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RankAxis: Towards a Systematic Combination of Projection and
Ranking in Multi-Attribute Data Exploration
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Fig. 1. (A) The data loader facilitates data selection; (B) The interactive projection view shows the projection distribution and guides
analysts to explore the projection layout and directional semantics; (C1 – C5) The ranking tabular view summarizes the attribute
contributions to the ranking and supports the deduction of the attribute weights based on user interaction, as well as compares
different ranking schemes; (D) The comparative projection view analyzes the distribution of observations generated by different ranking
schemes; (E) The ranking projection axis view compares the results of projection and ranking in the same context.

Abstract—Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques
help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown
good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts,
obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few
studies have attempted to combine projection and ranking into the same exploration space to complement each other’s strengths and
weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to
facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study,
expert feedback, and a user study demonstrate the efficacy of RankAxis.

Index Terms—Ranking, projection, multi-attribute data exploration
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Data analysts can choose from a variety of data exploration methods,
each with its advantages and disadvantages in terms of visual interac-
tion and performance [15, 31]. For multi-attribute datasets presenting
“computational, design, and interaction tractability challenges” [7],
two common analysis methods are used, namely dimensionality reduc-
tion (i.e., projection) and multi-attribute ranking analysis [9, 24, 52].
The former is a visual abstraction for compressing a high-dimensional
dataset into a low-dimensional space while maximizing the retention
of attributes of the original structure and preserving pairwise relation-
ships from the high-dimensional space in a low-dimensional projection.
The latter reorganizes unordered datasets with multiple dimensions by
computing ranking scores based on a single or multiple attribute(s),
and is widely used in multi-criteria decision making (MCDM) [23, 42],
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allowing users to prioritize tasks or evaluate the relative performance.
Although projection and ranking are commonly used to elucidate

large-scale, multivariate data, they have their inherent limitations in
certain applications. For example, world-renowned rating agencies,
such as Moody’s, Standard & Poor’s and Fitch Rating, assess the fi-
nancial and operational strength and risk resistance of countries, banks,
securities firms, funds, bonds and public companies for the rating of
financial institutions. Taking bank credit rating as an example. Each
bank has several business-related metrics, such as asset size and delin-
quency rate, which can be viewed as a multi-attribute data item with
numerical values. To solve the bank credit rating problem, dimension
reduction and ranking can be applied. Specifically, in the projection,
bank data items with multiple indicators are projected as observations
in a low-dimensional space, which are then grouped by some unsuper-
vised clustering algorithms. Some key metrics are selected to determine
the order of clusters. In the ranking analysis, usually a set of bank at-
tributes are selected and some MCDM schemes are used to rank all
banks accordingly, and the generated ranked list is then divided into
several segments, representing different bank ratings.

However, letter-rated credits cannot be easily obtained through di-
mension reduction or ranking analysis alone before resolving the core
issue in the showcased bank rating problem: “ranking order occurs
between institutions with different letter grades (similar to different
rankings), but not between institutions with the same rating (similar
to the same cluster)”. First, projections employ a visual metaphor
of “proximity ≈ similarity” that allows users to intuitively estimate
the closeness between any two observations using a distance function
in the projection space. This approach is a heuristic for interpreting
data relationships. For example, users may want to identify “clusters”
and “outlier” and their corresponding ratings in bank observations but
specifying the boundaries of data clusters or outliers and their inclusion
criteria may be not easy. Moreover, information is often lost during the
projection process and thus it potentially produces a low-dimensional
distribution that does not always accurately reflect the data relationships
in the original high-dimensional space [9, 48]. In other words, distant
data items in the original space may end up being adjacent to each other
once they are mapped to observations in the lower dimensional space.
Second, although multi-attribute ranking can intuitively represent or-
der, segmenting the ranking list into several semantic intervals can be
difficult and uncertain. Analysts may want to know why a particular
item in one interval is ranked lower or higher than others from another
interval. However, determining how an attribute contributes to the rank-
ing and how a change in one or several attribute(s) affects the ranking
results is not a simple process [14]. In other words, setting or adjusting
attribute weights can affect the ranking results of multiple attributes.
In most cases, quantifying the importance of an attribute to ranking is
challenging, and it is difficult for users to obtain a good set of weights
to bring the final ranking in line with expectation.

Inspired by the showcased rating problem, this study attempts to
combine dimension reduction and multi-attribute ranking into the same
exploration environment to obtain the best advantages of the two. Ex-
ploring the connections between them has several advantages. First,
relative to projection in the showcased rating problem, multi-attribute
ranking is more intuitive and controllable in directionality and can be
potentially leveraged as the guidance for examining rating directions
in the reduced-dimensional projection. Second, reduced-dimensional
projection generates “clusters” and “outliers” that can assist analysts in-
teractively and spatially in organizing observations on display, thereby
making them more expressive. Moreover, those elements can poten-
tially be employed in guiding further operations on a multi-attribute
ranking list, such as segmenting the ranking list and selecting a subset
of items or attributes for further investigation. Similarly, analysts can
explain those “clusters” and “outliers” by aligning their evaluations
with their findings adopted from the multi-attribute ranking results.
For example, Explainers [13] creates projection functions defined by
their annotations, and the resulting derived dimensions represent the
concepts defined by the user’s example. Third, inconsistency may exist
between the proximity among observations in the reduced-dimensional
projection space and the ranking distance in the multi-attribute ranking

result. For example, points of the same cluster in the projection have
divergent rankings and vice versa, and they either or both may disagree
with users’ subjective perception. These inconsistencies may be due to
the effects of selected attributes, or the different weights assigned to the
attributes. Combining the results of reduced dimensional projection and
ranking analysis for discovering and explaining these inconsistencies
can help clarify the underlying data features.

In this study, we introduce RankAxis, an interactive visual analyt-
ics system that combines projection and multi-attribute ranking into
the same exploration environment to facilitate the joint interactive
interpretation of multi-attribute data. Specifically, we developed a
Ranking Tabular View that summarizes the contribution of attributes to
the ranking, supports the derivation of attribute weights based on user
interactions, and generates a ranking score for each data item. To help
interpret the layout and orientation of the projection space, a Projection
View was designed to interact with the Ranking Tabular View to produce
a projection axis that guides the analyst to explicitly explore the layout
and orientation of the projection. A Ranking Projection Axis View is
created to compare the ranking results, i.e. the ranking scores from the
Ranking Tabular View, with the projection axes generated in the Projec-
tion View in the same context. This design also allows analysts to check
for possible reasons of inconsistencies between ranking and projection
results. We used a case study, a qualitative user study, and expert inter-
views to evaluate the efficacy of RankAxis. Our main contributions are
summarized below: (1) We systematically summarize the connection
between projection and ranking and elicit design requirements from the
literature and interviews with domain experts. (2) We design RankAxis,
an interactive visual analytics system that seamlessly combines pro-
jections and rankings in the same exploratory environment, helping
analysts understand and interpret the results of projections and rankings.
(3) We demonstrate the efficacy of our approach through one case study,
a qualitative user study and expert interviews.

2 RELATED WORK

2.1 Visualizations for Multi-attribute Data
Researchers have proposed many methods for analyzing and visualiz-
ing multi-attribute data, each with its own advantages and disadvan-
tages [27]. In particular, most methods propose specific solutions and
trade-offs between data and scalability, and complexity and compre-
hensibility [3]. For example, parallel coordinate plots [17] drove the
field forward and many subsequent improvements were proposed, e.g.,
highlighting density [29] and quality metrics [2], alleviating visual
clutter [8, 34] or by reordering dimensional axes to reveal certain pat-
terns [6]. Another popular approach, the scatter plot, uses orthogonal
projections to analyze multi-attribute data and assess the usefulness
of dimension combinations [1, 39]. In addition to visualization, explo-
ration techniques for navigation and user guidance have been proposed,
e.g., LDSScanner [49] and Matrix/Tree [51]. For example, Fernstad et
al. [11] proposed a quality metric-guided exploratory dimensionality
reduction pipeline that enables users to interactively rank and weight
variables based on the obtained quality metrics. SmartExplore [3] sim-
plifies the identification and understanding of clusters, associations,
and complex patterns in high-dimensional data through a table-based
design that automatically selects and computes statistical metrics based
on data attributes. In this work, we explore the connection between
projections and rankings and focus on the mutual interpretation of their
results, e.g., inconsistency and semantic orientation and layout.

2.2 Dimension Reduction and Interactions
Dimensionality reduction scales better in terms of sample size and
dimensionality than other visualization methods, such as glyphs [50]
and parallel coordinates [18]. As a result, projections have become the
preferred choice for exploring high-dimensional data and/or machine
learning applications where individual properties of dimensionality
are not as important. In particular, many projection techniques have
been proposed [32, 38, 43], of which t-SNE [28] is arguably one of
the best known and most adopted dimensionality reduction techniques.
Espadoto et al. [9] presented a quantitative survey on dimensionality
reduction to choose the best technique for a particular usage context.
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One challenge in exploring high-dimensional data using dimensional
projections is that it is difficult for users to express their domain knowl-
edge to “steer the underlying data model” [22], especially since they
have little attribute-level knowledge. Wenskovitch et al. [48] mentioned
two types of interactions in the context of using dimensional projections,
namely parametric interactions (PI) and observation-level interactions
(OLI). The former refers to the direct manipulation of parameters to
create a new projection. However, it can cause difficulties for novice
or non-mathematically savvy analysts [48]. On the other hand, OLI
enables analysts to manipulate the observed data directly, insulating
them from the complexity of the underlying mathematical model. For
example, Li et al. [25] proposed SemanticAxis that enables analysts to
reconstruct projections by directly modifying attribute weights, which
clearly falls under a PI. They also supported the creation of a semantic
axis by selecting two sets of data observations. Nevertheless, their
work only allows the analyst to examine clusters one by one (unipolar
semantic axes) or two by two (bipolar semantic axes). Kim et al. [21]
proposed InterAxis to properly interpret, define and change an axis in
a user-driven manner. In particular, users can define and modify an
axis by dragging data items to the x- or y-axis, and the system then
computes a linear combination of data attributes and binds them to
the axis so that the user can understand the axis and interact with it to
adjust it accordingly. Subsequently, researchers proposed a technique
for interpreting the user’s drawing with an interactive, nonlinear axis
mapping method called: AxisSketcher [22], which enables the user
to bring their domain knowledge by allowing interaction with data
observations rather than attributes imposed in the visualization. Specif-
ically, AxisSketcher draws a curve in the projection according to users’
perception, generating a high-dimensional curve as a new data axis,
and the order of the data on the axis then reflects the user’s knowledge.
The data items are then projected onto the nonlinear axis, updating the
scatter plot with it. The nonlinear axes established by AxisSketcher can
better fit the user’s conceptual model, but AxisSketcher’s nonlinear axes
distort the data locally, and this distortion affects the user’s grasp and
interpretation of the data facts. Our rating line is motivated by this work,
with the rating line representing the perception of the data scores during
the ranking process, with the addition of the concept of inconsistency.
For InterAxis, users must be familiar with the dataset in order to select
meaningful data items for further exploration, which ensures that the
constructed linear axes are meaningful. For AxisSketcher, users must
have a basic understanding of the projection layout in order for the
constructed non-linear axes to be meaningful. They both rely on the
user’s interaction intent; however, in many cases, users do not necessar-
ily understand the data. As a result, many items or axes generated by
interactions are not analytically meaningful, which can easily lead to
unsatisfactory analysis. In this study, we propose a projection axis that
is integrated with the ranking results, thus facilitating the understanding
of the underlying data features.

2.3 Multi-attribute Ranking Visualizations

There are several standard visualization methods for multi-attribute
ranking and are summarized [14], including spreadsheet [12], point-
based, line-based, and area-based techniques. In particular, the clas-
sic parallel coordinate diagrams [17], slop graphs [40] and bump
charts [41] are all part of line-based visual design. Tables with embed-
ded bars [36], multiple bars, and stacked bars [12] belong to region-
based techniques. In this study, we used stacked bars, a region-based
technique, because it supports comparing the ranking of the same data
item in different dimensions and with different ranking criteria [37].

Many spreadsheet systems for analyzing multi-attribute data, such
as Microsoft Excel or Numbers for Mac, are primarily designed to gen-
erate, modify and present tabular data and are not designed for sorting
analysis. Also, they largely do not support sorting based on attribute
combinations, which would otherwise require high-level formulas to
define the sort. Therefore, researchers have proposed a number of
sorting systems that provide interactive interfaces. For example, Val-
ueCharts [4] and LineUp [14] allow analysts to create custom rankings
with adjustable attribute weights by clicking and dragging attributes.
Weng et al. [47] supported analytical tasks for ranking large-scale spa-

tial alternatives, such as selecting the best location for a chain store.
RankBooster [35] goes further in understanding ranking predictions,
i.e., what can be done to improve rankings. However, these systems
require the user to specify attribute weights to produce rankings of data
points, i.e., many assume that the user can conceptually quantify the
understanding of how critical a particular attribute is to the ranking,
which is not always easy or possible for the user to do.

To address this issue, researchers have studied what factors or weight
sets lead to a given ranking. For example, Podium [44] allows users
to drag rows in a table to rank data points based on their perception
of the relative value of the data. WeightLifter [33] is an interactive
visualization technique for weight-based MCDM that facilitates the
exploration of weight spaces. Analysts can understand the sensitivity
of decisions to changes in weights. In this study, similar to Podium and
WeightLifter, we perceive attribute weights through user interaction.
However, the weights derived from Podium or WeightLifter are not
always applicable, as they do not guarantee satisfactory ranking results.
In our work, we overcome the inconsistency problem by combining the
results of projection and ranking into the same exploration setting to
obtain the best results for both methods.

3 BACKGROUND AND REQUIREMENT ANALYSIS

3.1 Observational Study

To better understand how multi-attribute data items are explored in
practice and to further refine our design requirements, we conducted
an observational study on a collaborative team of bank experts, includ-
ing a bank rating specialist (E.1, male, age: 32), a risk management
specialist (E.2, male, age: 35), a financial data analyst (E.3, female,
age: 24), and a bank credit specialist (E.4, male, age: 28). Their
daily work consists of digging into the impact of financial indicators
of banks and other institutions over the years and developing criteria
for the quantitative classification of institutions. As a rule, the experts
use Excel to periodically adjust the institution’s rating based on their
professional experience, combined with the bank’s indicators over the
years. Although manual methods can be used, they require a large
amount of human resources to deal with numerous indicators simul-
taneously and are inconvenient for dynamic monitoring. Therefore,
the experts tried to solve the bank credit rating problem by applying
dimension reduction and ranking analysis. In the projection scheme,
they first used some business intelligence (BI) tools (e.g., Tableau) to
project bank data items with multiple indicators as observations in a
low-dimensional space. Then, the experts grouped these points using
an unsupervised clustering algorithm. Finally, they specify some key
metrics (e.g., average asset size) for each resultant cluster to determine
the order of clustering. In the ranking analysis scheme, the experts first
selected a set of bank attributes and then used specific MCDM schemes
such as Analytic Hierarchy Process (AHP) and Statistical Product and
Service Solutions (SPSS) in Technique for Order Preference by Simi-
larity to Ideal Solution (TOPSIS) to rank all banks accordingly. Next,
they divided the ranked list into segments based on the distribution
of specific indicators. As a result, all banks in the higher segments
outperformed the banks in the lower segments.

In addition to separate analyses using projection and ranking, experts
have found that in some cases, the results of projection/clustering may
not be consistent with the results produced by ranking. That is, bank
items that are close to each other in one method are not necessarily
close to each other in the other method. For the sake of simplicity,
we formulate the inconsistency problem as follows. Suppose we have
a set Rn where each data item is a vector of n dimensions, denoted
as x = {a1,a2, ...,an} ∈ Rn and assume that all attributes are positive,
i.e., the higher the value the better. We use the same distance function
in ranking and projection (e.g., Euclidean distance denoted by f (x)).
Specifically, the ranking score of each xi is determined by the Euclidean
distance between the original point and xi, denoted by f (xi). The
Euclidean distance between xi and x j in the projection space is denoted
by g(xi,x j). In the ranking, we decide which data item is ranked first
based on the value of f (x), i.e., if f (xi) > f (x j), then xi should be
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ranked before x j and vice versa. This condition can be expressed as

xi � x j⇔ f (xi)> f (x j). (1)

Suppose that in the projection, if xi and x j belong to the same “clus-
ter” and xk belongs to another “cluster”, the following equation holds
according to the definition of distance in the projection,

min(g(xi,xk),g(x j,xk))> g(xi,x j). (2)

Inconsistency means that points of the same cluster in the projection
have divergent rankings, and vice versa. If Equation 2 and either
Equation 3 or Equation 4 hold, there is an inconsistency between the
perceived distance in the projection and the ranking distance:

f (xi)> f (xk)> f (x j), (3)

f (xi)< f (xk)< f (x j). (4)

Both Equation 3 and Equation 4 indicate that the ranking of xk is in the
middle of xi and x j.

Consistency means that points in the same cluster in the projection
are also close to each other in the ranking and vice versa. If Equation 2
and any of the following equation holds, the perceived distance in the
projection and the ranking distance are consistent:

min( f (xi), f (x j))> f (xk), (5)

max( f (xi), f (x j))< f (xk). (6)

Equation 5 and Equation 6 indicate that both the ranking of xi and x j
are lower or higher than that of xk.

More specifically, if each data item has only one dimension
(Fig. 2(A)), i.e., n = 1, Equation 2 and Equation 5 or Equation 2 and
Equation 6 hold. That is, the ranking distance is consistent with the
projection distance. When the data item has two dimensions, i.e., n
is 2, Equation 2 and Equation 5 hold or Equation 2 and Equation 6
hold. As shown in Fig. 2(B)(1), in the projection, the diameter of the
yellow ring is the distance between xi and x j. If Equation 2 holds, xk
can be at any position in the non-yellow area in the projection, i.e., xk1,
xk2, and xk3. For ranking (Fig. 2(B)(2)), the distance between the point
and the origin point indicates the ranking. Particularly, Equation 5 and
Equation 6 hold for xk1 and xk3. Equation 4 holds for xk2. In other
words, if xk lies in the circle between the green and red rings and not in
the yellow circle, Equation 2 and Equation 3 hold, which indicates that
the distances in the projection do not match the ranking distances.

Fig. 2. (A) When n is 1 and if Equation 2 holds, i.e., xi and x j are not in
the same cluster with xk, the distance between xi and x j in the projection
must be greater than disti j and xk can take the value in the red range.
The distance in the projection and in the ranking are consistent; (B)
Inconsistency occurs when xk lies in the circle between the green and
red rings and not in the yellow circle.

3.2 Design Requirements
To ensure that our approach was well suited to the tasks and require-
ments of the general field, we further interviewed all experts (E.1 – E.4)
to identify their main concerns regarding bank ratings and potential
barriers to efficient decision making. At the end of the interviews, the
need for combining projection and ranking analysis in the same context
emerged as a key theme in the feedback collected. While individual ex-
pectations for such an approach had different emphasis, specific design
requirements were expressed across the board.

R.1 Connecting projections and rankings in a seamless context.
When experts explore bank projection results, they can observe several
clusters of banks, but mapping different clusters to ratings can be a
challenge. They encounter similar problems when interpreting the
ranking results, as they rely on their expertise to divide the rankings

into segments and subjectively use these segments as ratings. Therefore,
experts wanted to put dimension reduction and ranking in the same
context so that they could explore and compare them more effectively.

R.2 Automatic inference of attribute weights. Traditionally, ex-
perts rank banks by listing and assigning weights that quantify the
contribution of attributes. A frequent problem with this process is
that they cannot effectively determine which specific attributes are
important and to what extent, because they only have an overall un-
derstanding of the data. Both projection and ranking rely on distance
functions to obtain the similarity of paired data items. However, the
metrics that jointly calculate distances have different numerical scales
and need to be normalized. For example, the metric of bank asset size
is measured in trillions of dollars, while the default rate is a very small
decimal. This situation creates a key problem: it is difficult to estimate
the weight (contribution) of each attribute to the distance measure after
normalization, even for experts who are already very familiar with the
data. “when we do a bank credit rating, we can know the approximate
rating of the bank by looking at the specific values of certain attributes”
(E.1). However, experts’ subjective feelings about the importance of
attributes are complex and difficult to quantify, so it is challenging to
take this intuition and verify the appropriateness of the weights. Thus,
simply asking experts to adjust the weights or using normalization can
complicate the generation of results that meet the empirical expecta-
tions of domain experts. Therefore, they need to automatically infer the
importance of attributes based on their perception of the data values.

R.3 Guiding semantic exploration in projections. Dimensional
projections inevitably produce “clusters” and “outliers”, and experts
want to understand the distribution of observations in the projection
space because they sometimes cannot distinguish between the bound-
aries of clusters and whether an observation is an outlier. That is,
when interpreting the layout of the projection results, they want more
semantic help to guide their exploration in the projection.

R.4 Reveal any inconsistencies between projections and rank-
ings. As mentioned earlier, items projected together are not necessarily
close in the ranking list, a situation that arouses the curiosity of experts
because they regard “proximity” as “similarity”. Similarly, they often
confirm ranking results by observing whether the nearby neighbors of
a data item in a ranked list are semantically related. Thus, identifying
potential inconsistencies can help them better interpret the meaning of
“neighbors” in projections and ranking results, and ultimately identify
the underlying data characteristics that lead to inconsistencies.

4 BACK-END ENGINE

In this section, we first describe how we use Ranking SVM to automati-
cally derive attribute weights [19, 26]. Then, we discuss how to obtain
constraints from user-data interactions to train the Ranking SVM model
(Fig. 3(A)), and describe how to apply the weight vectors to produce a
complete ranking of data items (steps 1 – 3). Finally, we show how we
transfer the rankings to the ratings (step 4).

Step 1: Modeling Ranking SVM. Inspired by Podium [44], we use
Ranking SVM to derive attribute weights. Ranking SVM applies the
idea of optimizing the SVM hyperplane to the ranking problem with
pairwise constraints. A finite set of data points di and d j and a label
is used to derive whether di is better or not, instead of a complete set
of data points with labels. The input to the Ranking SVM involves
a difference vector of data point pairs, e.g. di− d j. Specifically, we
transfer a pair (di,d j) and their relative ranks to a tuple based on
the following statement: If di is preferred, di − d j = 1; otherwise,
di− d j = −1. The generated model can be used to predict which of
the given pair of points is better. Nevertheless, the constraints derived
from user interactions may be unsatisfying [19]. Therefore, we model
all constraints as soft constraints rather than hard constraints to avoid
vacuous results. Thus, user interactions can always produce a set of
attribute weights that maximize the simulation of user constraints [26].

Step 2: Deriving constraints. We transfer ranking to a binary
classification problem by using the linear separator of SVM. That is,
we generate labeled data for Ranking SVM by using the data items
that the user has interacted with and dragging these items to a new
location (Fig. 3(B)). These items are the k marked rows. Without loss
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of generality, the k points {dl1 , ...,dlk} are indexed by [l1, ..., lk]. Then
we create a combination of all pairs of difference vectors as training
instances [19], i.e., for i, j ∈ {1...k}, where i 6= j, we derive a training
tuple based on the above formula, i.e., each training instance is a pair
of differences between rows di and d j , classified as y = 1 if di is ranked
higher than d j, and y = −1 if di is ranked lower than d j. Similar to
Podium, we set k = 6 to ensure that the minimum training data amount
for the attribute weight vector is derived after the experimental analysis.

Step 3: Calculating the ranking score. After transforming the
user interaction and learning the model, a weight vector w is obtained
for us to rank the data items. We compute the individual dot products
of w with each data item to generate a rank score as r(di) = w ·di =
∑

m
j=1 w jdi j. with the highest one corresponding to the top rank.
Step 4: Transfer ranking to rating. We adapt an entropy discretiza-

tion method to transfer rankings to ratings [10]. We first sort ranking
scores and consider each score as a split point, and then calculate the
entropy of the left and right parts of each point. We consider the split
point with the lowest entropy value to be the first split point. We repeat
the above procedure until we have n split points (we determine the value
of n for each dataset after the experimental results). We round the frac-
tion of each data item to multiples of n. We denote the random variable
of scores by X and sort the scores of the data items as (x1,x2, ...,xn).
The P(xi) denotes the probability of the fraction xi. The entropy of X
is H(X) = E[−logP(xi)] =−∑

N
i=1 P(xi)logP(xi). Suppose there are k

distinct scores among the ranking scores of all data items and k < n.
We order k scores as (u1,u2, ...uk), and these scores can be considered
as x1,x2, ...,xn of consecutive values of breakpoints. Then, we select
a point with the lowest entropy value from the candidate points. We
repeat this process until we have n−1 breakpoints, forming n ratings.
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Fig. 3. (A) The user can adjust the ranking of data items in the initial
ranking result, then the system generates positive (the value of Bank 1-5
indicators minus the value of Bank 8 indicators) and negative samples
(the value of Bank 6-9 minus the value of Bank 8 indicators), finally uses
SVM to obtain the attribute weights.

5 FRONT-END VISUALIZATION

RankAxis combines projection and ranking to guide users in explor-
ing multi-attribute data. In particular, we design a Ranking Tabular
View (Fig. 1(C1-C5)) that summarizes the attribute contribution to the
ranking, deduces the attribute weight vector according to user interac-
tion, and generates a ranking score. An Interactive Projection View
(Fig. 1(B)) shows the projection result and explicitly guides analysts to
explore the projection layout and directional semantics by generating a
projection axis. A Comparative Projection View (Fig. 1(D)) evaluates
the observation distributions generated by different ranking schemes.
A Ranking Projection Axis View (Fig. 1(E)) compares the ranking score
from the Ranking Tabular View with the projection axis generated in
the Interactive Projection View in the same context. The analyst can
first interact with Ranking Tabular View to obtain an initial ranking and
rating result that guide the generation of projection axes in Interactive
Projection View, and then go to the Ranking Projection Axis View to
check for inconsistency between the ranking and projection results.

5.1 Ranking Tabular View

The ranking table view is designed with four purposes in mind. First, the
raw multi-attribute data should be presented in a familiar Excel format
to mimic the daily work of domain experts. Second, the contribution of
each data attribute to the ranking should be visualized to facilitate the
analyst’s rating task. Third, the ranking can be adjusted interactively
by moving a data item up or down based on the analyst’s domain
knowledge, thus automatically deriving attribute weights based on user
interaction (R.2). Fourth, analysts should be able to compare the results
of each adjustment. Different ranking schemes in terms of detailed
attribute contributions for each data item should be provided, as well
as the differences in ranking between the different ranking schemes,
which is helpful to refine the previous rankings.

As shown in Fig. 1(C2), a table presents the raw data, showing the
name, ranking, and associated attributes of the data items (Fig. 1(C1)).
Analysts can perform a “drag and drop” operation to manually rank data
items based on their perception and domain knowledge. In the table, the
rankings that are adjusted higher are with up arrows, and down arrows
indicates the opposite adjustment. By using the trained Ranking SVM,
the system derives a new weight vector that maximizes the user’s data
preferences. We calculate the attribute contributions by multiplying the
obtained weights by the normalized attribute values. The sum of all
attribute contributions (ranking score) is used to determine the order of
the data items. The results of the attribute contributions are presented
in Fig. 1(C5) and displayed at the top of the data table. Specifically, the
position of the black lines represents the boundary between two ratings,
while the colored areas indicate the attribute contributions. The region
chart ranks all data items from left to right according to their ranking.
Based on the ranking scores, we divide the rankings into several ratings
according to the information entropy-based discretization algorithm
mentioned earlier. For example, in Fig. 1(C5), data items are divided
into five ratings separated by four automatically generated black lines.
We also let the user interactively adjust the number of ranks by moving
the slider next to the “save scheme” button (Fig. 1(C3)). If analysts
is satisfied with the current ranking scheme, they can click on the
button and the current ranking scheme will be added to Fig. 1(C4).
Inspired by Lineup [14], each ranking is depicted as a separate column
in Fig. 1(C4). These columns use bars of different lengths to represent
attribute contributions. To compare ranking schemes, we arrange them
horizontally, using lines connecting the same data items in different
ranking schemes. When a specific data item is selected, a thick blue
line connects all the same data items in turn. The bar chart at the top of
each column (Fig. 1(C4)) shows the weights of each data attribute.

Ranking Score

Attribution Contribution

Fig. 4. Design of observations in the interactive projection view.

5.2 Projection View

The projection view uses classical dimensionality reduction techniques
such as t-SNE to create low-dimensional projections and preserve local
similarity to express neighborhood structure [16, 24]. Other techniques
such as PCA, MDS and UMAP [30] can also be integrated. We use the
same set of weights to normalize the values of the attributes used in the
ranked table view to obtain a two-dimensional projection. Specifically,
the four projection views are depicted in the Fig. 1. Fig. 1(B) shows
the projection using the latest attribute weight vector. Fig. 1(D) shows
the projection corresponding to the attribute weight vectors from the
first three ranking schemes (R.1). We first introduce the interactive
projection view and then the projection view for comparison.
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（A）Sequence Ranking Line （B）Rating Line （C）Self-Define Rating Line

Fig. 5. (A) Sequence ranking line connects each observation in interactive projection view in the order from the best to the worst according to
the ranking results in ranking tabular view; (B) Rating line connects the average observation of each rating according to the order of ratings; (C)
Self-defined rating line allows users to lasso a series of areas according to their semantic understanding and connects the average observations of
all areas according to the order selected by the users.

5.2.1 Interactive Projection View

In the interactive projection view, there are two main components. First,
as shown in Fig. 4, observations on the interactive projection view are
coded by a coxcomb digram [20] that shows the distribution of attribute
contributions. The color of the dot in the middle of the glyph encodes
the ranking score: the higher the ranking score, the darker the color.
The size of each pie encodes the corresponding attribute contribution.
We did not choose the classic star glyph to encode attribute values
because the lines in the star glyph are difficult to detect when the color
saturation is low and the glyph is small [52]. A potential drawback
of this design is visual clutter, which is a common problem for many
reduced-dimensional based visualizations. To mitigate this problem,
we first reduced the opacity of the glyphs so that individual glyphs
could be observed. When hovering over a glyph, that glyph is zoomed
in and displayed in the foreground. In addition, we support panning and
semantic zooming to focus on specific areas of the glyph. Second, the
interactive projection view can generate a ranking line that explicitly
guides the analyst to explore the projection layout and orientation (R.3).
We define a ranking line that connects certain sampling points according
to their rankings. To reflect the ranking results in the ranking table view,
we propose the following three methods to generate ranking lines in the
interactive projection view. Other methods, such as clustering based on
projection quality or pressure [5] can also be integrated to recommend
initial clustering and avoid potential misinterpretations.

Sequence Ranking Line. Based on the ranking score of each data
item in the ranking tabular view, a line with arrows connects the cor-
responding observations in the interactive projection view (Fig. 5(A)).
We observe that the connected layout may show a trending order, e.g.,
an ordered ranking line in one direction, or a “zigzag” ranking line with
backward and forward correspondence.

Rating Line. Although a sequence ranking line may indicate an
ordered layout, it strings all projection observations and may inevitably
introduce visual clutter. For example, if “zigzags” occur frequently,
then ranking lines do not adequately reflect the sequential semantic
information contained in the projection space. It may also be difficult
for users to keep track of the order of ranked data items. To alleviate
this problem, we first partition the ranking results to obtain a subset
of sequences with sequential different ratings. Then, we generate the
average of the data items for each rating as the center of the rating in
the projected view. These newly generated observations are highlighted
in red and linked according to the order of the ratings (Fig. 5(B)). That
is, the generation of rating lines to link “average observations” in the
interactive projection view can be considered as a “resampling” of
the observations in the sequential ranking line, better reflecting the
sequential semantic information contained in the projection.

Self-defined Rating Line. The first two methods draw lines based
on rating results, but ignore users with extensive domain knowledge.
For example, with respect to bank rating questions, joint-stock com-
mercial banks generally outperform private banks. In the interactive

projection view, analysts may be inclined to conclude that the regions
where the joint-stock banks are located are likely to be the better per-
formers overall because they use the visual metaphor of “proximity
≈ similarity”. Therefore, analysts can perform customized interactive
operations to generate ranking lines based on their judgment of the data.
As shown in Fig. 5(C), analysts can lasso a region, and then the system
automatically calculates the average of all observations in that region
and joins all “average observations” generated from the lassoed regions
in the order of user interaction to form a user-defined rating line.
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Fig. 6. (A) The observations in the projection view (yellow dots) are
projected on the ranking line (solid line with arrows); (B) the ranking line
is expanded to a straight line to form a projection axis.

5.2.2 Generating Projection Axis

We generate the projection axis with the help of the previous ranking
lines. As shown in Fig. 6(A), the solid line with arrows is the ranking
line and the yellow dots (D1, D2, D3 and D4) represent data observa-
tions in the interactive projection view. For example, in the case of the
rating line, each turning point on the ranking line represents a rank, e.g.:
Average of Rating 1 The D2(Rating4) indicates that the data item D2
has a rating of Rating4. Then, we project the yellow observations onto
the ranking line and calculate the shortest distance from the projected
observations to the ranking line. For example, with respect to D2,
the shortest distance to the ranking line segment (Rating1, Rating2)
is Dist1, while the ranking line segment (Rating2, Rating3) is Dist2.
Note that Dist1 < Dist2. Therefore, D2 is projected onto the (Rating1,
Rating2) segment labeled D2/in(Rating1,Rating2). We expand the
ranking line to obtain the projection axis (Fig. 6(B)). The height of each
data point is equal to the distance between the observation in the projec-
tion and its nearest ranking line, allowing us to encode the probability
that a data point belongs to a certain rank. For example, Dist1 repre-
sents the probability that D2∈ (Rating1,Rating2), such that the shorter
the distance, the higher the probability that D2 ∈ (Rating1,Rating2).
According to Fig. 6(B), we have D2(Rating4) ∈ (Rating1,Rating2)
and D3(Rating1) ∈ (Rating2,Rating3). That is, in the ranking results,
D2 belongs to Rating4, but its position in the projection falls between
Rating1 and Rating2, thus indicating that its semantic classification in
the projection is improved. Therefore, we mark the color of D2 as blue
and the color of D3 as orange red (blue indicates improved semantic
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(B)

Fig. 7. (A) Ranking Projection Axis View consists of four parts: (1) projection axis; (2) score axis; (3) contribution axis; and (4) attribute comparison
view. (B) Resort the banks by clicking on the “align” button for attribute similarity comparison.

classification in the projection and orange red indicates the opposite).
The visual design of the projection axes is described in Section 5.3.

5.2.3 Comparative Projection View

Fig. 1(D) connects t-SNE projections according to the attributes and
weights of the different ranking schemes (in this study, we set the num-
ber of projection spaces to 3). The analyst can lasso the observations
on any space and all the same observations will be connected by curves.
Regarding design alternatives, we initially used animations to track the
shift of observations between the two rankings. However, our experts
reported that tracking an observation requires a mental comparison,
an effort that is “demanding, especially when many observations are
involved”. Therefore, we developed this view based on juxtaposition.

5.3 Ranking Projection Axis View

The ranking projection axis view allows to compare ranking results
from the ranking tabular view with the projection axis generated in the
interactive projection view (R.4), which consists of a projection axis, a
score axis, a contribution axis and an attribute comparison subviews.

Projection Axis. Following the generation of the project axis, we
design the project axis subview (Fig. 7(A)(1)). The black line repre-
sents the turning point (the “average observation” of each rating) of the
ranking line that decreases from left (high rating) to right (low rating).
On the projection axis, the gray, blue, and orange red dots represent
the observation. Their horizontal positions represent their projection
location on the ranking line, and the height of the dots indicates the
distance from the observation to the nearest ranking line. The gray
color indicates the dots of which the ranking results are consistent
with those in the projection, while blue and orange red indicate in-
consistencies. For the projection axis, the distance to the 1D curve
is computed, and this approach may place points that are on different
sides of the curve to close or even identical positions. However, we
did not choose a mapping to a signed distance from the curve to ensure
that points that are left/right of the curve remain left/right. Borrowing
the idea of an “inverse ordinal number”, we further propose the con-
cept of a positive/negative inverse ordinal number. For example, as
shown in Fig. 6(B), from Rating1 > Rating2 > Rating3 > Rating4 and
D2(Rating4) ∈ (Rating1,Rating2), we can ascertain that Rating1 >
D2(Rating4)> Rating2 > Rating3 > Rating4. As two grades Rating2
and Rating3 are behind D2(Rating4), D2 has a positive inverse ordinal
value of 2. Similarly, D3 has a negative inverse value of 1. Blue indi-
cates all positive inverse ordinal dots (the performance in the projection
is better than that in the ranking), and red indicates the negative ones
(the performance in the projection is worse than that in the ranking).
The darker the color, the greater the values of the inverse ordinal.

Score and Contribution Axis. In the design of the score axis
(Fig. 7(A)(2)), each grey bar represents one item, and the items are
ordered based on their ranking scores (i.e., the higher the score, the
better). The height of the bars indicates the ranking scores. We render

the score axis in an area chart to observe the changes in the ranking
scores. In the design of the contribution axis (Fig. 7(A)(3)), we use
themeriver to represent the contribution of different data attributes to
the ranking score of each item. The horizontal direction of the theme
river design is consistent with that of the score axis. Analysts can
observe how attributes’ contributions change with the ranking score.
Other designs like ordinary stacked bars could also be adopted but
themeriver can distinguish different axes in different subviews.

Attribute Comparison. In Fig. 7(A)(4), each row represents one
attribute and each column represents one item. The bar length of each
column indicates the attribute value. In the initial state, the horizontal
direction of the score axis, contribution axis, and the attribute compar-
ison view have the same meaning, i.e., the same data item is in the
same column. We use lines to connect the identical data items in the
projection axis, score axis, contribution axis, and attribute comparison
subviews. For example, clicking “Huaxia Bank” generates a line that
connects all the identical items in the four subviews. As shown in
Fig. 7(A), when selecting “Huaxia Bank”, the colors of all the bars
indicate the differences of the attribute values between other banks and
the selected bank. If the attribute value of the other bank is larger than
that of the selected bank, the color of the bar of the other bank becomes
blue. The larger the difference, the deeper the color. If the attribute
value of the other bank is smaller than that of the selected bank, the
color of the bar of the other bank becomes orange red and the smaller
the difference, the deeper the color. The “Align” button enables bank
classification according to the similarity between the selected and the
other items (Fig. 7(B)). The similarity is defined as the reciprocal of the
square root sign of the attribute value difference between two items.

5.4 Interactions Among the Views
Rich interactions are integrated to catalyze an efficient in-depth analysis.
(1) Zoom in/out. RankAxis leverages zoom in/out to facilitate inspec-
tions. As shown in Fig. 1(B), we can zoom in the area for a detailed
observation of data attributes to resolve the visual clutter issue caused
by the overlap of projection observations. (2) Click, Hover, and Link.
When hovering on elements on views like Fig. 1(B)(D)(E), detailed
information of the elements is displayed as a tooltip. Users can click
the align button in Ranking Projection Axis View, and the contribution
comparison axis can switch the ranking order and similarity order. (3)
Drag, Select, and Filter. Analysts can adjust the ranking position of a
particular item by dragging or customize a ranking line and filter items
to observe their distributions in other views. For example, users can
customize the ranking line and circle items to generate the rating line
in the self-defined rating line mode.

6 EVALUATION

6.1 Case Study: Bank Rating
We show how E.1 explores inconsistencies in predictions and rankings
by loading the 2018 Chinese bank credit rating data into RankAxis. In
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Fig. 8(A), he observed that banks are connected from high to low scores
based on the ranking scores. He noted that the layout of the banks shows
a specific trend regarding the direction, i.e., the ranking lines show a
zigzag shape, while the projected layout generally conveys the semantic
ranking direction but is not fully consistent with the ranking results.
However, since all the banks are linked together, it was difficult for him
to identify the exact direction of the ranking lines.

（A）Sequence Ranking Line （B）Rating Line （C）Self-Define Rating Line

Back and Forth

Rating 3

（D）Rating Result

Fig. 8. The experts leveraged RankAxis to inspect the bank rating
problem and identified some inconsistencies.

To further check the rating issue, E.1 examined the ranking tabular
view. He adjusted the slider to truncate the ranking list into seven rat-
ings, as shown in Fig. 8(D). RankAxis automatically divides the ranking
list according to the attribute contribution distribution, e.g., Rating1
for 1 to 4 and Rating2 for 5 to 11. Then, RankAxis concatenates the
“average observations” corresponding to each rating sequentially to
form a rating line (Fig. 8(B)). The information near each dot indi-
cates the name of the bank and the number in parentheses denotes the
bank’s rating. Note that the each bank’s rating is roughly next to its
corresponding “average observation” and decreases in order along the
rating line. The expert was pleased to note that the generated rating
line eliminates some noise effects. He further noted that in Fig. 8(B),
Guangzhou Bank has a rating of 3, but its actual rating is closer to
the “average observation” of a rating of 6. That is, the distance from
Guangzhou Bank to the “average observation” with a rating of 6 is
shorter than the distance from the “average observation” with a rating
of 3. The expert was quite curious about this observation. He consulted
the ranking projection axis view (Fig. 9) and confirmed that Guangzhou
Bank (as shown by the orange red line and orange red dot) performs
poorly in the projection given the orange-red color. The expert further
noticed that Dongguan Bank (gray line) has a rating of 6, and the two
banks are pretty similar in the attribute comparison view. “That is why
Guangzhou Bank’s rating is next to the average observation of rating
6,” said E.1. The expert also found that neither the ranking nor the
predicted results were in line with his expectations. For example, in
Fig. 8(B), the banks in the yellow box are the ones with ratings of 2
and 3; however, the “average observations” with ratings of 2 and 3 are
far from the banks in the yellow box.

Fig. 9. Guangzhou Bank is rated next to the average observation of
rating 6 instead of rating 3.

E.1 thought Guangzhou Bank was overrate in ranking, so he com-
pared Guangzhou Bank and the neighboring banks and found that the
assets of the neighboring banks are greater than Guangzhou Bank, so
E.1 wanted to put Guangzhou Bank down in order, then he compared
Guangzhou Bank and the banks after it one by one to show as better
than Jiangsu Kunshan Bank, then adjusted Guangzhou Bank from 16th

to 20th and clicked “Save Scheme”. After the adjustment, in Fig. 10,
Guangzhou Bank’s ranking drops from 16th to 26th, while Dongguan

Bank’s ranking rises from 33rd to 31st . E.1 compared the rankings of
the two banks with those of neighboring banks and indicated the results
are reasonable. With this adjustment, the ranking distance between
Guangzhou Bank and Dongguan Bank have become closer, and the
consistency of rankings and projections has been improved.

Scheme after adjustment Scheme before 
adjustment

Fig. 10. Adjustment Guangzhou Bank ranking to generating new ranking

6.2 User Study
In this subsection, we adopt a four-layer taxonomy [46] and conduct a
within-subjects study to evaluate RankAxis in terms of informativeness,
effectiveness in decision-making, usability and visual design.

Participants. We recruit 18 volunteers (9 females, 9 males, age:
28±3.03) for the user study. They are employees of the collaborated
enterprise working in data analytics and machine learning. In particular,
we select the participants with experience in data analysis and mining
for bank ratings because they could provide us with more comprehen-
sive insights and help us validate the usability of the system.

Fig. 11. The primitive system: (A) Attribute weight adjusting panel sup-
ports users to specify. (B) Radar chart shows attribution value distribution
for a certain data item. (C) Projection view shows 2D projection distri-
butions corresponding to different weight settings. (D) Ranking tabular
views show the ranking in the current weight setting.

Experiment setup. Since a formal comparative study with existing
ranking or projection visualization systems is not applicable because
previous work mainly focuses on one aspect and only covers a part of
the previously mentioned requirements, we compare RankAxis with one
primitive system (Fig. 11). The difference between the primitive system
and RankAxis lie in: (1) The primitive system shares basic functions
of the projection view and ranking tabular view with RankAxis. How-
ever, the primitive system does not support interactively constructing
the projection axis in the projection view, only showing the observa-
tion distribution without additional encodings. The ranking tabular
view displays the data items’ properties and rankings but does not
support interactively adjustment the ranking by user interaction, e.g.,
drag-and-drop operation. (2) The primitive system requires a manual
configuration on attribute weights by either specifying the value or ad-
justing a slider. Instead, RankAxis supports direct manipulation on data
items and the underlying algorithm infers the corresponding attribute
weights. (3) RankAxis employs more visual cues to support inferring in-
consistency between ranking and projection while the primitive system
does not support inconsistency inspection. To minimize the ordering
and learning effect, we counterbalance the two systems.

Procedure. We conduct the experiment in four sessions. In the first
session, participants are briefed about the background, purpose and
procedure of the experiment. Each following session last around 15
minutes and one of the two systems is presented, briefed, and tested.
Each participant is required to conduct two tasks with the provided
system. The first task is to assign a reasonable rating to all the involved
banks on the basis of the participants’ domain knowledge. The second
task is to evaluate any potential inconsistency in the bank rating between
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projection and ranking, such as an unreasonable ranking position of
a certain bank in one method and explain the reason. Participants are
allowed to think aloud their ideas when performing all the tasks. After
finishing all the tasks with a particular system, they are required to
complete a questionnaire with 7-point Likert scale questions.

We propose the following hypotheses: H1. RankAxis is more infor-
mative than the primitive system. Specifically, the information accessi-
bility (H1a), richness (H1b), and sufficiency (H1c) of RankAxis is better
than that of the primitive one. H2. RankAxis performs better than the
primitive system in facilitating decision-making in terms of confidence
(H2a) and assistance (H2b). H3. The primitive system is preferred over
the full one, i.e., more intuitive (H3a), easier to comprehend (H3b),
learn (H3c), and use (H3d), and thus is better recommended (H3e) than
RankAxis. We report the participants’ quantitative ratings and verbal
feedback on informativeness, decision-making efficacy, visual designs
and usability, and run repeated measures ANOVA on each questionnaire
item and the Bonferroni post-hoc test on measures with statistically
significant differences. Upon completion of the user study, they will
receive a 10 coupon for an online e-commerce platform.

Informativeness and decision-making efficacy. RankAxis receives
significantly higher scores in almost all the studied metrics of informa-
tiveness except the metric of information accessibility than the primitive
system. Participants find assessing information is significantly easier in
the primitive system than RankAxis (H1a rejected). However, regarding
information richness and sufficiency, there exists a significant differ-
ence between the two systems, i.e., the information offered by RankAxis
is shown to be richer and more sufficient in rating banks compared
with the primitive system. “With RankAxis, I can obtain some insights
that I might never be able to notice before.” (P12, male, age: 33) As
such, participants report significantly higher confidence in rating banks
and identifying the inconsistencies between projection and ranking
results using RankAxis compared with the primitive system (H2a sup-
ported). Participants also report that RankAxis provides significantly
more assistance than the baseline (H2b supported). In summary, the
results on informativeness and decision-making efficacy demonstrate
that RankAxis provides more rich and sufficient information, although
less accessible than the primitive system.

Intuitiveness and comprehension. Different from our hypothesis,
the primitive system is not significantly more intuitive or comprehensive
than RankAxis. Participants report that they can easily manipulate items
to adjust rankings which is “far more intuitive than filling numbers on
attribute weights.” (P6, male, age: 26) Participants report that although
the ranking projection axis view is not very intuitive, it carries more
information that the primitive system fails to convey.

Learn, use and recommendable. We do not notice a significant
difference regarding easy to learn and use among the two systems
(p = .15) (H3c, H3d rejected). “They all need a learning curve.” (P2,
male, age: 28) Also, no significant difference is found regarding recom-
mendation between the two systems (p = .35, H3e rejected). “When I
just need a quick glance at the banks’ performance, I will recommend
the primitive system; however, I will turn to RankAxis if I need to dig
out some deeper insights.” (P15, female, age: 27)

6.3 Expert Interview
We conducted 30-minute semi-structured interviews with the team of
credit rating experts (E.1 – E.4). They all appreciated the capability of
RankAxis to support interactive exploration of projection and ranking re-
sults. E.1 remarked that RankAxis has greatly improved productivity by
allowing him to easily obtain and interpret projection and rating results
in the same context. They were pleased with the flexible interaction
and visualization, as it allowed “to effectively raise potential inconsis-
tencies.” We conducted a user-centered design process inspired by the
experts’ routines to inform the system design, such as the inclusion of
a table and projection view of the rankings. After a brief introduction,
the experts developed a customized exploration path. The experts also
noted that our design is quite generic, as it is already suitable for other
applications. For example, the projection and ranking tabular views
can be applied to almost any rating problem. Regarding scalability, we
used more than 10 colors to distinguish attributes. However, we are

fully aware that only a few colors can be effectively used as category
labels [45]. When the number of attributes exceeds 12, a design like the
stacked graph is not appropriate, and for scenarios with more attributes,
filtering should be supported to display the attributes of interest.

Regarding to comparison with traditional practices using Excel and
Tableau, participants reported that they are both powerful tools for
ranking analysis. However, they all agreed that Excel or Tableau only
support a small part of the requirement analysis. We believe this
is because these tools and RankAxis follow different decision paths:
separate ranking analysis and joint analysis of projection and rank-
ing: “tools such as Tableau provide only a ranking overview, and we
have iterate multiple ranking interactions to determine the strong and
weak attributes of different banks” (P12, female, age: 33). Further-
more, participants found that the weighting process in Tableau or Excel
suspicious, and they usually did not know if they had achieved the
appropriate weighting, in line with their expectations. In short, users
need to use Excel and Tableau when they know their dataset well and
do not need to interpret the results. RankAxis complements their tools
to explore the projection and ranking results together.

7 DISCUSSION AND LIMITATION

Contributions over previous work. Projection is ubiquitous in many
visualization systems because of its ability to translate high-dimensional
planes into low dimensions, but this planarization has limitations and
users may be misled by this representation. Ranking, also ubiquitous,
may also be affected by differences in its interpretation of the relative
importance of features in ranking. Very little work intends to overcome
these limitations and point out potential connections between them
at the same time. We combine projection with ranking in order to
combine strengths and reduce weaknesses. This work has the potential
to be applied to a variety of usage scenarios such as using multivariate
university ranking data to find dream graduate schools.

Choice of dimensionality reduction algorithms. RankAxis is inde-
pendent of the projection method, as long as it can reveal the potential
global and/or local structure of the high-dimensional data of interest.
We should also note that when using RankAxis to analyze linear or
nonlinear semantics, the rating results can be either accurate or approx-
imate. For example, for linear dimensionality reduction algorithms
such as PCA, any direction in the reduced space can be represented as
a linear combination of the original dimensions, which can be directly
and accurately revealed by RankAxis; for nonlinear dimensionality
reduction algorithms such as t-SNE and UMAP [30], RankAxis can
provide a linear approximation to the nonlinear semantics they reveal.

Limitation. First, RankAxis is currently tailored to investigate rank-
ings while conducting segmentation for ratings. Second, we do not
support non-numeric attributes. For numeric attributes, only maximum
values (the larger the better) and minimum values (the smaller the bet-
ter) are supported. In other words, intermediate values (closer to the
middle value is better) and interval values (within a certain range is
better) are not supported. Third, despite the application of semantic
zooming, visual clutter can occur in the projection view. Fourth, we
use Ranking SVM to infer weights for changes based on a subset of
items; and this approach may occasionally perform poorly because the
weights only represent local changes.

8 CONCLUSION AND FUTURE WORK

We present RankAxis, a visual analytics system that combines projection
and ranking into the same exploration environment and facilitates the
mutual interpretation of their results. A case study and a user study
validate the efficacy of RankAxis. We will further consider cases with
more different types of attributes and develop more complex classifiers
that assign different sets of weights to different types of data items.
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