactive exploration
environment where structurally similar architectures are placed
together, and smooth exploration is supported to probe the architecture
space from global overview to individual architectures.

In this work, we propose a visual analysis method, ArchExplorer, to
facilitate the interactive analysis of an architecture space. Most neural
network architectures are composed of a few sub-architectures repeated
multiple times [31, 61], each of which is a combination of multiple
layers (e.g., convolution layers and pooling layers) and their connec-
tions [15]. Zoph et al. have demonstrated that stacking well-performing
sub-architectures can construct state-of-the-art architectures [77]. Thus,
we focus on analyzing the repetitive sub-architectures. Without loss of
generality, we refer to them as architectures in the discussion below. We
represent each architecture as a directed acyclic graph (DAG) and adopt
the widely-used graph edit distance to measure the structural distances
between them. We formulate the calculation of all pairwise structural
distances as an all-pairs shortest path problem. To efficiently calculate
millions of pairwise distances or even more, we decompose this prob-
lem into a set of single-source shortest path problems. They can be
solved by an accelerated Dijkstra algorithm. Our distance calculation
algorithm reduces the time complexity from O(kn’N) to O(knN). Us-
ing the calculated distances, we build an architecture cluster hierarchy
to enable an efficient exploration of such a large space. An architecture
visualization is then designed for better understanding the architecture
space. To help efficiently identify the architectures of interest, a force-
directed layout is employed for preserving the global relationships
between clusters at each hierarchy level. To facilitate the analysis of
the architectures in context, a circle packing layout is developed for
illustrating the local neighborhood of the architectures in each cluster
(Fig. 1(a)). Coupled with a set of interactions, such as zooming and
comparison, this visualization enables users to summarize design prin-
ciples. We conduct two case studies on two NAS benchmark datasets
to demonstrate the capability of ArchExplorer in deriving design prin-
ciples. A post-analysis with a state-of-the-art method, LaNAS [63],
shows that the derived principles can reduce the computation cost for
searching the better-performing architectures. A demo of the prototype
is available at: http://archexplorer. thuvis.org.

The key technical contributions of this work are:

¢ The formulation of the pairwise distance calculation as solving

an all-pairs shortest path problem.

¢ An architecture visualization that preserves both the global re-

lationships between architecture clusters and the local neighbor-
hoods of architectures in each cluster to facilitate the identification
and comparison of the architectures of interest.

* A visual analysis tool to understand an architecture space and

summarize general design principles through the analysis of a
large number of neural network architectures.

2 RELATED WORK

We briefly review two categories of related work: explaining machine
learning models and explaining automated machine learning methods.

2.1

Many visual analysis methods for explainable deep learning have been
developed to facilitate the analysis of machine learning models [21, 53,
74]. According to the analysis goal, they can be categorized into two
classes: diagnosis-oriented analysis and comparative analysis [21].

Explaining Machine Learning Models

Diagnosis-oriented analysis aims to explain model behaviors and
diagnose models with unsatisfactory performance. Most existing ef-
forts focus on revealing the working mechanisms of different models,
such as multilayer perceptrons [50], ensemble models [38, 72, 76], con-
volutional neural networks [28, 37, 67], deep generative models [36],
recurrent neural networks [41, 57], and Transformers [14, 24, 34]. De-
spite their effectiveness in analyzing a single model, they do not support
model comparison, which is essential for selecting better-performing
models from a set of candidates.

To fill this blank, comparative analysis methods are developed to
explain the similarities and differences between models, therefore pro-
viding guidance for model selection. Such visual analysis methods have
been developed for diverse tasks, such as classification [39, 43, 51] and
question answer verification [14]. For example, Murugesan et al. [43]
proposed DeepCompare to compare the error patterns between models.
This is achieved by analyzing their differences in the neuron weights
and activations. These methods facilitate model comparison, but they
are less capable of revealing the full picture of an architecture space and
identifying the architectures of interest. Thus, they are not efficient in
selecting a well-performing architecture in a large space. In comparison,
by preserving the pairwise distances between architectures, ArchEx-
plorer provides an overview of the architecture space and also enables
the analysis of individual architectures. Thus, it empowers users to sum-
marize design principles for designing better-performing architectures.

2.2 Explaining Automated Machine Learning Methods

Automated machine learning aims to automate the tedious and itera-
tive tasks in building a machine learning model, including data pre-
processing, feature selection, architecture design, and hyper-parameter
tuning [20]. Accordingly, researchers have developed several visual
analysis methods to analyze the automated generated results of these
tasks [6, 7,9, 13, 47, 64, 65] or their combinations [46, 62, 68].

Our work falls in the category of architecture-design-oriented
works [6, 7, 13]. The methods seek to discover better architectures.
Among these research attempts, the most relevant one is REMAP [7],
which is one of the pioneering works in visually analyzing neural archi-
tecture spaces. It provides an effective iterative process for designing
sequential neural network architectures. Starting from a set of random
architectures, users can design new architectures by modifying the struc-
tures of the selected ones. These modifications can be recommended
by the system or specified by users. REMAP can help users efficiently
build a well-performing architecture. It pays less attention to summariz-
ing design principles from a large neural architecture space. In addition,
the employed MDS projection may fail to place structurally similar ar-
chitectures together [59]. In contrast, ArchExplorer focuses on summa-
rizing design principles from an architecture space. To this end, we first
develop an efficient distance calculation algorithm and build an archi-
tecture cluster hierarchy. Based on them, an architecture visualization is
designed. It places structurally similar architectures together and allows
users to analyze the architectures in the context of similar architectures.

3 DESIGN REQUIREMENTS

ArchExplorer is developed in collaboration with four experts in com-
puter vision (E; — E4) whose research interests include image classi-
fication and object detection. In one project, they utilized the NAS
method to develop an efficient image classification model for an online
content tagging service. To improve the generalization of the searched
architecture, the experts employed several visualizations to help them
derive design principles. For example, they used a scatterplot to gain
an overview of the searched architectures. The X-axis and Y-axis rep-
resent inference time and accuracy, respectively. Such visualization
gives them an overall idea of the searched architectures. However, there
lacks a comprehensive understanding of the structural relationships
between architectures. Without such an understanding, it is difficult to
link the structural differences of architectures with their performance
differences. This brings difficulty in discovering design principles, such
as whether a structure component in an architecture is beneficial to the
performance. Thus, it is desired to develop a visual analysis tool to
help summarize such design principles from a large architecture space.
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Fig. 2: ArchExplorer overview: given the architectures in an architecture space, the architecture distance calculation module calculates the
distances between them; the visualization module provides an overview of the architecture space and helps users compare architectures.

In the past two years, we held biweekly free-form discussions with
the experts to probe the requirements and develop the tool. Based on
the discussions, we summarized the following design requirements:
R1. Grouping architectures based on their structural distances.
All experts expressed the need to get a clear understanding of an ar-
chitecture space with hundreds of thousands of architectures or even
more. To analyze such a large space, the experts usually cluster the
architectures into several groups. The widely used practice is to group
architectures by the numerical properties such as inference time or accu-
racy [49, 73]. Such a grouping strategy can help find well-performing
architectures. However, the experts commented that it usually hindered
the discovery of design principles due to various structures in each
architecture group. Recent research has shown that the structure of a
neural network architecture is one important factor that influences its
performance [30]. Thus, the experts required to model the structural
distance between architectures and build the clusters accordingly.

R2. Identifying the architectures of interest and analyzing them
in context. Currently, to analyze an architecture space and select the
ones of interest from it, the experts plotted all the architectures in a
scatterplot, where each point encodes an architecture. With this scatter-
plot, the experts can analyze these architectures by different numerical
properties (e.g., accuracy, inference time, the number of parameters,
etc.) represented by the axes. Although such visualization can provide a
numerical overview of the architectures, it fails to reflect their structural
distances and hinders the discovery of similar architectures associated
with the ones of interest. Thus, to discover design principles from a
large space, it is demanding to provide a more informative overview
that can be served as an entry point for the analysis. Once identifying
the architectures of interest, it is desirable to examine the architectures
in context. As explained by Ej, “Comparing an architecture of interest
with its neighbors is similar to conducting an ablation study that is
useful to understand how different structure components of the archi-
tecture contribute to the performance and whether a specific structure
component is beneficial to the performance or not.”

R3. Comparing architectures in multiple aspects. The experts com-
mented that architecture comparison was the key to deriving design
principles. This is also consistent with the findings of recent research
on deep model comparison [39, 43]. The experts indicated that a design
principle usually came from comparing two architecture groups with
different accuracy. E3 said, “Among computer vision researchers, there
are different opinions whether layer normalization should be positioned
before or after the attention block in Transformer models. To verify this,
I constructed pairs of transformers with different widths and depths. In
each pair, layer normalization is put before and after the attention block,
respectively. By comparing their accuracy, I find that putting layer
normalization before attention is overall beneficial for the classification
task.” In addition, the experts emphasized that making a decision on
architecture design often involved multiple criteria, and they needed to
compare the architectures of interest in multiple aspects. For example,
besides accuracy, E; also wanted to compare other measures, such as
inference time and the number of floating-point-operations (FLOPs).
As Ej further explained, the number of FLOPs is positively related to
the performance and the energy cost of GPUs [54]. Thus, he needed to

compare the architectures with different numbers of FLOPs and select
one that can well balance the performance and the number of FLOPs.

4 DESIGN OF ARCHEXPLORER

Driven by the design requirements, we develop ArchExplorer to sup-
port the interactive analysis of an architecture space and summarize
design principles. It contains two main modules: architecture distance
calculation and visualization (Fig. 2). The former models the distances
between architectures (R1). The latter first builds an architecture clus-
ter hierarchy based on the distances, and then allows users to quickly
identify the architectures of interest and analyze them in context (R2).
It also facilitates the comparison of the architectures to understand
which structure components are beneficial to the performance (R3).

4.1 Calculation of Architecture Distance

Since NAS algorithms aim at searching for a well-performing archi-
tecture, existing distance-based NAS algorithms only calculate the
distances between each of the newly selected architectures and the
previously evaluated ones [25, 30]. However, ArchExplorer aims at
grouping structurally similar architectures together (R1), which re-
quires the pairwise distances between all architectures.

Problem formulation. The appropriate structure-based architecture
representation is the key to modeling the distances between architec-
tures. There are two common schemes for representing the structure
of an architecture: path-based and DAG-based [69]. The path-based
scheme represents an architecture as a set of paths, where each path is a
sequence of layers. The DAG-based scheme represents an architecture
as a directed acyclic graph (DAG), where nodes and edges represent
its layers and the connections between layers. A previous study has
shown that the DAG-based scheme explicitly utilizes the topological
information and better reflects the performance of a neural network
architecture [45]. Thus, in ArchExplorer, we adopt the DAG-based
scheme to represent architectures. With this representation, we adopt
the widely-used graph edit distance (d) to measure the structural dis-
tances between architectures [25]. The graph edit distance between two
architectures is defined as the minimum cost of all possible edit paths
that transform one architecture into another [52].

The A* algorithm is commonly used for calculating graph edit dis-
tances [2]. Given two architectures, this algorithm finds the minimum-
cost edit path by iteratively exploring the architectures with one edit
operation difference. Assume that there are N architectures in the whole
architecture space, and each architecture can be transformed into & dif-
ferent architectures with one edit operation. The time complexity for
calculating the graph edit distance between two architectures is O(kN).
In practice, the whole architecture space can probably contain billions
of architectures or even more [56, 60], which raises difficulty in the
analysis. Typically, n architectures (n < N) are sampled from the whole
space to ease the analysis. Given n sampled architectures, directly
applying the A* algorithm for calculating the pairwise distances results
in the time complexity of O(kn?N). This is still very time-consuming,
especially for hundreds of thousands of sampled architectures.

We observe that the minimum-cost edit paths between different ar-
chitecture pairs can overlap, such as the path x — v in the paths x —v—z
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Fig. 3: Architecture distance calculation: (a) an example architecture
space; (b) building the graph by connecting architectures with only one
edit operation difference; (c) calculating all the pairwise distances.
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Fig. 4: Decomposing the APSP problem into a set of SSSP problems.
The blue dots represent the source architecture, and the blue lines are
the visited paths from the source architecture in the Dijkstra algorithm.

and x —v —u in Fig. 3(c). This indicates that the minimum-cost edit
paths have the optimal substructure property, which enables the reuse
of previously found minimum-cost edit paths. Motivated by such an
observation, we propose to model the previously found minimum-cost
edit paths and the associated nodes as a graph. Accordingly, we build
an architecture graph by connecting the architectures with only one edit
operation difference to represent their one-hop neighbor relationships
(Fig. 3(b)). For n sampled architectures, we add N —n dummy architec-
tures to guarantee the existence of the minimum-cost edit path between
any two architectures. The dummy architectures are those in the archi-
tecture space but not in the sampled architectures. Fig. 3(b) shows an ex-
ample architecture graph. In this graph, each solid dot represents an ar-
chitecture, and each hollow dot represents a dummy one. The weight on
each edge encodes the cost of the edit operation. In our implementation,
we utilize the cost matrix given by Nguyen et al. [44] to define the sub-
stitution cost (w,) between different layers. The deletion (addition) cost
is defined as the substitution cost between a given layer (the null layer)
and the null layer (a given layer), which is set as 5 X max, w,. Thus,
calculating the pairwise edit distances in this architecture graph can be
formulated as an all-pairs shortest path (APSP) problem (Fig. 3(c)).

Algorithm. Since the number of one-hop neighbors of an architecture
(k) is much smaller than the number of architectures in the whole archi-
tecture space (N), the architecture graph is sparse. Due to such sparsity,
an efficient method for finding the minimum-cost edit paths is to decom-
pose the APSP problem into a set of single-source shortest path (SSSP)
problems for each source architecture (Fig. 4). In each SSSP problem,
we employ an accelerated Dijkstra algorithm to find the minimum-cost
edit paths between the source architecture and the others. Dijkstra
algorithm utilizes a greedy strategy to iteratively find the shortest paths
between nodes based on the edge costs [12]. The most time-consuming
step at each iteration is the selection of a node that has the minimum
cost to the source (O(logN)). Since the edit operations are finite (in-
sertion, deletion, and substitution of a node/edge), the associated costs
are also finite. We use this property to improve efficiency. In particular,
we maintain sets of architectures, each of which consists of the archi-
tectures with the same cost to the source. These sets are organized as a
sorted list based on their costs. With this sorted list, the algorithm can se-
lect an architecture with the minimum cost in constant time (O(1)) [42].
Complexity analysis. As each architecture has k one-hop neighbors,
our algorithm takes O(kN) time to build the architecture graph with AN

edges. It runs n times of the accelerated Dijkstra algorithms, and each
has an O(kN) time complexity. Accordingly, the total time complexity
of our algorithm is O(kN) 4+ n x O(kN) = O(knN). 1t is faster than the
A* algorithm (0(kn2N )) with an acceleration ratio of n. For example,
in the case studies, our algorithm can achieve an acceleration ratio
of 423,624 and 15,625 on the NAS-Bench-101 [73] and NAS-Bench-
201 [16] architecture spaces, respectively. The developed algorithm
works well when N is no more than several millions. When N reaches
billions or even larger, our algorithm fails because both the time com-
plexity and space complexity are proportional to N. For example, we
are unable to build an architecture graph for NAS-Bench-301 [56] as it
contains over 10'® architectures. A common solution for handling such
large spaces is to directly calculate the pairwise distances between the
sampled architectures. The pairwise distance is the minimum matching
cost among all possible matchings between the layers of the two as-
sociated architectures. The time complexity for calculating a distance
is O(L!), where L is the total number of layers in the two architec-
tures. When L > 9, L! grows more than a million. It is intractable to
directly compute all these distances (O(rnL!)). To tackle this issue,
we represent all possible matchings by a weighted bipartite graph and
utilize an approximation algorithm to accelerate the calculation [52]. A
sub-optimal matching can be found in O(L?).

4.2 Architecture Visualization

The architecture visualization is designed to facilitate the analysis of the
architecture space from a global overview to individual architectures.
Based on the calculated distances, we build an architecture cluster
hierarchy in a top-down manner by iteratively applying K-medoids [48].
This algorithm is widely used to cluster samples with distance measures
due to its simplicity, fast convergence, and robustness to noise [3]. The
number of clusters is determined by a grid search, selecting the one with
the minimum average distance (to the cluster center). Then we employ a
cluster-aware sampling strategy [75] to sample architectures from each
level of the architecture cluster hierarchy for display. This sampling
strategy aims to maintain the relative sizes of clusters. To preserve
smaller clusters, it also guarantees sampling a minimum number from
each cluster. In our implementation, we set this number as 10.

4.2.1

Visual design. As shown in Fig. 5(a), an architecture is represented by
a circle. A sequential color scheme is utilized to encode accuracy. The
darker green the circle, the higher the accuracy. By default, the darkest
green circles highlighted the well-performing architectures with top 1%
accuracy (Fig. 1I). Architectures in the same cluster are densely packed
together. We employ circle packing to avoid overplotting in scatterplots
and reduce the learning curve of users because it shares the same visual
encoding with the widely-used scatterplots. To connect the performance
to the structures of individual architectures, we select representative
architectures in each cluster and visualize them with summary glyphs
(Fig. 5(b)) and structure glyphs (Fig. 5(c)), which provide different
levels of structural information. The summary glyph uses a doughnut
chart around the circle to show the ratio of different layers used in the
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Fig. 5: Visual design of the architecture space: (a) an architecture
cluster; (b) a summary glyph; (c) a structure glyph.
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Fig. 6: The architecture layout: (a) global cluster layout; (b) local
architecture and summary glyph packing; (c) structure glyph placement.

representative architecture. The color and length of each arc encode the
layer type and the ratio of the layer used, respectively. The structure
glyph employs a simplified architecture representation, Net2Vis [5], to
illustrate the structure of the representative architecture. It provides
general information about how individual layers are connected.
Layout. The architecture visualization aims to illustrate the similarity
relationships between architectures (R2), including the global cluster
relationships and local neighborhoods of architectures. To this end, a
force-directed layout is utilized to place the architecture clusters based
on their distances to each other (Fig. 6(a)), and a circle packing lay-
out algorithm is developed to preserve the local neighborhoods of the
architectures within each cluster (Fig. 6(b)). We then enhance this
visualization by appending structure glyphs to the representative archi-
tectures (Fig. 6(c)), which helps to reveal the structural characteristics
of each cluster. The widely used Kamada-Kawai layout algorithm [29]
is employed to place the clusters, where we use the distances between
the cluster centers to represent the distances between clusters. Here,
we focus on introducing the circle packing and glyph placement.

The goal of the circle packing is to preserve the local neighborhoods
of architectures. However, the commonly used circle packing algo-
rithm, the front-chain algorithm [66], pays little attention to preserving
local neighborhoods. As the densest packing of identical circles is
equivalent to the regular hexagonal packing on the plane [8], we trans-
form the circle packing into a hexagonal grid layout problem. Here,
the densest packing is an arrangement that maximizes the number of
packed circles in a given layout area. By considering the similarity
relationships between architectures globally, the hexagonal grid layout
places similar architectures adjacently. The optimal layout is generated
by minimizing the sum of distances between the adjacent architectures

in the grid. Assume that cluster i contains N; architectures {aj}l;il,
and we generate a grid containing &V; grid points {xj}ljy’:l. Let Iy, be
the set of all possible permutations of {1,2,---,N;}. Then a layout can
be represented by a permutation 7 € Ily, where a; is placed on x
Accordingly, the hexagonal grid layout problem is formulated as:
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Here, I'(xz ;) is the set of adjacent grid points of xy;) and d(a;,a;)
is the distance between architectures a; and a; that are assigned to
adjacent grid points xz( ;) and xz;), respectively. Since this is an NP-
hard quadratic assignment problem [1], we propose a greedy algorithm
to effectively generate an approximate layout result. Specifically, for
each grid X;, we first sort the grid points by their distances to the
center of X;. Then each architecture is iteratively assigned to a grid
point that leads to the maximal decrease in the sum of distances to get

an initial feasible result. Finally, we tune the result by swapping the
architectures assigned to two grid points that can further decrease the
sum of distances until no more such swaps can be performed.

To better understand the structural characteristics of the clusters,
2-5 representative architectures are selected from each cluster. To well
represent the cluster and also prioritize the architectures with higher
accuracy for analysis, the representative architectures are either with
1) the top-1 similarity to other architectures; or 2) the top-10 accuracy
balancing accuracy and similarity. Each representative architecture is
associated with a summary glyph and a structure glyph for providing
more structure-level information. To uniformly pack the summary
glyphs and the circles together, one summary glyph takes up seven
grid points, including the grid point associated with the corresponding
architecture and all its adjacent grid points (Fig. 6A). In this way,
packing circles and summary glyphs together can still be regarded as
assigning them to the grid points and solved with the proposed layout
algorithm. We then utilize the label layout algorithm [40] to place the
structure glyphs near their corresponding summary glyphs. Following
the Gestalt law of connectedness [32], we link the structure glyph to the
corresponding summary glyph to strengthen their visual connection.

422

To facilitate the exploratory analysis of the architecture space and help
users identify the architectures of interest for detailed analysis, a set of
interactions is provided.

Filtering. Following the design in [10], we provide a set of scented
widgets (Fig. 1J) to filter out irrelevant architectures. They guide the
architecture filtering by displaying their attribute distributions (e.g. , the
number of FLOPs and parameters).

Selection. Two modes are provided to select the architectures of
interest. Users can select the ones in a specific cluster by the cluster
mode ({_3) or from an arbitrary region by the lasso mode (©).

Navigating through different levels of detail. With the architecture
cluster hierarchy, users can click @ to zoom into a specific architecture
cluster and examine the fine-grained sub-clusters or @ to zoom out to
the previous navigation level. To keep users’ mental map, the sampled
architectures at the current level are preserved when zooming into a
specific cluster. We also maintain the layout stability by keeping the
relative position unchanged across different navigation levels.

Comparison. A comparative visualization (Fig. 1(c)) is designed
to enable a detailed comparison of the selected architectures in three
aspects (R3). First, we use a parallel coordinates plot (PCP) (Fig. 1E)
to compare the attribute distributions between groups of architectures
due to its effectiveness in comparing different numerical attributes [26].
In the PCP, each polyline represents an architecture, and each axis rep-
resents an attribute. Second, a table is utilized to compare individual
architectures (Fig. 1F), which is enhanced by encoding each attribute
with both a numerical value and a bar in one cell. Third, we enable
a side-by-side comparison of architecture structures (Fig. 1G), which is
critical in summarizing design principles. They are visualized with the
same design as the structure glyphs (Fig. 5(c)).

Interactive Exploration

5 EVALUATION

To demonstrate the effectiveness of ArchExplorer in summarizing de-
sign principles, we conducted two case studies with the experts. To
further validate the usefulness of the summarized design principles,
we integrated them into a state-of-the-art NAS method. Experimental
results showed that the principle-based NAS method reduced the com-
putation cost by around 50% and achieved at least the same performance
as the NAS method. The accuracy of each architecture was evaluated
on the CIFAR-10 dataset, which is widely used in NAS [16, 73].

5.1 Case Studies
5.1.1  Analyzing NAS-Bench-101

In this case study, we collaborated with expert E| to show how Arch-
Explorer helps summarize design principles from a large architecture
space, NAS-Bench-101 [73], which contains 423,624 architectures.
The number of layers in each architecture is limited to five, and the



number of connections between layers is limited to nine. The lay-
ers are chosen from: 3 x 3 convolution, 1 X 1 convolution, and 3 x 3
max-pooling. Two example architectures are shown in Fig. 1G.
Overview. E; started the analysis by examining the global relationships
between the clusters in Fig. 1(a). He found that the clusters at the top
had more dark green circles and shorter red arcs (max-pooling layers)
than those at the bottom-left. This indicates that the architectures using
fewer max-pooling layers have better performance. In particular, he
saw that clusters A, B, D contained more well-performing architectures.
E/ decided to analyze them in detail.

Analyzing architectures without max-pooling layers. E; first exam-
ined cluster A that contained the architectures without max-pooling
layers. Since the accuracy variance of this cluster is large, he zoomed
into it for further analysis. The well-performing architectures in cluster
A are mostly located in three sub-clusters (Fig. 1(b)). By examining the
structure glyphs, he found that sub-cluster H used four convolution lay-
ers and the other two used five convolution layers. However, they have
comparable numbers of well-performing architectures. This attracted
his attention because more convolution layers usually lead to better per-
formance. E; further explained, “Architectures with more convolution
layers have a larger number of trainable parameters and thus a larger
model capacity. Typically, a larger model capacity can better fit the
data and achieve better performance.” Since 40 million approaches the
upper limit of trainable parameters for architectures with four 3 x 3
convolution layers, he selected such architectures from the three sub-
clusters by using the “params” dimension of the PCP (the dashed ellipse
in Fig. 1E) to figure out why this phenomenon occurred. Then he sorted
them by accuracy. By comparing the individual architectures in Fig. 1F,
E, found that the architectures in H had more skip-connections (the
rows with orange borders). By examining their structures, he found
that they resembled the structure of DenseNet [22], which had dense
skip-connections between layers (the thick black lines in Fig. 1G).
He commented that dense skip-connections combine the outputs of
multiple previous layers and thus strengthen feature propagation [22].
This leads to better performance. Thus, he suggested:

e Principle 1: dense skip-connections are beneficial to accuracy.
Analyzing architectures with max-pooling layers. E; then contin-
ued to analyze other well-performing architectures in clusters B and D
(Fig. 1(a)). The short red arcs in the summary glyphs and the structure
glyphs reveal that they only use one max-pooling layer. A nearby clus-
ter C caught his attention. In this cluster, the red arcs of the summary
glyphs have the same lengths as those in B and D, but the architec-
tures in this cluster have much lower overall accuracy. By comparing
their structure glyphs, he found that the major difference between the
architectures in cluster C and clusters B and D was the position of
the max-pooling layer. In B and D, the architectures have their max-
pooling layers at the front (cluster B) or in the middle (cluster D) of
the structure glyphs. While in cluster C, the architectures have their
max-pooling layers at the end.

To understand the effect caused by the position of the max-pooling
layer, we collaborated with E| and analyzed the activation map dif-
ferences between the corresponding architectures in clusters B and C.
We randomly selected two architectures a; (accuracy: 94.6%) and a,
(accuracy: 93.8%) from clusters B and C and trained them on CIFAR-
10. We fed each image into the trained model and obtained the feature

Fig. 7: The activation map differences between architectures with the
max-pooling layer at the front (@) and at the end (ay). a; generated a
more precise response area on the bird than a,.

map with the largest response before the fully connected layer as its
activation map [18]. By analyzing a set of activation maps of images,
each of which is predicted differently by a; and a;, he found that the
response areas generated by a; were usually more precise than those
by a;. This indicates that architectures with the max-pooling layers
at the end probably introduce irrelevant information for prediction,
leading to more misclassifications. For example, in Fig. 7, a; misclas-
sified a bird as a frog since it mistook the larger green background as
a grassland. We further verified this by checking the activation maps
of 100 random images. The results showed that although a; and a,
both learned to focus on the objects in almost all images (99%), a;
was more likely to generate imprecise response areas (49%) than a;
(14%). Following a similar analysis, we also found that the response
areas generated by the architectures with the max-pooling layer in the
middle were more precise than those with the max-pooling layer at the
end. Based on this observation, E; commented, “The architectures with
max-pooling layers at the end enlarge the response areas and tend to
introduce information irrelevant to prediction. This may lead to more
misclassifications.” Therefore, he concluded:

e Principle 2: max-pooling layers should probably not appear at the
end of the architecture.

Comparing architectures without and with max-pooling layers.
After analyzing the architecture clusters without and with max-pooling
layers separately, E| was interested in why the well-performing archi-
tectures did not use many max-pooling layers. He randomly selected
and trained two architectures a3 (accuracy: 95.1%) and a4 (accuracy:
93.9%) with zero and one max-pooling layer, respectively. With a
similar analysis as previously described, he found that architectures
with max-pooling layers often introduced irrelevant information into
the prediction process and thus led to more misclassifications. For ex-
ample, in Fig. 8, a4 misclassified a ship as an airplane since it mistook
the horizontal black bars in the background as the wings of an airplane.
For validation, 100 random images were also investigated to examine
their activation map differences. The results suggested that both a3 and
ay can learn the key part of the object in nearly 90% of the images, but
a4 was more likely to learn some interfering parts (76%) than a3 (34%).
From this analysis, E| concluded:

e Principle 3: the max-pooling layers probably downgrade accuracy.

5.1.2 Analyzing NAS-Bench-201

We collaborated with expert E; to demonstrates how to design an archi-
tecture with better generalization ability based on the design principles
summarized from NAS-Bench-201 [16]. This space consists of 15,625
architectures. Each architecture contains six layers chosen from: 1 x 1
convolution, 3 x 3 convolution, 3 x 3 average-pooling, identity, and
zeroize. An example architecture is shown in Fig. 10(b).
Summarizing design principles. E; started the analysis from the ar-
chitecture visualization (Fig. 9(a)). By examining the summary glyphs,
he found that architectures were clustered based on the number of
zeroize layers (grey arcs). Cluster A has the largest number of well-
performing architectures, where architectures do not use any zeroize
layers. This met his expectation because the architectures with such
layers have less trainable parameters and thus smaller model capacity.
This leads to performance degradation.

In cluster A, a region with many darkest green circles (Fig. 9B)

Image Activation map
T
; o
Ship i Prediction: ~ Ship Airplane

Fig. 8: The activation map differences between architectures with zero
(a3) and one (a4) max-pooling layer. a3 generated a more precise
response area on the ship than ay.



Fig. 9: The analysis workflow of NAS-Bench-201. The dashed ellipses mark the similar parts of the shown architectures.

aroused his interest. This indicates that these well-performing archi-
tectures have similar structures. Thus, he used the lasso to select these
architectures for detailed examination. E, noticed that all these architec-
tures had an identity layer connecting the input and the output (dashed
ellipses in Fig. 9B’). He commented that such an identity layer could
address the vanishing gradient problem in model training because it pro-
vides an alternative path for the gradient flow in back-propagation. This
is consistent with the design of ResNet [19]. Therefore, he suggested:

e Principle 4: the identity layer connecting the input and the output is
beneficial to the performance.

Due to the large accuracy variance in cluster A, E; zoomed into this
cluster for detailed examination. E, found that sub-cluster C contained
the most well-performing architectures. He selected it and filtered the
architectures with the highest accuracy by using the “acc” dimension of
the PCP. With a further examination of the PCP (Fig. 9D), E; found that
most well-performing architectures did not contain any 3 x 3 average-
pooling layer, and a few of them used one such layer. For verification,
E, also examined the architectures with the top 10 accuracy in the
table (Fig. 9C’). Only two out of them use one average-pooling layer
(the rows with orange borders), while the others do not use it. He
commented that this followed the results of recent NAS methods [55,
63], where average-pooling layers seldom appeared in the final searched
architectures. Furthermore, we conducted a statistical test to compare
the accuracy between architectures with and without average-pooling
layers in NAS-Bench-201. The result showed that the accuracy of the
architectures with an average-pooling layer was significantly lower than
those without average-pooling layers (p < 0.001). This indicates that:

e Principle 5: average-pooling layers probably downgrade perfor-
mance.

Following a similar analysis (the detailed analysis can be found in
supplemental material), E; concluded other three design principles:
e Principle 6: using multiple 3 X 3 convolution layers in one path
improves model performance.
e Principle 7: using multiple paths containing 3 x 3 convolution layers
improves model performance.
e Principle 8: having two or more paths without a convolution layer
downgrades model performance.
Local analysis of the performance difference. Next, E; zoomed back
to the overview and briefly examined the well-performing architectures
in other clusters. These architectures are scattered in different locations
(Fig. 9(a)). However, some of their adjacent architectures can have
much lower accuracy. For example, in cluster E, there is a representa-
tive architecture with high accuracy (Fig. 9F) and a few adjacent ones
with low accuracy. Typically, neighboring architectures have similar
structures and perform similarly. To figure out the reason for the differ-
ence, E, analyzed them in context. He selected this well-performing
architecture (F}) and two adjacent poor-performing ones (the circles
with orange borders, Fy—F}) for comparison (Fig. 9F). By examining
their structures, he found that F} followed Principles 4-8 and had the
highest accuracy. F followed Principles 7 and 8, and its accuracy was
lower than that of F| by 2.13%. F} only followed Principle 8, and its
accuracy was lower than that of F| by 7.65%. The expert appreciated
the capability of ArchExplorer to visually convey the performance dif-
ference among adjacent architectures. He further commented that the
easy finding of such differences and the associated visual explanations
help him summarize design principles in a more detailed manner.
Designing an architecture with better generalization ability. Based
on the above design principles, we collaborated with E, to manually
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Fig. 10: Architecture comparison: (a) the principle-based architectures;
(b) the NAS-searched architecture with the highest accuracy.

Table 1: Comparison of the generalization ability between the NAS-
searched architecture and the principle-based architecture.

Dataset # classes | NAS-searched | Principle-based
Aircraft 41 85.3% (+0.0%) 85.3%
Cars 196 74.2% (+1.3%) 75.5%
Covid 4 95.0% (+0.0%) 95.0%
DTD 47 56.6% (+2.3%) 58.9%
GTSRB 43 97.4% (+0.1%) 97.5%
Blood Cells 4 90.6% (+3.7%) 94.3%
Scene 6 91.4% (+0.2%) 91.6%
Average 84.4% (+1.0%) 85.4%

design an architecture to evaluate the effectiveness of the summarized
design principles. For a fair comparison, he only utilized the layer
candidates in NAS-Bench-201. E, proposed the two simplest archi-
tectures that followed all principles discovered from NAS-Bench-201
(Fig. 10(a)). Each has an identity layer (Principle 4) and does not con-
tain average-pooling layers (Principle 5). Besides, it has two paths with
3 convolution layers, and at least one of them contains multiple 3 x 3
convolution layers (Principles 6 and 7). The architecture design also
followed Principle 8 by containing only one path without a convolution
layer. Generally, larger FLOPs lead to better performance. Since the
best-performing architecture searched by the recent NAS methods on
CIFAR-10 has 153.3M FLOPs [63, 70] (Fig. 10(b)), he finally selected
the one having the largest number of FLOPs (149.3M).

The generalization ability of the selected principle-based architecture
and the best-performing NAS-searched one was evaluated by compar-
ing the performance on a set of image classification datasets. These
datasets are from the publicly available Kaggle dataset [27]: Aircraft,
Cars, Covid, DTD, GTSRB, Blood Cells, and Scene. They cover dif-
ferent types of images, including real-world objects, medical images,
textures, and scenes. The number of categories in these datasets varies
from a few to more than a hundred. Table 1 shows the accuracy compar-
ison between the NAS-searched architecture (column “NAS-searched”)
and the principle-based architecture (column “Principle-based”). We
found that the principle-based architecture achieved better or compara-
ble accuracy on all datasets. It had an average accuracy improvement of
1.0%. This demonstrated the effectiveness of the summarized design
principles for designing architectures with better generalization ability.

5.2 Post-Analysis

Two experiments were conducted to demonstrate the effectiveness of
the design principles in improving the search efficiency of NAS.
Experimental settings. We selected a state-of-the-art NAS method,
LaNAS [63], as our baseline. Then a hybrid method was imple-
mented, which updated LaNAS to reflect Principles 1-8 by discarding
the violating architectures in its search process.

In the experiments, we employed two widely-used architecture
spaces, NASNet [63] and NAS-Bench-301 [56]. In NASNet, each
architecture contains ten layers chosen from four candidates: 3 x 3
max-pooling, 3 x 3 depth-separable convolution, 5 x 5 depth-separable
convolution, and identity. In NAS-Bench-301, each architecture con-
tains eight layers chosen from seven candidates, including 3 x 3 average-
pooling, 3 x 3 dilated convolution, 5 x 5 dilated convolution, and the
four candidates in NASNet.

The computation cost of a search process was evaluated by the total

Table 2: Comparison of the search space, computation cost and accu-
racy on NASNet and NAS-Bench-301.

Dataset | Method | #archs. | GPU hours | Accuracy
LaNAS 800 1,635 97.99%
NASNet ' —vbrid | 400 822 98.10%
LaNAS 2,000 3,019 94.83%
NAS-301 Hybrid 1,000 1,510 94.83%

# archs. refers to the number of searched architectures.

GPU hours for searching and training the architectures. It is prohibitive
to train each searched architecture in NASNet from scratch to full
convergence (about 60 GPU hours for each architecture and nearly
50,000 GPU hours in total for a search process). Following the recent
research [49], we trained each architecture for 20 epochs on CIFAR-10.
In NAS-Bench-301, we use the accuracy provided in the dataset. Since
we did not need to train the architectures in this space, the GPU hours
for training the searched architectures in this search were estimated
by multiplying the number of searched architectures and the GPU
hours for training one architecture. Here, the GPU hours for training
one architecture were estimated by averaging the training time of ten
randomly-sampled architectures in this space.
Results. Table 2 compares the search space, computation cost, and
accuracy between LaNAS and the hybrid method with design principles
on NASNet and NAS-Bench-301. Compared with LaNAS, the hybrid
method reduced the search space and computation cost by around 50%
while achieving at least the same accuracy on both datasets.
Analysis. To identify the reason for the computation cost reduction, we
first analyzed the searched architectures found by LaNAS (without inte-
grating any design principle) on NAS-Bench-301 (Fig. 11(a)). To better
understand the search process of LaNAS, we analyzed the searched
architectures at different iterations of the search process. We utilized
a scented widget to highlight the architectures at different iterations
in the architecture visualization. The analysis started from the archi-
tectures searched in the first 25% iterations of LaNAS. We found that
these architectures randomly came from different clusters with different
numbers of pooling layers. We further examined the architectures in
the 25%—-50%, 50%—75%, and the last 25% iterations. It was found
that architectures without a pooling layer appeared more frequently
as the search went on. This indicates that LaNAS gradually “learns”
a few design principles for searching well-performing architectures,
such as the preference of using fewer or even no pooling layers in the
search process (Principles 3 and 5). To discover the common properties
of the well-performing architectures, we selected them by using the
“acc” dimension of the PCP (Fig. 11B). We found that they had one
to three identity layers (Fig. 11A). By examining their structures, we
identified that they had identity layers connecting the input and the
output (Fig. 11(c)), which followed Principle 4. We then counted the
occurrence of the architectures with such property at different iterations.
These architectures appeared more often in the last 25% of the searched
architectures than in the previously ones (50.2% vs.29.8%), showing
that LaNAS also learned such knowledge in the search process.
Second, after understanding the working mechanism of the search
process of LaNAS, we briefly elaborated on why design principles
could reduce the computation cost. By integrating the design principles,
LaNAS filters out the architectures that violate any design principles
and thus quickly focuses on searching among the well-performing archi-
tectures. This reduces the search space (2,000—1,000) and computation
cost while also keeping the accuracy of the searched architectures.

6 DiscussION AND FUTURE WORK

We conducted a three-hour demo session with the experts. Overall,
they appreciated the usefulness and effectiveness of ArchExplorer in
summarizing design principles and searching for better-performing
architectures. They especially liked the combination of easy-to-use
and familiar visualization techniques, such as circle packing and pie-
chart-based summary glyphs. It allows them to find the architectures of
interest more quickly and thus focus more on the analysis tasks. Based
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Fig. 11: Analyzing the searched architectures by LaNAS on NAS-
Bench-301: (a) overview of the architecture clusters; (b) filtering the
well-performing architectures; (c) an example of the well-performing
architecture that has identity layers connecting the input and output.

on a comprehensive analysis, the experts can propose and validate
design principles. They also pointed out some limitations that might
lead to future research directions.

Providing more exploration guides. During the collaboration with
the experts, we obtained two main needs for acquiring information
more easily. First, they required to automatically summarize the char-
acteristics of an architecture cluster and generate a meaningful label
(e.g., a short phrase) for it. For example, in Fig. 1(a), the desired labels
of cluster C can be “using one max-pooling layer and four convolution
layers” and “max-pooling layer appearing at the end of the architecture.”
Such labels can reduce the efforts in identifying the clusters of interest.
In addition, this feature will benefit practitioners with average domain
knowledge in the model designing process. As commented by experts,
the interpretation of current cluster characteristics requires some ex-
pertise in the target architecture space. Thus, an interesting avenue is
how to leverage the natural language processing techniques, such as
GPT-3 [4], to generate meaningful labels for architecture clusters and
intuitively illustrate them in the architecture visualization. Second, they
hoped to visually search the architectures with specific structure com-
ponents. For example, the experts are interested in how performance
changes when replacing an identity layer with a 1 x 1 convolution layer

in an architecture of interest. Therefore, another promising future work
is to support a structure-based visual query for searching architectures.
Recommending candidate design principles. The capability of Arch-
Explorer in facilitating experts to summarize design principles is demon-
strated in the case studies. The experts appreciated this capability be-
cause design principles are useful for designing a better-performing
architecture. However, the current analysis workflow requires them
to explore the architecture space, identify the architectures of interest,
and then compare them in context. This takes some time for machine
learning experts and even longer time for junior model developers.
To accelerate the analysis process, the experts required the tool to
automatically recommend candidate design principles. Based on the
recommendation, they can visually analyze the associated architectures
and verify the validity of the candidate design principles. Thus, in
the future, we are interested in developing an efficient algorithm for
recommending candidate design principles and tightly integrating it
with our tool for iteratively verifying these candidates.

Integrating into the search process of a NAS algorithm. The experts
also pointed out that integrating ArchExplorer into the search process
of a NAS algorithm would be very useful and effective to reduce the
computation cost. This integration opens up the possibility for incre-
mentally integrating the design principles discovered at previous search
iterations into the next iteration of the NAS algorithm. To facilitate such
an incremental integration, ArchExplorer needs two major augmenta-
tions. First, we need to develop an incremental hierarchical clustering
algorithm for effectively handling newly searched architectures at each
iteration. Second, a set of interactions are required for incrementally
and efficiently integrating the summarized design principles into the
search process. For example, we can automatically convert the design
principles into a set of constraints and then allow users to interactively
refine them based on their search purposes. The refined constraints are
utilized by the next search iteration for fast convergence.

Analyzing broader neural architecture spaces. In ArchExplorer, we
focus on analyzing the influence of the structure on model performance.
In general, the performance of a neural network architecture is also
influenced by other model-related factors, such as training hyperpa-
rameters (learning rates, batch sizes, etc.), training procedure, and data
distribution [11, 23, 71]. Thus, it would be useful to jointly consider
these factors in ArchExplorer. To this end, there are some necessary
extensions for ArchExplorer. For example, it is worth exploring how to
tightly combine ArchExplorer with existing visual analytics works on
analyzing data-distribution-related issues for summarizing the design
principles from both structure and data perspectives.

7 CONCLUSION

In this paper, we have developed ArchExplorer, a visual analysis
method for understanding a neural architecture space and summarizing
design principles. The neural network architectures are represented by
directed acyclic graphs, and graph edit distance is employed to model
the similarity relationships between them. We formulate the pairwise
distance calculation between architectures as an all-pairs shortest path
problem and solve it with an accelerated Dijkstra algorithm. Based
on the calculated distances, the architectures are then hierarchically
clustered. A circle-packing-based architecture visualization has been
developed to facilitate the interactive analysis of the architecture space.
This visualization well conveys both the global relationships between
clusters and the local neighborhoods of the architectures in each cluster.
The effectiveness of ArchExplorer is demonstrated by two case studies,
and the usefulness of the summarized design principles is verified by
reducing the computation cost of a state-of-the-art NAS method.
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