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Fig. 1. Screenshot of the DashBot Interface showing the generation of a dashboard named “Insights about wind in seattle-weather”.
The interface consists of a table view (A), a topic list (B), a chart editor (C), a canvas view (D), and a recommendation view (E).

Abstract—Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However,
creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar
with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and
exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started
to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly
hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning
to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement
learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and
imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model
is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective
ML-based visualization recommenders without beforehand training datasets.

Index Terms—Reinforcement Learning, Visualization Recommendation, Multiple-View Visualization

1 INTRODUCTION

Analytical dashboards have been broadly used in business intelligence
to help data analysts explore and discover data insights with multiple-
view visualizations (MVs) [46]. Even with the help of professional
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authoring tools, such as Tableau and Power BI, creating an effective
dashboard is still a highly demanding task, requiring expertise in data
analysis and visualization. Specifically, the analyst needs to explore
the dataset, select appropriate data columns and visual encodings to
configure charts, and investigate whether the charts are insightful. In
addition, the analyst has to consider the relationship between charts
to exhibit different perspectives of the dataset [65]. Such a process of
exploratory data analysis for dashboard generation is trial-and-error [8].

To reduce the burden, many studies have investigated rule-based and
machine learning-based (ML-based) methods for visualization recom-
mendation. Rule-based methods, such as APT [36], CompassQL [70],
and Voyager [69, 71], translate well-established visualization design
rules (e.g., expressiveness and effectiveness criteria [36]) to be pro-
grammable constraints for the recommendation. Differently, ML-based
methods employ state-of-the-art models, such as decision trees [33] and
deep neural networks [17, 21, 30], to learn common patterns of visual
encodings from large-scale chart datasets [16, 22]. Though useful in
generating effective charts, these methods focus on single visualizations
instead of MVs, where the relations between charts are important.
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Towards the generation of MVs, a series of studies investigate the use
of hand-crafted rules. For example, to tell data stories, Datashot [64]
and Calliope [53] adopt statistics metrics (e.g., Pearson correlation coef-
ficient) to extract facts from datasets and then generate charts according
to the facts. These successful cases prove the usefulness of hand-crafted
rules. Recently, deep learning-based methods have also been used to im-
prove the efficiency of generating MVs. For example, MultiVision [75]
trains deep neural networks to score the goodness of single charts. Then
the single chart scoring is combined with customized metrics to gener-
ate multiple charts. In this method, the generation of MVs is conducted
indirectly due to the lack of high-quality MVs datasets, which could
harm the training process and results.

In this paper, we propose to use deep reinforcement learning to gener-
ate analytical dashboards, taking advantage of established visualization
knowledge and efficient machine intelligence. We argue that applying
reinforcement learning to such a scenario has several advantages. 1)
Intuitive modeling. Reinforcement learning agents learn from envi-
ronments through exploration, which is similar to the mechanism of
exploratory visual analysis. Therefore, modeling the exploratory visual
analysis process with reinforcement learning is natural. 2) Self-play
training. With carefully designed environments, action spaces, and re-
ward functions, agents can be constantly trained with different datasets
and obtain a shared experience of dashboard generation, with no need
for beforehand training data with labels. 3) Online recommendation.
Due to a similar mechanism, a reinforcement learning-based recom-
mendation system supports a swift switching between human steering
and automation. When users update the dashboards by preference, the
agents can generate subsequent recommendations promptly.

However, designing a reinforcement learning model for analytical
dashboards is challenging. First, it lacks a well-established environment
for “visualization agents” to explore and train. Different from training
agents to play games (e.g., AlphaGo [55]), in which the winning and
losing can explicitly measure the goodness of agent actions, there is
no deterministic rule to evaluate the generated dashboards. Second,
it is difficult to design an agent to imitate complex human behavior
in generating dashboards, including configuring charts by multiple
parameters (e.g., mark types, encoding types, data fields, and data
transformations) and exploring the large space of chart combinations.

To address the above challenges, we developed DashBot, a deep
reinforcement learning-based recommendation system for analytical
dashboards. For the first challenge, we investigated state-of-the-art
design guidelines for MVs [44, 65] and conducted a preliminary study
with a collection of dashboard designs of Tableau and Power BI. From
the study, we investigated how to use design guidelines for assessing
dashboards. Built upon the guidelines and knowledge gained, we de-
signed a dashboard playground, which scores the generated dashboards
and provides an interface for the agents to explore the dashboard de-
sign space. For the second challenge, we formulated the exploratory
dashboard generation to be a sequence prediction problem. Specifically,
at each state, agents can decide the actions to take (e.g., adding or
removing a chart) and configure chart parameters (e.g., chart types
and encoding types). We designed a novel deep neural network to
achieve the prediction. To improve training efficiency, we proposed
a constrained sampling strategy to ensure the validity of generated
charts while preserving the exploration uncertainty of the agents. To
validate the usefulness of the proposed method, we conducted an ab-
lation study for the model design and comparative experiments with
a state-of-the-art dashboard generation system. We also analyzed the
user feedback and reflected on designing automatic agents to generate
analytical dashboards. In summary, we have four major contributions.

• A preliminary study that reviews practical dashboard designs and
summarizes the design considerations for the recommendation.

• A reinforcement learning formulation for dashboard generation
that features the definition of reward functions for evaluating the
expressiveness and insightfulness of the dashboards.

• A novel deep neural network for agents to explore the actions and
parameters for generating dashboards.

• A series of quantitative and qualitative studies that validate the
usefulness of the proposed approach and lessons learned in de-
signing automatic agents for visualizations.

2 RELATED WORK

In this section, we introduce related studies from the perspectives of
visualization recommendation, multiple-view visualization generation,
and reinforcement learning for visualization.

2.1 Visualization Recommendation
Existing visualization recommendation approaches can be categorized
into rule-based methods and ML-based methods [45, 74]. Rule-based
methods utilize the principles in visualization theories to construct
visual mapping. For example, APT [36] incorporates expressiveness
and effectiveness criteria [11] into graphical languages to formulate
visualizations. Show Me [37] and CompassQL [70] employ query
techniques to enumerate visual encodings. Furthermore, Voyager [69,
71] adopts statistics and perceptual measures to rank the generated
visualizations and supports interactive exploration.

ML-based methods incorporate machine learning models to predict
the visual mapping. A number of methods formulate the visual map-
ping as a non-linear regression from hand-crafted data features to charts,
such as VizML [21], NL4DV [41], and wide-and-deep recommenda-
tion network [43]. Other methods formulate the recommendation as
different problems, such as sequence-to-sequence translation [17, 82],
learning-to-rank [33, 40, 57, 76], and knowledge graph [30, 83]. How-
ever, these recommendation methods mainly focus on generating a
single chart, which might be insufficient for solving the visual analysis
problems with high-dimensional data.

2.2 Multiple-View Visualization Generation
Multiple-view visualizations (MVs) are useful in visual analysis for
their capability in representing different perspectives of data simultane-
ously. Numerous MVs, which refer to visual analytics (VA) systems,
have been created to discover patterns and insights [4, 72]. Existing
studies of visualization recommendation for VA systems focus on lay-
out problems regarding organizing multiple views [51]. For example,
Al-maneea and Roberts [3] proposed a series of criteria to decompose
the VA systems in the publications and quantify their layouts. Chen et
al. [14] investigated view composition and configuration of the systems.

Existing studies of MV generation target to creating MVs from tabu-
lar data for insight discovery [25] or storytelling [19, 50]. For example,
Voder [56] and QRec-NLI [63] adopts natural language processing
models to extract data facts or recommending next-step queries for
dashboard exploration. Zhao et al. [81] proposed ChartStory, a system
that composes charts into comic-style visualizations. DataShot [64]
generates data fact sheets with a template-based method for visual
storytelling. Similarly, Calliope [53] obtains data insights with cus-
tomized metrics and identifies the best ones using a Monte Carlo tree
search. These rule-based methods can well integrate visualization
domain knowledge into the design of metrics. Recent research also
explores the generation of dashboards with deep learning. MultiVi-
sion [75] employs bidirectional long short-term memory models to
score and rank single charts for MV generation. In this work, we
integrate deep learning methods and visualization knowledge to gen-
erate analytical dashboards. Specifically, we utilize the capability of
deep neural networks in simulating complex environments and take
advantage of well-established visualization design rules to score the
generated visualizations.

2.3 Reinforcement Learning and Visualization
Reinforcement learning aims to train agents to take actions in specific
environments so that the agents can gain the highest accumulated re-
wards. Given a current observation, Q-learning [66] is designed to
predict the rewards that can be gained and choose the actions with
the highest rewards. However, Q-learning can only handle a small
number of observations and actions. To cope with the problems with
complex situations, more variants based on deep learning have been
proposed. For example, to handle the large observation space of game
screens during playing Atari video games, Mnih et al. [39] proposed
deep Q-learning. Though useful, deep Q-learning fails when there is a
high-dimensional action space. The problem of instability during train-
ing also arises. A series of policy gradient methods [31,38,48,49] have
been proposed to address these problems. In this work, we choose to
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use asynchronous advantage actor-critic algorithm (A3C) [38], a state-
of-the-art reinforcement learning framework, to handle the problem of
dashboard generation, in which both observation space (i.e., dashboards
with different chart combinations and variant chart numbers) and action
space (i.e., generating chart configurations) are high-dimensional.

A few studies have used reinforcement learning models for visu-
alization generation. For example, MobileVisFixer [73] adopts an
explainable Markov decision model to optimize the layouts of visu-
alizations on mobile devices. Bako et al. [6] also adopted a Markov
decision process model to recommend potential D3 syntax for author-
ing visualizations. Tang et al. [59] adopted reinforcement learning to
create storyline layouts. Shi et al. [52] and Wei et al. [67] used rein-
forcement learning to predict next-step operations of chart editing. In
this work, we target the dashboard, a multiple-view visualization with
larger design space, and formulate the problem of dashboard generation
to be a reinforcement learning problem.

3 DESIGN OF DASHBOT

To design an effective recommendation system, we conducted a prelim-
inary study to understand the current practices of analytical dashboards
and derive the design considerations of recommendation systems.

3.1 Preliminary Study
Existing studies for visualization designs mainly focus on visualization
genres such as infographics [12], storylines [60], and data stories [54,
64]. There are few studies that investigate the design patterns for
analytical dashboards [5, 46]. Therefore, we start with a preliminary
study to gain an overview of the design practices.

We first collected dashboards with the most number of “likes” from
the official galleries of Tableau [2] and Microsoft Power BI [1], which
contain hundreds of high-quality examples. Not all examples in the
galleries are dashboards and some of them are posters (telling stories
mainly with text and charts only for assistance) or infographics (with
only one well-designed view). Therefore, we carefully filtered the dash-
boards from the galleries. Finally, we obtained 40 Tableau dashboards
and 50 Power BI dashboards.

Second, we analyzed the dashboards from visual and data presen-
tation perspectives. Based on the design guidelines of multiple-view
visualizations [65], a good design should follow the rules of diver-
sity, complementarity, decomposition, and parsimony. We opted to
understand the collected designs concerning these rules.

Diversity. We analyzed how diverse chart types are used to represent
the data columns. A dashboard usually contains multiple views, and
each comprises one or multiple charts or components (e.g., text and
table). Therefore, for each dashboard, we annotated the types of charts
and components, as shown in Fig. 2(A). From the results, we discovered
that the bar chart is the most commonly used chart type, followed by
line charts, maps, and donut charts. Text components are the second
most common, used to summarize the insights in the charts or show
key indicators independently. The table components are usually used
to show raw data directly.

Parsimony. The rule of parsimony refers to minimizing the number
of views while preserving effectiveness and expressiveness. Therefore,
we counted the view numbers of the collected dashboards (Fig. 2(C)).
We discovered that most dashboards are composed of 3-6 views. Only
a small number of dashboards contain more than 8 views.

Complementarity & Decomposition. Complementarity refers to
how charts complement each other to exhibit different perspectives
of the datasets. Based on the definition in the prior study [75], we
regard two views to be complementary to each other when they visu-
alize different data columns. For example, a view encodes columns A
and B and another view encodes columns C and D. On the contrary,
decomposition refers to analyzing complex data with multiple charts,
such as chunking the data or applying different aggregation methods to
a data column. These charts will share the same data column. When
investigating the examples in-depth, we discovered that few dashboards
include views complementary to each other, because the dashboards
usually concern specific “key columns”. In fact, in most dashboards
(96.7%), all their views are related to one or two data columns.

From the analysis above, we understood that to design an effective
dashboard, it is encouraged to identify a topic (i.e., a key column)
and configure composed charts to discover insights surrounding the
topic [64]. Besides, it is necessary to introduce adequate chart diversity
to enhance expressiveness but avoid a large chart number.

3.2 Design Considerations
Based on previous empirical studies [44, 65], recommendation sys-
tems [53,75], and our preliminary study on current practices, we derive
design considerations of a recommendation system for dashboards.
DC1 Generate valid dashboards automatically. The dashboards

should be automatically generated with specific characteristics.
Based on the preliminary study, an analytical dashboard com-
monly features multiple charts with diverse types and compo-
nents of text and tables. The charts should also follow effective-
ness rules [36]. For example, bar charts are suitable to visualize
the data of a nominal column and a quantitative column.

DC2 Facilitate self-steering data insight discovery. In addition to
merely visualizing the data with appropriate visual encodings, an
effective dashboard is supposed to convey data insights. When
generating the dashboard, the system should recognize data in-
sights, such as high correlations and temporal distributions, and
prioritize selecting charts with insights into the dashboard.

DC3 Enable direct manipulation on the recommendations. It is
unlikely to generate dashboards that fulfill the requirements of
all users. Therefore, users should be allowed to modify the
dashboards directly. The system should provide an interface for
users to customize the dashboards according to their preferences
and add new charts in an exploratory manner.

DC4 Support online recommendation during exploration. Edi-
tions on the dashboard inherently exhibit user preferences, which
provide additional conditions for the recommendation. There-
fore, the system should be able to start from current dashboard
configurations and explore the best dashboards accordingly. Fur-
thermore, the system should promptly generate new recommen-
dations after the modifications to ensure interaction efficiency.

Guided by these design considerations, we develop a recommendation
system empowered by a deep reinforcement learning-based compu-
tation module. The computation module is built with a deep neural
network that can generate valid charts (DC1) and discover data insights
(DC2) automatically. To ensure the validity of the generated charts,
we propose a novel constrained sampling method to apply rules to the
sampling state (DC1). Besides, we carefully design insight rewards
to encourage the discovery of insights during the exploration (DC2).
On top of the computation module, we develop an interactive interface
that allows users to edit the recommended dashboards (DC3). The user
editions are then fed back to the computation module, and the module
generates new recommendations based on the editions (DC4).

4 PROBLEM FORMULATION

This section introduces how to formulate exploratory dashboard gen-
eration to be a reinforcement learning problem. We first introduce
the Markov decision process (MDP), the foundation of reinforcement
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learning. Then we interpret human behaviors of designing analytical
dashboards into MDP actions.

4.1 Background: Markov Decision Process
Markov decision process (MDP) [10] is a stochastic control process.
An MDP can be formulated as a sequence of states and actions:

P = {(si,ai, pi,ri)|i ∈ [1,T ]}, (1)

where T is the length of the process, si ∈ S is the state at step i, ai ∈A
is a selected action from action space A, pi ∈ R|A| is the probabilities
of different actions, and ri ∈ R is the immediate reward after executing
action ai at state si.

The key of reinforcement learning (RL) is to train agents obtain
the most cumulative rewards after the exploration, i.e., return R =

∑
T
i=1 γ i−1ri, where ri is the immediate reward obtained at each state

and γ (γ = 1) is a discount rate. Therefore, the MDP is suitable to
model exploratory processes, in which the goodness of the actions for
the final result can be quantitatively evaluated at each state.

4.2 Formulating Dashboard Generation as MDP
We define the states and actions of designing an analytical dashboard.
Based on the preliminary study, we model the generation of dashboards
as a process to identify a key column (i.e., topic) from the dataset and
configure a series of charts with additional explanation columns to
reveal insights about the topic.

State Space. During dashboard generation, the agent decides the
next actions according to the current configuration of the dashboard,
which is a collection of charts. Therefore, the state space S enumerates
all valid chart combinations with a given dataset.

S =
{
{chart j| j ∈ [0,n]}

∣∣n ∈ [0,N]
}
, (2)

where chart j denotes a chart and N is the maximum chart number.
Action Space. From a specific state, the agent continues to explore

the dashboard design space by taking action. To fully explore the
design space, agents are allowed to change the key column, add a new
chart, remove an existing chart, and decide whether to terminate the
exploration session. The action space is defined as follows.

A= {change,add,remove, terminate} (3)

Different actions require different parameters for execution. When
the agent decides to change the key column, it should further select a
new one from the dataset. All charts will replace the key column with
the new one. To add a new chart, the agent has to specify mark types and
visual encodings for the chart. The action remove refers to removing an
existing chart from the dashboard. The action terminate will end up the
exploration session and finalize a dashboard. An example of executing
actions with parameters is demonstrated in Fig. 3.

4.3 Reward Functions
After executing the action and obtaining a dashboard with a new state,
the environment is supposed to return a reward to tell the agent how
well is the generated dashboard from the previous action. Reward
functions are critical for training effective agents to achieve the goals,
which should be carefully designed based on existing knowledge about
dashboard design. The immediate reward at step i is defined as follows,

ri = f (si,ai), (4)

which is computed from the action ai and state si. We have designed
two categories of reward functions, namely, presentation rewards and
insight rewards.

4.3.1 Presentation Rewards
The presentation rewards are derived from the rules of diversity and
parsimony based on the preliminary study.

Diversity Reward. Dashboards commonly adopt different chart
types to improve expressiveness. However, a higher diversity is not
always better because users have to interpret the visual encodings
of different charts, increasing users’ cognition load [44]. From the
preliminary study, most of the dashboards contain 2 or 3 different chart
types. Therefore, we use a concave increasing function to award the
increase of diversity with the idea of “diminishing returns”:

dr(si,ai) = 1− exp(−α · cused

ctotal
). (5)

The variable cused denotes the number of chart types used in the dash-
board and ctotal is the total number of chart types allowed, and α is a
weight to adjust the diminishing degree. Similarly, we use the func-
tion to score the diversity of the visualized columns with regard to all
columns of the dataset.

Parsimony Reward. Similar to chart diversity, the chart numbers
should not be too large. From the preliminary study, most of the dash-
boards contain 3-5 different charts. However, different from chart types
that have limited choices, the number of charts can be ambiguously
large. Therefore, the parsimony reward is a piece-wise function that
firstly increases and then decreases with regard to the chart numbers:

pr(si,ai) =

{
sin π

2 ·
n

nbest
, n ∈ [0,nbest ]

sin π

2 · (1+
n−nbest

nmax−nbest
), n ∈ (nbest ,nmax].

(6)

The variable n is the chart number of the dashboard, nbest is the best
number of charts, and nmax is the maximum number of charts.

4.3.2 Insight Rewards
The use of a dashboard is to identify and visualize insights. Therefore,
we design insight rewards to award the discovery of insightful charts.
We enumerate the metrics proposed by existing methods [7, 53, 58, 64]
and categorize the insight metrics based on the number of columns
involved, including single-column insights and double-column insights.
Additionally, we propose to measure multiple-column insights on the
basis of single and double-column insights.

Concerning a single column, it is common to exhibit the statistics
(e.g., mean and cardinality) or value distribution. These insights can
give an overview of the selected column, but users might be more
interested in the relation between the two columns. Previous studies [53,
64] have adopted statistical metrics to measure double-column insights,
such as the Pearson correlation coefficient. In this work, we model the
double-column insights of a dashboard in a similar way.

Furthermore, we propose to model multiple-column insights for
dashboard insight discovery. The multiple-column insights refer to the
insights derived from multiple charts, where more than two explanation
columns are involved. For instance, if column A has a high correlation
with column B and column A has a high correlation with column C,
it is possible that column B correlates to column C. Existing methods
mainly focus on the insights in single charts [64] or relations between
two neighboring charts [53]. Differently, we model the dashboards as a
collection of charts and consider the relations between any two charts.



Table 1. Definitions of the Insights.

Insight Definition

distribution A ∈Q: visualize A with a histogram by applying bin count.

trend A ∈Q,B ∈ T : visualize A across B with a line chart.

correlation A ∈Q,B ∈Q: visualize A across B with a line chart or scatterplot,
and the correlation between A and B is higher than the threshold.

top/bottom k A ∈N ,B ∈Q: visualize top or bottom k entities of A with B.

co-correlation A ∈Q,B ∈Q,C ∈Q: there are correlation insights about (A, B)
and (A, C).

comparison A ∈N ,B ∈Q: there are top and bottom k insights about A and B.

*note: Q, T , and N stand for quantitative, temporal, and nominal columns.

For each insight, we demonstrate the conditions for chart types and
column types and the statistical conditions to be fulfilled (Table 1).
When recognizing a single/double/multiple-column insight, the reward
value would be 1, 2, and 3, respectively.

4.3.3 Combined Rewards
We combine the rewards together by weighted sum:

cri = w1 ·∑
{col,vis}
c drc

i +w2 · pri +w3 ·∑
{insights}
c irc

i , (7)

where {wk} are constant values that balance the magnitude of the
rewards. We empirically set w1 = w2 = 0.33 to normalize the presenta-
tion rewards and set w3 = 0.1 to encourage the gaining of the insights.
We compute the immediate reward gained at state i by

f (si,ai) = cri− cri−1, (8)

where cri and cri−1 are dashboard rewards at states i and i−1.

5 DESIGN OF DASHBOT

Based on the formulation of dashboard generation, we further design
proper machine learning models to facilitate the exploration.

5.1 Model Framework
In this work, we use the asynchronous advantage actor-critic algorithm
(A3C) [38], a novel reinforcement learning framework, to train agents
to explore the dashboard design space. A3C is a flexible framework
designed for the problem with a large action and observation space,
which is well-suited for the problem of visualization generation [59].

A3C framework consists of two modules, an action network pre-
dicting the action probabilities and a critic network evaluating the
maximum expected return from the state. The main idea of A3C is to
learn an accurate critic network to evaluate the expected return from
the state. Then the critic network is used to train the action network to
take the best actions from specific states. During training, the return R,
probabilities of the actions pi, value estimation for the expected return
v(si), and rewards ri are fed into a loss function:

L(si, pi) = (R− v(si))
2− log(pi)A(si)−H(pi), (9)

where A(si) is advantage function and H(pi) is entropy of the action
probabilities [38]. The framework of the A3C is shown below.

Actor Environment

Critic
Loss 


Function
...State i Agent Network

The asynchronous mechanism of A3C enables the training by ex-
ploration with multiple independent agents, which can accelerate the
convergence of networks. The design of agent network comprises fea-
ture engineering of dashboards (Sect. 5.2), sequential network structure
for action and parameter selection (Sect. 5.3), and constrained sam-
pling with visualization design rules (Sect. 5.4). The detailed structure
combining these modules together is demonstrated in Fig. 4.

5.2 Dashboard Feature Construction
The construction of a deep neural network requires numerical represen-
tations for the input data. However, it lacks a proper feature engineering
method for dashboards. Recently, Wu et al. [75] proposed to model the
dashboard features in an indirect way. They firstly obtained single chart
features through a learning-to-rank neural network and then packed
the features together as the representation of the dashboard. Though
useful, such a method requires another network for feature engineering.
At the same time, other studies, such as VizML [21] and KG4Vis [30],
propose to represent data columns with hand-crafted features, which
are proven to be effective through experiments. Therefore, we propose
to combine the learning-based and hand-crafted features for dashboard
representation. Specifically, we first incorporate hand-crafted column
features to construct dashboard representations. Then the representa-
tions are fed into neural networks to learn high-level embedding for
action and parameter prediction.

We first construct column features from column properties and statis-
tics metrics based on VizML [21] (Fig. 4A). Column properties include
data types (e.g., quantitative, nominal, or temporal), minimum value,
cardinality, etc. Statistics metrics consist of values computed from
statistics models, such as skewness and Gini impurity [68].

Based on the column features, we further construct chart features
by representing chart attributes (Fig. 4B). Our representation is based
on Vega-Lite [47], a declarative programming language popular for
chart rendering. We primarily focus on mark types of bar, line, point,
and boxplot, and visual channels of x, y, and color. The representation
can be easily extended for more mark types and visual channels with a
similar modeling method. For each chart, we represent mark type and
the use of visual channels with one-hot encoding. If a visual channel is
used, we append the feature of the encoded column (denoted as field
feature). It is noted that the field feature is not the copy of the column
feature, but the features of the encoded data after data transformation
for rendering. Taking Fig. 7-B1 as an example, the features of “y” field
would be the features of “mean US Gross grouped by Major Genre”
instead of “US Gross.” Hereby, we intrinsically embed the fields of
“aggregate” for each visual channel.

The dashboard features are constructed by packing the chart features
together with context information about the key column and datasets
(Fig. 4C). For each chart, we append the features of the current key
column and all data columns to facilitate the column selection during
exploration. We set a maximum number of 10 for data columns. For
datasets with less than 10 columns, we pad the chart features with zeros.
Finally, we obtain the dashboard features at step i, ei ∈ Rn×l , where
n is the current chart number and l is the length of chart features with
contextual information added.

5.3 Agent Network Architecture
On the basis of dashboard features, we design an agent network for
action prediction and parameter selection. The design of the network
should fulfill three requirements. First, the network can learn mutual
relationship between charts and generate a unified representation for
the dashboard. Second, the network is supposed to achieve value
estimation, action prediction, and parameter selection with an integrated
structure. Besides, the network should predict parameters considering
their interrelation. For example, when adding a new chart, the agent
should focus on chart configurations, but when deciding to change the
key column, the agent should consider the columns to be selected.

To achieve the first requirement, we introduce a long short-term
memory (LSTM) layer to model the relations between charts. In our
task, we aim to learn the chart combinations instead of sequence orders.
However, it is computationally costly to enumerate the chart combina-
tions with all possible orders. As a compromise, we use a bidirectional
LSTM (Bi-LSTM) [23] layer that summarizes the information from
both directions (Fig. 4E). In addition, we randomly shuffle the charts
during training, which generates dashboards with different chart orders.
The embedding extracted from the Bi-LSTM is then fused to be a
unified shared embedding for the dashboard (Fig. 4F).

For the second requirement, we incorporate multiple classification
blocks for value estimation, action prediction, and parameter prediction.
First, the value estimation is achieved with a fully connected layer
taking the shared embedding as input (Fig. 4G). Next, for action and
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parameter prediction, we introduce a sequential model structure that
predicts the parameters by incorporating the embedding from previous
predictions of actions and parameters. Specifically, the shared embed-
ding is sequentially passed into several classification blocks (Fig. 4I),
each block responsible for predicting an action or a parameter. The in-
puts are forwarded into a fully connected layer in a classification block
to obtain an intermediate embedding, which is then fused with the
shared embedding (Fig. 4H) and fed into a fully-connected layer. The
fused embedding is then forwarded into the next classification block for
the prediction of the following parameter. With such a sequence model,
the prediction of parameters can refer to the previous context informa-
tion and thus accelerate the convergence. In each classification block,
the outputs are fed into a categorical softmax layer, and probabilities
for different actions or parameters are obtained (Fig. 4J).

5.4 Constrained Sampling
When using an agent network for action execution with parameters,
it is critical to control the activation of different network components
for three reasons. First, the column numbers of different datasets are
different. It is supposed to avoid the selection of non-existing columns.
Second, it is supposed to activate different branches of parameters
based on the actions. For example, when the agent selects to “change”
the key column, the branches for configuring charts should be disabled.
Third, it is required to rule out improper parameter values based on the
selection of previous parameters. The parameters in chart configura-
tions are interrelated. However, the agent network possibly generates
incorrect chart configurations which violate the grammar of visual-
ization rendering. False configurations might result in failed charts
without any analytical and aesthetic value. To alleviate the situation, we
attempted to introduce a large penalty for invalid chart configurations.
The agents succeeded in reducing the generation of invalid charts, but
the balancing between penalties and rewards for insights and chart de-
signs becomes another critical problem (Sect. 6.2). Nevertheless, even
the best machine learning models might make mistakes. Therefore, to
ensure the correctness of chart generation, constraints are commonly
used to regulate the model weights. For example, to generate valid chart
configurations from natural languages, NL2Vis [34] uses constraints to
mask the attention of transformer networks to avoid false inference.

Similarly, we formulate visualization knowledge as constraints to
ensure sampling reasonable parameters for dashboard exploration. Our
design of constrained sampling is based on sequence modeling, in
which the inference is performed sequentially. When an inference of
previous action or parameter is obtained, constraints based on visual-
ization knowledge will be applied in the next classification block to
ensure the validity of the final configuration.

We demonstrate how constrained sampling works through an ex-
ample of configuring a bar chart (Fig. 5). In the example, the action
classification block of the agent decides to “add” a new chart for a
current dashboard with the key column of “horsepower.” The agent
has to configure a new chart by specifying parameters. Therefore, con-
strained sampling is applied on the key column classification block
disabling all weights and generating a dummy sampling. For mark
types, all choices are available. The agent samples the “bar” based on

the softmax value, although the “bar” is not the one with the highest
probability. After selecting the mark type, the agent network predicts an
explanation column. The selection of “horsepower” is disabled because
“horsepower” is the key column. The agent selects “origin,” which is
a nominal column, so the “aggregate” of mean and max are disabled.
Next, the agent will generate an “aggregate” of the key column and
color encodings with similar behaviors. With such an activation mecha-
nism, we ensure the validity of the sampled configurations. It is noted
that the constraints are applied to the predictions before softmax, which
ensures the validity of entropy computation for back-propagation.

5.5 DashBot Interface & Interactions
To facilitate interactive creation, we design an interface consisting of a
table view (Fig. 1A), a topic view (Fig. 1B), a chart editor (Fig. 1C), a
canvas view (Fig. 1D), and a recommendation view (Fig. 1E).

The table view supports uploading a CSV data file for dashboard
generation. After uploading, the columns and their types are shown in
a list. Users can view the raw data in a table visualization by clicking
the view button. Meanwhile, the agent network automatically explores
and generates dashboards directly. Specifically, an agent is allowed to
explore at most 50 steps for a dashboard in case of no early termination
(e.g., the number of charts reaching the maximum limit). We assign
the agents a quota of n steps (n = 1000), and the agents can generate
a series of dashboards with different topics (i.e., key columns). The
dashboards with different topics will be displayed in the topic view
sorted by returns. Users can drill down to investigate each dashboard.
When hovering on another result, a tooltip will pop up demonstrating
the changes on charts and insights.

The canvas view displays the charts generated by the deep reinforce-
ment model. Displaying multiple views of charts is a critical challenge
for visual analysis and has been studied for a long [14]. Given that
chart layout is not the research focus of this work, we use a rule-based
method to provide an efficient solution. Specifically, we first aggregate
the charts by their mark type. For the charts with the same mark types,
we aggregate the ones with the same insight types. From the prelimi-
nary study, we understand that text visualizations are commonly used
to show an overview of the data. Therefore, we summarize the statistics
of key columns and other columns that are possibly interesting and
visualize the statistics by a default setting of text visualizations. The
text visualizations will be positioned in the top row of the dashboard.
The chart sizes and positions are also changeable.

With chart editor, users can edit the dashboards with online recom-
mendations. Users are allowed to edit chart configurations by editing
the parameter values, adding a new chart, or deleting charts. Once
edited, the agents will start exploring from the current dashboard state
for k steps (k=200). The systems would identify the best charts that
could be added to the dashboard and maximize rewards. The recom-
mended charts will be shown in the recommendation view. Users can
explore and add the ones of interest to the dashboard.

6 EVALUATION

To demonstrate the usefulness of DashBot, we first show three example
dashboards created with DashBot (Fig. 1, Fig. 7). Second, we focus on
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evaluating the core component of DashBot, i.e., the deep reinforcement
learning model that defines the dashboard design space, enumerates
that space, and ranks the candidate designs [80], through an ablation
study and a user study.

6.1 Example Dashboards
We first show how to exploratory generate a dashboard through the first
example (Fig. 1). Then we show two automatically generated examples
(Fig. 7) with style redesigned on the exported SVG files using Figma.

In the first example (Fig. 1), assume that Mary wants to investigate
the insights into Seattle weather. After uploading the data file, the data
columns and types are shown (Fig. 1A). Then a series of dashboards
are generated by DashBot and listed in the topic list (Fig. 1B). Mary is
more interested in the topic of “wind” in Seattle. Therefore, she selects
the dashboard of “wind” with the highest return value (Fig. 1D). From
Chart 1, she discovers that the minimum temperature seems to have no
obvious correlation with the wind, but there is more red points on the
right side. She infers that the days with the highest winds are mostly
rainy. Chart 2 shows wind distribution by different weathers. The
proportion of rainy days gets larger as the wind gets larger. This pattern
partially conforms with the inference in Chart 1. Chart 3 provides more
evidence with a boxplot visualization. The median wind on rainy days
is higher than on drizzling, foggy and sunny days, but lower than on
snowy days. Furthermore, the points on the rightmost indicate that
days with the largest wind are all rainy. Chart 4 presents the wind
change across dates. Mary further feels interested in the dates with
the highest winds and thus configures a new chart, Chart 5, with chart
editor (Fig. 1C). After the edition, DashBot automatically recommends
Chart 6 about the days of lowest wind for comparison.

The second example (Fig. 7A) is about the horsepower in the “cars”
dataset. Chart 1 is a boxplot showing horsepower distribution by cylin-
ders. Charts 2-5 indicate that miles per gallon and accelerations are
possibly negatively correlated with horsepower while weights and dis-
placements tend to be positively correlated with horsepower. Chart 6
further gives an overview of horsepower with regard to years.

The third (Fig. 7B) is about US gross in the “movies” dataset. Chart
1 & 2 demonstrate the mean US gross by major genres and MPAA
ratings. Chart 3 lists the directors with the highest US gross. Chart 4

& 5 show the US gross by IMDB ratings and Rotten Tomato ratings,
which facilitate the comparison of different rating systems. Chart 6
presents the correlation between US gross and production budget.

6.2 Ablation Study
We opt to demonstrate the effectiveness of our model design, including
the A3C framework, sequence modeling, and constrained sampling.
We design experiments with three baseline models for the ablation
study. The experiments were carried out on a workstation with 6 core
Intel i7-8700K CPU, a GeForce RTX 1080Ti GPU, and 32GB memory.
All models were trained for 500,000 steps with 27 datasets from Vega
Datasets1. As suggested by Minh et al. [38], we train all models for
10 runs and average the return values. The results are shown in Fig. 6,
where transparent bands represent standard variances of the return.

A3C versus Deep Q-Network. To demonstrate the effectiveness of
the A3C training framework for the task of dashboard generation, we
design a multi-step deep Q-Network (i.e., DQN) as a baseline. The
DQN uses a similar agent network as DashBot. The DQN is trained
with a temporal difference and replay memory [39]. From Fig. 6, we
discover that DQN fails to achieve a stable increase in the return.

Sequence Model versus Independent Multi-Classification. We
design a baseline model (i.e., DashBot-ind.) by removing the embed-
ding concatenation in classification blocks. All classification blocks
independently predict parameter values with the shared embedding. To
ensure a fair comparison, constrained sampling is preserved to avoid
invalid configurations. From the results (Fig. 6), we can see the return
of DashBot-ind. constantly increases but finally converges at a mean
return value lower than DashBot. The DashBot also converges faster
with smaller training steps. The reason might be that the sequence
model is able to learn mutual relations between consecutive tokens.

Constrained Sampling versus Invalidity Penalty. We design a
baseline model without constrained sampling (i.e., DashBot-pen.). Al-
ternatively, we add penalty rewards. Specifically, if an agent configures
an invalid chart, it will receive a negative reward. The penalty rewards
result in a relatively low return at the beginning because of the ran-
dom sampling of invalid configurations. As the training proceeds, the
agents obtain increasing returns, but finally, the return gets decreased.
The penalty mechanism seemingly works, but the balancing between
penalties and other rewards might be a critical problem.

In addition, we run the DashBot for 1,000 steps (about 20 episodes)
on each dataset, which takes 15.4 (SD=1.52) seconds on average, and
compute the statistics of generated dashboards. On average, the dash-
boards contain 5.42 (SD = 0.83) charts with 2.81 (SD = 0.74) chart
types, which are consistent with the statistics in the preliminary study.

6.3 Comparative Experiment
We further conduct a user study to evaluate the usefulness of our deep
reinforcement learning-based method in comparison with MultiVi-
sion [75], another deep learning-based method. Two systems have
different interface designs and implementation details, but the machine
learning models have the same inputs and outputs. The study focuses
on evaluating the core machine learning components of the systems.

Participants. We conducted the study with 10 data workers (P1-P10,
4 females and 6 males) with diverse backgrounds, including statistics,
chemistry, biology, environment engineering, transportation manage-
ment, computer science, finance, and economics. All participants

1https://github.com/vega/vega-datasets



A B

1

1

4

4

5

5

6

6

2

2

3

3

Fig. 7. Two example Dashboards created with DashBot: (A) a dashboard showing the properties of cars, such as cylinders, miles per gallon, and
accelerations, about horsepower and (B) a dashboard about US gross of the movies with regard to IMDB ratings, Rotten Tomato ratings, genres, etc.

reported having more than two years of using programming languages
(i.e., Python, R, MatLab, and Javascript) or interactive tools (i.e., Stata,
SPSS, Origin, and Excel) to process and visualize data for analysis. All
participants mentioned that they only had a basic knowledge of creating
charts for analysis or presentation.

Data. To ensure fairness, we use the same datasets in MultiVision
from Vega Datasets, which include data about cars, jobs, penguins,
Seattle weather, and movies. For each dataset, two systems generate
one dashboard. Given that DashBot can generate multiple dashboards
with different topics, we select the one with the highest return values.

Experiment Setup. We design a comparative experiment to evalu-
ate the initial results generated by two systems because the two systems
have provided different interaction designs for the dashboard edition
and human inputs are hard to evaluate. To ensure the fairness of com-
parison, the results generated by the two methods are all rendered with
DashBot interface, all facilitated with text visualizations for dataset
overview. This makes sure the same styles of charts and interfaces.
Please note that the dashboards generated with the original MultiVision
interface are facilitated with interactivity (i.e., cross-filtering), but the
interactivity is not considered in this study because we focus on the
model comparison. In the study, users could explore two dashboards
freely without knowing how the dashboards are generated. We coun-
terbalanced the presentation order in order to alleviate the carryover
effect. We followed the think-aloud protocol to collect feedback about
the generated dashboards. Specifically, during exploration, participants
were requested to report insights she/he gains from the dashboards.
After reading the dashboards of each dataset, the participants were
asked to select the better one with regard to overall quality, insightful-
ness, understandability, and aesthetics. The experiment was followed
with a post-study interview to understand participants’ routine analysis
workflow and suggestions about the dashboards.

Procedure. A study lasted for about 50 minutes with a 10-minute
training session, a 30-minute experiment, and a 10-minute post-study
interview. Before the study, participants were asked to sign a consent
form agreeing to record their feedback and comments for analysis. All
participants were paid with $20 after the study.

Results. In total, we collected 200 ratings from 10 participants. As
shown in Fig. 8, 78% of ratings agree that dashboards generated by
DashBot have higher overall quality when compared with the baseline
method. We collected a large number of positive comments about our
method and summarized the comments below.

Among the responses, 84% told that DashBot is more understandable.
Participants liked our idea of key columns. P8 quickly identified that the
charts in our generated dashboard share a common column, saying that
“the design accelerates the understanding of the dashboard because
I only need to identify the columns combined with that (key) column”
(C1). Due to the constrained sampling to avoid ineffective encodings,
the dashboards generated by DashBot might be easier to understand.
P6 appreciated the use of color encodings on the nominal columns with
an adequate cardinality and commented that “the color is efficient for
identifying different penguin species” (C2).

Moreover, 76% of voters agreed that DashBot is more aesthetically
pleasing. Participants liked the diversity of chart types in the dash-
boards generated by DashBot. P7, who had a background in digital

media design, commented that “the first one (our method) looks good
because of diverse chart types, while the second one contains too many
scatterplots” (C3). P6 also held a similar opinion. Reasonable visual
encodings also improve the overall appearance. P4, who reported to
have little experience in design, raised a comment that “this dashboard
looks more comfortable at my first glance because it does not use size
to represent the column of Miles per Gallon (in the scatterplot)” (C4).
P1 liked the aggregation of columns, which benefits from the design
of an agent network that covers different chart parameters, saying that
“averaging the values of this column makes the chart clear” (C5).

More participants (88%) thought that DashBot can provide more
insights compared with the baseline. P6 commented that “the second
one (our method) provides more column combinations other than the
other one, which is more informative” (C6). P5 liked the patterns
exhibited in the dashboards we generated, saying that “I can easily
identify the correlations from the shape of scatterplots” (C7). P2
inferred additional column relationships from the charts, commenting
that “these two scatterplots (with high correlation values) potentially
reveal the relations between another two columns, although they are
not visualized in the same charts” (C8). P4 showed her preference for
the comparative analysis on the top and bottom entries, with a comment
that “if I were a climate analyst, showing me the dates with highest and
lowest temperatures will be meaningful” (C9).

Analysis. We summarized participants’ feedback and analyzed the
technical differences that theoretically make DashBot outperforms Mul-
tiVision. First, numerically modeling insights helps to reveal important
information about the data. A major difference between DashBot and
MultiVision is that we evaluate the insightfulness of the charts with
computational metrics. Thus, the recommended charts have data pat-
terns that are more salient and easier to comprehend (C7, C8). Second,
incorporating dashboard design patterns into the generation is another
advantage of DashBot. For example, we require the charts in a dash-
board to have a shared column as the topic of the dashboard, which
makes the results more coherent and interconnected (C1). MultiVision
incorporates criteria such as diversity and simplicity into the dashboard
design. DashBot follows a similar approach, but further considers statis-
tics obtained from empirical surveys to follow “common practices” (C3,
C6). Third, constrained sampling help exclude charts with ineffective
visual encodings. MultiVision recommends chart encodings by learn-
ing from the Excel datasets, which might result in some unreasonable
recommendations. For example, MultiVision tends to visualize three
data columns in a chart and encodes numerical data with point size,
which is complained about by the participant (C4). Instead, DashBot
takes visual effectiveness into the design of constrained sampling for
better visual encodings and data transformation (C2, C5).

7 DISCUSSION AND LIMITATIONS

In this section, we discuss our limitations and potential improvements.

7.1 Extending Reward Function Sets
We design reward functions based on a preliminary study of dashboard
designs, but there are additional considerations to extend the reward
function set. For presentation, we only consider the diversity and parsi-
mony between charts. Chart effectiveness is also an important aspect
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of chart comprehension [13, 32]. A potential solution is introducing
Draco knowledge base [40], a comprehensive rule set of visualization
design knowledge, to compute the effectiveness scores of charts and
integrate them into reward functions. Moreover, the effectiveness of
chart composition [15, 24] should be considered. For example, even
with a large number of subplots, scatterplot matrices are still easy to
understand. Thus, continued research on quantifying the quality of
chart composition is needed.

For insights, we use several metrics (e.g. correlation) to measure the
insightfulness of a chart based on existing studies [53, 58]. However,
our current reward functions do not consider semantic information in
the columns, which might lead to results of commonsense [25]. For
example, the total sales of a merchant in a year are certainly correlated
to the average sales. A potential fix for this problem is to process
the header names for their semantic structure [18] for reward function
design (e.g., normalizing the correlation with semantic distance). The
introduction of semantic information is potentially helpful for address-
ing domain problems. For example, when exploring the dashboards
of the penguin dataset, P10, who has a background in biology, com-
mented that comparing statistics between different species would be
extremely important, and using y positions might be more intuitive than
colors. The environment should reward the agent if a chart visualizes a
topic-related column with an effective visual channel.

Additional metrics could be incorporated into reward functions for
better insight discovery. For example, as suggested by participants with
a statistics background (P3 and P9), Shapiro-Wilk static, skewness, and
kurtosis can be used to evaluate the normality of the data distribution.
Visual patterns are another critical consideration for insight discovery
by human experts. Computer vision [35] and other sophisticated al-
gorithms [9, 29] could be used to measure the visual salience of the
patterns, such as outliers and visual grouping [20, 62].

7.2 Evaluating DashBot in Real-World Scenarios
It lacks comparisons between DashBot and what users might do with
real-world tasks. User performance in different recommendation sys-
tems is a critical aspect of evaluation [61, 80]. However, directly com-
paring two complex systems is difficult in controlling dependent vari-
ables (e.g., workflows, interface designs, and artifacts) [28]. In our
case, DashBot has a different workflow and interface design. DashBot
recommends a default setting and allows users to adjust the dashboards
to their satisfaction, while real-world tools (e.g., Tableau and Power BI)
provide efficient interactions to support generating dashboards from
scratch. Moreover, different dashboard styles might introduce biases
in interpreting the insightfulness and understandability of the results.
DashBot is a proof-of-concept system that only covers the generation
of dashboards with limited chart types and layouts and lacks support in
style customization. In contrast, real-world authoring tools support the
generation of sophisticated dashboards even with advanced pictograms.
Controlled studies of multiple recommendation systems could be con-
ducted with a consistent interface to evaluate user performance [80].
Future evaluation could consider integrating the DashBot model into
existing tools and compare how the resulting dashboards are different
under different workflows.

Real-world tasks also differ from lab studies in terms of datasets.
We use Vega datasets throughout the paper, given that the datasets are
commonly used in visualization generation [41,71] and the area of data
analysis, which is understandable for readers and study participants. It
is also convenient for model comparison because the baseline model
was trained on Vega datasets. However, real-world datasets could

contain hundreds or thousands of data columns, which challenges
the scalability of models. Moreover, additional table operations (e.g.,
reshape and rearrange) should be considered for data cleansing and
insight discovery [26]. Therefore, it would be a total different problem
for feature engineering, model design, and the overall framework design
(e.g., action space) when dealing with real-world datasets. Future study
could focus on developing efficient agents to explore and identify
insights from large-scale datasets.

7.3 Considering Additional Data Transformation
DashBot currently considers basic data aggregation calculators (e.g.,
mean and sum) and sorting for identifying the top and bottom val-
ues. P9 suggested encoding multiple data series in the same chart by
introducing visualization compositions such as layering and faceting.
Given that the visualization rendering of DashBot is achieved using
Vega-Lite, these potential operations can be extended with additional
modeling of Vega-Lite parameter space. Given that we primarily fo-
cus on specifying visual encodings, some chart appearances are not
aesthetically pleasing. For example, the line chart of Fig. 1-D4 is too
dense for investigation, requiring binning or sampling. Towards the
generation of delicate charts, it would be a promising research direction
to encode the knowledge of visualization debugging [13] and layout
optimization [73] into the deep reinforcement learning framework.

7.4 Enhancing Dashboards with Interactivity
DashBot focuses on modeling data insights and chart configurations in
dashboards but does not support interactivity, which limits the usability
of the generated dashboards [46]. Bridging the charts with interactivity
requires the modeling of data flow between charts. MultiVision [75]
supports cross-chart filtering by detecting the data records related to
user’s filtering operations on a single chart. This solution is efficient
when all charts share the same datasheet. However, there might be
more complex situations. For example, the data of a chart might be
transformed from the data of another chart. To handle this situation, the
data flow model should be constructed when the exploration and data
transformation are executed, as demonstrated by VisFlow [79]. Such
kind of progressive exploration could be integrated into the framework
of DashBot, where agents could choose to explore from the data of the
previous chart or use the original table when generating a new chart.
Reward functions that model the relationship between the consecutive
charts should be considered [27].

8 CONCLUSION AND FUTURE WORK

We present DashBot, a deep reinforcement learning model, to generate
analytical dashboards for insight discovery. To design an effective
model, we conduct a preliminary study to understand the design prac-
tices in existing dashboard galleries. Then we formulate the problem of
exploratory dashboard generation as a Markov decision process with ap-
propriate action spaces and reward functions. Furthermore, we design
a sequence generation network for the action selection and parameter
configuration. Finally, we demonstrate the effectiveness of our model
design through an ablation study and a user study. Our study opens up
a research direction that facilitates visualization generation without the
need for large-scale human-labeling training data, which is a pain point
for learning-based visualization generation methods.

Further research can be conducted in two directions. First, we can
extend the framework for the generation of more visualization genres,
such as glyph [77, 78] and data stories [54], considering additional
visualization types and data transformation operations. Moreover, the
data flow could be considered to improve the interactivity. Second,
we can incorporate the visual patterns into the modeling of insight
discovery [35], given that visual patterns are unique values that visual
analytics can provide for expert users. Third, inspired by the idea of in-
verse reinforcement learning [42], we can further incorporate user data
to steer the generation of dashboards on the basis of visualization rules.
User inputs can guide the agents to adapt to new analysis scenarios.
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