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run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9

p_inf 0.45 0.31 0.86 0 0.08 0.7 0.82 0.29 0.11

p_hcw 0.15 0.26 0.99 0.06 0.44 0.49 0.57 0.17 0.57

c_hcw 43.24 38.9 18.51 51.3 30.2 33.02 38.1 11.4 67.22

d 0.49 0.96 0.87 0.11 0.56 0.87 0.89 0.25 0.53

q 0.39 0.32 0.28 0.72 0.84 0.29 0.33 0.68 0.76

p_s 0.6 0.93 0.46 0.07 0.35 0.29 0.82 0.43 0.58

rrd 1 1 1 1 1 1 1 1 1

lambda 0 0 0 0 0 0 0 0 0

T_lat 11.59 3.67 10.95 3.13 6.98 12.04 6.41 13.39 2.19

juvp_s 0.56 0.02 0.48 0.55 0.58 0.55 0.81 0.26 0.9

T_inf 3.82 12.57 1.17 2.12 20.28 14 5.77 13.4 17.92

T_rec 3.5 12.39 21.13 25.6 25.7 24.21 17.52 25.05 8.72

T_sym 10.14 9.82 12.18 8.02 3.06 12.96 13.57 7.85 3.86

T_hos 4.04 10.75 29.8 3.45 34.13 13.41 33.2 11.25 8.09

K 10000 10000 10000 10000 10000 10000 10000 10000 10000

inf_asym 0.26 0.04 0.07 0.42 0.91 0.34 0.7 0.94 0.92
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Fig. 1. An algorithmic approach to sensitivity analysis typically takes the data of ensemble runs, such as the parameter sets (a) and
outputs (b), and estimates the sensitivity of each parameter (c). This algorithmic-centric approach can be assisted by visualization (d)
that enriches the basis numerical measures, and be complemented by a visualization-centric and algorithm-assisted approach (e).

Abstract— Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in
combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior
of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually
does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model
outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter
optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric
and visualization-assisted, and visualization-centric and algorithm-assisted. We evaluated the two approaches based on a structured
analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in
the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling
processes featuring time series outputs, and can be extended to work with models with other types of outputs.

Index Terms— Sensitivity analysis, Ensemble visualization, COVID-19, Epidemiological Modeling, Epidemiology.

1 INTRODUCTION

Epidemiological models have been playing an important role in combat-
ing the COVID-19 pandemic [2, 22, 30]. When the pandemic unfolded,
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modeling scientists had to develop models rapidly and improve them
iteratively. A good portion of R&D activities in COVID-19 modeling
have been to study how a model and its parameters have behaved at
different stages of the pandemic and whether it would be helpful to
incorporate new information into the model by modifying its parameter
set (and less commonly its structure). These activities typically involve
running a model with different parameter sets (ensemble simulation),
estimating the amount of uncertainty in model outputs (uncertainty
quantification), and establishing the relationships between inputs and
outputs (sensitivity analysis). This work was conducted in collabora-
tion with a team of epidemiologists and modeling scientists (hereafter
referred to as “domain experts” for short), focusing on combined uses
of algorithms and visualization in sensitivity analysis (SA).

Most modeling scientists are familiar with algorithm-based SA [44],
where algorithms are used to analyze the impact of parameter inputs
on the model outputs, and assign a scalar value of sensitivity to each
parameter of the model as illustrated in Fig. 1(a-c). Such an analytical
algorithm can measure and order the sensitivity of different param-
eters fast and consistently, as well as identify unexpected sensitivity
or insensitivity of a parameter. However, the sensitivity values are
not ground truth since different sensitivity algorithms normally yield

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209464

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on October 25,2022 at 13:21:36 UTC from IEEE Xplore.  Restrictions apply. 



different values. The information conveyed by these values is usually
not sufficient to capture all meaningful variations of complex model
outputs or in informing any action to improve a model by modifying
the specification of its parameters.

To help domain experts address the shortcomings of the algorithm-
only approach, we introduce data visualization to enable domain experts
to gain more actionable information by observing more detailed interac-
tions between the parameter inputs and model outputs. Drawing from
existing techniques for ensemble, uncertainty, and sensitivity visual-
ization, mostly in applications of computational fluid dynamics [60],
weather simulation [5], and industrial modeling [35], we formulate two
visual analytics approaches to support SA in epidemiological modeling.
Our months long collaboration as an interdisciplinary team of domain
experts and visualization researchers further informs the design and
evaluation of our approaches.

As illustrated in Fig. 1(d), our first approach was to enrich the
numerical sensitivity measures with detailed visualization depicting the
impact of different values of individual parameters on the model outputs.
This enabled domain experts to observe the sensitive behavior of each
parameter as estimated scalar functions instead of individual scalar
values; to confirm, interpret, or raise questions about the numerical
sensitivity values; and differentiate sensitive behaviors for parameters
with similar numerical sensitivity values. We refer to this approach as
the algorithm-centric and visualization-assisted approach.

As illustrated in Fig. 1(e), our second approach was to enable do-
main experts to observe the interactions between parameter sets and
non-scalar model outputs (i.e., time series), as well as among different
parameters and different time series. Given the often large number of
parameters, and the even larger number of interactions, it is challenging
to study these relations and reason about them using solely the table
and plot as shown in Fig. 1(a) and (b). We therefore introduced cluster-
ing algorithms to reduce the cognitive load for data grouping, similar
to Xiang and Swallow [61], to enable domain experts to identify and
explore subsets of model outputs featuring similar behaviors in con-
junction with the corresponding parameter sets. This enables domain
experts to integrate their own domain knowledge in the reasoning pro-
cess on the parameter sensitivity, e.g., about the semantic meaning of
the visual patterns in a cluster of time series, or the scientific meaning
of a specific range of a parameter. We refer to this approach as the
visualization-centric and algorithm-assisted approach.

In addition to presenting the two visual analytics approaches, we
report on our user-centered task analysis and problem-driven devel-
opment and evaluation of both approaches. Our study showed that
visual analytics can significantly improve the algorithm-only approach
common in SA, and that domain experts welcomed the two approaches
proposed in this work, which complement each other in SA.

In summary, our main contributions are as follows: (i) two comple-
mentary visual analytics approaches to support SA in epidemiological
modeling as part of a large-scale collaboration between visualization
and domain experts [12,20] (both approaches have been integrated into
the RAMPVIS server [29,42] resulting from this collaboration, making
them available to the modeling community at large); (ii) a user-centered
task analysis and evaluation, and a mapping of the relations between
the tasks and relative merits of these two approaches.

2 RELATED WORK

Developing a simulation model is a highly iterative process, involving
many techniques, such as ensemble simulation, uncertainty analysis,
sensitivity analysis, dynamic steering, model inspection, model tweak-
ing, and so on. The first three topics are often grouped under the parent
topic of uncertainty quantification where uncertainty is propagated
through all modeling stages [16]. In this context, ensemble analysis
(prediction uncertainty) is concerned with studying the distribution
of outputs while sensitivity analysis (attribute uncertainty) studies the
relationship between input and output.

In this paper, we concentrate on visualizing the parameter space as a
way to explore the ensemble data and sensitivity. Both the algorithm-
centric, visualization-assisted and visualization-centric, algorithm-
assisted approaches we explore in this paper integrate visualization

with algorithmic approaches as proposed by Bertini and Lalanne [4].

2.1 Ensemble visualization
Ensemble visualization is an active research area concerned with pro-
viding a better understanding of ensemble data produced by compu-
tational simulation models [58]. Over the last decades, different re-
search domains, such as engineering [35, 37], graphic design [8, 25],
meteorology [5, 11], and epidemiology [15, 54], have developed and
established theoretical and mathematical foundations based on their
prior knowledge of ensemble data from models with various sets of
model configurations. This ensemble data reflects unobserved reality
at some unknown or extreme conditions. Simulations in engineering
and graphic design applications benefit from ensemble data at the level
of the design process. Trial and error experimentation can be reduced,
lowering costs and increasing efficiency. While for other simulated data,
e.g., adversarial weather events [17] and storm path ensembles [33],
analyzing data improves timely risk mitigation planning when real
data cannot be collected due to limited time. The epidemic modeling
and decision support system from Afzal et al. [1] is closest to our
work, where a visual analytics approach enables experts to evaluate a
number of potential modeled responses to the pandemic. This work
did not explore the relation between parameter ranges and outcomes
systematically, which we emphasize. Our work falls in-between the
above application categories, and aims to support the design and fine-
tuning of models through visualizations of ensembles in relation to
their parameter configurations.

Uncertainty analysis is one of the main tasks in ensemble visual-
ization and a key design concern for our project, where we aim to
communicate a range of model outcomes in compact representations.
Hummel at al. [27] proposed a color mapped visualization to demon-
strate variances of Lagrangian neighborhoods to capture and analyze
flow instability. Contour boxplots [60], a generalization of boxplots,
were introduced to characterize the uncertainty of feature sets in fluid
dynamics applications. The EnConVis [60] tool was proposed to pro-
vide a unified framework for ensemble contour visualization. Specif-
ically, ensemble data was clustered and its distribution modeled via
Kernel Density Estimation before contour plots were used to visualize
the ensemble uncertainty. The Noodles [49] tool leveraged spaghetti
plots and bespoke glyphs to explore uncertainty in how water-vapor
mixing ratio, perturbation potential temperature and perturbation pres-
sure influenced the 1993 “Super-storm” phenomena. Our work extends
this space by utilizing uncertainty visualization techniques in relation
to clustered model outputs and associated parameter ranges.

Sophisticated algorithmic and visualization-based methods have
been explored to tackle the challenge of simulated data embedded in a
complex and high-dimensional space. Parallel Coordinate Plots (PCPs)
are a popular option for visualizing high-dimensional ensemble data [3,
11, 31, 37]. For instance, Kumpf at al. [31] proposed a cluster-based
brushing operation to visualize parameter distributions of ensemble
members. After the brush is applied to all the ensemble data, multi-
parameter violin plots are deployed to further analyze the patterns of
clusters in each output parameter axis. Chen et al. [11] introduced
a multi-view uncertainty visualization tool integrating PCP, a geo-
location view and uncertainty histogram to explore ensemble data-sets.
Clustering methods are also commonly deployed in many systems. Hao
et al. [23] used agglomerative clustering to build a hierarchical tree
for temporal ensemble data analysis. In work by Kumpf et al. [32],
meteorological ensemble data was clustered by applying the k-means
algorithm to the Principal Component Analysis (PCA) features and
the variability of selected clusters visualized to identify representative
data trends. Our work incorporates clustering, but does so on the
model outputs to identify similar outcomes and introduces a novel
visualization to reveal patterns within the parameter space.

2.2 Sensitivity Analysis
SA is “the study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of uncertainty in
the model input” [44]. SA provides value for modelers by confirming
and revealing how features of interest of the model output are affected
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by variations or uncertainty in the inputs. Information on model sen-
sitivities enable the modeler to make informed decisions as to what
aspect of the model to develop further, and which model parameters to
constrain with real-world data for more accurate forecasting.

SA methods can be broadly classified into local and global methods.
Local methods measure the effect of small perturbations of parameter
settings (i.e., gradients). Global SA measures compute an average effect
across the range of a parameter. This effect can be measured in several
ways including, Sobol Sensitivity indices [51], Fourier analysis [48],
derivatives [52], among others [6, 38].

It is considered good practice [46] to use global measures of sensi-
tivity rather than local ones, as local ones only show effects around a
limited set of parameter settings. Furthermore, it is difficult to evaluate
interaction effects using local analysis. In global SA, measures of
sensitivity based on the variance of the model output are often used.
Such “variance-based measures” are not conditional on the additivity or
linearity of the model and are able to capture the effect of interactions
between parameters [47]. As discussed later in Section 4, we make use
of variance-based global measures in our approach.

Visualization of global sensitivity is challenging due to the dimen-
sionality of the manifold that one wants to understand. As global
sensitivity metrics produce a set of scalar sensitivity values for each
parameter (and combinations thereof), domain experts often use bar
graphs to visualize effects [19]. Visual methods for SA broadly fall
into two camps: interactive methods and function plots. Interactive
methods, such as the system by Matkovic et al. [36] or Berger et al. [3],
enable the user to use brushing and filtering to explore sensitivities.
These require discrete samples of the, often continuous, model and
present local sensitivity. Extensive exploration is needed to build an
understanding of the global sensitivity of the model and interaction
effects are difficult to evaluate. Interacting with brushes and seeing how
filtered results change, enables the user to build an intuition of the sensi-
tivity of the model. For example, Guo et al. [21] use star glyphs around
a set of sample points to show local sensitivities around each sample
with respect to each parameter. Huang et al. [26] instead show how
the local sensitivity around parameter values influences the coloration
in choropleth maps. The PeTTSy [18] modeling tool is designed with
compartmental epidemiological models in mind. It uses a SVD of the
parameter space to show local sensitivities as heatmaps and line plots.
Drag and Track [39] uses PCA and MDS to produce 2D views of the
input and output parameter spaces. Users can get a sense for the local
sensitivity by manipulating a cursor in one view (input or output) and
seeing the effect in the other. Most of these approaches focus on local
sensitivities and relies on the skills of the analysts to draw conclusions
on the global sensitivities. Our work addresses these through measures
and visualizations that operate at a global level.

Function plots visualize the multi-dimensional manifold directly,
maintaining the perception of the model being continuous using the
familiar notion of a function plot, often using one function plot per
dimension. These methods present more of a global view of the pa-
rameter space. In addition, these function plots can show the “shape”
of the effect, giving additional insight beyond scalar global sensitiv-
ity metrics. For example, Tuner [56] uses a set of 2D heatmaps to
show sensitivity around a particular point in parameter space. The
“sensobol” [41] R package can produce various plots of the outputs
of variance-based SA and scatter plots showing the raw output data
against a parameter. Contribution to the sample mean plots [6], show
how the average output converges as the number of samples increases.
Like the numerical methods, these illustrate average behavior of the
manifold. SA of epidemiological data, including dimension reduction
and temporal clustering, have successfully extracted important dynam-
ics from multivariate data on COVID-19 dynamics (e.g., [54, 61]) to
facilitate visualization and inference. The global sensitivity scatter-
plot [10] visually integrates local derivatives which are comparable to
derivative-based global sensitivity measures. Many of these methods,
such as principal components analysis, are geometrically linked to
variance-based sensitivity measures.

In this paper we explore using a number of slices of the mani-
fold [57], as they are intuitive to understand and can show more detail

than the purely numerical or contribution to the sample mean plots.
We were able to extend this method to handle time-varying outputs.
Previous work on both visualization and numerical methods of SA only
focuses on scalar outputs. However, epidemiological produce time
series outputs which have non-scalar features, such as different shapes.

3 SENSITIVITY ANALYSIS IN EPIDEMIOLOGICAL MODELING

The SARS-CoV-2 pandemic has generated a prevalence of temporal
trajectories of epidemic waves and progression indices that provide a
challenging case study for the proposed approaches. With a significant
increase in the number of mechanistic and compartmental models to
simulate the pandemic under varying conditions, simulation outputs
under these varying conditions and parameterizations have also grown
considerably. Here we detail the epidemiological modeling frameworks
used to demonstrate the proposed visualization approaches.

The principal epidemiological model used for the application of
the proposed approaches is a stochastic forward simulation model of
COVID-19 dynamics in Scotland [40]. The simulator is based on an
age-structured compartmental SEIR model, with hospitalization and
mortality. The model was specifically developed for forward simulation
of the first wave of the epidemic in Scotland, focusing on the impact of
interventions to harbor the spread of the disease in Scotland, particu-
larly amongst care workers and medical professionals, and aiming to
account for and/or estimate the impact of asymptomatic cases. It also
has the capacity for calibration to observed data using Approximate
Bayesian Computation (ABC-SMC). The model was used as a tutorial
on Uncertainty Quantification, SA and calibration as part of the SCRC
response [19], from which the domain knowledge was generated. The
model was referred to as the EERA model [40].

A second model, the Simulation.jl model, is also used to test the
visualization techniques in this work. It is a redeveloped version of the
model for COVID-19 dynamics by Harris et al. [24]. This is an age-
structured stochastic forward simulation model, developed to simulate
the spread of COVID-19 in Scotland on a high-resolution spatial grid.

These models were selected as they represent two extremes of the
epidemiological response in Scotland. The principal model is a high-
aggregation model developed for studies of COVID-19 transmission
within health board settings, and to answer questions on asymptomatic
transmission and silent spread during the pre-detection period. The
study of this model, combined with the Irish modeling approach, high-
lighted a modeling structure of the COVID-19 dynamic flow within a
population which was then implemented within the Simulation.jl model.
The latter model is a high-resolution spatial model which enables more
complex studies of local transmission and environmental drivers.

SA is resource hungry in terms of time and computation, so its
formal use in epidemiological emergencies has been limited by the
speed at which decisions need to be made. Much previous work relies
on forward simulation of models and informal visualization of outputs.
In real-time this is challenging [34], Dunne et al. [19] discuss how to
formally analyze models and make them more accessible. However, SA
is critical to better understand complex relationships that might exist
between parameters and affect the quality of inferences made using
models [53]. This benefit outweighs the cost of carrying out SA.

4 USER TASKS IN SENSITIVITY ANALYSIS

We began the project in June 2020 as part of an effort to leverage visu-
alization and visual analytics to provide rapid assistance in modeling
the pandemic (RAMP) [43]. Through biweekly meetings and discus-
sions with domain experts for more than a year, described in detail in
Section 7, we identified the following user tasks for SA.

Global or Overall Sensitivity:
a. To determine the sensitivity of each parameter.
b. To compare and order parameters according to their sensitivity.
c. To confirm if the algorithmic estimation of the sensitivity is rea-

sonably meaningful or identify any questionable aspects of the
algorithmic analysis (e.g., anomalies).

d. To acquire the characteristic patterns of sensitivity, e.g., linearity,
consistency and sampling sparsity.
Sensitivity related to specific visual patterns in the model outputs:
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e. To determine pattern-sensitivity of each parameter.
f. To compare pattern-specific sensitivity.
g. To identify which variable contributes to acceptable or unaccept-

able patterns.
Sensitivity related to different value ranges of each parameter:

h. To determine range-sensitivity of each parameter.
i. To compare range-specific sensitivity.
j. To identify which variable increases or reduces output variance,

and does so in which specific value range.
Sensitivity related to multiple parameters:

k. To hypothesize the combined sensitivity of two or more variables.
l. To test a hypothesis about some combined sensitivity.

m. To analyze pattern- and range-specific combined sensitivity.

Furthermore, in sensitivity analysis literature [45], the main use cases
for algorithmic sensitivity analysis are presented as four “settings”:

• Factors Prioritization (FP): Identifying the parameter which, if
determined, leads to the greatest reduction in the variance of
the output. This involves ranking the parameters in order of
importance for reducing the uncertainty in the output.

• Factors Fixing (FF): Identifying parameters with little effect on
the output, which can be fixed or eliminated. Thus, reducing the
complexity of the model.

• Variance Cutting (VC): What parameters should be better deter-
mined to decrease the variance beneath a certain threshold.

• Factors Mapping (FM): Addresses “what parameter is most re-
sponsible for producing outputs within a region of interest?”.

4.1 Condensed List of Tasks for Visualization
While many epidemiological models (such as those used in this work)
produce time series outputs, algorithmic sensitivity analysis studies
scalar features of the output time series, e.g., the sum of values or the
value at a specific time. Although algorithmic sensitivity analysis can
only study scalar features, domain experts are also interested in non-
scalar features, such as a time series’ shape. For the methods developed
in this paper we will focus on two features of the outputs of the EERA
model, which domain experts deemed epidemiologically meaningful:

(A) The peak number of deaths during the first 200 days, providing
an indication of the maximum strain a healthcare system would
experience. A metric commonly used to approximate inference
in simulation models (including Simulation.jl).

(B) The overall shape of the time series of daily deaths during
the first 200 days. This measure enables modelers to identify
outputs which match real-world data and outputs which deviate
in interesting ways.

(A) is a scalar quantity while (B) is a qualitative feature of the
output, of interest to the domain experts consulted. Visual encodings,
as opposed to a purely algorithmic approach allow for the study of
qualitative features of a model’s outputs. The analysis and design
of visualizations for alternative scalar and time series outputs would
proceed identically to that of outputs (A) and (B).

A domain expert asked if we could introduce means of observing
combined sensitivity, i.e., tasks (k,l). It was decided that allowing
the user to supply a list of hypothesized interactions (functions of the
model parameters) would be a suitable solution. This solution enables
studying interactions involving an arbitrary number of parameters. Fur-
thermore, showing the hypothesized interactions alongside the actual
model parameters allows the user to visually determine the significance
of the interaction using the same visual cues as for the other parameters.
An alternative approach [41] is to encode the model output as a heat
map where the coordinates encode values of 2 parameters, this does
not easily extend to interactions involving more parameters.

Combining the list of tasks (a-m) and the settings listed in Section 4
with our output features of interest, we consulted with domain experts
to settle on a condensed list of realistic sensitivity analysis tasks for an
epidemiological model. The tasks are:

1. Rank the importance of the model parameters for the value/shape
of the output.

2. Rank the importance of the model parameters in reducing the
variance of the output.

3. Identify sensitivity patterns with regards to:
3.1 Over what range parameters affect outputs.
3.2 Parameters which affect the outputs when other parameters

take certain values.
4. Identify whether hypothesized interactions based on prior knowl-

edge correlate with the outputs as expected.

Where in the context of the epidemiological model, task 1 corresponds
to the FP, FF, FM settings and tasks (a,b,c), task 2 corresponds to FP,
FF, VC settings and tasks (a,b), tasks 3.1 and 3.2 corresponds to the FM
setting in this context and to tasks (d,e,f,g,h,i,j), task 4 has no analogue
in the “setting” but corresponds to tasks (k,l,m).

4.2 Task Driven Visualizations
Three visualizations were developed, each corresponding to a different
approach to sensitivity analysis. The approaches and visualizations are:

Visualizing results of a sensitivity analysis algorithm.
(I) A bar chart showing the Sobol indices for scalar outputs.

Algorithmic-centric visualization assisted approach.
(II) A scatter-line plot of parameters values and scalar outputs, fea-

turing 1D slice plots from a Gaussian process emulator (GPE)
showing the expected effect of varying a single parameter.
Visualization-centric algorithm assisted approach.

(III) A cluster-based technique which computes clusters in the input
or output space of the model, to reduce the cognitive load for data
grouping when observing the data.

A modeler highlighted that sensitivity analysis and parameter tuning
are often done in parallel. This involves searching for parameter values
which result in outputs matching real-world behavior. The need to
identify parameters for which the model outputs match real-world data
motivates representing the model output using the same quantities used
to quantify the real phenomena. Because of this, dimensionful and
unnormalized model outputs were preferred, such as total deaths rather
than deaths as a percentage of the total population. This also motivated
not representing model outputs using algorithmically selected features,
such as PCA components. In addition, according to the information
theory justification of visualization [14], visualization adds value by
allowing the observer to combine the shown data with their relevant
prior knowledge. Representing the model outputs using quantities and
visual encodings familiar to the modeler reduces the cognitive load
required to compare model outputs with their prior knowledge of the
phenomena being modeled.

It was decided to keep all axis labels consistent with the names
used in the model. The choice was made to maintain continuity with
the naming conventions used by the domain experts. We privileged
the familiarity the domain experts have with the data, down to the
meaning carried by the choice of specific names, over attempting to
modify names and labels to perhaps increase transparency for a general
audience but with the risk of potentially introducing mistakes.

4.3 Sobol Indices for Sensitivity Analysis
In this paper we use Sobol indices, a form of variance-based global
sensitivity analysis, to quantify the influence of sets of parameters on
the model output. See Saltelli [45] for the underlying mathematics.
The intuition behind Sobol indices is that they quantify how much the
variance in a model’s output is expected to decrease when a parameter
is fixed. The Sobol indices are normalized.

Fig. 2 shows a set of Sobol indices, including the first order (main
effect) and interaction Sobol indices of the parameters, whose meanings
are shown to the right, with respect to a scalar output of the EERA
model. The interaction Sobol index quantifies the magnitude of inter-
actions between one parameter and all the others. This visualization
was developed to address task 1 for output A. While Sobol indices are
scalars, and can be ordered algorithmically, the visualization provides
a quick overview of the sensitivities present in a model using quantities
familiar to SA practitioners.
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Fig. 2. A Sobol index plot showing the main effect and interaction effect of
the parameters in the EERA model with respect to the maximum number
of daily deaths during the first 200 days.
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Fig. 3. The interpretation of a scatter plot for summarizing all simulation
runs can be significantly improved by introducing lines to the plot, where
each light blue line represents the trend of a run when it is extended by
extra real or emulated runs where only one parameter varies.

It is not feasible to include the hypothesized interactions from task
4 in Sobol analysis. This is as Sobol analysis assumes that the model
parameters can take on values independently from one another, but
hypothesized interactions are functions of model parameters. Therefore,
hypothesized interactions cannot be included in Sobol analysis.

5 ALGORITHM-CENTRIC AND VISUALIZATION-ASSISTED

While analytical algorithms, such as Sobol indices, can perform tasks
(a) and (b) in Section 4, they do not support tasks (c) and (d) as they re-
duce information too quickly to aid these tasks. One solution to address
this shortcoming is for users to visualize data that is not shown in the
algorithmic results, such as the bar chart in Fig. 2 [13]. For example,
when a user observes estimated sensitivity values of the parameter p inf
in Fig. 2 and notices the similarity with T lat, the user naturally wishes
to know if the global sensitivity of these two parameters really is similar.
In this section, we present an approach to assist the interpretation of
the algorithmic results through visualization.

Let P = {p1, p2, . . . , pn} be a set of input parameters, T =
{t1, t2, . . . , tm} be a time series output, and Sin and Sout other input
and output data. A model M is thus a function (T,Sout) = M(P,Sin).
The k-th simulation run of the model takes an instance parameter set
P = Ak, and generates an instance output time series Bk, such that

({β1,k,β2,k, . . . ,βm,k},Sout,k) = M({α1,k,α2,k, . . . ,αn,k},Sin,k)

The output of a simulation run can be characterized by one or a
few statistical measures. Consider a simple measure vsum, the sum
of {t1, t2, . . . , tm}. The bi-variate relation (pi,vsum

i ) informs us on the
behavior of each parameter pi (i = 1,2, . . . ,n) and thus its sensitivity.
The visualization on the left of Fig. 3 shows the (p,vsum) pairs for
parameter p inf obtained from 160 simulation runs. Although there
does not seem to be any correlation, we cannot draw such a conclusion
because different dots (p,vsum) feature different parameter sets, hence
an extensive amount of confounding effect.

Ideally, we could observe the behavior of pi while fixing all other pa-
rameters p j ( j = 1,2, . . . ,n; j ̸= i). However, this would be intractable
to both computation and visualization. Since there is already a set
of simulation runs with parameter sets Ak (k = 1,2, . . . , l), the user
can focus on individual runs. This translates to observations based on
each instant parameter set {α1,k,α2,k, . . . ,αn,k}. The behavior of pi
under the condition of α j,k ( j = 1,2, . . . ,n; j ̸= i) thus informs us of the
sensitivity of pi under that condition.

a

b

a b c

c

Fig. 4. Scatter-line plots for the EERA model showing 14 parameters and
two combinations of parameters with respect to the maximum number of
daily deaths. Zoomed-in views of p inf (a) T lat (b), and p s + p inf (c).

This suggests that for each data point (pi,vi) in the left scatter plot
in Fig. 3, one may use a brute-force method to invoke more simulation
runs to sample pi under the fixed condition of α j,k ( j = 1,2, . . . ,n; j ̸= i).
However, the computational cost would be unattractive as one would
have to compute these additional runs for all n parameters and all l
existing runs (i.e., all dots in the left scatter plot in Fig. 3).

One can reduce the cost of additional simulation runs by emulating
such runs using a Gaussian process emulator (GPE) [28], generating
likely (pi,vi) points when pi varies in its range (i.e., [0, 1] in this case).
These likely points are shown as light blue curves in the combined
scatter-line plot on the right of Fig. 3. Each curve in the scatter-line plot
depicts the effect of just varying pi while fixing the other parameters
p j ( j = 1,2, . . . ,n; j ̸= i) to constant values sampled uniformly.

A GPE is trained on the data of known simulation runs, i.e.,
Ak,Bk) (k = 1,2, . . . , l), and is used to predict the expected effect of
varying the parameter values. For simulation runs that sample param-
eters using a uniform sampling scheme, such as Saltelli’s extension
of Sobol sequences [9] or Latin-Hypercube sampling, the points with
adjacent values of pi can be inferred effectively from different values
of p j indirectly by the GPE. As our testing shows that 94.53% of the
predictions made by the GPE fall within the 95% confidence interval, it
is unlikely that any light blue line in Fig. 3 would deviate far from the
true line. These light blue lines thus enable scientists to observe trend
patterns that the normal scatter plot cannot convey.

In addition, the mean of the curves predicted by the GPE is depicted
by the red curve in the scatter-line plot, indicating the overall trend
vsum

i = fi(pi). The curved pattern of the red line in Fig. 3 indicates
that the sensitivity of the parameter changes within the range [0, 1].
For example, based on visual observation, one may consider that p inf
is more sensitive in the range [0, 0.5) than [0.5, 1]. One can also
observe the changes in the correlation between p and vsum, enriching
the interpretation of the sensitivity values. Therefore tasks (h), (i), and
(j) in Section 4 are also supported by this approach.

5.1 Example of Use: Examining Similar Sobol Indices
Fig. 4 shows a set of scatter-line plots for assisting the interpretation
of the sensitivity values of the EERA model shown in Fig. 2. The
characteristic measure v in this figure is the maximum value of the
output time series, i.e., vmax = max(β1,β2, . . . ,βm). From Fig. 2, we
can answer the query about the two parameters, p inf and T lat. Although
they have similar sensitivity values, the curves in the two corresponding
scatter-line plots are noticeably different. The mean curve of (p,vsum)
for p=p inf moves upwards when increasing p inf, while that for p=T lat
moves downwards when increasing T lat.

The original scatter plot can also display interactions between two
or more parameters as shown in Fig. 4(c). Such multi-parameter plots
do not have lines for emulated data, since the emulation would result in
a 3D surface. The red line indicates the mean of the simulation runs.
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Fig. 5. Sobol index plot (a) and scatter-line plot (b) for the Simulation.jl
model with respect to total number of deaths. Beta env is the environ-
mental transmission, Beta force the force of infection, other parameters
are explained by their names

5.2 Example of use: Analyzing the Simulation.jl Model
This use case investigates the effect of the parameters on total deaths in
the ages 50-59 over a 2-month period. The analysis starts by generating
a Sobol index plot, seen in Fig. 5(a). If one has little prior knowledge
of a model’s sensitivities, the Sobol index plot can provide a quick
overview of the relative influence of the different parameters and an
estimate of the importance of interactions. From Fig. 5(a) the parameter
“Virus growth” appears to be most influential, with “Beta force” having
some effect, and the rest having little effect. Furthermore, Fig. 5(a)
suggests that interactions between parameters are of limited importance.

The scatter-line plots for the data set, seen in Fig. 5(b), should now be
consulted. Fig. 5(b) shows that increasing the value of “Virus growth”
only has a clear effect in increasing the number of deaths when it is
in the lower part of its range, which the Sobol indices cannot reveal.
Furthermore, the scatter-line plots show that “Beta force” has a slight
positive correlation with the total deaths over its entire range.

6 VISUALIZATION-CENTRIC AND ALGORITHM-ASSISTED

In many applications, estimating global or overall sensitivity is usually
not sufficient for understanding the behaviors of models and their
parameters. Modeling scientists often visualize simulation results,
select one or a few visual patterns that they would like to have or avoid
in the results, and attempt to identify parameters that are sensitive
to these visual patterns. In such situations, the sensitivity related to
specific visual patterns, which are tasks (e), (f), and (g) in Section 4,
may take the priority over the global sensitivity. As discussed briefly in
Section 1, it would be cognitively challenging to directly observe the
data of ensemble runs, which contain large amounts of information, to
reason about the sensitivity of the parameters effectively.

For example, hypothetically, one could identify all time series in
Fig. 1(b) that exhibit a certain visual pattern, and then observe if these
time series correspond to some data patterns in the parameter table in
Fig. 1(a). The data patterns would indicate how the parameters are
sensitive to the presence or absence of the visual pattern concerned.
According to an empirical study on five visualization tasks by Borgo et
al. [7], humans’ performance involving two concatenate visualization
tasks can be significantly worse than that for each task individually.
Although the viewing of the table in (a) or plot in (b) independently
may be cognitively demanding but feasible, concatenating the two

c
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b

c

Fig. 6. Cluster-based sensitivity analysis plot for the epidemiological
model. Two output clusters with an early sharp outbreak (a) and a later
outbreak with a lower peak (b). The latent period, T lat (c) is on average
greater for the model runs associated with (b) than for (a), while the other
model parameters have similar distributions for the two clusters.

(i.e., viewing (a) with the observation of (b) in mind) would be in the
challenging spectrum indicated in Borgo et al.’s research [7]. For such
a costly visualization-centric approach, statistics and algorithms can
provide rapid abstraction to reduce the cognitive cost [13].

In this work, we use a clustering algorithm to assist the grouping
of time series in (b), cluster-based visualization as shown in Fig. 1(e)
can provide the task of viewing the table in (a) with helpful abstraction
and external memorization of the visual patterns. In addition, using
the pixel-based visualization as shown in Fig. 6(c) can help to further
reduce the cognitive load associated with viewing the parameter table in
Fig. 1(a) by enabling users to observe the data patterns of each cluster
within the range of each parameter.

Recall the notation in Section 5. In each simulation run, the model
M takes an instance input parameter set (i.e., P = Ak) and generates an
instance time series (i.e., T = Bk) as a prediction. Here we focus on the
sensitivity of P in relation to the visual patterns in T , though there may
be other forms of inputs (Sin,k) and outputs (Sout,k).

We can divide the l time series B1,B2, . . . ,Bl into g clusters
C1,C2, . . . ,Cg based on a set of similarity criteria. As there are usually
only a few clusters, i.e., g ≪ l, cluster-based observation and reasoning
allows users to “outsource” the mental effort of grouping and mem-
orization to the algorithm and visualization, making more cognitive
resources available to other related tasks, e.g., considering what visual
patterns are important but not predicated by all simulation runs. As
shown in Fig. 6, each cluster is represented by a mean curve as its “sig-
nature curve”, allowing users to reason more easily as to which clusters
feature a desired visual pattern and which do not. When the users move
to the next task of observing the sensitivity of the parameters, instead
of considering many curves that have similar visual patterns identified
and stored in one’s mind, the users can focus on a few signature curves
in the external memory (e,g., four in Fig. 6) which, while limited to
storing only a few objects at a time, is highly efficient [59].

The cluster-based sensitivity analysis plots consist of two parts, one
showing the model parameters and another showing the output time
series. To the left, a grouped chart shows the ranges and values each
parameter takes for the model runs associated with that cluster. To the
right, line plots of an output quantity against time is shown. The line
plots contain translucent lines for all ensemble members in a cluster and
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Fig. 7. Clustering based on the value of p s (a) in the EERA model.

a thicker colored line representing their mean. To aid in matching the
input and output spaces associated with a cluster, the color of the mean
line in the line plot matches the colors used for the different clusters
in parameter space. The vertical ordering of the bars in the parameter
space plot is also consistent with the vertical ordering of the line plots.

All the lines in the ensemble are shown, rather than a confidence
interval, to allow the modeler to identify outliers in a cluster and anoma-
lous model behavior. A modeler can utilize the view of all lines in a
cluster to identify anomalies and judge whether they might stem from
the model behaving unexpectedly or from poor clustering.

Clustering can be based either on model input parameters, or output
curves. To investigate the effect of a parameter or interaction taking on
low, medium, or high values, the data can be clustered, so all model
runs where a parameter or interaction takes values in the same 1/k part
of its range are assigned to the same cluster. Fig. 7 shows clustering
with respect to the value of ps.

Clusters based on the output curves can be computed using time
series clustering algorithms [55] such as k-means based on Euclidean
distance or dynamic time warping. Clustering output time series re-
veal whether outputs with certain shapes correspond to certain sets of
parameter values. One can uncover interactions between parameters
by comparing their values across clusters, see Section 6.2. In addition,
output clustering allows domain experts to match model behavior with
real-world time series using their experience, Section 6.1 discusses this.
Output clustering can also provide a sanity check, e.g. to confirm that
there is no or only a minor outbreak when the probability of infection is
low, and deviations from expected behavior can motivate further study.

Determining the appropriate number of clusters, k, for a data set is a
nontrivial task to perform algorithmically. Because of this, the modeler
supplies a list of k values to be tried; utilizing their prior knowledge
regarding the expressivity of the model, derived from knowing its inner
workings, to narrow down the search space for the optimal k. The
cluster-based analysis is then performed, producing plots, for all values
of k supplied. When presented with the plots for the different k values
the modeler can identify and focus on the plots which contain clusters
which are epidemiologically meaningful or show interesting patterns in
parameter space. Using visualization, the algorithmically complex task
of finding an optimal k is replaced with the simpler task of identifying
meaningful and interesting clusters in a handful of plots. Enabling a
modeler to quickly determine if the plot for a k value is of interest is
therefore a key requirement of this visual encoding.

Colors were selected to be distinct yet color blind friendly for most

common types of color blindness, additional considerations were that
the order should be such that adjacent colors differ substantially so that
the different lines in the parameter chart to the left in the cluster plot
are distinct when next to each other as seen in Fig. 7(a).

On the left-hand side, bars show the range each parameter takes in
the different clusters with vertical one-pixel wide lines showing the
individual parameter values present in the cluster. Vertical lines are
used since they allow a user to gauge the density of the distribution,
to identify outliers or a bimodal distribution of parameters in a cluster.
The layout was compared against alternative options such as box-plots
and violin-plots, and discussed with domain experts - who appreciated
the advantages brought by less compression of the data and more de-
tails on the overall distribution, in a small form factor. The individual
ticks within a bar are of a similar color to the bar itself to not break
up the shape of the bar. In output clustering, parameters with similar
distributions for many clusters, are not important for the shape. Clearly
presenting the shape of the bar helps a user in quickly identifying
parameters with little impact. Having discarded unimportant param-
eters, the user can use the colored vertical lines to study parameter
distributions of interest further, as shown in Fig. 6(c).

6.1 Example of Use: Addressing Questions Relevant to the
Initial COVID-19 Wave in Scotland

Domain experts highlighted that different questions have been relevant
at different times and places of the COVID-19 pandemic. During the
initial wave, questions of interest in Scotland included: the prevalence
of asymptomatic spread and the amount of community transmission
prior to the first lockdown on March 23rd, 2020. These questions can
be addressed by constraining the values of “pre-lockdown background
transmission rate” and “mean asymptomatic period” in the EERA
model, by comparing outputs and real-world data.

A domain expert who used the EERA model to study this very
problem at the time, proposed utilizing the cluster-based plot with
clustering based on the output time series to study this. The domain
expert used his prior knowledge of the shape of real-world time series of
deaths in Scotland to identify two clusters of output time series whose
shapes were in rough agreement with the shape of the real-world time
series, these were (a) and (b) in Fig. 6. By identifying the parameter
values associated with these clusters in the cluster-based analysis plot,
estimates for the rate of spread before the initial lockdown in Scotland
and the mean asymptomatic period could be obtained. In this way,
domain experts can use the visualization-centric algorithm assisted
approach and their knowledge of the real-world time series to quickly
estimate the values of real-world quantities relevant to epidemiology.

6.2 Example of Use: Obtaining an Overview of the Sensi-
tivities of the EERA COVID-19 Model.

Modelers with prior experience of the EERA model suggested that the
value of ps + pinf and ps × pinf (scalar multiplication) may be influen-
tial in determining the peak number of deaths. These were therefore
included as hypothesized interactions. Fig. 2 shows the Sobol indices
based on the value of peak deaths, suggesting that four parameters (pinf,
ps, Tlat, Tinf) are most influential. The Sobol index plot agreed with the
domain experts experience-based hypotheses.

In the Fig. 4 scatter-line plots, the model parameters whose red lines
have the most pronounced gradient match the four most influential
parameters from Fig. 2. Fig. 4(a) reveal that pinf seems to determine
the peak number of deaths only when it is towards the bottom of its
range, since there the vertical spread of the blue dots corresponding
the spread in peak deaths is much reduced. The values of ps and pinf
correlate positively with the peak deaths while Tinf and Tlat (b) correlate
negatively. Both ps+ pinf and ps× pinf correlate strongly with the peak
number of deaths. However, the value of ps + pinf (c) provides a tighter
and roughly linear lower and upper bounds of the peak deaths.

One can find parameters which are important conditional on the
values of the other parameters using output clustering. This is shown in
Fig. 6 where most parameters associated with cluster (a) and (b) have
similar distributions, including ps taking on large values. However,
the distribution of Tlat (c) is different in the two clusters, the range of
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Fig. 8. Clustering for the principal epidemiological model, showing output
time series corresponding to values of the hypothesized interaction ps +
pinf in the largest 25% (a) and second largest (b) 25% of its range.

the distributions overlap but their centers are in the lower and upper
part of Tlat’s range respectively. This shows that in this model Tlat, the
latent period, has a significant effect in determining the peak number
of deaths if ps is large enough for an outbreak to occur, otherwise Tlat
has limited effect, as seen from its distribution in the yellow cluster,
corresponding to a limited outbreak. Since the scatter-line plot showed
that ps + pinf correlated strongly with the peak number of deaths it was
decided to cluster the output curves based on the value of ps + pinf,
shown in Fig. 8. However, in Fig. 8 some lines in cluster (b), have peaks
above lines in cluster (a), showing that the value of ps + pinf alone does
not predict the peak number of deaths. Although, on average the lines
in the different clusters follow the expected trend.

This use case reflects the order domain experts preferred to use the
plots in this work to get an overview of the sensitivities of a model.
Starting with Sobol indices, then the scatter-line plot and finally cluster-
based sensitivity analysis plots allow the user to carry forward insights
from less involved visual designs to more involved visual designs.

7 USER EVALUATION

The project dates back to June 2020 and it was initiated as part of
an effort to support domain experts in what could be described as
Guerrilla Analytics [42]. The work can be classified as problem driven
and the design process followed a similar structure to the design study
methodology [50]. The design process pipeline traversed three main
phases: an exploratory phase where we analyzed domain and problem
space; a formative phase where designs were proposed and validated;
and finally a summative phase which gathered reflections to confirm
and improve our solutions. Biweekly meeting with members of the
RAMPVIS community were held throughout the process to discuss
our proposals and keep up to date with the domain experts’ current
work, gather epidemiologists’ feedback and new requirements, and
explore possible new directions. This was fundamental to identify
new opportunities and validate the flexibility, relevance and impact of
our work. We report details of each individual phase. The domain

expert team included 6 Senior Research Scientists, 1 Research Fellow,
2 final year PhD students. The team was composed of: epidemiologists,
epidemiology modelers and mathematical epidemiologists.

7.1 Exploratory Phase and Formative Evaluation
Our initial approach as data scientists and visualization experts focused
on the exploration of the model input and output space and linkages
across the two. The modelers looked favorably at our attempts and
brought to our attention that a core component of their work concerns
analyzing the input parameter space. The modelers identified as core
the analysis of parameters’ sensitivity as a means to understand pa-
rameters interactions and effects on the final output. We soon noticed
how modelers used the words “sensitivity” and “uncertainty” inter-
changeably, as parameter sensitivity is tightly correlated to uncertainty
in the model output. This interaction contributed to a steep change in
our approach and focus of our work, and highlighted a difference in
terminology when referring to “uncertainty”. Our work shifted from
the more traditional development of a visual analytics platform to the
investigation of metrics and methodologies used by modelers in their
analytical and exploratory process (as detailed in Section 4). This phase
allowed gathering a set of domain questions of interest to the modelers:

• On model stochasticity: D1: How do the model outputs vary for
a fixed set of parameter configurations?

• On model uncertainty in relation to inputs: D2: How does the
variation in the model outputs relate to the parameters of the
model? Which parameters are most important or least important?
D3: How does the relation between the input parameters and
model output variations vary for different categories, e.g., for
different age groups? D4: What are second degree and higher
degree interactions in relation to the uncertainty? D5: Can we
find out more about the nature of the sensitivity – if you have
lower values within the parameters, what would be the outcome
and/or the characteristics of the uncertainty?

• On model outcomes and real-world observations: D6: History
matching – how does the model outputs match reality? D7: What
inputs configuration fit the model to the observed data? D8:
Which outcomes lead to certain inputs?

All questions were being addressed by the modelers through the use of
emulators followed by SA on the respective parameter configurations,
D8 required instead what the modelers referred to as reverse SA.

In our formative evaluation phase, questions 1-8 were unpacked
into the high level tasks detailed in Section 4: D1(h-j), D2(a-b), D3(e-
g), D4(k-m), D5(h-j,c-d), D6(e-g), D7(c-d), D8(e-g). We looked at
methods that would support analysis of high dimensional data such as
parallel coordinate plots, pixel-based visualization and dimensionality
reduction techniques to identify patterns and clusters. The modelers
were interested in the possibility of moving from a holistic view, as the
one provided by a pixel-based visualization, to a detailed view of each
parameter space and behavior individually. They were also interested
in exploring beyond the statistical properties of each parameter and
look at interaction between them.

Feedback from this phase guided the development of the two frame-
works involving cluster-based visualization, small multiples and scatter
plots among others.

7.2 Summative Evaluation
In addition to the formative development, we evaluated our designs
using a series of case studies (see Sections 5.2, 6.1, 6.2) and individual
domain expert interviews. With the exception of one of the researchers,
who is also a co-author, the participants did not contribute to the design
and development of the tools, except for the requirements gathering
in the exploratory phase. After an introduction to each design, partic-
ipants were asked to explore each tool independently and articulate
their thought process and observations. Tasks presented in Section 4.1
were used to inform open-ended questions according to the think-aloud
protocol procedure (interview script provided in supplementary mate-
rial). The interview was followed by a short debriefing where we asked
participants if they had any suggestions on future developments or extra
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features that could be added and details on how such improvement(s)
could help their work. Each session took between 40 to 60 minutes.

The interview explored how helpful each plot was in ranking and
identifying the: (i) importance of the parameters in reducing variance
and/or determining values; (ii) ranges of significant parameters and/or
dependencies of parameters; (iii) testing and validating parameters
interactions; (iv) and for the cluster-based sensitivity analysis plot also
how the aforementioned affected shapes of the time series. Participants
were extremely engaged and discussion touched on all core points.

7.2.1 Summary of Findings

The feedback we received was overwhelmingly positive. The domain
experts had diverse feedback for each plot.

Algorithmic-Centric and Visualization-Assisted. The Sobol in-
dex plot was the most familiar visual encoding for the domain experts,
they highlighted how our proposed layout was a significant improve-
ment over state of the art. Experts noted how well the magnitude of
interaction could be seen and how it supported comparison across pa-
rameters. Experts added how the visualization helped in the analysis of
parameters which had already been identified as potentially influential.

Experts were particularly positive about the scatter-line plot. They
unanimously reported how well the visualization provided a summary
of each parameter space and overall behavior. We were surprised by
the fact that, without any prompt from us, they looked at the plot jointly
with the Sobol index plot. The senior experts and one researcher noted
how the scatter-line plot allowed the detailed exploration of parameters
which appeared of interest in the Sobol index plot. One of the experts
reported how some of the parameters had similar statistical values in
the Sobol index plot but differed significantly in the scatter-line plot

“Just looking at the magnitudes you would see a very high pin f and
ps but on their own you would not be able to tell that actually an
intermediate value of Trec was really bad for you.”. One of the senior
experts commented “With the second visualization [scatter-line plot],
you can see which parameter you really need to watch.”. Another
expert admitted how he was very interested in parameter calibration
and thought this plot to be a great tool to compare a combination
of parameters, and how he could use such results to validate which
pair had behaviors closer to the outcome of other simulations he was
running. The same expert reported how he would have been interested
in creating plots depicting pairwise combinations of parameters similar
to the pf + pinf case in Fig. 4(c).

Visualization-Centric and Algorithmic-Assisted. Feedback on
the Cluster-based plot was very encouraging. Experts reported how the
visualization enabled temporal SA, one of the experts reported that the
plot together with parameter interaction expressed through the scatter-
line plots can “help reduce the “uncertain” space”. One of the experts
found the aggregate curves very interesting however his feedback was
biased by his distrust in clustering algorithms “The aggregate curves,
that is very interesting [...] the representation actually looks really
useful. If I could find a clustering method I really trust, then this
is a great way to see the spaces where things are happening: high
infectiousness, etc. The peak here is telling a useful story. If I wanted
to get into a space where we do not have a high peak then I can
look at what parameter space I am in [in the clustering].” Another
expert provided a similar comment highlighting how “From the curves
one can quickly note the flat curves, that means no outbreak, and the
sharpness of the curve is interesting”. He also added how “... see the
clusters there? They tell us to stay away from this parameter space
because is yielding unrealistic results [pointing to the corresponding
curve]”. Further suggestions from participants included to overlay
real-life curves if available, and to be able to quickly see the scalar
features of different curves, such as the peak height. One of the experts
wondered if there could be a way to integrate spatial data to exploit the
model geographical information. Experts who were more positive to
the use of clustering algorithms found the clusters enabling to perform
a very quick comparison of the model output with real-world data.

7.2.2 Discussion

The evaluation confirmed our hypothesis that the two frameworks sup-
ported the two ends of the analytical process. Beyond the positive
reception we also gathered important insights from the domain experts.
These include the role of a co-creation process which saw both commu-
nities involved in trying to tease out the real challenges and potentials
in both domains. The framework did not aim to provide answers for
the modelers but rather to support the process of teasing out important
dimensions of the data by allowing the user to reduce the search space
themselves. “I think the point is that it tells you straight away what
you need to know there and then you can move on because you need to
focus on those four parameters that have, you know, significant impact
and maybe interaction.” We also noted how “freeing” some of the
cognitive load made experts to ask for more features. These represent
interesting future directions as well as new challenges.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented two visual analytics approaches for
supporting sensitivity analysis in epidemiological modeling work-
flows. Our experience of task analysis indicates the importance of
user-centered requirements gathering in the exploratory phase of the
work as well as understanding the existing solutions including the
algorithm-only approach commonly used by the domain experts and
the existing visualization solutions for other applications.

Both our proposed approaches focus on tasks that domain experts
wish to perform in SA, which are not adequately supported by nu-
merical outputs of an SA algorithm and the statistical graphics for the
analytical outputs. The first approach, “algorithm-centric, visualization-
assisted”, improves the algorithm-only solution by letting users observe
significantly more detailed data that likely contains extra useful in-
formation about parameter sensitivity, enriching the typical statistical
graphics of the analytical outputs. The second approach, “visualization-
centric, algorithm-assisted”, complements the algorithm-centric meth-
ods by providing users with visualizations that users can interpret easily
and relate quickly to other information (e.g., important patterns in the
real-world data). Our user-centered evaluation confirms the relative
merits of these two methods over the algorithm-only approach.

In general, the uses of both approaches are not limited to epidemio-
logical modeling. The first approach can work in any situation where
model outputs are scalar values or can be summarized by some statisti-
cal measures. The second approach was designed for complex model
outputs, for which different clustering algorithms may be required for
different data types. Our current implementation is applicable to any
model with time series outputs.

The two approaches are currently implemented as automated agents
and visualization plots in a visualization infrastructure [42]. We plan to
bring these two approaches together into an interactive system, where
experienced users can have more control of the secondary algorithms
such as the GPE and the clustering algorithm. Likely new visualization
techniques will emerge from the R&D of such a sensitivity analysis
system. This will allow formal assessment of the relative merits of our
methods and traditional SA pipelines used by domain experts. Building
on some of the feedback from the evaluation, we will also explore
how one can foster greater trust in the kinds of approaches we propose
here, such as exploring different clustering methods, and providing
interactive capabilities to relate different data aspects more effectively.
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