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Fig. 1: Stimuli created for this study displaying a bar chart rotated along Cartesian and radial axes: Vertical, Horizontal, Radial, and
Circular Bar Plot.

Abstract—Understanding your audience is foundational to creating high impact visualization designs. However, individual differences
and cognitive abilities also influence interactions with information visualization. Differing user needs and abilities suggest that an
individual’s background could influence cognitive performance and interactions with visuals in a systematic way. This study builds on
current research in domain-specific visualization and cognition to address if domain and spatial visualization ability combine to affect
performance on information visualization tasks. We measure spatial visualization and visual task performance between those with
tertiary education and professional profile in business, law & political science, and math & computer science. We conducted an online
study with 90 participants using an established psychometric test to assess spatial visualization ability, and bar chart layouts rotated
along Cartesian and polar coordinates to assess performance on spatially rotated data. Accuracy and response times varied with
domain across chart types and task difficulty. We found that accuracy and time correlate with spatial visualization level, and education
in math & computer science can indicate higher spatial visualization. Additionally, we found distinct motivations can affect performance
in that higher motivation could contribute to increased levels of accuracy. Our findings indicate discipline not only affects user needs
and interactions with data visualization, but also cognitive traits. Our results can advance inclusive practices in visualization design and
add to knowledge in domain-specific visual research that can empower designers across disciplines to create effective visualizations.

Index Terms—Human-subjects quantitative studies, visualization, perception, bar charts, education, domain-specific, discipline,
empirical evaluation, spatial ability, cognitive abilities

1 INTRODUCTION

Data shapes modern society and affects every aspect of our lives: polit-
ical, social, and physical. Information visualization is just as prevalent
– it lives in magazines, news outlets, scientific papers, blogs, and count-
less online platforms to facilitate engagement with data in a way text
alone cannot. The data visualization community has long explored
how to design universally accessible and engaging visualizations that
empower communities to understand and reason with data [69]. Infor-
mation visualization is not simply a matter of reading data properties
encoded in visual form – there are complex cognitive activities at work
that are influenced by visual structure [96]. Visualization research
has followed several paths toward understanding users and their needs
including understanding how cognitive abilities affect perception and
how disciplines differ in terms of data and tasks [53, 67, 78, 88, 96].
Education psychology has explored the connections between education
background, performance, and the cognitive ability of spatial visu-
alization, noting these are not easily separated in individuals [9, 91].
Recently, work has been done in visualization toward integrating these
tracks of research to move away from universal guidelines for the mono-
lithic “user” and towards effective design that considers the differing
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cognitive traits of target disciplines [43].

We build on this past research to explore and investigate the cogni-
tive trait of spatial visualization and its interaction within and across not
only professional domains but also educational backgrounds. We focus
our study on the disciplines of business, law & political science, and
math & computer science; the use of visualization is core to these disci-
plines, from decision making to policy development to data analysis.
In this paper, we present past research related to spatial visualization in
psychology and visualization design that led us to create hypotheses
around how our target domains would perform spatial visualization as-
sessments and relevant visual tasks. We pose a study methodology that
links spatial visualization abilities to visual task paradigms that evoke
the same cognitive functions. Finally, we offer a detailed statistical
analysis demonstrating that visualization task performance (accuracy
and response times) varies with spatial visualization and discipline.
Additionally, we present how domain differences in motivations around
use of data visualization might affect performance on visual tasks.

The results we collected add to evidence that spatial visualization
and domain interact to affect visual task performance and should be
considered as combined factors that can influence design choices; vi-
sualization design should consider not only the needs of varying do-
mains, but the abilities of individuals in those domains [43]. This paper
contributes toward cataloguing visualization performance differences
amongst spatial visualization levels and domains that can lead to em-
powering individuals across disciplines to make memorable references
and inferences effectively and efficiently using visualizations designed
for them.
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2 RELATED WORK

Our study builds on research in spatial visualization, education psychol-
ogy, and information visualization. It bridges visualization research in
user cognition and domain needs/expertise to inform design as a holistic
process. We draw on methods from psychology and visualization to
investigate the relationships between spatial visualization, domain, and
visualization comprehension.

2.1 Spatial Visualization
Spatial ability is a cognitive ability referring to skills involved with
retrieval, retention, and transformation of visual information [52, 59].
It impacts a viewer’s use of graphics as it influences the processing of
spatial relationships between graphical elements and/or their cognitive
resource allocation [87]. Spatial visualization is a specific aspect of spa-
tial abilities that involves the ability to remain unconfused by varying
orientations or rotational positions in which a spatial pattern may be
presented, thus it is elicited most in tests that involve manipulation or
transformation of a visual stimulus [52,59]. Spatial visualization allows
an individual to compare different encodings of visualizations quickly
and accurately [59], and has been connected to spatial scaling, figure
construction, magnitude sense, numerical estimation, subdivisions of
charts, and even textual spatial analogies [61, 94]. In all, high spatial
visualization implies the ability to manipulate and change internal rep-
resentations of visualizations, leading to measurable outcomes when
interacting with external visualizations [22, 45, 55].

2.2 Education Psychology and Spatial Visualization
Spatial abilities, including spatial visualization, have often been tested
in educational settings as an indicator of increased performance
in STEM subjects, especially in performance in mathematical sub-
jects [9,35,48,61,75,79,94]. Increased spatial visualization ability has
been specifically tied to increased performance in students of geology
and architecture as well [66, 75]. Additionally, substantial spatial vi-
sualization deficits have been identified as the primary component in
certain learning disorders wherein students struggle to use visual and
graphic representations of data [14].

Research has also been done into spatial visualization of students
and professional across a range of domains [17, 79, 91]. Burnett and
Lane [17] tested college students in their first semester and again after
two years of study in various subjects. They found that spatial visu-
alization performance improved with advance in education across all
subjects, but by a lower magnitude for humanities and social science
students than math and physical science students. Shea et al. [79] and
Wai et al. [91] conducted comprehensive studies assessing spatial abili-
ties across domains, levels of education, and occupation. Both found
students of humanities, education, law, business, and medicine to have
lower spatial abilities than math/computer science, physical science,
and engineering students. This shows that specific domains and dura-
tion of experience could influence individual ability to use information
visualization. Evidence that it is difficult to separate spatial visualiza-
tion abilities from education and professional choices could empower
designers to create impactful visuals for specific communities.

2.3 Spatial Visualization in Information Visualization
A rich body of literature exists investigating spatial abilities in the con-
text of information visualization [43, 51, 67, 87–89, 92, 96]. Research
has demonstrated that high spatial visualization specifically, can corre-
late with higher recall, understanding, and increased task performance
using data visualization [51, 67].

Kim et al. [51] observed that for both parallel coordinate plots and
written descriptions of data, participants with high spatial visualization
had higher accuracy when recalling values. Vicente et al. [89] found
low spatial ability corresponded with inferior performance on retrieval
tasks within visual file structures: low spatial individuals were two
times slower and more likely to get lost in the structure than high spa-
tial individuals. Kellen [50] and Ottley et al. [67] found that high spatial
individuals had significantly increased accuracy in their performance
on solving conditional probability problems when aided by a visualiza-
tion. On their study using line-up tests, VanderPlas and Hofmann [87]

found that performance of undergraduate students correlated with vi-
sual ability and whether a student was a STEM major. Studies also
indicated that speed is often related to understanding [82, 88] and was
sometimes the bigger indicator of lower cognitive abilities compared
to accuracy [27, 92]. Wenhong [92] found that high spatial ability led
to reduced response times and higher accuracy with graphics and table
visualizations, and interestingly that those with low spatial ability still
chose graphic visualizations for tasks. Wenhong noted that often indi-
viduals are not aware of their own cognitive style, but still prefer visual
representations of data. These findings indicate space for accessible
design in information visualization for low spatial individuals [93].

While cognitive abilities are thoroughly studied in visualization
design, educational or professional domain is often overlooked as a
relevant influence and not reported on [50, 51, 67, 82, 88, 89] or refer-
enced, but not analyzed [27, 92]. However, there is also rich research
in domain-focused participatory methodologies that imply domain can
also impact design.

2.4 Designing Visualization for Domain
Literature on visualization design highlights interaction with, and dis-
covery of, needs for different domains to inform the design process,
but they do not explicitly consider differing cognitive traits of the do-
mains [42, 53, 62, 77, 78, 81]. The design study methodology proposed
in [78] emphasizes the fundamental need to design with and for the
needs of specific domains. Distinct from discovering practices and
requirements of specific domains, it also advocates for designers to be
aware of literature pertaining to relevant design problems, but not specif-
ically to cognitive and perceptive knowledge, which are themselves
distinct from visual task needs of domain experts. Other methods like
participatory design, design by immersion, and domain liaisons [42,81]
potentially have benefits due to implicitly integrating design reflective
of cognitive capabilities, without the need to explicitly rely on any
empirical, systematic analysis of cognitive abilities.

Kirby & Meyer [53] and Munzner [62] further emphasize collab-
oration with domain experts and employment of applied psychology
methodologies to measure cognition and perception, but do not touch
upon capitalizing on the cognitive features of domains in guiding de-
sign. Peck et al.’s multidimensional model of individual differences in
HCI [70] separates individual experiences/bias from cognitive abilities
in visualization design: [43] notes that treating these as orthogonal
traits implies an individual’s background and experiences do not influ-
ence their cognitive traits and vice versa, which could lead to missed
opportunities and ineffective design choices.

Hall et al. [43] made an initial exploration into how spatial visual-
ization differs between professional domains (Education, Chemistry,
and Computer Science) and relates to visualization processing. They
confirmed spatial visualization differences amongst disciplines and that
domain and spatial visualization together influenced performance and
qualitative strategies on tasks related to 2D to 3D representations of
isocontour plots and scatter plots. Their findings imply differences in
terms of task performance and spatial visualization between domains
and that these differences will endure with design implications for
visualization. Research demonstrates there are ties between spatial
visualization, domain, and visualization performance - we endeavor to
further findings into how cognitive differences between domains relate
to visualization performance to affect design decisions and empower
designers to create more relevant and cognitively appropriate visuals.

3 MOTIVATION & HYPOTHESIS

Drawing on the outcomes and identified gaps from previous work, we
sought out to study spatial visualization across domains and their com-
bined influences on visualization interaction. We ensured alignment
between profession and education background as research demonstrates
increased spatial visualization depending on education domain [17]. If
occupation does not align with educational background, the abilities
gained in education should be considered.

We chose to study those with professional profile and education
background in Law and Political Science (LPS), Business, and Math
and Computer Science (MCS). Differences between MCS and other
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Fig. 2: Activity sequence of the study. In Part 1, the paper is folded and punched above the line. Participants are given four multiple-choice
responses to choose between, the selected choice is highlighted and participants can move forward. Scores are the number answered correctly out
of 10 in 3 minutes.

disciplines have implications on visualization research findings as they
are often “standard participants” for many studies on task performance
and design choices; a considerable amount of information visualization
is also created and studied by those in MCS related fields [20, 21, 87].
We chose Business as there is a wealth of literature exploring data
visualization for business intelligence and business decisions, which
often cites design and cognition research [36, 57, 84, 95]. However, we
are unaware of any comparative studies between MCS and Business do-
main cognitive abilities applied to data visualization task performance.
We chose LPS due to the relative lack of research investigating data
visualization and law & politics, despite the imperative use of data
in law & politics [46, 97]. However, given many governments have
scientific advisory and consulting committees, and politicians make
health and governance related decisions based on this advice [25], it
may be worth exploring any differences in visual cognition between
those creating and consuming visualizations for political decisions.

Additionally, these domains display varying levels of spatial visual-
ization ability with MCS exhibiting higher than average abilities, and
Business and LPS below average [91]. Given that spatial visualization
affects interactions with visualization, there may be measurable dif-
ferences in how these domains interact with data visualizations given
their discipline. Our study aims to explore if spatial visualization
ability differs across domain, how spatial visualization level affects
interactions with data visualization, and if domain interacts with spatial
visualization to affect performance in a quantitatively significant way.
We explore these questions by investigating the following hypotheses.

H1: Spatial visualization will differ across domains. Research has
demonstrated systematic differences in spatial visualization abili-
ties between domains [79, 91]. Drawing from these findings, we
anticipate MCS will have the highest spatial visualization ability
and LPS will have the lowest. As spatial visualization affects
visualization interaction, these systematic differences between
domains may impact visual reasoning in a discriminating way.

H2: Performance (accuracy and response time) will correlate
with spatial visualization level. Prior work in information visu-
alization shows accuracy and timing of visualization tasks vary
with spatial visualization abilities [43,51,67,87–89,92,96]. High
spatial individuals tend to have higher accuracy and reduced re-
sponse times. We expect to see comparable results, emphasizing
the role of spatial visualization in performance and use of visual-
izations.

H3: Performance (accuracy and response time) will correlate
with domain such that average performance will vary be-
tween disciplines. Hall et al.’s research [43] partially confirms
this hypothesis between Chemistry, CS, and Education. They
found similar performance and spatial visualization between CS
and Education, but observed an overall time/error trade-off be-
tween the disciplines regardless of spatial visualization levels.
However, they found correlations between spatial visualization
and task performance across all disciplines, implying that spatial
visualization is an important underlying source of variations. We
anticipate marked differences between MCS, Business, and LPS
given the three domains varying levels of interaction, creation,
and consumption of data visualization [38, 95, 97], with MCS
performing the best and LPS the worst following their spatial
visualization levels. Confirming this would substantiate the work

of Hall et al., that effective visualizations should consider not
only the needs of a discipline, but the abilities of the individuals
within domains.

4 METHODOLOGY

A two-part online study was created to address the research questions
and hypotheses (see Fig. 2). Part 1 of the study consisted of a brief spa-
tial visualization psychometric test from The Kit of Factor Referenced
Cognitive Tests [32] known as a paper folding or punch test (see Fig.
2). Part 2 consisted of stimuli and questions asking individuals to draw
conclusions from the visualizations. Inspired by current methodology
in vision science [33], we began by evaluating paradigms that extend
from psychological assessments of spatial visualization to visualization
evaluation. Principles and studies in psychology dictate spatial visu-
alization relates directly to ability to quickly and accurately compare
encodings and layouts of a given visualization along with value esti-
mation, magnitude sense, and subdivisions of charts [59, 94]. Working
from these principles, we chose visual search as our base paradigm [33],
utilizing data from two charts rotated along Cartesian and polar coordi-
nates. We provide a detailed discussion of study structure and stimuli
design (see supplementary material (SM) for comprehensive stimuli
set).

4.1 Recruitment
Participants were recruited through Prolific [68]. The participants were
18 years and older and were fluent in English. Due to the limited num-
ber of eligible participants on Prolific when filtered by education and
profession, we were able to recruit a balanced sample of 30 participants
in each domain with valid data, for a total of 90 participants (participant
details below). Participants were paid at £7.71/hour in accordance with
Prolific’s fair pay policy. The average response time was 37 minutes
and 7 seconds, resulting in an average pay of £4.78 per participant. We
collected data across three days and different time slots to diversify the
pool of potential participants. We collected data on Jan 28, 2022, Feb
3, 2022 and Feb 17, 2022.

4.2 Apparatus
The online study was created using a Flask Web App with D3.js for
chart generation. Participants went through consent and training before
each part of the study and were allowed to leave the study at any
time, ending their participation. A trigger warning was presented to
participants before agreeing to take part in the study as the data related
to the COVID-19 pandemic included case, hospitalization, death, and
vaccination statistics. No identifiable data was collected and all data
was stored and maintained on a private server at the authors’ institution.

4.3 Study Structure
After consent and demographics collection, the study process consisted
of two parts with an additional page of 5-point Likert scale questions,
assessing perceived difficulty and personal motivations regarding data
visualization (see Section 4.3.6). Participants were asked to confirm
readiness to move to the next block between each step to allow for
breaks as needed. Training for Part 1 of the study came from the Kit of
Factor Referenced Cognitive Tests and included a sample question that
participants had to answer correctly to move forward. Active training
for Part 2 consisted of 4 sample questions displaying the various charts
participants would see throughout the study.



(a) Easy. (b) Medium. (c) Hard.

Fig. 3: (a) Example of an Easy question with the Radial chart on left and density 14, (b) Medium question with Horizontal chart on right of
density 7, and (c) Hard question with Circular Bar on the right and density 7 (refer to SM for a more comprehensive set).

We ran a pilot test to measure the fatigue, length, and complexity
of the study. Results from the pilot suggested changes to the study
workflow; it became clear that the spatial visualization assessment
should be placed at the beginning to ensure accurate scores which
could otherwise be hindered by fatigue from Part 2, being the longer
portion of the study. Additionally, we decided to integrate a break
halfway through Part 2, consisting of a catch question wherein users
were encouraged to take a break, answer with a specific response, and
move on when they were ready. The catch question was not analyzed
(other than ensuring all respondents answered correctly for quality
assurance) and was not included in response time data analysis.

4.3.1 Screening & Demographics

Following consent, participants completed a set of 7 demographic
questions to collect information about gender, age, education history,
profession, and countries of origin and influence. Those who self-
identified on Prolific as having studied and working in one of our target
areas were admitted and had to reconfirm their primary field of study
and work in demographic collection. To reduce confounding factors
we only selected participants where education and professional profile
were aligned if they were working. No participants whose primary
subject and profession failed to align with our targets were included
in our analysis. Respondents could only continue through the study
if participating on a laptop or desktop computer with a JavaScript
enabled web browser to increase consistency of display. Prolific offers
a participant score that is based on the quality of an individual’s past
submissions on their site: our participants had scores of 97% or higher.

We excluded the data of 25 participants from Prolific due to either
lack of consistency in primary field of study, data validation failure, or
if they experienced a server interruption during the study. We gathered
data until we achieved balanced samples with high quality data between
our target domains.

4.3.2 Spatial Visualization Assessment

Following demographics, participants began the spatial visualization
assessment from the Kit of Factor Referenced Cognitive Tests [32], a
well-established 2D psychometric assessment [1, 59] largely utilized in
previous data visualization studies [51, 58, 67]. This assessment has the
added benefit of a 3-minute time limit for participants to complete the
test. This time limit contributes to limiting fatigue of participants taking
an online crowdsourced test contributing to higher data quality [12].
We gathered both the selected answer and the response time for each
question of the assessment. The test consists of 10 questions in which
an image of a paper is folded and punched; participants must then
choose from 5 options what the paper will look like when unfolded
(see Fig. 2 for a sample question). The spatial visualization score
is calculated as the number of correct answers out of 10. Congruent
to [29,51,67,75] the score was centered by its mean so that participants
above the mean are classified as having high spatial visualization, while
participants below are classified as having low spatial visualization.

4.3.3 Part 2 Stimuli Design

We manipulated three elements to analyze performance over: data
density, chart type, and task difficulty.

Data We initially considered synthetic data distributions, however,
opted for real-world data to favor familiarity with a data set and scenario
applications with participants from a range of domains [12]. The data
used in this study was COVID-19 Pandemic data from a comprehensive
world statistics site [72]. The data reflects actual case, vaccination,
hospitalization, and death statistics from March 2020-January 2022
across 95 countries. This data was chosen as the scale of the ongoing
global pandemic allowed an assumption of a basic level of familiarity
with the data and no need for training or expert knowledge [12]. Addi-
tionally, the World Health Organization, governments, universities, and
data visualization tech companies produced many COVID-19 visual
dashboards for public consumption and policy recommendation during
the pandemic – many of these dashboards contained spatially rotated
data of varying densities [8, 26, 56, 64, 65].

The data is displayed across two levels of density: 7 and 14 points.
A key manipulation for visual search is the number of objects present in
the search scene (target(s) + distractor(s) = set size) [33]. We chose 7 as
our first set size; 7 is known as a magic number in data visualization, as
the limit of the span of absolute judgement and immediate memory sits
at about 7 points [60]. This implies that moving sufficiently beyond 7
data points will increase cognitive load; thus we chose 14 as our second
set size. Across stimuli, the data was ordered alphabetically by country.
Conventionally, visual search studies vary the number of targets and/or
distractors present over sub-conditions [33] – we varied the two set
sizes amongst the four chart types and three questions detailed below,
while maintaining the same density for side-by-side charts.

Chart Types The stimuli draw on elements from both psychology
and previous visualization studies in spatial visualization [43, 59, 89].
We formed our stimuli keeping in mind that spatial visualization directly
affects ability to compare visual encodings and layouts quickly and
accurately [59], and that our spatial visualization assessment uses 2D
rotated stimuli on a Euclidean plane [32]. We chose to display two spa-
tially rotated charts side-by-side to assess performance as participants
utilize both charts to respond to a given question. Using two spatially
rotated charts side-by-side simulates the cognitive processes involved
in spatial visualization assessments. The anchoring stimuli chosen for
this study was a vertical bar chart. Bar charts are often used as stimuli
in cognitive ability and visualization research as they are the most ubiq-
uitous data visualization used over the world [10] and have been shown
to capture performance differences between individuals of differing
abilities [18, 28]. Additionally, spatially rotated bar charts were heavily
utilized in COVID-19 pandemic data dashboards [8, 26, 56, 64, 65]. As
points on a Euclidean plane can be displayed using the Cartesian and
polar coordinate systems, we use both for our stimuli [47]. We rotated
the value-axis of the bar charts in both planes. Anchoring bars on the
x-axis in a Cartesian coordinate system provides a vertical bar chart
with the value-axis increasing along the y-axis; anchoring bars on the
y-axis results in a horizontal bar chart with the value-axis increasing
along the x-axis. We then transformed to a polar coordinate plane with



value-axis increasing along both (r,θ). Anchoring bars along a vertical
axis with the value scale increasing with θ results in a radial bar chart.
Finally, anchoring the bars at the pole with the value-axis increasing
with r results in a circular bar plot (see Fig. 1 for chart types). We
followed conventional design principles for circular bar plots, including
increasing radial distance on a linear scale given data density, and a
large inner radius to reduce perception bias [44]. We note that circular
bar plots have some distortion of the bar as the radial distance increases
to decrease visual bias toward underestimating small bar heights [13].
Further, previous research demonstrates that although accuracy can be
inhibited in polar coordinate charts compared to Cartesian, they are
still widely used and are aesthetically appealing, thus we used them
as sub-conditions in this study [16]. We maintained the vertical bar
chart throughout the questions and paired it with either itself or one
of the three spatially rotated charts to allow for performance compari-
son between chart types (e.g., is performance between two Cartesian
plots different than a Cartesian & polar chart?). We ensured that the
vertical chart appeared on the left and right of the rotated chart across
densities and question types. We maintained gray-scale charts to avoid
any color interference. As polar coordinate plots require chart lines
for readability, we maintained similar lines on the Cartesian charts as
well. We varied the four chart types amongst the two set sizes and three
questions.

4.3.4 Part 2 Task Design
The basic task paradigm we chose was a visual search process across
two charts and densities. Visual search plays an important role in the
cognitive process and is a vital element to visualization [11]. As the
stimuli consist of two side-by-side charts, the visual search process we
chose was a conjunctive search: visual search involving identifying
a previously requested target surrounded by distractors possessing
no distinct features from the target itself [80]. Conjunctive search
involves search over two channels and increases with difficulty as
density of distractors increase [80]. We paired conjunctive search with
tasks increasing in difficulty (see below) across two levels of density
(as described above) to compare performance across varying levels
of difficulty. We created three 3-alternative forced-choice multiple-
choice questions that required conjunctive use of two chart types for
response, we categorized them as Easy, Medium, and Hard. The three
response options were randomized across all questions. Questions were
randomized after the training section. Fig. 3 shows three examples of
different levels of difficulty and density, SM provides a comprehensive
overview of all the combinations.

Easy Question The easy question is a search and comparison task.
It displayed two charts with case numbers from the same set of
countries across two months. This question is classified as easy,
as it consists of a conjunctive search for the same singular target
variable across both displayed charts. Once located, participants
compare the target variable across the charts i.e., participants
searched for a given country in the first chart and compared case
numbers of that country to the second chart to respond if cases
were higher, lower, or the same as the previous month.

Easy question example: In Gibraltar, are cases higher, lower,
or the same in June compared to the previous month? Easy
Responses: Cases are higher, cases are lower, cases are the same.

Medium Question The medium question is a search and comparison
task across an increased number of targets. It displayed two charts,
the left with death rates, the right with hospitalization rates of the
same set of countries on a given date. This question is classified
as medium as it increases the variables for conjunctive search
and comparison to three targets across both charts; participants
searched for the three countries with the highest number of deaths
in the first chart and responded with which of those countries had
the highest hospitalizations from the second chart.

Medium question example: Of the three countries with the high-
est number of deaths, which has the highest hospitalizations?
Medium responses consisted of the correct response, one of the

Fig. 4: H1: Spatial visualization per domain, with the CI of means (left)
and of mean differences (right). Error bars represent 95% Bootstrap
confidence intervals. In the mean differences plot (right), those tighter
and farther away from 0 provide stronger evidence of differences. Stars
indicate evidence of significant differences across charts.

countries with the highest number of deaths, but not the highest
hospitalizations, and one random country (see Fig. 3).

Hard Question The hard question is a search and comparison task
that involves mathematical estimation. It displayed two charts,
the left with the raw number (in millions) of vaccinated people,
the right with the raw population (in millions) of the same set of
countries on a given date. This question is classified as hard as
after a conjunctive search for one target variable across charts, par-
ticipants had to perform a mathematical computation to estimate
a derived variable. Computing a derived variable is a common
task in data analysis and often appears as a sub-task in other op-
erations – the more complex the aggregation the more difficult
the interaction [4]. In this question, participants are required to
estimate the vaccinated portion of people in a target country.

Hard question example: Approximately what portion of people
are vaccinated in Bhutan? Hard responses: less than 1

3 , between
1
3 −

2
3 , more than 2

3 .

4.3.5 Part 2 Measures

Four possible chart pairings, times two possible layouts (e.g., Vertical
or Radial chart on either right or left), times two levels of data den-
sity, times three question types/difficulty levels made for a total of 42
multiple-choice questions. To assess performance, we recorded the
selected answer and the response time (RT) of each question in all parts
of the study. Stimuli were shown randomly to participants to minimize
learning effects.

4.3.6 Motivations and Difficulty Assessment

While not part of our main hypotheses, we also recorded participants’
perception of difficulty of both parts of the study. This was assessed
on a 5-point Likert scale ranging from Easy to Difficult. These ques-
tions were asked to ascertain if perception of difficulty is linked to
performance in both parts, and to aid in explainability of outcomes for
anomalies or unexpected results.

Further, research shows that cognitive skills (and specifically spa-
tial skills [9, 35]) and personal motivations are closely related and
can together explain achievement in STEM subjects [9, 15, 19, 40].
Motivation is part of an individual’s goal structures, and their belief
about what is important, and determines whether they will engage in
a given activity [5]. Research shows that motivation and feelings to-
wards mathematics (or math anxiety) are interrelated [9]. Additionally,
performance on spatial tasks, and tasks involving mathematics, are
influenced by self-efficacy, math anxiety, and intrinsic and extrinsic
motivators [7,35, 40]. To increase explainability and psychologically
grounded methods in visualization research, we adapted the Science
Motivation Questionnaire (SMQ) from [40], which is grounded in
prominent theories of academic motivation and encompasses many of
the motivational factors found to influence performance in STEM [9].
We chose one question from each of the motivational factors measured
by the SMQ: intrinsic, extrinsic, self-efficacy, self-determination, and
math anxiety. Each question mirrored the SMQ with the word “science”
replaced by “data visualization” and was rated by participants on a
5-point Likert scale as per the questionnaire (see SM).



R=0.255, p=0.015
R=-0.408, p=0.0006

Fig. 5: H2: Spatial visualization score with respect to performance:
Pearson correlation between spatial visualization and accuracy (left) at
R=.255, p=0.01. Pearson correlation between spatial visualization and
response time (right) at R=-0.408, p=0.0006. Time in seconds.

4.4 Participants

We successfully gathered 30 participants with reliable data in each
target domain, giving us a balanced sample, for 90 total participants.
We followed a strict rule of balanced samples across groups to support
our between subject design. The demographic statistics as a whole and
across the three domains were as follows. Gender participation overall:
51% male, 49% female. Business: 47% male, 53% female. LPS: 30%
male, 70% female. MCS: 77% male, 23% female. These are consistent
with known educational domain gender differences across Europe [31,
90]. The average age (± standard deviation) of all participants was
24±4, 23±4 for Business, 25±5 for LPS, and 23±4 for MCS. In an
effort toward trans-cultural research design in data visualization [2, 3],
we opened our study to respondents from all countries. To this end we
deployed our study across several days and different time slots to cater
for time zone differences. Overall, we had 49% from the Global South
and 51% from the Global North. Business: 57% Global South, 43%
Global North. LPS: 57% Global South, 43% Global North. MCS: 33%
Global South, 67% Global North.

5 RESULTS

We analyzed differences in performance and spatial visualization using
sample means, hypothesis testing at the p < 0.05 level of confidence,
and 95% confidence intervals. Confidence intervals (CIs) were con-
structed in Python using bias-corrected and accelerated bootstrapping
(BCa) with 5000 iterations. After testing independent groups for nor-
malcy, we decided to utilize BCa to create confidence intervals along
with hypothesis testing using the Mann-Whitney U test to obtain a
test statistic and p-value for further validation, as both are robust to
non-parametric data [49, 63, 71]. We use both to demonstrate multi-
ple analysis techniques and strength of evidence about the population
means, as recommended in recent reviews [30, 41]. Confidence in-
tervals allow for both traditional statistically significant interpretation
(if the interval does not overlap 0), as well as subtle differences: the
farther from 0 and the tighter it is, the stronger the evidence [83].
Additionally, we analyzed differences in spatial visualization using a
Pearson’s correlation test, where p < 0.05 indicates correlation and R
ranging 0.1− 0.3 indicates weak, 0.3− 0.5 moderate, and 0.5− 1.0
strong correlation [23]. Below we report on our high-level findings;
detailed means and stepwise analysis are reported in SM due to space
restrictions.

5.1 Demographic Differences

While not part of our main hypotheses, we evaluated spatial visualiza-
tion and accuracy levels across demographics.

Between self-identified males and females, we found no signifi-
cant differences in spatial visualization level, keeping with previous
research [9, 76]. While we detected no significant difference in RT,
there was a significant difference of 7% in their accuracy (CI(2,11),
p < 0.01). We note that the uneven distribution of men in MCS is likely
a driving factor in this difference [48, 86].

We found strong evidence (p < 0.001) that those who were raised
in the Global South score lower on spatial visualization than those
in the Global North (by 2/10 questions). Additionally, overall mean
times per question were 7.2s longer (CI(4,9), p < 0.01) and overall
accuracy 5% lower for those from the Global South (p = 0.05). These
differences reflect current research in psychology and information and
communication technology demonstrating differing levels of cognitive
ability and visualization interpretation between those in the Global
South and North [6, 34, 37, 73].

5.2 H1: Spatial Visualization by Discipline

We hypothesized that spatial visualization ability would differ across
discipline with MCS having the highest spatial visualization followed
by Business, then LPS.

Those in MCS had a mean spatial visualization score of 5.3. There
is compelling evidence that MCS had higher spatial visualization levels
than Business (p < 0.01) and LPS (p < 0.001) by on average 2/10 for
both. Business had a mean score of 3.6 while LPS had a mean score
of 3.5 – there was no evidence of difference between them. The CI of
mean differences between MCS and Business is (0.6,2.7) while the CI
for MCS and LPS is (0.8,2.7), indicating a slightly stronger difference
between MCS and LPS (see Fig.4). Though Business and LPS have
slightly differing spatial abilities according to [91], our finding is in
line with [79] which does not show a significant difference between
spatial abilities of Business and LPS. Similar to both [79,91], we found
greater mean differences between MCS and Business/LPS than between
Business and LPS themselves. See Section 5.5 for further insight.

⇒ We partially confirmed H1, spatial visualization of participants
differed for some domains. The ranking of disciplines in terms of
spatial visualization is LPS ≈ Business < MCS. This finding is still
consistent with previous research [79,91] where LPS and Business have
similarly low levels of spatial ability, however we found no difference
where they find that LPS has slightly lower levels than Business.

5.3 H2: Performance by Spatial Visualization

We hypothesized that performance (accuracy and response time) would
differ between those with high and low spatial visualization. To deter-
mine this, we look at both the correlation between spatial visualization
and performance, as well as tested sample means and CIs across den-
sities, charts, and questions. For all 90 participants, the mean spatial
visualization score was 4/10. We had 51 participants with low spatial
visualization (9 MCS, 22 Business, 20 LPS) and 39 with high spatial
visualization (21 MCS, 8 Business, 10 LPS). Low spatial individuals
had a mean score of 2.5/10, while High had 6/10, meaning high spatial
levels were about 4/10 higher (CI(3.3,4.1), p < 0.001).

We found evidence (p ≤ 0.01) of moderate correlation as spatial
visualization increases with both accuracy (R=0.3) and RT (R=0.4) (see
Fig. 5). We compared performance of low and high spatial visualization
participants across the two density levels of 7 and 14 data points, 4
chart types and 3 density levels. We report results from our analysis
below (SM reports detailed breakdowns of sample means and CIs).

5.3.1 By Density

Response Time: Mean times were higher for low spatial individuals
compared to high spatial for both densities: 8.4s (CI(6,12), p < 0.001)
higher for charts with 7 data points and 9.6s (CI(7,13), p < 0.001)
higher for charts with 14 data points.

Within low spatial individuals, charts with 14 data points took 4.1s
longer than charts with 7 data points (CI(2,8), p < 0.001). High spatial
individuals took 2.9s longer on charts with 14 data points (CI(1,5),
p < 0.001) compared to charts with 7 data points.

Accuracy: We detected a slightly higher accuracy means on den-
sity 7 charts for high spatial individuals than low spatial by 5.2%
(CI(0.7,10), p < 0.05). No significant accuracy differences were de-
tected between or within low and high spatial individuals across chart
density.



Fig. 6: H3: Vertical Bars performance means (left) and mean differ-
ences (right), for Accuracy and Response Time. Time in seconds.

Fig. 7: H3: Horizontal Bars performance means (left) and mean differ-
ences (right), for Accuracy and Response Time. Time in seconds.

Fig. 8: H3: Radial Bar Chart performance means (left) and mean
differences (right), for Accuracy and Response Time. Time in seconds.

Fig. 9: H3: Circular Bar Plot performance means (left) and mean
differences (right), for Accuracy and Response Time. Time in seconds.

5.3.2 By Chart Type

Response Time: For Vertical charts, low spatial individuals took 6.4s
(CI(3,10), p < 0.001) longer than high spatial; for Horizontal low
spatial took 9.7s (CI(6,14), p < 0.001) longer; for Radial they took
7.6s (CI(4,12), p < 0.001) longer; and for Circular Bar Plots, low
spatial took 11.0s (CI(7,16), p < 0.001) longer.

Within low spatial individuals, polar coordinate charts took 6.0s
longer than Cartesian coordinates (CI(2,10), p < 0.001). Within high
spatial individuals, polar coordinate charts took 5.2s longer than Carte-
sian coordinates (CI(4,7), p < 0.001).

Accuracy: There is some evidence that on Vertical charts low spatial
means were 5.7% (CI(0.3,11), p < 0.05) lower than high spatial. For
Horizontal charts, low spatial means were 5.1% (CI(0.6,10), p < 0.05)
lower. On Circular Bar plots low spatial was 7.8% (CI(2,14), p < 0.05)
lower. There was no accuracy difference detected for Radial charts.

Within low spatial individuals, polar coordinate chart means were
10.1% lower than Cartesian coordinate charts (CI(5,15), p < 0.001).
Within high spatial individuals, polar coordinate chart means were
similarly 10.5% lower than Cartesian charts (CI(6,15), p < 0.001).

5.3.3 By Question Difficulty

Response Time: There is compelling evidence that RT means were
higher for low spatial individuals across all levels of difficulty: by
8.7s for Easy (CI(6,12), p < 0.001), by 7.5s for Medium (CI(4,12),
p < 0.01), and by 10.7s for Hard (CI(7,15), p < 0.001).

Within low spatial individuals, RT means were higher for Medium
by 5.7s (CI(2,10), p < 0.001) and Hard by 7.0s (CI(3,12), p < 0.001)
when compared to Easy time means, with no significant difference
between Medium and Hard questions. For high spatial individuals,
time means were also higher for Medium by 7.0s (CI(5,9), p < 0.001)
and Hard by 5.1s (CI(3,7), p < 0.001) when compared to Easy times.
Interestingly, high spatial time means for Hard questions were 1.9s
lower than for Medium times (CI(0.5,4.3), p < 0.01).

Accuracy: Accuracy was similar between low and high spatial
individuals in Easy and Medium questions. However, the low spatial
means were lower by 10.1% (CI(4,17), p = 0.01) for Hard questions.

Within low spatial individuals, accuracy means were 11.9% lower for
Medium (CI(6,17), p < 0.001) and 17.8% lower for Hard (CI(11,24),
p < 0.001) when compared to Easy questions. High spatial accuracy
means were 16.1% lower for Medium (CI(11,22), p < 0.001) and

12.3% lower for Hard (CI(9,17), p < 0.001) when compared to Easy
questions. Neither had notable accuracy differences between Medium
and Hard questions within group.

⇒ When looking at overall performance, we confirmed H2, spatial
visualization level does affect RTs (lower spatial visualization, longer
time to answer questions) and a moderate amount of accuracy. Low
and high spatial individuals have a similar discrepancy in performance
as density increases and coordinates move between Cartesian and polar.

5.4 H3: Performance by Domain
We hypothesized that performance (accuracy and response time) would
differ between disciplines, with MCS performing best and LPS worst
(following their spatial ability). Looking at overall mean differences, we
found that MCS was faster than Business by 7.2s (CI(5,10), p< 0.001),
and LPS was faster than Business by 7.6s (CI(5,11), p < 0.001). No
difference was detected in overall RT between MCS and LPS. For
overall accuracy however, MCS was 12.8% more accurate than LPS
(CI(9,19), p < 0.001), and Business was 10% more accurate than LPS
(CI(5,16), p < 0.001). No difference was detected in overall accuracy
between MCS and Business.

We detail results of our analysis of accuracy and RT across three vari-
ables: density, chart type (Figs. 6-9), and question difficulty. Detailed
breakdown of the analysis and means are provided in the SM.

5.4.1 By Density
Response Time: For charts of density 7, there is evidence that mean
times were higher for Business compared to LPS by 7.6s (CI(4,13),
p < 0.001) and MCS by 7.3s (CI(4,13), p < 0.001). There is also
evidence mean times were higher for Business in charts of density
14: higher than LPS by 7.7s (CI(4,13), p < 0.001) and MCS by 7.0s
(CI(3,12), p < 0.001). There is no evidence of significant differences
between MCS and LPS mean times.

Within groups there was similar increased time means for charts of
density 14 when compared to density 7: Business by 3.5s, LPS by 3.4s,
MCS by 3.8s (all p < 0.001).

Accuracy: For charts of density 7, there is strong evidence that
MCS had 11.6% higher accuracy (CI(7,18), p < 0.001) and Business
had 9.8% higher accuracy means (CI(5,16), p < 0.001) than LPS.
Additionally, for charts of density 14, MCS had 14.0% (CI(9,20), p <
0.001) higher accuracy and Business had 10.2% (CI(5,17), p < 0.001)



higher accuracy means than LPS. There is no evidence of differences
between MCS and Business in accuracy.

There is no evidence of accuracy differences between densities
within groups.

5.4.2 By Chart Type

See Figs. 6, 7, 8, and 9 for accuracy and RT means and difference CIs.
Response Time: There is evidence that mean times were 8.0s higher

for Business than LPS (p< 0.001) and 5.4s higher than MCS (p< 0.05)
for Vertical charts. For Horizontal charts, Business took 6.6s longer
than LPS (p < 0.001) and 8.2s longer than MCS (p < 0.001). Looking
at Radial charts, Business took 9.2s longer than LPS (p < 0.001) and
6.8s longer than MCS (p < 0.05). Last, for Circular Bar Plots, Business
took 6.9s longer than LPS (p < 0.001) and 7.6s longer than MCS
(p = 0.01).

Within all domains, there was a similar increase in time between
Cartesian and polar coordinate charts: Business by 5.9s (CI(0.5,11),
p < 0.001), LPS by 5.0s (CI(2,8), p < 0.001), and MCS by 6.0s
(CI(4,8), p < 0.001).

Accuracy: For Vertical charts, there is no evidence of accuracy
differences. For Horizontal charts however, there is strong evidence
that mean accuracy of MCS was 11.4% higher than LPS and Business
was 9.4% higher (both p < 0.001). For Radial charts, there is evidence
MCS and Business had higher accuracy means than LPS (by 15.6%
and 11.7%, respectively, at p < 0.001). For Circular Bars MCS means
were higher by 15.3% and Business means higher by 11.7% than LPS,
again at p < 0.001. There is no significant evidence of difference in
means between MCS and Business across chart types.

Within all domains, accuracy means were similarly lower for po-
lar coordinate plots when compared to Cartesian coordinate charts:
Business by 9.8% (CI(5,15), p < 0.001), LPS by 13.7% (CI(6,20),
p < 0.001), and MCS by 7.5% (CI(3,12), p < 0.01).

5.4.3 By Question Difficulty

Response Time: For Easy questions, there is evidence of increased
mean times for Business compared to LPS by 5.4s (CI(2,10), p =
0.001) and MCS by 7.2s (CI(4,12), p < 0.01). Business also has
increased times for Medium questions compared to LPS by 9.3s
(CI(5,17), p < 0.001) and MCS by 7.3s (CI(3,15), p = 0.01). For
Hard questions, Business had increased times by 8.2s compared to LPS
(CI(3,14), p < 0.001) and 7.0s to MCS (CI(3,13), p < 0.01). There
is no evidence of differences in time means for LPS and MCS.

Within Business there were increased times of 7.6s to Medium
questions (CI(2,15), p < 0.001) and 7.0s to Hard questions (CI(2,13),
p < 0.001) from Easy questions. For LPS there were increased times of
3.7s to Medium questions (CI(0.6,7), p = 0.01) and 4.3s to Hard ques-
tions (CI(0.5,9), p < 0.05) from Easy questions. For MCS there were
increased times of 7.6s to Medium questions (CI(5,11), p < 0.001)
and 7.2s to Hard questions (CI(5,10), p < 0.001) from Easy questions.
No differences were detected in mean times between Medium and Hard
questions across domains.

Accuracy: For Easy questions there is some evidence that MCS had
higher accuracy than LPS by 9.8% (CI(5,18), p < 0.01) and Business
by 3.1% (CI(0.5,6), p < 0.05). Additionally, there was no detected
difference between Business and LPS accuracy means for Easy nor
Medium questions. There is some evidence that MCS had 11.9%
higher scores than LPS in Medium questions (CI(4,20), p < 0.01).
For Hard questions, Business had higher accuracy means than LPS
by 16.4% (CI(8,25), p = 0.01) and MCS was higher than LPS by
16.7% (CI(8,25), p = 0.01). Other than in Easy questions there was
no difference detected between MCS and Business.

Within Business, accuracy means fell by 14.2% (CI(10,20), p <
0.001) from Easy to Medium questions and by 11.2% (CI(6,17), p <
0.001) from Easy to Hard. Within LPS accuracy means fell by 14.5%
(CI(5,23), p < 0.001) from Easy to Medium questions and by 20.1%
(CI(11,30), p < 0.001) from Easy to Hard. For MCS accuracy means
fell by 12.4% (CI(7,18), p < 0.001) from Easy to Medium questions
and by 14.0% (CI(10,19), p < 0.001) from Easy to Hard. There was

Motivation Mean Scores Significant Differences

Overall
(out of 20)

High Spatial - 11.1
Low Spatial - 11.7

None

MCS - 12
Business - 12.3
LPS - 9.9

MCS>LPS: CI(0.6,4), p < 0.01
Business>LPS: CI(0.8,4), p = 0.01

Intrinsic
(out of 4)

Spend my own time learning
about data visualization

High Spatial - 1.4
Low Spatial - 2.0

CI(0.2,1), p < 0.01

MCS - 1.8
Business - 1.9
LPS - 1.7

None

Extrinsic
(out of 4)

My career or studies
involve data visualization

High Spatial - 2.3
Low Spatial - 2.1

None

MCS - 2.6
Business - 2.4
LPS - 1.6

MCS>LPS: CI(0.6,2), p < 0.001
Business>LPS: CI(0.3,1), p < 0.01

Self-Determination
(out of 4)

I put effort into learning
about data visualization

High Spatial - 2.2
Low Spatial - 2.9

CI(0.19,1.1), p < 0.01

MCS - 2.2
Business - 3.0
LPS - 2.5

Business>MCS: CI(0.3,1), p < 0.01
Business>LPS: CI(0.03,1), p < 0.05

Self-Efficacy
(out of 4)

I am confident I will perform
well on data visualization tasks

High Spatial - 2.7
Low Spatial - 2.7

None

MCS - 2.8
Business - 2.9
LPS - 2.5

Business>LPS: CI(0.03,0.8), p < 0.05

Low Math Anxiety
(out of 4)

Note: higher score
indicates lower anxiety

High Spatial - 2.4
Low Spatial - 1.9

None

MCS - 2.6
Business - 2.1
LPS - 1.7

MCS>LPS: CI(0.2,2), p = 0.01

Table 1: Motivation scores and significant differences between spatial
visualization level and education domain. Details in SM.

no evidence of differences between Medium and Hard questions within
domains.

⇒ Our results partially confirm H3. MCS participants tend to have
higher accuracy than LPS and lower RTs than Business participants.
MCS has higher accuracy than LPS across density, chart types (save
Vertical charts), and question difficulty; MCS also has faster times than
Business across density, chart types, and question difficulty. However,
although spatial visualization levels are similar for Business and LPS,
Business participants tend to have higher RTs and higher accuracy
than LPS. Business and LPS did not differ significantly in accuracy
only on Easy & Medium questions, and Vertical charts – although
LPS was faster. Overall, we observed a time/error trade-off between
Business and LPS – the more time spent, the higher the accuracy. This
finding is in line with [43] that found time/error trade offs between
domains with similar levels of spatial visualization (CS and Education).
However, in our study no trade off was detected for MCS participants
(who had higher spatial visualization levels) which were generally just
as fast as LPS and just as accurate as Business. The difference in
results could potentially be linked to the fact that we compared across
a balanced sample of participants and included education background
to professional profile in case profession was misaligned, where [43]
did not. This indicates cognitive abilities do interact with domain to
affect performance in both accuracy and RT, and that accuracy can
be improved with increased RTs. The latter finding is common in
visualization research on spatial visualization [29, 43, 85].

5.5 Difficulty and Motivation
The final tasks of the study were to rate the difficulty of each section
along with rating personal motivations regarding data visualization.
High spatial individuals rated the spatial visualization assessment (out
of 4) 1.7/4 on average, while low spatial individuals rated it 2.19/4
- this was significantly different at p < 0.05 with CI(0,0.94). No
differences were detected between the low and high spatial ratings of
Part 2. The only significant difference found between domains was
the average difficulty rating of the spatial visualization assessment
between LPS (2.5/4) and MCS (1.7/4) at p < 0.05 with CI(0,1.1).
Business rated the spatial visualization assessment (1.93/4) on average
but was not significantly different from LPS nor MCS. There were no
differences detected between the domain’s average rating of Part 2.

As per the SMQ, each motivation response corresponded to a score



from 1-4, rating agreement with the statement [40]. The statement
measuring anxiety was reverse scored so that higher scores correspond
to lower anxiety - thus, we refer to this construct as low math anxiety.
See Table 1 for motivation ratings and significant differences.

The overall average rating of data visualization motivation was
11.4/20. Those above the average motivation score had quicker RTs
overall by 7.1s than those below the average (CI(5,10), p < 0.001).
They were significantly faster across densities, chart types, and question
types (all p < 0.001). Additionally, those above the average had higher
accuracy in charts of density 14 (p < 0.05) and polar coordinate charts
(p < 0.05) - see SM for details.

As seen in Table 1, low spatial individuals have higher intrinsic
motivation and self-determination than high spatial individuals. This
finding is in line with research demonstrating that those with low visual
processing cognitive abilities still choose visual data interfaces i.e.,
preference to use visualizations is not directly indicative of visual
cognitive abilities [54].

Interestingly, both MCS and Business had significantly higher over-
all motivation scores compared to LPS and had higher accuracy over-
all. Specifically, Business outranked LPS in extrinsic motivation, self-
efficacy, and self-determination (where Business also outranked MCS).
MCS outranked LPS only in extrinsic motivation and low math anxiety.
This indicates data visualization is more prevalent in MCS and Busi-
ness domains than LPS and thus there may be a higher value placed
on accuracy in visualization tasks. Additionally, putting effort into
learning about data visualization and confidence in tasks may increase
accuracy – this is aligned with [24, 39] that demonstrate that higher
self-determination, self-efficacy, and confidence are correlated with
increased performance in mathematics tasks.

6 DISCUSSION

Our results confirm and build upon research in information visualiza-
tion that both spatial visualization and domain influence use of data
visualization [53, 87]. These individual differences are often treated in-
dependently, but we build on work that brings them together to increase
effectiveness and reach of visualization [43]. We ensured balanced
samples between domains, aimed at gender and global diversity, and
included education background in the professional profile to reduce
potential confounding factors. We found that there are differences
between domains in statistical performance and motivations around
data visualization, leading to implications and insights for design.

Spatial visualization performance We investigated how spatial
visualization ability and discipline come together to affect task perfor-
mance (accuracy and RT) on common data visualizations. We con-
firmed past research that spatial abilities vary with domain [91], with
MCS having significantly higher spatial visualization than Business
and LPS (Fig. 4, H1).

Consistent with visualization research into spatial visualization
[87, 89, 92], we found increased level of spatial visualization corre-
lates with higher accuracy and quicker RTs (H2). This finding speaks
to space in information visualization for inclusivity, given learning
disorders and populations that have been connected to low spatial abili-
ties [14, 37]. RTs differed amongst all sub-conditions (density, chart
type, and question difficulty) and accuracy differed for Hard questions
amongst all chart types between spatial visualization levels. We found
a similar discrepancy in performance between Cartesian and polar co-
ordinate charts within low and high spatial individuals. Additionally,
we found that for Hard questions (involving math computation) high
spatial individuals took less time than with Medium questions, but
they maintained significantly higher accuracy than low spatial. This
supports research in education psychology that high spatial individuals
tend to perform better in mathematics [9, 94].

Difficulty & Motivation: Low spatial individuals found the spatial vi-
sualization assessment more difficult than high spatial, did not perceive
the multiple-choice questions as more difficult, yet did not perform
as well. Additionally, Low spatial individuals had higher levels of
intrinsic motivation and self-determination (see Table 1). Both findings
support [92], that individuals are often unaware of their abilities and
still choose to interact with and enjoy visual data representations.

Domain Performance Between domains, we found behavior con-
sistent with spatial visualization level and performance (H3) such that
MCS had higher accuracy than LPS and quicker RTs than Business.
This difference was consistent across sub-conditions. This finding is
consistent with research into psychology and visualization that individ-
uals who studied STEM subjects have increased spatial abilities and
performance in visualization tasks [9, 87].

Difficulty & Motivation: Consistent with spatial visualization levels,
LPS found the spatial visualization assessment more difficult than
MCS, with Business rating difficulty between the two. We found
an overall time/error trade-off with Business and LPS (i.e., the more
time spent on questions the higher the accuracy). We conjecture this
trade-off, and difficulty perception, has to do with the motivations and
domain differences between Business and LPS. Literature suggests
there is higher value placed on data visualization in Business [36,
57, 84, 95] when compared to LPS [46, 97]. This is reflected in the
motivations of Business and LPS participants in our study (see Table
1). Notably, MCS and Business reported that data visualization is
involved in their career or studies to a higher degree than LPS. Business
additionally rated confidence in doing well on visualization tasks as
higher than LPS and reported they put more effort into learning about
data visualization than both MCS and LPS. These motivations have
been shown to correlate with increased performance in mathematics
and engagement, performance, and higher quality learning in education
in general [9, 74]. From this, it follows that even with similar levels of
spatial visualization, those in the Business domain would take time to
have higher accuracy on data visualization tasks where those in LPS
might not.

The fact that LPS exhibit different abilities and performance should
be significant to the visualization community. Individuals in LPS are
regularly at the center of government systems and are often advised by
scientific bodies and advisors, especially during the ongoing COVID-
19 pandemic [25]. There could be broad reaching consequences if
designers fail to cater to the abilities of those making high impact
governance decisions when sharing scientific information. Given bodies
like the World Health Organization, governments, universities, and
data visualization tech companies created COVID-19 dashboards with
spatially rotated data [8, 26, 56, 64, 65], it is critical that information
visualization is accessible and effective for an imperative group of
individuals with huge influence on society.

Outlook & Future Work The scope of this study did not include
the causal origins of the different spatial visualization abilities amongst
disciplines - this is still an open question. It is important to note that
other factors can influence task performance such as domain knowl-
edge, representational fluency, visual familiarity, or demographic dif-
ferences [37, 43, 53]; the interplay between these factors is complex
and none alone can explain differences. Regardless of the origins of
the differences, our study demonstrates how spatial visualization level
and domain affect visualization use, which leads to important design
implications. Further studies can be done on additional domains to ex-
pand knowledge of performance differences in visual tasks and spatial
visualization between groups for higher impact designs. To increase
inclusive design practices, interventions might be studied that allow
low spatial individuals to increase accuracy and/or decrease RT needed
for visual tasks: benefiting those in LPS and Business domains. Our
finding that spatial visualization level is an important cause behind
difference in performance is reflected in intervention research for cogni-
tive abilities [18, 28]. Performance including interventions and guided
interactions (e.g., explicit linking across charts, feature highlighting,
information redundancy) could be tested and balanced with cognitive
load drawbacks for effectiveness.

Our study advances initial work in the visualization community
toward cataloguing cognitive differences of domains [43] and is a step
toward increasing impact of visual design across disciplines.

7 CONCLUSION

The aim of our research was to build on work in visualization explor-
ing spatial visualization differences amongst domains and its effect
on visualization use. Our study expanded research to the domains of



Business and LPS and included real-world data and visual scenarios of
spatially rotated data. We presented additional evidence that the inter-
play between cognitive and demographic factors should be considered
to increase effectiveness and inclusivity of visual design. Additionally,
our research showed motivational differences between domains that
could affect interaction and design needs. As the field of visualization
evaluates cognitive and domain differences and the interplay between
the two, studies like this can ensure informed and effectual design for
all communities.
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