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Fig. 1. A screenshot of our system for interactive tactic mining. Domain experts first need to select a player of interest on the control
bar (A) to analyze his/her tactics. Then the system mines a initial set of tactics and visualizes them through intuitive glyphs in the Tactic
View (C). Meanwhile, the Project View (E) provides an overview of the tactics through a semantic projection method, allowing domain
experts to quickly understand the tactics. Experts are then allowed to give suggestions to improve the tactics based on their domain
knowledge in the Suggestion Panel (B). The system will refine the tactic set and compare the new tactics with the original ones (C1
and E1). For detailed exploration, the Rally View (D) shows more details about a chosen tactic, including a bar chart displaying where
the tactic is used, a list of all rallies involving the tactic, and a video player for the video segment of each rally.

Abstract— Experts in racket sports like tennis and badminton use tactical analysis to gain insight into competitors’ playing styles.
Many data-driven methods apply pattern mining to racket sports data — which is often recorded as multivariate event sequences — to
uncover sports tactics. However, tactics obtained in this way are often inconsistent with those deduced by experts through their domain
knowledge, which can be confusing to those experts. This work introduces RASIPAM, a RAcket-Sports Interactive PAttern Mining
system, which allows experts to incorporate their knowledge into data mining algorithms to discover meaningful tactics interactively.
RASIPAM consists of a constraint-based pattern mining algorithm that responds to the analysis demands of experts: Experts provide
suggestions for finding tactics in intuitive written language, and these suggestions are translated into constraints to run the algorithm.
RASIPAM further introduces a tailored visual interface that allows experts to compare the new tactics with the original ones and
decide whether to apply a given adjustment. This interactive workflow iteratively progresses until experts are satisfied with all tactics.
We conduct a quantitative experiment to show that our algorithm supports real-time interaction. Two case studies in tennis and in
badminton respectively, each involving two domain experts, are conducted to show the effectiveness and usefulness of the system.

Index Terms—Sports Analytics, Multivariate Event Sequence, Interactive Pattern Mining, Comparative Visual Design.
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Coaches and data analysts working in racket sports like tennis and
badminton use tactical analysis to gain high-level insight into these
sports, such as players’ preferred playing styles and competitive weak-
nesses [40]. In racket sports, a rally starts with one player serving the
ball, progresses as two players hit the ball in alternation, and ends with
one player scoring a point. For each hit, a player must consider multi-
ple hit features such as the hitting technique and the ball position. By
skillfully combining different hit features over several consecutive hits,
a player may adopt a tactic for winning the game. Fig. 2 demonstrates
an example in tennis – Player 1 (P1) may play a three-hit “serve-and-
volley” tactic against Player 2 (P2). Hit 1: P1 serves the ball to the
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Fig. 2. An example of a tennis tactic with three hits — “serve-and-volley.”

backhand area (ball position) of P2; Hit 2: P2 hits a weak return via
his/her backhand (hitting pose predicted by P1); Hit 3: P1 runs close to
the net (player position), volleys the ball back (hitting technique), and
win a point. To help experts quickly find such tactics, some data-driven
methods [40, 46] model each hit as a multivariate event and each rally
as an event sequence. By applying pattern mining algorithms, such
methods can discover recurring patterns and analyze them as tactics.

However, domain experts’ knowledge can lead them to interpret the
results of data-driven methods in specific ways. For instance, if an
algorithm finds that P1 frequently performs the aforementioned “serve-
and-volley” tactic, experts may interpret this finding differently based
on what they know about P1. If P1 prefers net tactics, experts may
want to focus on the third hit, where P1 runs close to the net to volley
the ball. Otherwise, experts may want to merge tactics with a similar
first hit, where P1 hits the ball to P2’s backhand, preventing P2 from
returning the ball effectively. Experts use the domain knowledge gath-
ered over the years to perform such fine-grained analysis. Lacking this
domain knowledge, data-driven algorithms cannot support such further
adjustments, such as merging tactics with specific similar hits. Thus,
the mined tactics are inconsistent with what experts know, confusing
and difficult to use [22, 42]. An experiment presented in Sect. 7.1.1
also suggested that few tactics expected by experts could be directly
and precisely mined by data-driven algorithms. Experts would prefer
to work interactively with algorithms, giving their knowledge-based
suggestions so that the algorithm’s findings better meet their needs.

However, although interactive pattern mining is well-studied [3,4,23,
28], it is still challenging to apply it to multivariate tactics. One issue
is how to handle experts’ fine-grained suggestions on multivariate
tactics. Experts may give meticulous feedback about the algorithm’s
treatment of a single hit feature because small details may determine
the outcome of a highly competitive game. To the best of our knowl-
edge, no work has studied interactive pattern mining that includes such
fine-grained adjustments. Another issue is how to ensure experts
can intuitively evaluate the adjusted tactics. After the algorithm ad-
justs the tactics, experts need to explore the adjusted tactics and judge
whether the adjustment is reasonable. However, because multivariate
tactics involve so many hit features of many hits, understanding an
adjustment that may involve changes among many tactics (e.g., merg-
ing several similar tactics) is extremely difficult and time-consuming.
Intuitive methods are required to help experts quickly verify the results.

To solve these issues, we propose RASIPAM, a RAcket-Sports
Interactive PAttern Mining system. To tackle the first challenge, we
propose a constraint-based pattern mining algorithm. We conduct
a pre-study to collect experts’ suggestions and delimit the space where
suggestions occur. We further define a set of natural language tem-
plates to transfer experts’ suggestions into math representations, i.e.,
constraints. The algorithm can generate candidate patterns based on
these constraints and then use a data-driven metric to select the best can-
didates for experts, combining domain knowledge with a data-driven
method. To address the second challenge, we propose an interactive
visual interface with a comparative visual design. A semantic-based
projection view and a glyph design for visualizing multivariate hit are
proposed to allow experts to evaluate the adjustment by comparing the
new tactics with the original ones, with multiple levels of detail [34].

Finally, we present two quantitative experiments evaluating the qual-
ity of the adjusted tactics and the speed of the algorithm, which demon-
strate our algorithm’s effectiveness, efficiency, and necessity. We also
evaluate the usability of our system through two case studies, performed
with two experts each from tennis and badminton, which prove that our
system can effectively incorporate expert knowledge to interactively

mine meaningful tactics for domain experts.
In summary, this work has the following contributions:

• A design study in close collaboration with experts in racket sports,
which helps to carve the domain requirements on interactive tactic
mining and summarize nine potential adjustments to tactics.

• A human steerable multivariate pattern mining algorithm that allows
fine-grained adjustment of patterns based on experts’ suggestions.

• A user interface that contains a natural language interface to help
experts quickly adjust tactics and a comparative visual design to help
experts evaluate the adjusted tactics.

• Two quantitative experiments that evaluate the effectiveness and effi-
ciency of the algorithm, and two case studies on tennis and badminton
that demonstrate our system’s usefulness.

2 RELATED WORK

2.1 Interactive Pattern Mining for Event Sequences
Methods based on Sequential Pattern Mining (SPM) find all subse-
quences whose frequency is higher than a threshold [12]. Due to the
well-known problem of pattern explosion [27], users usually need to
adjust the threshold manually and constantly to obtain a suitable num-
ber of patterns, where interactive mining algorithms are needed [1].
Many SPM-based algorithms [21, 30, 31] cached mined patterns while
incrementally mining new patterns. Wojciechowski et al. [43] extended
the adjustment to the number of values/events in each pattern. However,
SPM-based methods may generate similar and repetitive patterns that
are frequent but meaningless for tactical analysis [27].

Interactive machine learning (IML) has been much-discussed re-
cently because it incorporates user feedback into model computations,
enhancing the interpretability of the results [10]. ProtoSteer [28] pro-
posed a tailored interactive pattern mining system based on a deep
sequence model [29]. However, training an effective model for mining
racket sports tactics is difficult, because players have unique tactics and
continually change them as needed to win against particular opponents.

Over the past two decades, algorithms based on the Minimum De-
scription Length (MDL) principle have emerged [16]. Unlike SPM-
based methods, MDL-based methods find a small set of optimized
patterns instead of surfacing all the patterns that appear frequently.
In addition, unlike IML-based methods, MDL-based methods do not
rely on training data. Meanwhile, many MDL-based methods have
investigated how to incorporate domain knowledge into pattern mining.
Tatti et al. [36] allowed users to define constraints to support interactive
analysis. One-Click Mining [4] could generate new patterns based on
users’ binary feedback (like/dislike) about current patterns. However,
to the best of our knowledge, no MDL-based methods have studied
interactive mining of multivariate event sequences. Our work proposes
an MDL-based algorithm for mining multivariate patterns interactively.

2.2 Visual Analytics of Multivariate Event Sequences
A comprehensive survey by Guo et al. [17] summarizes a wealth of
research on visual analytics of event sequences, which considers mul-
tivariate event sequence visualization as a challenging and promis-
ing research direction. Some visualizations directly displayed high-
dimensional data in detail as matrices [24] and lines [19]. Pattern-
Finder [11] and EventPad [6, 7] propose novel interfaces to query
multivariate sequential patterns. Wang et al. [38, 39] applied causality
analysis to multivariate event sequence data. Many researchers have
applied visual analytics to sports data because it is a common type of
multivariate event sequence data. Wu et al. [47] used a sequence of
matrices to visualize intra-event relationships (i.e., among multiple at-
tributes) as well as inter-event ones. Tac-Miner [40] and Tac-Simur [41]
designed intuitive glyphs to encode multivariate events in table tennis,
which inspired our work to design glyphs tailored for tennis and bad-
minton. Based on the glyph design, our work mainly contributes to a
comparative visual design for comparing the adjusted tactics with the
original ones, allowing experts to evaluate their suggested adjustments.

2.3 Visual Analytics of Sports Tactics
Tactics are sets of high-level decisions made by players, which can
significantly affect the outcome of games [18], leading to experts’
needs for visual analytics [9, 35, 44]. In team sports like soccer, tactics



are mainly related to the team members’ cooperation [5], such as the
formation changes [48] and multiple players’ movement coordination
[2,49]. In racket sports, tactical analysis mainly focuses on correlations
among consecutive hits [8, 20]. Wang et al. [40] and Wu et al. [45, 46]
proposed data-driven algorithms for mining multivariate tactics. These
algorithms analyze tactics in a data-driven way by proposing novel
models to discover insights automatically for users. Our work further
incorporates experts’ knowledge into the algorithm to mine meaningful
tactics. We mainly contribute to a pre-study that collects hundreds of
experts’ potential suggestions on tactics and a human steerable tactic
mining algorithm that can fine-tune tactics based on these suggestions.

3 DESIGN STUDY

This section presents a design study for summarizing the analysis tasks
involved with interactive tactical analysis, and proposes the analysis
workflow and system architecture for performing these tasks.

3.1 Setup and Study Process
Our study follows the design study methodology of Sedlmair et al. [32].

Experts. We collaborated with five domain experts in three racket
sports — tennis (E1, E2), badminton (E3, E4), and table tennis (E1, E5)
— E1 focuses on table tennis but is also proficient in tennis. All experts
were professional athletes and are now sports science data analysts with
more than five years of experience.

Process. Over the past year, we held weekly meetings with these
five experts to discuss interactive tactical analysis in three steps.

Step 1: Given that each sport has domain-specific analysis methods,
we interviewed experts separately according to their focal sports. For
each sport, we first confirmed the need for interactive tactical analysis.
We then gathered each expert’s concerns about and suggestions for
interactive tactical analysis. Each interview lasted about one hour.

Step 2: By summarizing the experts’ feedback, we further formalized
the analysis tasks for all racket sports (T1-T5 in Sect. 3.2), which were
further discussed and improved in three meetings with all the experts.
Due to commonalities between all racket sports, most experts’ concerns
could be covered by the same task across the different sports (T1-T4).
However, experts from different sports cared about different details. For
example, E5 preferred to know the frequency of tactics at the hit-by-hit
level because rallies in table tennis are usually short, meaning every hit
matters. But E4 did not care about this because of the long rallies in
badminton. We covered all these detailed concerns with T5.

Step 3: We developed a prototype system for domain experts, along
with real use cases, to further gather their feedback on the analysis tasks
and the system design. After two months of polishing, we finalized our
analysis tasks and obtained the current version of the system.

3.2 Task Analysis
The main tasks our system needs to perform during interactive tactical
analysis are as follows, where T1-T4 are common to all racket sports.
T1 Get an overview of an individual player’s tactics. Experts prefer

player-centric tactical analysis, because each player uses unique
tactics. Rather than analyzing each tactic of a player directly,
experts expect to start with an overview to learn things such as how
many tactics result in more wins, and whether the player specializes
in a few tactics or adopts more tactics to confuse opponents.

T2 Adjust mined tactics according to experts’ suggestions. Ex-
perts expect to give knowledge-based suggestions to the algorithm
about how to better mine tactics. For example, the “seesaw battle”
tactic (i.e., both players hitting the ball with a drive technique) is
common in tennis games, and is easily detected by the algorithm.
However, experts may argue that the ball position determines the
outcome of a seesaw battle and require our algorithm to subdivide
this tactic into several subtactics based on different ball position
changes. Because of the low frequency of each subdivided tactic, a
data-driven algorithm usually fails to directly discover them.

T3 Evaluate the adjusted results. Experts’ knowledge comes from
past games, and may lose usefulness as a player’s tactics evolve
over time. Just as the experts suggest adjustments, experts expect
our system to evaluate their suggestions — providing data-driven
metrics and comparing adjusted tactics with the original ones — to

Fig. 3. Our system architecture for interactive tactical analysis.

prevent them from making inappropriate adjustments. For example,
when experts find a tactic not typical of a certain player and suggest
removing it, our system could provide data indicating that this may
be a newly developed tactic rather than anomaly, thus reminding
experts to exercise caution before discounting it.

T4 Discover similar tactics. Players often achieve different tactical
goals (e.g., confusing their opponents) by changing a few hit fea-
tures of a previous tactic, resulting in a slightly different tactic.
Finding these tactics is valuable for tactical analysis because it
helps experts study which changes are effective. Meanwhile, merg-
ing similar tactics that actually lead to similar outcomes can help
experts avoid spending their analysis time unnecessarily.

T5 Display raw sequences in detail. The raw sequences can also
include details about the context of a tactic, i.e. the previous and
subsequent hits, which indicate the impetus for and the results of
using the tactic, respectively. Experts expressed a desire to explore
the raw sequences by viewing statistics (E1, E5), observing the
detailed hit features of each hit (E1 - E5), and watching videos (E1
- E4), in order to obtain a deep understanding of the tactic.

3.3 Analysis Workflow
We propose an analysis workflow based on a human-in-the-loop ar-
chitecture (Fig. 3) to address the tasks delineated above, which are
implemented through an open-source prototype system1 consisting of
a database, a backend, and a frontend. The database stores the raw
sequences from different racket sports (Sect. 4.1). The backend runs a
mining algorithm (Sect. 5) to discover a set of tactics that satisfy the
constraints suggested by experts (Sect. 4.2). The frontend visualizes
the tactics for experts and collects their knowledge-based suggestions
in return (Sect. 6). Our workflow starts when the backend mines an
initial tactic set from the dataset, which are then visualized by the
frontend (T1, T4, T5). Next, experts explore the visualizations and
suggest our algorithm to adjust these tactics (T2). Our system provides
evaluation of the adjusted results (T3), helping experts preview the
results and determine whether to apply the adjustment. Experts can
give suggestions iteratively until they have no more suggestions.

4 DATA MODEL

In this section, we introduce the data structures of the raw sequences
and tactics. We then delimit the space of domain-specific constraints,
and describe the pre-study we performed to obtain those constraints.

4.1 Data Structure
Raw Sequences: A dataset consists of n raw sequences, denoted S =
{s1,s2, ...,sn}. Each sequence s = {e1,e2, ...,el} represents a rally with
l hits, with the player who served the ball and the player who won the
point as metadata. Each event e = {v1,v2, ...,vk} represents a hit with
k categorical values indicating multiple hit features.

Tactics: At the beginning of the process, and again after each ad-
justment, our algorithm outputs a tactic set T = {t1, t2, ..., tm} with m
tactics. Each tactic ti is defined as a multivariate subsequence shared by
many rallies, which is value-nullable and consecutive. For example,
in Fig. 5, tactic t is applied in both s1 and s2 (highlighted by blue).
Tactic t consists of four single values from sv1 to sv4 (each of which is
a non-null value) and two null values (meaning that the corresponding
values are different in s1 and s2). Meanwhile, in s1 and s2, t is always
used consecutively without any hits in between. In addition, each
tactic records the reference to the rallies and the hits where the tactic
was applied as the metadata.

1https://anonymous.4open.science/r/Rasipam-A695/. Only synthetic data
exists due to the confidentiality of real-world datasets.

https://anonymous.4open.science/r/Rasipam-A695/


Fig. 4. The constraint space with nine constraints, each of which supports one type of suggestion, demonstrated through an example given by
experts. Three global constraints satisfy experts’ limitations for the overall tactic set, while six local ones help experts fine-tune specific tactics.

Fig. 5. Sequences s1 and s2 both involve two hit features, where tactic t is
used (highlighted in blue). We further present how each local constraint
affects the tactic (highlighted in orange).

4.2 Constraints
Many previous works have studied generic constraints for mining uni-
variate patterns [36, 43]. However, for the multivariate tactics in racket
sports, we need fine-grained and domain-specific constraints to satisfy
experts’ suggestions. Thus, we conducted a pre-study with the five
experts (E1-E5) to find all the constraints needed, i.e., the constraint
space. The process of this study and its results are as follows.

4.2.1 Study Process
The study was divided into three stages.

Preparation Stage: We prepared a real tactic set for the experts to
spur the suggestions that may arise in real analysis scenarios, which con-
tains 107/102/95 tactics mined from 3,052/3,123/2,997 rallies played
between top players in tennis/badminton/table tennis respectively, by
an open-source tactic mining algorithm [46]. We also prepared an ini-
tial constraint space from the perspective of data mining, with several
example suggestions for each constraint for experts reference.

Collection Phase: The five experts were invited to give suggestions
on our prepared tactics – each tactic was reviewed by at least one expert.
We first showed them the example suggestions and encouraged them to
give suggestions beyond the examples, as long as the suggestions fit
their actual needs. Their suggestions and the tactics they expected were
recorded for further analysis.

Summarization Phase: We filtered 297 different suggestions from
the 349 ones collected and classified them into nine suggestion types
(Fig. 4). We further expanded the constraint space to cover all these
suggestions and held discussions with experts to ensure comprehensive
support of possible suggestions from experts.

4.2.2 Results
We list the final constraints and the supported suggestion types in Fig.
4 and elaborate how we apply each constraint in Sect. 5.2. Due to
space limitations, we will give a brief introduction here and present

more details in the appendix. We classify the constraints into two types
according to their effects.

Global constraints affect the whole tactic set, leading to an adjusted
tactic set that is completely different from the original one (thus, T3
is not applicable). Taking c1 in Fig. 4 as an example, experts may
only want to analyze serving tactics (the expert’s suggestion). Rather
than just filtering a few serving tactics from the original tactic set, the
system should mine a new set of serving tactics for detailed analysis
(limiting the index of the tactics’ first hit to 1). To mine only serving
tactics, our algorithm will adds a loss term idx con(ti) to an objective
function, giving a high cost to other tactics (the constraint, which is
elaborated in Sect. 5.2).

Local constraints require fine-tuning of a few tactics, without
changing other tactics. Taking c6 in Fig. 4 as an example, experts
may suggest merging two similar tactics. The system should then re-
fine the original two tactics to a super-tactic that contains all common
values in the tactics to be merged. In this case, our algorithm will add a
constraint “ti→ sup(ti,values)” to each original tactic, which means re-
placing the original tactic ti with the super-tactic sup(ti,values), where
values represent the common values in the two original tactics.

5 INTERACTIVE TACTIC MINING ALGORITHM

We propose an interactive multivariate pattern mining algorithm to meet
experts’ tactic-mining needs in three scenarios as follows (Fig. 6).
S1 Initially, the algorithm needs to mine an initial tactic set T from

the rallies dataset S, saving experts’ time needed to discover tactics
manually (indicated by purple arrows). Given the dataset S and the
current tactic set T , experts may iteratively suggest constraints to
adjust T , leading to the next two scenarios.

S2 To satisfy the global constraints, our algorithm needs to re-mine a
new tactic set Tnew from dataset S (indicated by green arrows).

S3 To satisfy experts’ local constraints, our algorithm needs to fine-
tune several specific tactics in T , while leaving other tactics un-
changed (indicated by red arrows).

To accomplish this, we extend the existing algorithm of TacticFlow [46],
which can mine an initial tactic set (for S1). The main contributions of
our algorithm lie in processing global and local constraints to enable
interactive tactic mining (for S2 and S3).

5.1 Initializing Tactic Set
The algorithm receives a raw sequence dataset S as input and tries to
mine a set of initial tactics T from S as output. The mining process is
based on the MDL principle, which regards T as a model to describe S
and regards the model that results in the minimum description length
(i.e., a metric for computing the information cost [16]) as the best option.
The algorithm consists of a generator and an optimizer. The generator
randomly combines two tactics in the tactic set at different alignments
to generate new candidates, starting from combining single values, such
as the drive technique, the backcourt ball position, and so on. Every
time the generator generates a candidate, the optimizer uses a domain-
specific metric to compute the description length L(S,T ) (Eq. 1), which
mainly considers the number of tactics |T |, the frequency of each tactic
f req(ti), and the single values sv(si) that cannot be described by the



Fig. 6. Algorithm framework for mining tactics in three scenarios. Purple arrows: the algorithm can mine an initial tactic set from raw sequences.
Green arrows: the algorithm proposes several parameters to process global constraints and re-mine the tactic set. Red arrows: the algorithm
proposes a fine-tuning generator and a fine-tuning optimizer to fine-tune specific tactics based on local constraints.

tactics in each sequence. Constants α and β control the weight of each
term to ensure that each term matters, considering that experts generally
prefer to analyze about 20 tactics (making |T | small), which are used
many times to describe hundreds of sequences (making f req(ti) large)
and leave thousands of single values (making sv(si) very large). The
optimizer further optimizes the tactic set by adding candidates that can
reduce the description length into the tactic set and removing tactics
that cannot benefit from optimizing the description length from the
tactic set. The generator and optimizer work iteratively until the tactic
set does not change in a certain iteration, whereupon the algorithm
obtains a tactic set with the appropriate minimum description length.

L(S,T ) = |T |+α ∑
ti∈T

f req(ti)+β ∑
si∈S

sv(si), (1)

5.2 Processing Constraints

Our algorithm contributes to two workflows — one each for processing
global and local constraints. Global constraints require changing the
entire tactic set, re-defining what kind of tactic set is the best (i.e.,
the one expected by experts). Following the MDL principle, which
associates the best model with the minimum description length, we
change the metric (“Metric with Parameters” in Fig. 6) to discover the
new tactic set regarded as the best. In contrast, local constraints require
the algorithm to fine-tune specific tactics, leaving others unchanged.
We propose a new generator and optimizer for fine-tuning (“Fine-tuning
Gen.” and “Fine-tuning Opt.” in Fig. 6).

5.2.1 Global Constraints

We introduce a new metric L∗(S,T ) (Eq. 2) to fit the global constraints.
The new metric adds three loss terms, giving a high cost to the tactics
that do not fit the global constraints so that the optimizer prefers to
remove them. This mainly involves three parameters as follows.
• c1: idx con(ti). For each tactic ti in T , we find the usages at in-

range indexes (e.g., 1-4 for serving tactics) and out-of-range ones
and calculate the percentage of out-of-range usages as idx con(ti).
We multiply the frequency of each tactic with idx con(ti) to give a
high cost for out-of-range usages.

• c2: len con(ti). For each tactic ti, len con(ti) represents whether the
length of ti occurs in a range expected by experts (e.g., > 3 for tactics
expected to include more than three hits) — 0 means in range, and 1
means out of range. We multiply the frequency of each tactic with
len con(ti) to give a high cost for tactics with out-of-range length.

• c3: imp(vi). We denote the importance of each hit feature value as
imp(vi), ranging from -1 to 1 and defaulting to 0. We apply c3 by
multiplying the number of single values with the importance of the
corresponding hit feature, giving a high cost to any single values that
cannot described by tactics but are regarded important by experts.

To make our metric L*(S, T) comparable with L(S, T), we directly
use the same parameters alpha and beta as TacticFlow to control the
weight of each term. Note that, initially with no global constraints,
idx con(ti) = len con(ti) = imp(vi) = 0, leading to L∗(S,T ) = L(S,T ).

L∗(S,T ) = L(S,T )+α ∑
ti∈T

f req(ti)× idx con(ti)

+α ∑
ti∈T

f req(ti)× len con(ti))+β ∑
si∈S

∑
vi

sv(vi,si)× imp(vi),
(2)

5.2.2 Local Constraints

We propose a modification-minimized generator to generate new candi-
dates that satisfy the local constraints based on a tactic t. Meanwhile,
we propose a local sensitive optimizer to fine-tune certain aspects of
the tactic set while leaving other tactics unchanged.

Generator. Based on the tactic to adjust, the generator uses a BFS
algorithm to search for all candidates that satisfy the local constraints
(Fig. 5), applying a minimum number of local modifications. Each
modification (shown as “Fine-tuning Gen.” in Fig. 6) consists of a target
value to change and an action selected from add, remove, and replace.
For example, to trim the last hit with two non-null values from a tactic
(c8 in Fig. 4), the generator will generate one candidate by applying
two modifications – removing the first value and the second value in the
last hit, respectively. As another example, to expand a tactic with one
more hit (c7 in Fig. 4), the generator will apply only one modification
– adding one value to the back of the tactic. But there usually exist
numerous values that can be added, which lead to many candidate
tactics. In this way, the generator accurately generates candidates that
meet experts’ expectations with the minimum modifications, making it
easy for experts to compare the new tactics with the original ones.

Optimizer. The fine-tuning optimizer is local sensitive, which
only replaces the tactics suggested to adjust with the generated candi-
dates that can minimize the description length, keeping other tactics
unchanged (“Fine-tuning Opt.” in Fig. 6). Formally, the optimizer
tries to find the best tactic set Tnew = T −ad jT +{c ∈ canT}, where
T is the tactic set to adjust, ad jT is the tactics experts would like to
adjust, and canT is all the candidates generated by the generator. The
optimizer performs in three steps as follows (Alg. 1).
1. Line 1: The algorithm removes all tactics that experts have sug-

gested adjusting from the original tactic set.
2. Line 2-4: The algorithm iterates all the candidates, with high-

frequency ones first. If a candidate facilitates reducing the descrip-
tion length, it will be added to the tactic set. The optimizer keeps
the same metric L∗(S,T ) used when applying global constraints so
that the description length is comparable.

3. Line 5-7: Every time the algorithm adds a candidate, it prunes the
tactic set by removing redundant candidates (i.e., those candidates



whose inclusion leads to a larger description length), leaving other
tactics not related to the constraints unchanged.

There exists a trade-off for interactive analysis — we ensure that at
least one candidate will be added to the tactic set (line 3 and line 5),
satisfying experts’ needs for adjustments, while the description length
may be larger than the original tactic set. A small increase is acceptable
for the trade-off, but a large one may indicate that experts have made
an inappropriate adjustment, which should be prevented. Thus, we
provide experts with data-driven metrics for scoring a tactic set and
evaluating the tactical importance of each tactic. We score a tactic
set by score(S,T ) = L(S, /0)−L(S,T ) to provide experts with a more
intuitive evaluation on a tactic set than L(S,T ) because score(S,T ) is
usually much smaller than L(S,T ) (hence easy to read and compare)
and is positively correlated to the quality of the tactic set (i.e., a higher
score means a better tactic set). Similarly, we evaluate the tactical
importance of a tactic by tac imp(t) = L(S,T )− L(S,T − t), where
tactics with higher tactical importance are more valuable.

6 VISUAL INTERFACE

Our proposed visual interface consists of a control bar (Fig. 1A) and
four main views (Fig. 1B-E). This section introduces the visualizations
and interactions in the order our workflow progresses. Experts can start
using the system by specifying the dataset, the player of interest, and
the opponents on the control bar. The system spends seconds filtering
the rallies played by the player against the opponents from the dataset
and running the algorithm to obtain an initial tactic set. Experts can
explore these tactics in Projection View (Fig. 1E), where we reveal the
similarity among tactics (T1, T4), and Tactic View (Fig. 1C), where
we list all tactics (T1). When they find tactics that should be adjusted,
they can give suggestions in written language in the Suggestion Panel
(Fig. 1B) and preview the results (T2). Projection View and Tactic
View will then enable a preview mode to compare the new tactics with
the original ones and present data-driven evaluations of the adjustment
(T3). During the entire workflow, experts can view the rallies involving
a tactic of interest in Rally View (Fig. 1D) for detailed exploration (T5).
The visual designs in each view are as follows.

6.1 Projection View
Projection View (Fig. 1E) projects the tactics onto a 2-D plane, helping
experts overview tactics and reveal their similarity (T1, T4).

Projection. Experts can get an overview of all tactics from the over-
all layout. To enable this broad understanding and get across the effects
of adjustments, the projection algorithm is essential. After each adjust-
ment, the system needs to re-run the projection algorithm to account for
new tactics, where the position changes reveal the correlation between
the new tactics and the original ones. Expert expect other tactics to
keep stationary to avoid visual distraction. While t-SNE is a useful
projection algorithm for visualizing data [14, 37], it is not suitable for
our system, because the results are not stable after each run.

Instead, we propose a semantic projection method based on a polar
coordinate system, which can generate a fixed position for each tactic
based on semantics (Fig. 7). For each tactic, the polar angle encodes
the top-two relevant attributes (i.e., the two attributes with the most

Algorithm 1: Fine-tuning Optimizer
Input: Sequence set S, current tactic set T ,

tactics to adjust ad jT , candidate tactics canT
Output: New tactic set Tnew

1 Tnew = T −ad jT
2 for ct← canT in order of frequency do
3 if L∗(S,Tnew + ct)< L∗(S,Tnew) or canT

⋂
Tnew 6= /0 then

4 Tnew = Tnew + ct
5 for t← canT

⋂
Tnew and t 6= ct do

6 if L∗(S,Tnew− t)≤ L∗(S,Tnew) then
7 Tnew = Tnew− t

8 return Tnew

Fig. 7. An example that illustrates our proposed semantic-based pro-
jection, which mainly considers the two most relevant attributes and the
basis tactics it resembles.

Fig. 8. The glyphs for badminton (left) and tennis (right), consisting of
multiple components encoding detailed hit features. For each null value,
we apply a multi-level opacity encoding for the frequency percentage of
the value with highest frequency.

non-null values) so that experts can analyze a specific tactic type by
exploring the corresponding direction. Meanwhile, we adopt PCA,
which can generate fixed projection results, to project each tactic to a
1-D coordinate system as the radial coordinate. However, tactics vary
in length and contain categorical values that are difficult to quantize
(e.g., the hitting technique), which cannot be used as inputs for PCA.
Thus, we characterize a tactic as a semantic vector based on several
basis tactics, constructed in three steps: 1) We required experts to
provide ten different typical tactics, such as seesaw battles and net
tactics, to be used as basis tactics baked in our system. 2) We calculate
the Levenshtein distance of the tactic at hand from each basis tactic to
represent their similarity, following TacticFlow. 3) We construct the
vector with the similarities in order and normalize it.

Encodings of each point. Experts prefer to quickly find the tactics
worthy of analyzing (i.e. with high frequency or high tactical impor-
tance) and then evaluate the effectiveness of these tactics (i.e., the win
rate). All three variables are important, but encoding them simultane-
ously can lead to severe visual clutter, especially when there exist many
points. Thus, we encode either the frequency or the importance with
the size of each point, allowing users to manually toggle in a settings
panel. The color from green to red encodes the win rate from 100% to
0%. When experts find a tactic of interest, they can turn to Tactic View
for further exploration in two ways. 1) We display the ranking numbers
of the top-ten tactics in Tactic View on the corresponding points. 2)
Hovering over a point can highlight the tactic in Tactic View.

6.2 Tactic View
Tactic View (Fig. 1C) lists all tactics (T1). Each row represents a tactic
and contains six columns as follows.

Ranking Columns (Freq., Win%, Imp.). Experts may start by rank-
ing the list to find the most valuable tactics. We use lineups [15] to
provide multiple rankings based on the frequency (Freq.), the win rate
(Win%), and the tactical importance (Imp.), visualized by the three bars.
Experts can select one of the three to satisfy different analysis needs.

Tactic Column (Tactic). After selecting a suitable ranking, experts
may scan the tactic list top-down and explore the tactics one by one.
Each hit in each tactic is encoded by a tailored glyph, which aggregates
the corresponding hit in the raw rallies where this tactic was used, with
the color encoding the player who hits the ball. The glyph is based on
a metaphorical icon, such as the shuttlecock and the tennis ball (Fig.
8), familiar and intuitive to experts [26, 40, 45, 47, 50, 51]. Each glyph
encodes a multivariate hit with multiple non-overlapping components,
each encoding a hit feature. For example, in the tennis glyph in Fig. 8,
the blue block on the tennis court encodes the position where the ball
bounces on the ground. All detailed designs are in the appendix.



The main novelty of our glyphs lies in encoding null values with
uncertainty, each of which indicates that there exists multiple possible
values every time using the tactic. For each null value, we first count
the frequency of each possible value. Then, we display the possible
value with the most frequency in our glyph, where the opacity of
the corresponding component varies on multiple levels based on the
frequency percentage. Such a design can help experts see how the
tactic most often progresses, as well as how uncertain each value is.
Furthermore, experts can expand a tactic to find the two most possible
values for each null, where the bars visualize the frequency percentage.

Operation Columns (No., Pref.). When experts are satisfied with a
tactic, they can click the favorite icon (Pref.) to fix it, avoiding future
adjustments. When experts find some tactics to adjust, they can select
the tactics (No.) and give suggestions in the Suggestion Panel.

6.3 Suggestion Panel
Experts can give new suggestions in the top input box (T2) and view
past suggestions in the list below (Fig. 1B), where we allow experts
to express their suggestions in natural language. Natural language is
one of the best methods to enable experts to interact with complex
algorithms and models [13, 25, 33, 52]. Considering that experts are
generally not familiar with math-based constraints, there is a steep
learning curve for them to learn the constraint space, let alone to express
their suggestions through constraints. Thus, we implement a template-
based NLP algorithm by NLTK in Python. The templates are built
based on the suggestions collected in the pre-study described in Sect.
4.2.1, such as “〈hit features〉 〈is/are〉 important for 〈tactics〉” (c5 in Fig.
4). After experts input a sentence in the top input box, the algorithm
will try to match the sentence with each template, thereby finding the
constraint type and extracting the parameters. To ensure the correct
mapping, we display the mapped constraint and the parsed parameters
and allow experts to modify them directly. In addition, experts can
undo the most recent adjustment and click on a suggestion in the history
list below to view the corresponding historical data.

6.4 Preview Mode
Experts can preview the results of an adjustment after giving a sugges-
tion and then determine whether to apply the adjustment (T3), through
the preview mode in Projection View (Fig. 1E1) and Tactic View (Fig.
1C1). C1 and E1 demonstrate one example of splitting one tactic (with
solid border) into two (with dashed borders). The two new tactics have
different colors, indicating different win rates. Experts may regard this
as a meaningful adjustment because the original combination of these
two tactics had hidden their differences. They may turn to Tactic View
for detailed exploration. Tactic View moves the three tactics to the
top for comparison, with icons - and + representing the original tactic
and the new tactics, respectively. To reveal their differences in detail,
experts can compare the glyphs and even click on each tactic to observe
the related rallies in Rally View.

6.5 Rally View
Rally View (Fig. 1D) provides the most detailed type of information
— the rallies related to a tactic (T5). This view consists of three sub-
views that may be useful for tactical analysis, explained below from
top to bottom: 1) The stacked bar chart visualizes the hit indexes
of the tactic, helping experts know where the tactic is and should be
used. The x-axis and y-axis represent the hit index and the frequency,
respectively. The green and red bars represent the number of wins
and losses, respectively, when the tactic starts with the corresponding
hit. 2) The two rally lists display the detailed hit features of each
rally. One list shows winning rallies and the other shows losing ones.
Each row shows one rally, and each circle represents a hit, where solid
circles encode the hits involving the tactic being explored. Experts can
further explore the detailed hit features of each hit by clicking the rally.
3) Experts prefer to watch the video fragment of each rally to find
details not recorded in the data, such as players’ facial expressions.

7 EVALUATION

We evaluate our algorithm’s performance and our system’s usefulness
through two quantitative experiments and two case studies, respectively.

Table 1. The results of the quantitative experiments. We generated 6
synthetic datasets (D1 to D6), varying in the number of sequences (S),
the length of each sequence (|si|), the number of features in one hit (k),
the number of tactics (|T |), and the number of options for each hit feature
(|V |). For each dataset, we present the average runtime of the initial
mining (ti) and applying global (avg. tg) and local constraints (avg. tl ).

Datasets Results

id |S| |si| k |T | |V | ti(s) avg. tg(s) avg. tl (s)

D1 500 10 3 25 10 51.4 50.6 0.02
D2 700 10 3 25 10 97.3 97.1 0.03
D3 500 20 3 25 10 73.0 73.4 0.05
D4 500 10 5 25 10 80.2 80.1 0.03
D5 500 10 3 50 10 74.5 73.3 0.01
D6 500 10 3 25 20 28.7 28.9 0.02

7.1 Algorithm Evaluation
7.1.1 Tactic Quality
We first evaluate the quality of the adjusted tactics. We invited four
experts (E1-E4) to conduct this experiment, testing whether our system
could discover the expected tactics pre-set by experts.

Setup. We first required the experts to provide 100 tactics as bench-
marks. Each expert was required to select five matches they were
familiar with and manually list five tactics for each match based on
their knowledge about the specific players. After experts repeatedly
watched the game video and ensured the correctness of the listed tactics,
we regarded these tactics as the benchmark tactics.

Process. We asked the experts to use our system to mine tactics,
from the matches selected by other experts studying the same sport (e.g.,
both E1 and E2 studies in tennis, therefore E1 needed to mine tactics
from the matches selected by E2), ensuring that the expert did not know
the benchmark tactics in advance. After experts finished mining, we
recorded the number of benchmark tactics discovered by our system and
the number of constraints needed to adjust certain initially mined tactics
to each benchmark tactic (note: if there existed a mined tactic that had
at most one value different from a benchmark tactic, we regarded this
benchmark tactic to be discovered by our system).

Results. The results were analyzed from three angles as follows.
• Effectiveness: Following experts’ suggestions, our system discovered

94 tactics from a total of 100 benchmark tactics, which proved the
effectiveness of our algorithm. The other 6 tactics were all used in
the tiebreaker (i.e., the last game to decide who was the winner of
the match), crucial (hence found by experts as the benchmark tactics)
but not frequent (hence not captured by our system).

• Efficiency: For each captured benchmark tactic, experts applied 0.38
global constraints and 3.11 local ones on average, which proved that
our system can quickly meet experts’ expectations.

• Necessity: Only 3 out of benchmark tactics were directly mined by
the initial generation process without any constraints, which proved
the necessity of interactive pattern mining.

7.1.2 Runtime
Given that experts need to continually adjust tactics, we further evalu-
ated our algorithm’s runtime, to ensure that experts can interact with
the system smoothly. We ran our algorithm on multi-scaled synthetic
datasets and recorded the runtimes required to mine the initial tactic
set, process global constraints, and process local ones (Table 1).

Setup. We generated six synthetic datasets varying over five pa-
rameters, and generated random sequences and random tactics (each
with three hits and seven non-null values) for each dataset. Each tactic
was embeded into 10% of the sequences, therefore we can regard the
generated tactic set as an appropriate best model for the generated
dataset. For each tactic set, we generated 4 global constraints (one for
each type, preventing conflicts like expecting long tactics and expecting
short ones) and 30 local ones (five for each type).

Process. We applied the constraints for each dataset in random order,
as experts would do in an actual analysis scenario. The time necessary
to process each constraint is recorded for analysis.

Results. The runtime shows that our algorithm can support smooth
interactions. For each dataset, the runtime required to process global



Fig. 9. Screenshots of the tennis case, where experts split a seesaw-battle tactic (A1-D1) and merged two serving tactics (A2-C2). We present the
screenshots of Suggestion Panel (A1, A2), Projection View (B1, B2), Tactic View (C1, C2), and the stacked bar chart in Rally View (D1).

constraints was similar to the time needed for initial mining (about
one minute), which is acceptable for experts. The runtime required to
process local constraints was almost negligible because our generator
can accurately generate only a few candidates expected by experts.

7.2 Case Studies
We invited four out of the five experts to conduct two case studies each
in tennis (E1, E2) and badminton (E3, E4).

7.2.1 Tennis

The initial tactic set contained 23 tactics from 604 rallies played by
Djokovic against Thiem (334), Nadal (143), and Pouille (127) since
2019. The tactics involved three hit features (encoded by the glyph
on the right of Fig. 8) — the ball position (i.e., the position where the
ball bounced on the court, encoded by the court at center), the hitting
technique (which is displayed by the abbreviation text), and the hitting
pose (i.e., four types of hitting pose encoded by the donut below). The
analysis process occurred as follows.

Splitting a seesaw-battle tactic based on the ball position. Ex-
perts were first attracted by the text “Drive” in the top tactic in Tactic
View (t1 in Fig. 9C1), which represents the hit technique drive —
“Texts are easier to understand than visualizations.” Tactic t1 involved
both players consecutively driving the ball, indicating a seesaw-battle
tactic. Based on their knowledge, experts thought that the ball position
decided the outcome of a seesaw battle. However, they found a low
opacity of the courts in the glyphs, indicating high uncertainty around
ball positions. Experts further expanded the tactic and found that the
ball position with the highest frequency was used in only 17.6% of
rallies. E1 said that, “the tactic is so abstract that I could not obtain
insights from it.” Thus, they selected the tactic and suggested “splitting
the tactic based on the ball positions” in Suggestion Panel (Fig. 9A1).

Analyzing the split tactics. Then, experts previewed the results and
compared the two new tactics (t2 and t3) with the original ones. They
noticed that, in Projection View (Fig. 9B1), the new points were closer
to the sector of ball position, indicating that new tactics contained more
non-null values of ball position. E2 praised the design, saying “the
projection helps me track the changes.” Experts found that, although t2
and t3 were similar, they had different win rates — hitting the ball to
the baseline (t2) tended to bring more wins for Djokovic than hitting it
to the service line (t3). To uncover the reason, experts further explored
t2 and t3 in Rally View (Fig. 9D1). The bar chart showed that Djokovic
preferred to use t2 after the fifth hit, but to use t3 at the third hit, which
is the first attack after service. Experts thought that the opponents
might return the ball weakly at the second hit, making it difficult for
Djokovic to return powerfully at the third hit, “like a ball falling on the
ground, the faster it hits the ground, the faster it bounces.” However,
his opponents can return powerfully at the fourth hit in an attempt to

gain the advantage. By viewing the rallies and watching the videos,
experts confirmed their thoughts and then applied the adjustment.

Analyzing serving tactics. After splitting the seesaw-battle tactic,
a serving tactic became the top tactic in Tactic View. Because Djokovic
excels at serving tactics, experts suggested “analyzing serving tactics”
in Suggestion Panel (Fig. 9A2). However, experts were not satisfied
with the new tactic set because almost all serving tactics contained
only two hits. Experts further suggested “analyzing longer tactics”
and obtained some three-hit serving tactics. E2 re-ranked the tactics in
Tactic View (Fig. 9C2) based on the tactical importance and commented
that, “the tactical importance is more valuable than the frequency as
frequent tactics are usually short and lack analytical value.”

Merging two similar serving tactics. When analyzing the most
important tactics recommended by our system (t4), experts found that
the point representing this tactic in the Projection View was overlapped
with a point representing another tactic (t5), indicating the two tactics
were similar (Fig. 9B2). Experts expected to merge them to form
one tactic. However, the point representing t4 was nearly gray, while
the point for t5 was green, indicating different outcomes and leaving
experts hesitant. Given that they would be able to undo the adjustment,
experts decided to try. E1 commented that, “trial-and-error tactical
analysis is essential.” Experts found that our system outputted a new
tactic set with a score similar to the original one, which supported the
adjustment and made experts confident (Fig. 9A2). In Tactic View,
experts noticed that the new tactic (t6) had a similar win rate to t4, with
little impact from t5. Experts guessed that t5 had a low frequency, which
may lead to a misleading win rate — “Djokovic might win these rallies
by chance”. Experts applied this merging adjustment and obtained a
more accurate estimate of the win rate for this serving tactic.

The two experts mainly gave positive comments on the interactive
analysis workflow in the following interview. But E2 mentioned a
limitation in fine-tuning tactics – “The system accurately mined the
tactics I wanted, but a significant adjustment might require numerous
commands. It can be helpful to control the extent of an adjustment.”

7.2.2 Badminton
The dataset contained 377 rallies played by Momota Kento against
Viktor Axelsen (147), Anders Antonson (104), Srikanth Kidambi (63),
and Yuqi Shi (63) since 2019. Experts mainly considered three hit
features (encoded by the glyph on the left of Fig. 8) — the 2-D ball
position (i.e., the position where the player hit the shuttle, encoded
by the top-left court), the ball height (i.e., a four-level quantization of
the maximum ball height encoded by the right bars), and the hitting
technique (which is displayed by the bottom-left abbreviation text).
The algorithm mined 13 initial tactics from these rallies for experts to
analyze. The exploration process was as follows.

Finding a tactic inconsistent with experts’ knowledge. Tactical
analysis in badminton usually focuses on both the 2-D ball position



Fig. 10. Case in badminton. Experts gave suggestions for adjusting
tactics (A). When experts suggested expanding the tactic, the system
enabled the preview mode of Projection View (B) and Tactic View (C).

and the ball height. Hitting techniques are also named based on the ball
position (e.g., lift is a technique hitting the ball from a low position at
the player’s backcourt to a high position at the opponents’ backcourt).
Thus, experts first suggested paying more attention to the ball position
and the ball height, leading to two constraints on the importance of
these two attributes (Fig. 10A). Then, experts started from Projection
View to explore the tactics in the sector of the ball height, i.e., the tactics
most relevant to the ball height (Fig. 10B). E4 praised the semantic-
based projection, “different directions corresponding to different tactics
is intuitive to me, helping me start analyzing.” Experts were quickly
attracted by a point (with a black border in Fig. 10), which was large
(high importance) and green (high win rate). Turning to Tactic View,
experts further explored the tactic with two hits (t1 in Fig. 10C) —
Kento first lifted the shuttlecock, and his opponents then dropped the
shuttlecock (i.e., an offensive technique that involves hitting the ball
from a high position to a low position in the opponents’ court). Experts
were confused by the tactic because “Kento gave his opponents a
chance to attack but finally won many points.”

Exploring the tactic to find the reason. Because Kento did not
mainly rely on lift technique to score points, experts thought that the
tactic must have further follow-up development and suggested “expand-
ing the tactic with follow-up hits” (Fig. 10A). Our system presented
two new tactics with three hits (t2 and t3 in Fig. 10C). In the third hit
of two of the tactics, Kento hit the shuttlecock at a low height and to
the opponents’ backcourt (to the left in t2 and the right in t3). However,
the text “Shot” in the two tactics (i.e., a technique that involves hitting
the ball a little higher than the net) attracted experts, as it indicated
Kento’s counterattack. Experts continued to watch the video and found
that Kento was familiar with the tactic, indicating that he might train
for it. He used a lift for the first hit to lure his opponents to drop the
shuttlecock. Then, relying on the quick reaction developed through
training, he can counterattack with the shot technique, often throwing
off his opponents and earning him points. Experts said that “the system
helped us find Kento’s secrets behind the tactic.”

The two experts gave positive comments on our system in the fol-
lowing interview. E3 said that, “it is like I am communicating with
the computer and teaching it to find tactics.” E4 suggested supporting
tactic searching – “We need to search for some crucial tactics that are
not mined by the system due to the low frequency.”

8 DISCUSSION

Scalability. We discuss the scalability of the system’s two main views
— Projection View and Tactic View. First, the projection view cannot

precisely encode multiple related hit features of a hit. Although we can
scale the projection view to more hit features by simply splitting the
polar coordinates into more sections, users can hardly judge which hit
feature is the second most important. But the projection view can accu-
rately encode the most important parameters, which can help experts
explore a certain type of tactics, crucial and sufficient for experts.

Second, when many hit features exist in one hit, we cannot always
draw all of the components in a single glyph in the Tactic View. In
the future, experts may expect to analyze other hit features that are not
presented in the current dataset, such as the speed of the ball. Drawing
many hit features in one glyph can lead to high visual clutter. A possible
solution is to encode the hit features that experts most care about in the
glyph and display others in tooltips.

Generalizability. Recently, we have witnessed that many domains
like sports and EHR recorded and analyzed multivariate event se-
quences rather than only analyzing the event type and the timestamps.
Our work can inspire researchers in other domains to study interactive
pattern mining and obtain better mining results. Meanwhile, our work-
flow with close collaboration with domain experts can be instructive.

Design Implications. We summarize several findings made during
our study, which may be relevant to interactive visual analytics in other
domains. 1) Comparative analysis is crucial for interactive tactical
analysis, during the process of which data-driven metrics play an essen-
tial role to provide hard evidence about new results, helping users to
better trust the system. 2) Semantics could help domain experts with
little visualization experience explore a projection view. If the position
of the points presents semantic information, this could help experts
recognize and identify each point from their domain perspective. 3)
The uncertainty arising from the interactive analysis process is an issue,
especially when users interact with the system through natural language.
When users do not understand how the system works, they may make
intractable suggestions, preventing the system from producing results
that meet users’ expectations. We tried to address this issue by exposing
how user suggestions are translated to constraints step by step. Further
research is required to better address the problem.

Limitations and future work. Although we summarized nine con-
straints and hundreds of natural language templates through the pre-
study to support interactive tactic mining, we still found them limited
the diversity of tactics in practice. For example, players prefer to hide
some tactics as weapons used in tiebreakers, which are crucial (hence
requiring analysis) but infrequent (hence tricky for algorithms to dis-
cover). Without similar tactics to modify, experts can hardly obtain
these tactics in the tactic set for further analysis. Natural language can
be hardly used to precisely define a complex tactic with multiple de-
tailed hit features due to the limited natural language templates and the
ambiguity of natural language. Compared with NL-based interactions,
Eventpad [6] proposed efficient and intuitive interaction widgets to
help users construct multivariate patterns for further queries based on
regular expressions. Our future work includes mining these crucial but
infrequent tactics and integrating a pattern searching function.

9 CONCLUSION

This work introduces a visual analytics system for interactive tactical
analysis in racket sports, which allows experts to incorporate their
knowledge into data mining algorithms to discover meaningful tactics.
We propose a constraint-based pattern mining algorithm that discov-
ers an initial set of tactics and then supports adjustments to them by
translating experts’ written suggestions into further constraints. We
also propose a user interface through which experts can interact with
the algorithm — exploring tactics through metaphoric glyphs, giving
suggestions, and verifying results through comparative visualizations.
A quantitative experiment on synthetic datasets shows that our system
supports smooth interaction between experts and the algorithm. Two
real-world case studies demonstrate that our system can help experts
use their knowledge to find meaningful tactics.

ACKNOWLEDGMENTS

The work was supported by NSFC (62072400) and the Collaborative
Innovation Center of Artificial Intelligence by MOE and Zhejiang
Provincial Government (ZJU).



REFERENCES

[1] C. C. Aggarwal and P. S. Yu. Online generation of association rules. In
Proceedings of the International Conference on Data Engineering, pp.
402–411. IEEE, 1998. https://doi.org/10.1109/ICDE.1998.655803.

[2] G. Andrienko, N. Andrienko, G. Anzer, P. Bauer, G. Budziak, G. Fuchs,
D. Hecker, H. Weber, and S. Wrobel. Constructing spaces and times
for tactical analysis in football. IEEE Transactions on Visualization and
Computer Graphics, 2019. https://doi.org/10.1109/TVCG.2019.2952129.

[3] N. Andrienko, G. Andrienko, S. Miksch, H. Schumann, and S. Wrobel. A
theoretical model for pattern discovery in visual analytics. Visual Infor-
matics, 5(1):23–42, 2021. https://doi.org/10.1016/j.visinf.2020.12.002.

[4] M. Boley, M. Mampaey, B. Kang, P. Tokmakov, and S. Wrobel. One
click mining: Interactive local pattern discovery through implicit pref-
erence and performance learning. In Proceedings of the ACM SIGKDD
workshop on interactive data exploration and analytics, pp. 27–35, 2013.
https://doi.org/10.1145/2501511.2501517.

[5] A. Cao, X. Xie, J. Lan, H. Lu, X. Hou, J. Wang, H. Zhang,
D. Liu, and Y. Wu. MIG-Viewer: Visual analytics of soc-
cer player migration. Visual Informatics, 5(3):102–113, 2021.
https://doi.org/10.1016/j.visinf.2021.09.002.

[6] B. C. Cappers, P. N. Meessen, S. Etalle, and J. J. Van Wijk. Eventpad:
Rapid malware analysis and reverse engineering using visual analytics. In
Proceedings of the IEEE Symposium on Visualization for Cyber Security,
pp. 1–8, 2018. https://doi.org/10.1109/VIZSEC.2018.8709230.

[7] B. C. M. Cappers and J. J. van Wijk. Exploring multivariate event
sequences using rules, aggregations, and selections. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):532–541, 2017.
https://doi.org/10.1109/TVCG.2017.2745278.

[8] X. Chu, X. Xie, S. Ye, H. Lu, H. Xiao, Z. Yuan, Z. Chen,
H. Zhang, and Y. Wu. TIVEE: Visual exploration and explanation
of badminton tactics in immersive visualizations. IEEE Transac-
tions on Visualization and Computer Graphics, p. To appear, 2022.
https://doi.org/10.1109/TVCG.2021.3114861.

[9] M. Du and X. Yuan. A survey of competitive sports data visualiza-
tion and visual analysis. Journal of Visualization, 24(1):47–67, 2021.
https://doi.org/10.1007/s12650-020-00687-2.

[10] J. J. Dudley and P. O. Kristensson. A review of user interface design for
interactive machine learning. ACM Transactions on Interactive Intelligent
Systems (TiiS), 8(2):1–37, 2018. https://doi.org/10.1145/3185517.

[11] J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A vi-
sual interface for multivariate temporal data: Finding patterns of
events across multiple histories. In Proceedings of the IEEE Sympo-
sium On Visual Analytics Science And Technology, pp. 167–174, 2006.
https://doi.org/10.1109/VAST.2006.261421.

[12] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas.
A survey of sequential pattern mining. Data Science and Pattern Recog-
nition, 1(1):54–77, 2017. http://www.philippe-fournier-viger.com/dspr-
paper5.pdf.

[13] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios.
Datatone: Managing ambiguity in natural language interfaces for
data visualization. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology, pp. 489–500, 2015.
https://doi.org/10.1145/2807442.2807478.

[14] R. Gove, L. Cadalzo, N. Leiby, J. M. Singer, and A. Zaitzeff. New
guidance for using t-SNE: Alternative defaults, hyperparameter selec-
tion automation, and comparative evaluation. Visual Informatics, 2022.
https://doi.org/10.1016/j.visinf.2022.04.003.

[15] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. Lineup:
Visual analysis of multi-attribute rankings. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2277–2286, 2013.
https://doi.org/10.1109/TVCG.2013.173.

[16] P. D. Grünwald and A. Grunwald. The minimum description length
principle. MIT press, 2007. https://mitpress.mit.edu/books/minimum-
description-length-principle.

[17] Y. Guo, S. Guo, Z. Jin, S. Kaul, D. Gotz, and N. Cao. A survey on visual
analysis of event sequence data. IEEE Transactions on Visualization and
Computer Graphics, 2021. https://doi.org/10.1109/TVCG.2021.3100413.

[18] A. Hibbs and P. O’Donoghue. Strategy and tactics in
sports performance. In Routledge handbook of sports
performance analysis, pp. 266–276. Routledge, 2013.
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203806913-
32/strategy-tactics-sports-performance-angela-hibbs-peter-donoghue.

[19] W. Kim, C. Shim, and Y. D. Chung. SkyFlow: A visual analysis of high-
dimensional skylines in time-series. Journal of Visualization, 24(5):1033–
1050, 2021. https://doi.org/10.1007/s12650-021-00758-y.

[20] J. Lan, J. Wang, X. Shu, Z. Zhou, H. Zhang, and Y. Wu. RallyCompara-
tor: Visual comparison of the multivariate and spatial stroke sequence
in a tabletennis rally. Journal of Visualization, 25(1):143–158, 2022.
https://doi.org/10.1007/s12650-021-00772-0.

[21] M.-Y. Lin and S.-Y. Lee. Improving the efficiency of interactive sequential
pattern mining by incremental pattern discovery. In Proceedings of the
36th Annual Hawaii International Conference on System Sciences, pp.
8–pp. IEEE, 2003. https://doi.org/10.1109/HICSS.2003.1173921.

[22] D. Liu, S. Alnegheimish, A. Zytek, and K. Veeramachaneni. MTV:
Visual analytics for detecting, investigating, and annotating anomalies
in multivariate time series. arXiv preprint arXiv:2112.05734, 2021.
https://doi.org/10.48550/arXiv.2112.05734.

[23] D. Liu, P. Xu, and L. Ren. TPFlow: Progressive partition and multidi-
mensional pattern extraction for large-scale spatio-temporal data analysis.
IEEE Transactions on Visualization and Computer Graphics, 25(1):1–11,
2019. https://doi.org/10.1109/TVCG.2018.2865018.

[24] M. H. Loorak, C. Perin, N. Kamal, M. Hill, and S. Carpendale. Timespan:
Using visualization to explore temporal multi-dimensional data of stroke
patients. IEEE Transactions on Visualization and Computer Graphics,
22(1):409–418, 2015. https://doi.org/10.1109/TVCG.2015.2467325.

[25] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural lan-
guage to visualization by neural machine translation. IEEE Transac-
tions on Visualization and Computer Graphics, 28(1):217–226, 2021.
https://doi.org/10.1109/TVCG.2021.3114848.

[26] E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen.
Taxonomy-based glyph design—with a case study on visualiz-
ing workflows of biological experiments. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2603–2612, 2012.
https://doi.org/10.1109/TVCG.2012.271.

[27] V. Menger. An experimental analysis of the pattern explosion. Master’s
thesis, 2015. https://studenttheses.uu.nl/bitstream/handle/20.500.12932/19
396/Experimental%20Analysis%20of%20the%20Pattern%20Explosion.p
df?sequence=2.

[28] Y. Ming, P. Xu, F. Cheng, H. Qu, and L. Ren. ProtoSteer:
Steering deep sequence model with prototypes. IEEE transac-
tions on visualization and computer graphics, 26(1):238–248, 2019.
https://doi.org/10.1109/TVCG.2019.2934267.

[29] Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and steerable sequence
learning via prototypes. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 903–913,
2019. https://doi.org/10.1145/3292500.3330908.

[30] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental
and interactive sequence mining. In Proceedings of the 8th International
Conference on Information and Knowledge Management, pp. 251–258,
1999. https://doi.org/10.1145/319950.320010.

[31] J.-D. Ren and J.-S. Zong. A fast interactive sequential pattern mining
algorithm based on memory indexing. In Proceedings of the International
Conference on Machine Learning and Cybernetics, pp. 1082–1087. IEEE,
2006. https://doi.org/10.1109/ICMLC.2006.258564.

[32] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodol-
ogy: Reflections from the trenches and the stacks. IEEE Transac-
tions on Visualization and Computer Graphics, 18(12):2431–2440, 2012.
https://doi.org/10.1109/TVCG.2012.213.

[33] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang.
Towards natural language interfaces for data visualization: A survey. IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2022.
https://doi.org/10.1109/TVCG.2022.3148007.

[34] B. Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the IEEE symposium on visual
languages, pp. 336–343, 1996. https://doi.org/10.1016/B978-155860915-
0/50046-9.

[35] C. Stoiber, D. Ceneda, M. Wagner, V. Schetinger, T. Gschwandtner,
M. Streit, S. Miksch, and W. Aigner. Perspectives of visualization
onboarding and guidance in va. Visual Informatics, 6(1):68–83, 2022.
https://doi.org/10.1016/j.visinf.2022.02.005.

[36] N. Tatti and M. Mampaey. Using background knowledge to rank item-
sets. Data Mining and Knowledge Discovery, 21(2):293–309, 2010.
https://doi.org/10.1007/s10618-010-0188-4.

[37] L. Van der Maaten and G. Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9(11), 2008.

https://doi.org/10.1109/ICDE.1998.655803
https://doi.org/10.1109/TVCG.2019.2952129
https://doi.org/10.1016/j.visinf.2020.12.002
https://doi.org/10.1145/2501511.2501517
https://doi.org/10.1016/j.visinf.2021.09.002
https://doi.org/10.1109/VIZSEC.2018.8709230
https://doi.org/10.1109/TVCG.2017.2745278
https://doi.org/10.1109/TVCG.2021.3114861
https://doi.org/10.1007/s12650-020-00687-2
https://doi.org/10.1145/3185517
https://doi.org/10.1109/VAST.2006.261421
http://www.philippe-fournier-viger.com/dspr-paper5.pdf
http://www.philippe-fournier-viger.com/dspr-paper5.pdf
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1016/j.visinf.2022.04.003
https://doi.org/10.1109/TVCG.2013.173
https://mitpress.mit.edu/books/minimum-description-length-principle
https://mitpress.mit.edu/books/minimum-description-length-principle
https://doi.org/10.1109/TVCG.2021.3100413
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203806913-32/strategy-tactics-sports-performance-angela-hibbs-peter-donoghue
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203806913-32/strategy-tactics-sports-performance-angela-hibbs-peter-donoghue
https://doi.org/10.1007/s12650-021-00758-y
https://doi.org/10.1007/s12650-021-00772-0
https://doi.org/10.1109/HICSS.2003.1173921
https://doi.org/10.48550/arXiv.2112.05734
https://doi.org/10.1109/TVCG.2018.2865018
https://doi.org/10.1109/TVCG.2015.2467325
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2012.271
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/19396/Experimental%20Analysis%20of%20the%20Pattern%20Explosion.pdf?sequence=2
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/19396/Experimental%20Analysis%20of%20the%20Pattern%20Explosion.pdf?sequence=2
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/19396/Experimental%20Analysis%20of%20the%20Pattern%20Explosion.pdf?sequence=2
https://doi.org/10.1109/TVCG.2019.2934267
https://doi.org/10.1145/3292500.3330908
https://doi.org/10.1145/319950.320010
https://doi.org/10.1109/ICMLC.2006.258564
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1016/B978-155860915-0/50046-9
https://doi.org/10.1016/B978-155860915-0/50046-9
https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/10.1007/s10618-010-0188-4


https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a
.pdf?fbclid=IwA.

[38] J. Wang and K. Mueller. The visual causality analyst: An
interactive interface for causal reasoning. IEEE Transactions
on Visualization and Computer Graphics, 22(1):230–239, 2015.
https://doi.org/10.1109/TVCG.2015.2467931.

[39] J. Wang and K. Mueller. Visual causality analysis made prac-
tical. In Proceedings of the IEEE Conference on Visual Ana-
lytics Science and Technology (VAST), pp. 151–161. IEEE, 2017.
https://doi.org/10.1109/VAST.2017.8585647.

[40] J. Wang, J. Wu, A. Cao, Z. Zhou, H. Zhang, and Y. Wu. Tac-Miner:
Visual tactic mining for multiple table tennis matches. IEEE Transac-
tions on Visualization and Computer Graphics, 27(6):2770–2782, 2021.
https://doi.org/10.1109/TVCG.2021.3074576.

[41] J. Wang, K. Zhao, D. Deng, A. Cao, X. Xie, Z. Zhou, H. Zhang, and Y. Wu.
Tac-Simur: Tactic-based simulative visual analytics of table tennis. IEEE
Transactions on Visualization and Computer Graphics, 26(1):407–417,
2019. https://doi.org/10.1109/TVCG.2019.2934630.

[42] M. Wang, J. Wenskovitch, L. House, N. Polys, and C. North.
Bridging cognitive gaps between user and model in interac-
tive dimension reduction. Visual Informatics, 5(2):13–25, 2021.
https://doi.org/10.1016/j.visinf.2021.03.002.

[43] M. Wojciechowski. Interactive constraint-based sequential pattern min-
ing. In Proceedings of the East European Conference on Advances
in Databases and Information Systems, pp. 169–181. Springer, 2001.
https://doi.org/10.1007/3-540-44803-9 14.

[44] A. Wu, D. Deng, F. Cheng, Y. Wu, S. Liu, and H. Qu. In defence of visual
analytics systems: Replies to critics. IEEE Transactions on Visualization
and Computer Graphics, To Appear.

[45] J. Wu, Z. Guo, Z. Wang, Q. Xu, and Y. Wu. Visual analytics of multivariate
event sequence data in racquet sports. In Proceedings of the IEEE Con-
ference on Visual Analytics Science and Technology (VAST), pp. 36–47.
IEEE, 2020. https://doi.org/10.1109/VAST50239.2020.00009.

[46] J. Wu, D. Liu, Z. Guo, Q. Xu, and Y. Wu. TacticFlow: Visual
analytics of ever-changing tactics in racket sports. IEEE Transac-
tions on Visualization and Computer Graphics, 28(1):835–845, 2021.
https://doi.org/10.1109/TVCG.2021.3114832.

[47] Y. Wu, J. Lan, X. Shu, C. Ji, K. Zhao, J. Wang, and H. Zhang.
iTTVis: Interactive visualization of table tennis data. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):709–718, 2017.
https://doi.org/10.1109/TVCG.2017.2744218.

[48] Y. Wu, X. Xie, J. Wang, D. Deng, H. Liang, H. Zhang, S. Cheng, and
W. Chen. Forvizor: Visualizing spatio-temporal team formations in soccer.
IEEE Transactions on Visualization and Computer Graphics, 25(1):65–75,
2018. https://doi.org/10.1109/TVCG.2018.2865041.

[49] X. Xie, J. Wang, H. Liang, D. Deng, S. Cheng, H. Zhang, W. Chen, and
Y. Wu. PassVizor: Toward better understanding of the dynamics of soccer
passes. IEEE Transactions on Visualization and Computer Graphics,
27(2):1322–1331, 2021. https://doi.org/10.1109/TVCG.2020.3030359.

[50] L. Ying, T. Tangl, Y. Luo, L. Shen, X. Xie, L. Yu, and Y. Wu. GlyphCreator:
Towards example-based automatic generation of circular glyphs. IEEE
Transactions on Visualization and Computer Graphics, 28(1):400–410,
2021. https://doi.org/10.1109/TVCG.2021.3114877.

[51] L. Ying, Y. Yang, X. Shu, D. Deng, T. Tang, L. Yu, and Y. Wu. MetaGlyph:
Automatic Generation of Metaphoric Glyph-based Visualization. IEEE
Transactions on Visualization and Computer Graphics, To Appear.

[52] B. Yu and C. T. Silva. FlowSense: A natural language interface
for visual data exploration within a dataflow system. IEEE Trans-
actions on Visualization and Computer Graphics, 26(1):1–11, 2019.
https://doi.org/10.1109/TVCG.2019.2934668.

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA
https://doi.org/10.1109/TVCG.2015.2467931
https://doi.org/10.1109/VAST.2017.8585647
https://doi.org/10.1109/TVCG.2021.3074576
https://doi.org/10.1109/TVCG.2019.2934630
https://doi.org/10.1016/j.visinf.2021.03.002
https://doi.org/10.1007/3-540-44803-9_14
https://doi.org/10.1109/VAST50239.2020.00009
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2017.2744218
https://doi.org/10.1109/TVCG.2018.2865041
http://dx.doi.org/10.1109/TVCG.2020.3030359
https://doi.org/10.1109/TVCG.2021.3114877
https://doi.org/10.1109/TVCG.2019.2934668

	1 Introduction
	2 Related Work
	2.1 Interactive Pattern Mining for Event Sequences
	2.2 Visual Analytics of Multivariate Event Sequences
	2.3 Visual Analytics of Sports Tactics

	3 Design Study
	3.1 Setup and Study Process
	3.2 Task Analysis
	3.3 Analysis Workflow

	4 Data Model
	4.1 Data Structure
	4.2 Constraints
	4.2.1 Study Process
	4.2.2 Results


	5 Interactive Tactic Mining Algorithm
	5.1 Initializing Tactic Set
	5.2 Processing Constraints
	5.2.1 Global Constraints
	5.2.2 Local Constraints


	6 Visual Interface
	6.1 Projection View
	6.2 Tactic View
	6.3 Suggestion Panel
	6.4 Preview Mode
	6.5 Rally View

	7 Evaluation
	7.1 Algorithm Evaluation
	7.1.1 Tactic Quality
	7.1.2 Runtime

	7.2 Case Studies
	7.2.1 Tennis
	7.2.2 Badminton


	8 Discussion
	9 Conclusion

