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Revisiting the Design Patterns of
Composite Visualizations

Dazhen Deng, Weiwei Cui, Xiyu Meng, Mengye Xu, Yu Liao, Haidong Zhang, Yingcai Wu

Abstract—Composite visualization is a popular design strategy that represents complex datasets by integrating multiple visualizations
in a meaningful and aesthetic layout, such as juxtaposition, overlay, and nesting. With this strategy, numerous novel designs have been
proposed in visualization publications to accomplish various visual analytic tasks. However, there is a lack of understanding of design
patterns of composite visualization, thus failing to provide holistic design space and concrete examples for practical use. In this paper,
we opted to revisit the composite visualizations in IEEE VIS publications and answered what and how visualizations of different types
are composed together. To achieve this, we first constructed a corpus of composite visualizations from the publications and analyzed
common practices, such as the pattern distributions and co-occurrence of visualization types. From the analysis, we obtained insights
into different design patterns on the utilities and their potential pros and cons. Furthermore, we discussed usage scenarios of our
taxonomy and corpus and how future research on visualization composition can be conducted on the basis of this study.

Index Terms—Datasets, Visual Analytics, Visualization Specification, Visualization Design
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1 INTRODUCTION

DAta visualizations aim to visually represent data at-
tributes to efficiently achieve the goals of analysis

or storytelling [1]. For a long time, common visualiza-
tions (e.g., bar charts, line charts, and scatter plots) have
been well-accepted by the public and widely adopted in
business, education, and scientific research. Because of the
advancement in technology, complex data (e.g., large-scale,
heterogeneous, hierarchical, and spatio-temporal) have be-
come more and more available, and visualizations have
also been evolving along with the complexity of analysis
tasks, leading to the bloom of the visualization research
community. To address challenging analysis tasks, novel
visual representations have been proposed from time to
time, but the majority of research in this field still focuses on
existing visualizations. One common practice of leveraging
existing visualizations for complex tasks is to compose dif-
ferent visual representations to exploit their advantages and
make up for their disadvantages [2], [3], [4], [5]. In this work,
we use the term composite visualizations to describe these
visualizations. Basically, they are a type of visualization that
combines multiple visualizations in a meaningful and aes-
thetic layout [2], such as juxtaposition, overlay, and nesting,
to fulfill the need for specific data structures, analysis tasks,
and usage scenarios.

Composite visualizations cover a large variety of de-
sign patterns. For example, a common design pattern is
juxtaposing multiple charts side-by-side, which is flexible

• D. Deng, X. Meng, M. Xu, Y. Liao, and Y. Wu were with the State
Key Lab of CAD&CG, Zhejiang University, Hangzhou, China, 310000.
E-mail: {dengdazhen, mengxiyu, mengyexu, yuliao, ycwu}@zju.edu.cn.
This work was conducted when Dazhen Deng was an intern at Microsoft
Research Asia.

• W. Cui and H. Zhang were with Microsoft Research Asia, Beijing, China,
100000. E-mail: {weiweicu, haizhang}@microsoft.com

• Yingcai Wu and Weiwei Cui are the co-corresponding authors.

Manuscript received April 19, 2005; revised August 26, 2015.

in layout and easy to understand, even for visualization
novices. To improve visual coherence, juxtaposed charts can
be arranged in specific patterns, such as sharing an axis
or repeatedly listing the same types of visualizations (e.g.,
Figure 5). In this way, a complex dataset can be visualized
with multiple simple charts exhibiting different aspects
of the data. Because of the ease of implementation and
understanding, the juxtaposition is widely used in visual
analytics systems [6], fact sheets [7], visual data stories [8],
etc. Apart from juxtaposition, multiple visualizations are
often compacted into a single view by overlaying (e.g.,
Figure 6 & 7) or nesting (e.g., Figure 8). By correlating
the spatial and semantic relationships between graphical
elements, such an integrated visualization is mainly tailored
to reveal a specific type of pattern of the back-end data.
However, designing a successful composite visualization is
not an easy task. It requires not only an extensive knowledge
base of visualization charts but also sufficient design skills
to coherently present graphical elements for analysis tasks.

On the other hand, there is a growing collection of visu-
alization publications containing well-designed composite
visualizations, which serve as a resource to reuse and inspire
new research. To design a new visualization, enumerating
different combinations of visualizations will take a lot of
time to edit, but may not necessarily result in a design
with promising visual effects. It will be more cost-friendly
to leverage concrete design examples for further adaptation
to a new task, instead of starting from scratch. From the
perspective of research, a holistic design space of the com-
posite visualizations might lead to new research topics (e.g.,
which are the most frequently used design patterns, and
what are the reasons behind them?) and novel designs (e.g.,
is it possible to create efficient designs for specific tasks from
the rarely occurring visualization combinations?).

In this work, we revisit the composite visualizations in
VIS publications and try to understand their design prac-
tices from two perspectives. First, from the perspective of vi-
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sual components, what visualizations can be composed together
as a composite visualization? Prior studies have explored
composite visualizations in specific contexts (e.g., visual
comparison [5], [9]), data (e.g., dynamic network [10], multi-
variate graph [11]), or layout (e.g., juxtaposed views [6]).
We opt to answer this question from a broadened scope
of visualizations beyond specific tasks and data. Remov-
ing these restrictions, we can focus on visual designs and
provide valuable exemplars for visualization development.
Second, from the perspective of spatial relations, how can
different visualizations be composed together? Prior studies [2],
[10], [12] have summarized different design patterns for
composite visualizations. On the basis of these insights,
we opted to revisit the patterns and conduct a quantitative
analysis on how frequently different patterns are used [2].
Such a demographic analysis will be helpful for spotting de-
sign trends, proposing design suggestions, and discovering
the potential of under-explored design patterns. Especially
for researchers, a comprehensive survey can provide an
overview of the community and inspire further research. For
example, a widely used design pattern might request further
research of empirical studies to validate its efficiency.

In this work, we first construct a composite visualization
corpus from IEEE VIS publications and decompose their
designs into basic visualizations. The decomposition enables
us to identify composite visualizations and answer the first
question. Next, based on the decomposed visual designs, we
formulated a two-level taxonomy of composition patterns
to answer the second question. In the taxonomy, the design
patterns are identified according to the spatial relations and
the semantic information conveyed. To obtain an overview
of the corpus, we revisited the visual designs based on the
taxonomy and conducted statistical analysis on different
design patterns. Finally, we construct an exploration system
for the composite visualization corpus. The system supports
retrieving visualizations by type, composition pattern, and
meta information. The corpus, design pattern taxonomy
and the exploration system can be viewed online: https:
//composite-visualizations.github.io/. The contributions of
this work include:
� A taxonomy of composition pattern and a corpus with

1,748 composite visualization examples from IEEE VIS
publications.

� An in-depth analysis of the statistics, utilities, advantages,
and disadvantages of different composition patterns.

� Discussions of usage scenarios of the taxonomy and fu-
ture research opportunities.

2 RELATED WORK

This section introduces related studies about visualization
configuration, design space of composite visualizations, and
figure analysis to publications.

2.1 Visualization Configuration

Visualization configuration is a fundamental problem for
visualization design and generation. Previous studies on
visualization configuration have extensively studied the
composition of graphical elements for visualization render-
ing. For example, Blackwell and Engelhardt [13] termed

NestedJuxtaposed Integrated Superimposed Overloaded
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Fig. 1. Taxonomy of composition patterns (A) proposed by Javed and
Elmqvist [2] and examples [19], [20], [21] of superimposed views (B)
and overloaded views (C & D) provided in their paper.

the “composition” as the structure of graphical primitives
(e.g., line and point). Engelhardt [14] further introduced
a framework of syntax that recursively formulates a visu-
alization to be a composite graphic object. Based on the
syntax, Engelhardt and Richard [15] investigated the “DNA”
of visualization and proposed a grammar named VisDNA.
The study indicated various relationships between graphical
primitives, such as grouping, nesting, and connecting, and
scaling patterns of primitives, such as repeating. Sedig and
Parsons [16] proposed a language that characterizes visual
design patterns and the manners to fuse the patterns, such
as self-similar nesting, layering, and juxtaposing. Our work
is similar to these ones in terms of leveraging the concept
of “composition”, but we focus on an entirely different
granularity. Specifically, the composition patterns in these
previous studies mainly focus on graphical primitives, such
as line, point, and circle, which are more fundamental
than the ones studied in this work. For example, a bubble
treemap is composed of self-nesting circles. In this work,
the building blocks are high-level visualizations, which
are the configurations of multiple graphical primitives. For
example, a clustering heatmap is composed by stacking a
heatmap and a clustering tree.

Visualization programming languages, such as ggplot
(grammar of graphics [17]) and Vega-Lite [18], also investi-
gated how graphical primitives are composed during chart
rendering. In terms of composite visualizations, Vega-Lite
supports fusing multiple charts by specifying the key of
“concat,” “layer,” and “facet” in a declarative manner. Nev-
ertheless, Vega-Lite mainly focuses on the composition of
charts with the Cartesian coordinate system. More complex
compositions such as nesting are not considered. This study
opts to revisit the design patterns of composite visualiza-
tions and provide insights into the design of grammar for
more powerful visualization programming languages.

2.2 Design Space of Composite Visualizations
Javed and Elmqvist [2] proposed the term composite visual-
ization view as a theoretical model. In their model, a compos-
ite visualization is described by its visual components, com-
position pattern, and data relationship. Among them, the
composition pattern, such as juxtaposition, integration, su-
perimposition, overloading, and nesting, is used to describe
how two visual components are spatially combined together
(Figure 1). Inspired by their work, we use this model as

https://composite-visualizations.github.io/
https://composite-visualizations.github.io/
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a starting point and aim to revisit the design patterns of
composite visualizations in IEEE VIS publications. On top
of that, our work can better identify composition patterns,
obtain new insights about composite visualizations, and
facilitate new usage scenarios. First, we have proposed a
more refined taxonomy for revisiting the large corpus of
visual designs in IEEE VIS. For example, we differentiate
the overloaded views (e.g., Figure 1B) and superimposed
views (e.g., Figure 1C & D) considering the use of coordi-
nate systems in our taxonomy. Second, we obtained new
insights into design patterns with quantitative analysis. For
example, a correlation analysis on visualization types within
individual composition patterns presents a general usage
preference of visualization combinations in the visualization
community. Third, the taxonomy and corpus can facilitate
new usage scenarios, such as helping visualization design-
ers and researchers in improving the efficiency of survey
and design with an exploration system.

Other studies related to visualization composition may
target specific data [10], [11], [12] or tasks [5], [22]. Re-
searchers have explored how to combine different visual-
izations to represent data with specific structures or types.
For example, for dynamic graphs, Beck et al. [10] studied
how node-link diagrams and timelines are juxtaposed, su-
perimposed, and integrated together to encode the temporal
information. For geospatial networks, Schöttler et al. [12]
analyzed the combination of node-link diagram and map
based on the taxonomy of Javed and Elmqvist’s [2]. Nobre et
al. [11] studied the juxtaposed, integrated, and overloaded
patterns of matrix and node-link diagrams in multivariate
networks. Another group of studies focuses on how differ-
ent compositions of visualizations affect the efficiency of a
specific task. For example, Gleicher et al. [22] proposed three
composition patterns of visualizations for visual compari-
son, including juxtaposition, superimposition, and explicit
encoding. L’Yi et al. [5] further reviewed and summarized
visual comparisons under these patterns, and presented
several practical design guidelines.

Compared to these studies, we removed the constraints
of specific data or tasks, and analyzed the design patterns of
composite visualizations with an extended scope. Our study
presents a corpus including diverse visualization types and
layouts and an overview of the state-of-the-art composite
visualizations.

2.3 Figure Analysis of Visualization Publications

In addition to survey papers, researchers also analyzed
visualization publication figures. Li et al. [23] conducted
a memorability study with SciVis figures. Zeng et al. [24]
contributed VIStory, a technique for exploring figures in
VIS publications. Chen et al. [25] adopted object detection
models to extract the figures and tables in IEEE VIS publi-
cations and proposed VIS30K. These studies mainly focus
on perception tasks and analytical techniques for figures,
instead of the visual designs inside.

For visual designs, some studies explore how different
visualizations are distributed in the figures. Deng et al. [26]
collected figures from VIS publications and annotated the
types and positions of visualizations. However, they only
considered the co-occurrence of visualizations in the figures

nested

nested

["scatterplot"]
["bar_chart"]


 ["donut_chart"]


{

    "visualization_type": [

        [{

            "visualization_type": [

                ,

                
            ],

            "composition_pattern": " ",

        }],

       
    ],

    "composition_pattern": " ",

}

Fig. 2. An example of composite visualization. OpinionSeer [27] is
composed of scatterplots, bar charts, and donut charts. The composite
visualization can be defined recursively with a hierarchical structure.

and failed to answer how different visualizations are com-
posed, which is more useful for designers and researchers.
Chen et al. [6] explored the composition and configuration
patterns of multiple-view visualizations (MV) consisting of
juxtaposed views. They discovered “many novel designs
with compound view types,” which indicates more complex
but under-explored design patterns other than juxtaposi-
tion. Therefore, in this work, we moved a step further and
studied the composite visualizations within single views, in-
cluding the types of visual components and design patterns.

3 TERMINOLOGY

A composite visualization is defined by basic visualizations
and composition patterns.
� Basic visualizations are the components (or building

blocks) of composite visualizations, referring to different
types of visual representations, such as bar chart, parallel
coordinate plot, and map. It is noted that a basic visu-
alization can be broken into smaller elements, such as
marks, axes, and legends, but in composite visualizations
the smallest building block is basic visualization.
A series of studies attempt to classify visualizations [28],
[29], [30], [31], [32]. For example, Harris [30] presented an
exhaustive categorization of visualization types and in-
dexed them by alphabetical order. Meirelles et al. [32] cat-
egorized visualizations by data structures. Heer et al. [31]
classified the charts by their data structures and tasks. We
choose Borkin’s taxonomy [33] as the visualization type
taxonomy because it covers most of the aforementioned
taxonomies and contains additional up-to-date visualiza-
tion types. As demonstrated by a previous study [26], this
taxonomy can serve as a useful vocabulary for researchers
to classify the visualizations in visualization research
publications. Borkin’s taxonomy classifies visualizations
according to data structures, visual encodings, and tasks.
The taxonomy has two classification levels (12 first-level
categories, each with several second-level sub-types).
We identified three issues when using Borkin’s taxonomy
for the goal of this work. First, some types have multiple
names and definitions, such as histograms and bar charts.
We unify these types for simplicity. Second, some types
are semantically similar, such as graphs and trees. The tree
is a special case of the graph that has a hierarchical data
structure. The semantic similarities provide more fine-
grained differentiation between classes that help us gain
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more insights into the composition patterns. For example,
graphs are commonly overlaid on map visualizations but
trees are not. To avoid duplicated annotations, we only
assign one class to each visual component based on its
shapes. For example, a visual component is assigned
one of the labels “tree” or “graph”. We will choose the
label that more accurately describes the visual compo-
nents. Third, Borkin’s taxonomy does not cover scientific-
specific visualizations (e.g., volume rendering), so we add
a type named “SciVis”.

� Composition patterns refer to the visual relationships
between components in a composite visualization. In
this work, we propose a taxonomy of composition pat-
terns considering relative positions (e.g., overlapping)
and attribute relationships (e.g., type and style) between
components. According to the terminology in Javed and
Elmqvist [2], where composition patterns describe the
usages of space and a relation between the visual com-
ponents in composite visualization. Therefore, we regard
composition patterns as a set of reusable configurations
for the generation of a new visualization design given
basic visualizations, which demonstrates general visual-
ization design patterns.
Given these two characteristics, we define a composite

visualization by its components organized with compo-
sition patterns, where a component can be either a ba-
sic visualization or another composite visualization. Using
this recursive definition, a composite visualization can be
represented using a hierarchical structure (Figure 2). Note
that for a composite visualization, composition patterns
are necessary, which is different from other multiple-view
visualizations (or user interfaces) that can be loosely defined
as a group of charts placed together [6], [34].

4 CORPUS CONSTRUCTION

This section demonstrates how we constructed the corpus
of composite visualizations based on VisImages [26].

4.1 Collecting Figures and Designs

Our main goal is analyzing composite visualizations in
research publications of visualizations. Therefore, we con-
structed the corpus based on VisImages, a dataset that
collects figures (as well as the basic visualization types
and positions in the figures) from IEEE VIS proceedings.
We focused on the papers from 2006 (when VAST was
established) to 2020 and obtained 19,910 figures from 1,963
papers. Many other visualization venues, such as EuroVis,
ACM CHI, Diagrams, and Infovis journal, also contain
high-quality visualization designs. As a starting point, we
primarily focus on IEEE VIS and leave the analysis of these
venues to future research.

However, the collected figures have purposes that are
not suitable for follow-up composite visualization analysis.
For example, a large part of the figures is statistical fig-
ures used in evaluations, which should be excluded from
the corpus. Therefore, we only kept the figures containing
original visualization designs. We established three criteria
for the filtering. First, we only selected figures containing
visualization designs used for data analysis. We excluded

figures that illustrate models, frameworks, experiment re-
sults, etc. We also excluded figures showing visualization
designs from previous papers, such as figures in survey
papers [35]. Second, if the components of a design appear in
several figures, we selected the one with the most compo-
nents to maximize the design integrity. Finally, if there are
multiple figures duplicated in terms of visualization design,
we selected the first one.

We developed an interactive tool for figure selection and
design annotation. The tool helps users verify if the figures
meet the three criteria and locate the visual designs in the
verified figures. Using this tool, three authors independently
filter the corpus based on the three criteria. The inconsistent
results are discussed and resolved using the majority voting
rule. As a result, we filtered 1,353 figures from the 19,910
figures and collected 1,565 visualization designs from the
filtered figures.

4.2 Annotating Composite Visualizations

For each composite visualization, we attempted to annotate
the composition patterns for further analysis. In VisImages,
all basic visualization types and their positions in the figures
are identified using the type taxonomy proposed by Borkin
et al. [33]. We further verified and revised the visualizations
based on the taxonomy descriptions in Figure 3 with the
interactive tool. Thereafter, the visualization designs are
decomposed into a series of basic visualization types. Please
note that in some cases, a visualization can be assigned
with multiple type labels: when the visual component is a
heatmap (defined based on color encodings) and other visu-
alization types (based on shapes) simultaneously. However,
the multiple label issue is not prevalent (19/1,859). We retain
the type heatmap as it can provide information about how
composition pattern is used for this particular visualization
type. Based on the decomposition, we annotate the compo-
sition patterns in a bottom-up manner. First, we analyzed
and collected different composition patterns according to
the spatial and attribute relationships in each example,
then built a taxonomy of composition patterns based on
the collected patterns. Second, we labeled all designs in
the corpus with the taxonomy and filtered the composite
visualizations for the follow-up statistical analysis.

4.2.1 Analyzing Composition Patterns
Cross-referring the taxonomy proposed by Javed and
Elmqvist [2] and the collected corpus, we constructed a
two-level classification of composition patterns. We term
the classification as a taxonomy because we follow a series
of rules to exhaustively and exclusively divide the design
space into several sub-spaces. At the top level, according to
the overlapping relationships between basic visualizations,
we identified three patterns, namely, juxtaposition, overlay,
and nesting. Compared to the taxonomy proposed by Javed
and Elmqvist (Figure 1), ours has several major changes.
First, the integrated views are considered as juxtaposition
visualizations in our taxonomy, because we consider the ex-
plicit visual links and underlying data flow as coordination
methods between juxtaposed visualizations. Second, the
superimposed and overloaded views are merged as overlay
visualizations, because their views are both composed by
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Juxtaposition Overlay Nesting

annotationcoordinatemirror stack nestingrepetition

Similar Coordinate system-related

Providing W/O connectionsSharing With connections

Coordinate system-unrelated

Nonsymmetrical Symmetrical

Unsimilar

Continuous

co-axis large panel

Fig. 3. A two-level taxonomy of Composition Patterns. Composite visualizations are classified according to overlapping relations at the first level,
and further classified into sub-types according to geometric (symmetric or continuous) and semantic relation (e.g., sharing coordinate systems or
providing coordinate systems for other components).

visually overlaying visualizations on others. More impor-
tantly, for each composition pattern, we further identified
several sub-types and contributed a second-level taxonomy
based on more fine-grained visual features. The proposed
taxonomy and the features to identify each type are pre-
sented in Figure 3. For juxtaposition patterns, we referred
to the Gestalt principle and firstly identified visualizations
with components of the same visual structures or differ-
ent visual structures following the similarity rule. For the
ones composed of similar visual components, we further
identified repetition patterns and mirror patterns following
the symmetry rule, while for the ones with different struc-
tures, we identified stack patterns based on the continuity
rule. For overlaid patterns, we first identified visualizations
whose components have coordinate relation and that have
no coordinate relation. For the ones whose components have
coordinate relation, we identified co-axis patterns in which
different components share the same coordinate system and
coordinate patterns in which one component serves as a
coordinate system for other components. For the ones whose
components do not have coordinate relation, we differenti-
ate annotation patterns and large-panel patterns based on
the existence of connections between the child components
and parent components.

4.2.2 Annotating Composition Patterns

With the basic visualizations and composition pattern tax-
onomy, we further aggregated composition patterns based
on different basic visualization types. To ensure the com-
pleteness of the analysis, we analyzed the composition
patterns by enumerating all possible combinations of the
types. For example, imagine a visualization that multiple
glyphs of bar charts are distributed on a map, and the
map is a heatmap at the same time. We will assign three
basic visualization types to the visualization and obtain
three visualization type pairs. For each pair of types in
a composite visualization, we annotated its composition
pattern. Since a composite visualization may have three or
more components and is defined recursively, the annotation
is also performed in a bottom-up and recursive manner.
Similar to basic visualization types, all composition patterns
were annotated and verified by at least two authors. All
inconsistencies are resolved by involving a third author
and the majority voting rule. In total, we obtained 1,748
composition patterns from 1,859 visualization type pairs.

Please note that, in a composite visualization, the combi-
nation of two visualization types is only counted once to

Stack
Mirror

Repetition

Large Panel
Annotate

Coordinate
Companion

Nesting

Juxtaposition

Overlay

Nesting

Fig. 4. Distribution of composition patterns.

avoid redundancy, regardless of the instance numbers of
each type. For example, in a scatterplot matrix, we only
count the combination of scatterplot + matrix once.

5 COMPOSITE VISUALIZATIONS IN IEEE VIS
Figure 4 shows the overall statistics of composition patterns.
In this section, we present details for each pattern by report-
ing the numbers and summarizing their utility.

5.1 Juxtaposition
For juxtaposition visualizations, their components do no
overlap and are positioned side by side. Although a user in-
terface (UI) may also consist of visualizations without over-
lapping, it is not considered a juxtaposition visualization in
the context of this study. The component interrelationships
in a UI are considerably looser than those in a visualization
with juxtaposition patterns. As a rule of thumb, we consider
a UI an arbitrary placement of visualizations or interface
components (e.g., buttons, sliders, and progress bars) and
only extract the visualizations.

Compared to overlay and nesting where visual compo-
nents are overlaid on or contained by other components,
juxtaposition offers a flexible and clear layout for visual
components without visual occlusions. Juxtaposed compo-
nents interrelate through visual links or data flow. Visualiza-
tion with juxtaposition patterns take up 53.8% (941/1,748) of
all composition visualizations, which is the most frequent
pattern. We identified three sub-patterns, namely, repetition,
mirror, and stack, corresponding to the similarity, symmetry,
and continuity rules of the Gestalt principle.

5.1.1 Repetition Patterns
Definition: repetition refers to the juxtaposition vi-
sualizations which are of the same structure (visu-
alization type or composite visualization), but their

components are not symmetrical with respect to coordinate
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axes. Repetition patterns are the most common (41.8%,
730/1,748) among all patterns.

Figure 5-A1 shows the occurrences of visualization types
with repetition patterns. We can see that the distribution is
highly skewed. Bar charts (25.1%, 179), scatterplots (10.0%,
72), and line charts (9.7%, 70) are the most frequently
used. Besides, composite visualizations (8.3%, 60) and SciVis
(6.9%, 50) are also popular with repetition patterns.

Figure 5-A2 shows the distribution of repetitions in
individual repetition visualizations. The long tail distribu-
tion indicates two different usage scenarios. On the one
hand, some visualizations may contain a large number of
components (up to 100 in our collected examples), as shown
in Figure 5-A4 & 5-A5. These examples generally target
lightweight usage, such as browse, selection, or overview,
referring to small multiples in other research [46]. The
information presented in a repetitive unit is often simple for
better readability, and the components are commonly shown
in a list view with a scroll bar to handle the scalability. On
the other hand, from the peak of the distribution, where
the repetition counts lie in [2, 4), we discovered a different
usage scenario of exploration. For example, in Figure 5-A3,
two scatterplots are used to show data projection with t-
SNE and LTSD-GD, respectively [36]. This visualization is
used as the main view for showing details of the data,
requiring a relatively large space. Among the visualizations
with repetition patterns, 38% consist of components that
share the same axis. The repetition distribution in this subset
also follows a long tail pattern, but with a more gentle
slope. With shared axes, repeated components can be easily
compared at the same scale.

Repetition patterns have three main advantages. First,
the visual similarity of repeated components provides a
strong visual hint of grouping according to the Gestalt prin-
ciple [47]. Second, repetition visualizations can help users
in exploring and comparing multiple items, but might not
be the best choice compared to mirrored or superimposed
layouts [5], [48]. Third, repetition visualizations are easy to
implement because codes can be reused conveniently. How-
ever, repetition patterns also have disadvantages. First, it is
difficult to compare when the number of components gets
large because the distance between targeted components
might be large [5]. Second, because of the same appearance
of components, users may directly compare visual proper-
ties, such as size and position, without a careful reference to
the scales and attributes of individual components, leading
to incorrect insights. In summary, we observe two phenom-
ena in visualizations with repetition patterns:
� Keeping the component number between 2 and 8 in a

repetition visualization is the most popular. When using
it as the main view for analysis, the number is even fewer
([2, 4)).

� In many examples, it tends to omit unnecessary visual
elements to reduce visual clutter. For example, using a
shared axis and removing duplicated marks to save space
and assist comparison (Figure 5-A5).

5.1.2 Mirror Patterns
Definition: mirror pattern refers to symmetrically
placing two components of the same structure with
respect to a coordinate axis. Two components have

the same scale on both sides of an axis of symmetry. Vi-
sualizations with mirror patterns are much less popular
(2.3%, 40/1,748) in our corpus. As shown in Figure 5-B1,
for mirror patterns, the most frequent basic type is bar chart
(62.5%, 25). Other popular types used in mirror visualization
include composite visualization (10.0%, 4), scatterplot (7.5%,
3), area chart (7.5%, 3), and heatmap (5.0%, 2).

Visualizations with mirror patterns mainly have two
advantages. First, taking advantage of people’s experience
with mirror reflections, mirror visualizations imply identical
objects and invite people to compare the two mirrored com-
ponents [49]. Second, mirror visualizations are aesthetically
pleasing because of their symmetry. From the samples, we
discover that in some cases [39], [40], mirror visualizations
are adopted as a part of a symmetrical design, as shown
in Figure 5-B2 & 5-B3. However, mirror visualizations also
have two obvious drawbacks. First, they only support com-
paring two data series. Second, because of the symmetry
layout, it is more difficult to discover precise differences
between components. Instead, according to the studies by
L’Yi et al. [5], overlaying two data series or using explicit
encoding is better than mirror/repetition visualizations in
spotting subtle differences. Therefore, mirror visualizations
might not be a good choice when the main design goal
is precise comparison, but they can be used as auxiliary
components within a symmetric design. When using mirror
visualizations, a number of designs use an explicit encoding
to represent the difference [5], [50] or hide the redundant
elements. For example, in ForVizor [40], a soccer analytics
system, when visualizing defensive effectiveness, the bars
of the offensive team are hidden (Figure 5-B3).

5.1.3 Stack Patterns
Definition: components of different types or struc-
tures are aligned or concatenated by the same data
items or a shared margin (e.g., axis) in a stack visual-

ization. For example, the bar chart + matrix in Figure 5-C3
and the icicle plot + matrix in Figure 5-C4 are aligned by
items. The shared margin might not be an axis with the
same scale, such as Figure 5-C5, where the bar charts are
stacked together with x-axes representing different levels
of data. Please note that, although a repetition visualiza-
tion may also have a shared axis, stack visualizations are
different in terms of representation and usage. First, the
components in a stack visualization are often different,
while components in a repetition visualization are strictly
homogeneous. Second, a repetition visualization is mainly
used for listing similar data, while a stack visualization
focuses more on presenting different facets of the same data
in an interconnected manner.

In our corpus, stack visualizations take up 9.8%
(171/1,748). From the co-occurrence matrix (Figure 5-C1),
we discovered that the most frequent combination is bar
chart + matrix. Among all types, the bar chart is the most
frequent (32.5%, 67).

Going through examples, we identified a common usage
that bar charts serve as supporting components to another
prominent component with a larger size and a more central
position. The supporting charts are mainly used to show
visual summaries of the main component. For example, a
bar chart can summarize the distribution of the data on
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rows (or columns) of a matrix (Figure 5-C3). For other
stack visualizations, components often have similar sizes
and represent different data aspects (Figure 5-C4), where
there are no leading or supporting roles.

Besides, we observed cases where more than two compo-
nents can be stacked together to form a large visualization.
In these cases, some components are used as intermediates
to connect two or more components. For example, in Fig-
ure 5-C3, the map connects the heatmaps on the top and to
the left. In addition to the grid layout of components in this
example, we also observed a novel linear layout (Figure 5-
C7), where matrix, scatterplot, Sankey diagram, and bar
chart are connected together through mutual stacking. The
visual elements of intermediates handle different aspects
of data, such as attributes (e.g., coordinates of parallel
coordinate plots), data type (e.g., nominal axis and numeric
axis of bar charts), data items (e.g., rows and columns of
matrices), and data groups (e.g., nodes of Sankey diagrams).

One drawback of linear layout is insufficient space usage
when stacking multiple visualizations in different directions
(Figure 5-C8).

Stack visualizations have two major advantages. First,
a stack visualization can present different aspects of the
same data at the same time in a compact manner, which
conforms the rule of space/time resource optimization in
designing multiple-view visualizations [51]. Second, rela-
tionships between two stacked components are maintained
by a shared margin or shared visual items. Users can con-
veniently switch back and forth between components to
explore the data because of such visual continuity. How-
ever, the visual continuity is reduced when the number of
items or the distance between aligned items increases. For
example, in Figure 5-C4, although the icicle plot and matrix
are adjacent, the icicles with large numbers are distant from
the matrix cells, making the alignment and interpretation
difficult. We discover the following phenomena based on
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our observation of stack visualizations:
� A visualization could be created by connecting different

charts for better visual coherence using intermediate com-
ponents if the back-end data of the charts are related (e.g.,
Figure 5-C8). In this case, stacking multiple visualizations
along the same direction or using a grid layout could
improve space usage.

� When the number of aligned items is large or the align-
ments obscure, visual hints are used to indicate the rela-
tionships, such as color encoding, highlighting-on-hover,
or visual links. For example, the bar charts in Figure 5-C5
are not strictly aligned, but the color encoding helps to
identify the correspondences.

5.2 Overlay
Visual components are overlaid over other components in
an overlay visualizations. Overlay visualizations take up
23.7% (415/1,748) of the collected examples.

Overlay visualizations have two advantages. First, a
visualization with overlay patterns often has a more com-
pact layout compared with juxtaposition. Second, overlay
patterns can directly represent the correspondences between
different components, thus enhancing the visual effect.
However, a common disadvantage of overlay patterns is
occlusion when compared with juxtaposition visualizations
and nesting visualizations. Therefore, when designing an
overlay visualization, it would be better to use clutter reduc-
tion techniques (e.g., edge bundling) to improve the visual
appearance. Overlay visualizations can be organized in four
categories: co-axis, coordinate, annotation, and large panel. A
co-axis visualization contains multiple visualizations that
share the same coordinate system, while the other three
categories all refer to cases that smaller visualizations (child
components) are overlaid on the top of larger visualizations
(parent components).

5.2.1 Co-Axis Patterns
Definition: component visualizations share the same
coordinate system in a co-axis visualization. Co-
axis visualizations take up 6.9% (121/1,748) in our

corpus. Figure 6-A2 shows that the most frequent type
include line chart (43.1%, 53), scatterplot (32.5%, 40), area
chart (22.8%, 28), and bar chart (24.4%, 30). From the co-
occurrence matrix (Figure 6-A1), we observe that the top
five combinations are bar chart + line chart (15), scatterplot
+ line chart (14), line chart + area chart (13), box plot +
scatterplot (8), and scatterplot + contour graph (6). Going
through the samples, we discover several specific tasks
for these common combinations. First, scatterplots, which
show detailed data items, are often combined with other
summary visualizations of trends (line charts), distributions
(box plots and contour graphs), etc. The combination of
area chart and line chart exhibits various usages, such as
showing uncertainty or differences of the lines with area
chart [67], representing aggregated lines with areas [68] to
reduce visual clutter, or using area charts as a special case
of line charts [69]. The bar chart + line chart is adopted to
visualize independent data series in most cases [53], [70],
[71], [72]. In rare cases, line charts serve to show density
plots for bar charts [73]. In particular, we discovered 4

out of 15 cases in which bar charts and line charts likely
share the same coordinate systems, but they actually have
different y-coordinates, which would be easily overlooked
(e.g., Figure 6-A4).

The advantage of co-axis patterns is that placing multiple
components in the same coordinate system facilitates direct
comparison and pattern recognition. We obtain two obser-
vations considering the occlusions between components.
� Overlaid components might use transparency to reduce

occlusion or put summary/important components on the
top. For example, placing box plots on top of a scatterplot
for anomaly detection tasks.

� A number of designs adopt multiple coordinate systems
in a co-axis visualization, which might introduce potential
biases [74]. For example, the bar chart and line chart in
Figure 6-A4 use different y-coordinates, so that users may
misinterpret.

5.2.2 Coordinate Patterns
Definition: in a visualization design with coordinate
design patterns, parent components provide coordi-
nates (e.g., Cartesian coordinate system, geographic

coordinate system, and other reference systems such as
grids of the matrix) for child components (or their visual
elements). The reference systems are regarded to be part
of the parent components. In other words, the positions of
child components encode back-end spatial data referring to
the parent component. For example, in Figure 1B, the map
provides spatial context for the graph nodes. Similarly, in
Figure 1C, the positions of the graph nodes are determined
by the treemap grids. Please note that, in some cases, parent
components may only provide x- or y-positions for child
components. For example, in Figure 6-B4, the parallel coor-
dinates plot (PCP) provides one of its axes as a reference to
the bar chart. Another example is embedding scatterplots
into PCP (Figure 1D), where one axis is rotated 90 degrees,
creating a 2D coordinate system with another axis to host
the scatterplots.

In total, we obtained 196 (11.2%/1,748) samples with
coordinate patterns. Among the samples, 63 (31.3%) have
graphs as child components and 126 (62.7%) contain maps
as parents, making the type co-occurrence matrix (Figure 6-
B1) highly sparse. Therefore, we separate them from the
type co-occurrence matrix and visualize their type distribu-
tions independently (Figure 6-B2 & 6-B3). Among all com-
binations, overlaying graphs on maps is the most frequent.

Graphs are mostly used as child components (31.3%,
63). It is likely because, in many graph visualization tasks,
analysts mainly focus on topological patterns, such as node
degree and node connectivity [75]. Therefore, node positions
are relatively flexible depending on the needs of different
tasks, and encoding spatial information with node positions
becomes a popular design pattern. In addition, there are
many cases with word clouds referring to area charts (Fig-
ure 6-B8) or proportional area charts referring to matrices.
In these cases, child components regularly do not present
spatial information.

Compared with co-axis patterns where the components
have independent but identical coordinate systems, the lay-
out of child components is determined by their parent com-
ponents in coordinate patterns. Therefore, they are effective
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in helping users interpret child components in the context
of a parent component. We discover two phenomena with
coordinate patterns.
� Various designs choose to combine a parent component

that provides spatial context and child components whose
visual elements do not encode spatial information, such as
word clouds and proportional area charts. For example, in
Figure 6-B8, the words in the word clouds are distributed
on an area chart to visualize the topic frequency.

� In addition to the inevitable occlusions between child and
parent components, the overlapping between the child
components may exacerbate the overall occlusions. For
example, in Figure 6-B9, the glyphs are used to enhance
the map visualization, but users might fail to retrieve the
information encoded by glyphs because of occlusion.

5.2.3 Annotation Patterns
Definition: child components of small size are over-
laid on parent components and connected to ele-
ments of parent components in annotation visualiza-

tions, but the positions of child components do not encode
spatial information. Moreover, the child components pro-
vide a “cut-out” lens for the visual elements connected [76].
Compared with co-axis and coordinate, in which com-
ponents are related to each other because of sharing or
providing coordinate systems, annotation visualizations are
more flexible as child components have more freedom in
placement and can use visual links to explicitly connect to
the parent component. There are only 22 (1.3%) annotation
visualizations in our corpus.

We reviewed the captions and text descriptions in the
corresponding papers to understand the scenarios of anno-
tation visualizations. 17 out of 22 have mentioned that the
child components are displayed on demand (via interactions
with the parent components). Therefore, the most common
usage of annotation patterns is showing additional informa-
tion with tooltips [56], [77], [78]. For example, in Figure 7-C2,
when hovering on a grid on the map, a graphical annotation
about the profile of that grid will present.

The advantage of annotations is the flexibility in posi-
tioning child components. We discover the following two
phenomena of annotation visualizations.
� In most cases, only details of focused data items are

visualized following the rule of details on demand [79].
� The layout of child components can be optimized (e.g.,

saliency-based method [80]) to utilize empty space or
reduce line crossings.

5.2.4 Large Panel Patterns
Definition: child components of small size overlay
directly on parent components without visual links
in a large panel visualization, and the positions of

child components do not encode spatial information. Unlike
annotations, large panels do not connect the child and
parent components using links or anchors, and the child
components show details of the parent components in an
overview + detail manner [76].

In total, We obtained 76 (4.3%) samples of large-panel
visualizations. Figure 7-D2 & 7-D3 show the distributions
of visualization types used as child and parent components,
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respectively. By exploring the samples, we found that large-
panel visualizations are mostly used as the main views in
visual analytics systems, even as the only view in some
systems (Figure 7D). Child components generally serve
as auxiliary views for the whole parent components, not
specific elements of the parent components. This feature
makes large-panel visualizations different from annotation
visualizations, where child components usually present the
details of elements in parent components.

Compared with annotation patterns, large-panel visual-
izations offer more flexibility for placing child components,
since they do not require anchoring points in the parent
component. For large-panel visualizations, they generally
place child components at positions where elements are less
important (such as corners) to mitigate visual occlusion.

5.3 Nesting

Definition: in nesting visualizations, some compo-
nents (denoted by child components) are embedded
into the visual elements or internal area of other

components (denoted by parent components). We collected
392 (22.4%) samples of nesting visualizations in total. The
co-occurrence matrix (Figure 8-A1) shows that nesting visu-
alizations have more diverse type combinations than other
composition patterns. The most frequent combinations in-
clude scatterplots + matrix (a.k.a scatterplot matrix) and
bar chart + table. Bar charts and scatterplots are the most
common child type. For parent components, graphs, matri-
ces, tables, Sankey diagrams, bar charts, parallel coordinate
plots (PCP), and scatterplots are significantly more popu-
lar than other types. We also observed different patterns
of visualizing child components in nesting visualizations.
Small elements of parent components, such as nodes of
graphs (Figure 8-A5), nodes and flows of Sankey diagrams
(Figure 8-A4), sectors of donut chart, and cells of matrix and
table are obvious visual spaces to embed child components.
However, some other parent visual elements, such as axes

of PCP, need to distort to create a canvas to host child
components (Figure 8-A7). In addition, there are nesting vi-
sualizations where parent components have circular shapes
and internal area, such as donut (Figure 2 & 8-A6). The
internal area can provide relatively sufficient space other
than visual elements. These cases are not common (6.4%,
25) among nesting visualizations.

Nesting visualizations have two advantages. First, they
have no occlusions between parent and child components
and imply hierarchical information, compared to overlay vi-
sualizations. Therefore, nesting visualizations can visualize
the overview of parent components (e.g., the overall layout
of graphs) while maintaining details of the child items
(e.g., graph nodes and matrix cells) [86]. Second, nesting
visualizations are more compact than overlay visualizations
and juxtaposition visualizations. However, one major limi-
tation of nesting visualizations is the limited space of visual
elements to host child components. From the observations,
we discover two phenomena.
� A number of designs choose to use relatively com-

mon/simple visualizations in child components, such as
bar charts (Figure 8-A8) and heatmaps (Figure 8-A4 & 8-
A7). We infer that this is because visualizations with
complex configurations are hard to identify due to the
limited space of child components.

� A number of designs apply geometric transformations
to the elements of parent components to make room for
child components. For example, Sun et al. [87] proposed
a route-zooming technique to distort the map for hosting
visualizations for spatio-temporal information.

6 USAGE SCENARIO

The taxonomy and corpus can be used in different aspects.

6.1 Exploring & Understanding Visual Designs
The corpus can help researchers and designers in explore
and understand composite visualization designs. To fa-
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Fig. 9. Left: composite visualization explorer with a filtering panel (A), a heatmap view (B), a gallery (C), and a detail view (D). Right: stack
visualizations with matrices and bar charts across different years.

cilitate design exploration, we developed an explorer for
composite visualizations. The explorer consists of four com-
ponents: a filtering panel (Figure 9-A), a heatmap view
(Figure 9-B), a gallery view (Figure 9-C), and a detail
view (Figure 9-D). The filtering panel supports filtering
designs by keywords, year, venue, composition pattern, and
visualization type. After filtering, an overview of type com-
binations under different composition patterns is displayed
in the heatmap view. Each grid in the heatmap encodes
the number of a type combination. The heatmaps support
filtering designs of specific type combinations by clicking on
the corresponding cells. The filtered designs are displayed
in the gallery view. When clicking on a design in the gallery
view, a window pops up to show details about that design,
including our annotations and metadata, such as the title.
The interface facilitates searching for a visualization type
with different composition patterns. For example, Figure 9-
D1 shows bar charts being displayed on a map visualization
with the coordinate pattern, and Figure 9-D2 nests bar
visualizations into the graph nodes.

Moreover, using the interface to display visualizations of
specific type combinations and composition patterns side by
side enables understanding the evolution of the design. For
example, we can witness an evolution of design complexity
for the visualizations with stacking bar charts and matrices
from Figure 9 (Right). In earlier years (2006 and 2008),
designs differentiate from each other in terms of shape and

color encodings of the matrix cells. Then more different
visual elements are concatenated with bar charts, such as
boxplots (2014). Composite visualizations of bar charts and
matrices can further serve as support components for map
visualization (2018). Besides, there are different directions
for matrices when stacking with bar charts. In a more recent
design (2020), bar charts are stacked with multiple matrices
in a crossing/exploding layout.

6.2 Training Data for AI4VIS

Our corpus can be used as training data for artificial intel-
ligence models for visualizations (AI4VIS) [88]. A possible
task is decomposition, which comprises two sub-tasks, i.e.,
recognizing positions and types of basic visualizations and
inferring the composition patterns of the visualizations. The
bounding boxes and labels can be used for visualization
detection [25], [26]. For the visualizations assigned with
multiple labels (e.g., heatmap and map), the data is rep-
resented with multiple bounding boxes with the same x, y,
width, and height but different labels. VisImages [26] has
demonstrated a case for this situation. With bounding boxes
and visualization types, we can further infer the compo-
sition patterns, which describe the relationships between
the basic visualizations. Recent studies propose practical
methods to learn the hierarchical structures of visual el-
ements with graph neural networks [89] or transformer-
based model [90]. Furthermore, our annotation comprises
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the co-occurrence between basic visualizations, which could
be used for visualization recommendation [91] based on
knowledge graph (e.g., basic visualizations as the entities
and design patterns as the relations).

7 FUTURE RESEARCH OPPORTUNITIES

In this section, we discuss future research opportunities
for implementing composite visualizations and exploiting
empirical evidence for task-driven efficiency.

7.1 Implementing Composite Visualizations
Our taxonomy can be used to measure the expressiveness
of existing visualization grammar in visualization render-
ing and facilitate the development of more ease-of-use
visualization generation grammar. Grammars that support
operating on low-level visual elements, such as D3.js [92]
and Vega [93], can implement various composition patterns
through programming, but they require high programming
capability of the users.

In recent years, declarative programming languages are
developing rapidly and gradually supporting the genera-
tion of visualizations through the intuitive specification of
the visual encodings. For example, Vega-Lite [18] supports
view composition with operators of “facet/repeat” (rep-
etition), “layer” (part of coordinate patterns and co-axis
patterns), and “vconcat/hconcat” (part of stack patterns).
However, it cannot generate nesting visualizations when
there is a need to represent additional information in the
visual elements, such as glyph visualizations [94]. The gen-
eration of nesting visualizations also requires the support
of processing network/hierarchical data. ECharts [95] sup-
ports graph and tree visualizations. GoTree [96] facilitates
the rendering of hierarchical data by specifying coordinate
systems, visual elements, layout, etc. However, these gram-
mars lack original support for composition. ATOM [97]
supports generating visualizations with nested data units,
but the building blocks of generated visualizations are not
visualizations. Nevertheless, its graphical operations, such
as bin, duplicate, and filter, can be extended to support
generating nesting visualizations, for example, aggregating
the transformed data units and rendering them with basic
visualization types. In all, analyzing existing visualization
grammars with the taxonomy, we understand that existing
grammars can be further extended to support the conve-
nient generation of more composition patterns, especially
nesting patterns, which account for 24.2% in our corpus.

7.2 Empirical Evidence for Task-Driven Efficiency
Composition patterns have been applied in many visual
analytics systems, which are designed to achieve various
analysis tasks [98]. However, the efficiency of visualization
composition has long been discussed and the design com-
plexity remains a problem in visualization research [99],
[100], [101]. However, directly comparing the design of
different visual analytics systems might be impractical due
to their complexity. Our taxonomy provides a breakdown of
composition for evaluating the efficiency of complex designs
under different tasks [98], [102], such as comparing values
and discovering anomalies.

Some studies have investigated composite visualizations
for the task of comparison. For example, Isenberg et al. [74]
studied how dual-axis charts, a special co-axis pattern,
perform in the tasks of comparing lengths and distances.
L’Yi et al. [5] have thoroughly explored the effectiveness of
repeated, mirrored, and co-axis layouts for comparison.

In addition, we observe the use of composite visualiza-
tions for other tasks, such as co-axis patterns for discovering
correlations/anomalies and coordinate patterns for provid-
ing spatial information. Saket et al. [103] have studied how
basic visualization types perform in low-level tasks (e.g.,
finding anomalies, finding clusters, and correlation) [102].
However, few studies have investigated the efficiency of
composition patterns for these tasks. Future studies can
conduct controlled experiments in exploring the efficiency
of several representative visualizations with compositions.

Nesting visualizations are well suited for representing
the network and hierarchical data [86]. Still, these data
are usually analyzed under tasks different from tabular
data, such as perceiving the topology and the attributes on
nodes or links [75]. Existing studies have investigated the
perception efficiency of graphs in different conditions, such
as static or dynamic manners [104] and multiple sampling
models [105]. However, few user studies have been con-
ducted to evaluate the efficiency of nesting layouts. Future
studies can design different perception tasks for the child
components and parent components in the visualizations
and conduct controlled experiments accordingly.

8 DISCUSSION

In this section, we discuss trade-offs of different composition
patterns and limitations of composition representations.

8.1 Balancing Expressiveness and Effectiveness
Designing a visualization should handle the trade-offs be-
tween representing more information in a limited visual
space and ensuring users are not overwhelmed by too many
visual components [1]. Specifically, juxtaposition can pro-
vide flexible layouts for charts with small occlusions, which
might be friendly for design novices. Among juxtapositions,
stack patterns can express different aspects of data with
a more coherent arrangement. Furthermore, overlay and
nesting provide more compact layouts than juxtaposition
visualizations to handle more visual components at once.
These compositions can also make convenient to perceive
spatial, networking, or hierarchical relation between child
and parent components. However, these patterns increase
the visual occlusion and limit the size of child components.

8.2 Coverage of Composition Representations
We encountered that some designs are not decomposable
with our composition representations. For example, Bubble
Sets [106] are highly customized with primitive shapes
(such as rectangles, lines, and circles), instead of combining
multiple types together. Moreover, the composition patterns
might not fully reflect the design novelty. For example, in
addition to coordinate and nesting, Whisper [107] use a
metaphor of sunflower to represent the retweeting activities.
To understand and analyze these novel designs, lower-level
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decomposition, which concerns transformations and visual
encodings, is required, such as the component layout (e.g.,
circular and branched).

8.3 Limitations

Our study has two limitations. First, data and interactions
of designs, which are closely related to analytical tasks and
design requirements, are not considered in our corpus. The
acquisition of this information requires extensive efforts on
paper reading and is even inaccessible sometimes. In this
work, we mainly study design patterns regarding observ-
able information in figures, such as visualization types and
spatial relationships, because of the large size of the corpus.
A potential solution to retrieve information about data and
interactions might be using natural language processing
techniques to extract and analyze related text descriptions.
Second, the corpus construction mainly relies on manual
annotation, which is limited in scalability for a larger quan-
tity of data. Recently, studies [25], [26] have adopted object
detection models to process visualization images, which
might be a promising method for data collection. In this
work, we lacked a well-curated dataset for model training
at the beginning, but we could use the collected corpus to
explore the potential of automatically recognizing visualiza-
tions and composition patterns.

9 CONCLUSION AND FUTURE WORKS

In this work, we opted to answer the question of what
and how visualizations can be composed together to form
novel designs. To achieve this, we conducted a demographic
analysis on composite visualizations, based on a corpus
of visual designs from IEEE VIS. With the corpus, we
proposed a taxonomy of eight design patterns. For each de-
sign pattern, we analyzed the distributions and correlations
between different visualization types, and obtained insights
on usage scenarios, advantages, disadvantages, and design
suggestions. We released the corpus and an explorer to
advance the studies in designing composite visualizations:
https://composite-visualizations.github.io/.

For future research, one promising direction is a library
that can flexibly integrate different visualization types with
different composition patterns. Existing libraries (e.g., Vega-
lite, ECharts) can provide support for layering or faceting.
Nevertheless, researchers create composite visualizations
mainly by writing codes with programming languages (e.g.,
Javascript), since composite visualizations are with com-
plex structures and are commonly integrated with visual
analytics systems. With the taxonomy and corpus obtained
in this work, we might extend the features of existing
libraries for better creation of composite visualizations. An-
other research problem is the effectiveness of composition
patterns on different tasks. With the overview provided
before, we understand the scenarios and tasks for different
design patterns, but in-depth inspections, such as controlled
studies, are beyond the scope of this paper. Recently, L’Yi
et al. [5] have explored the effectiveness of different chart
compositions (e.g., superimposed and explicit encoding) on
visual comparison. We hope our taxonomy and findings
could shed light on exploring further empirical studies

with more diverse composition patterns, visualizations, and
tasks. Furthermore, we could study the interaction tech-
niques in composite visualizations. Specifically, we could
use natural language processing approaches with existing
interaction taxonomies [108] to retrieve a corpus of inter-
actions in the designs. Combining with the corpus in this
work, we might discover the relations between interactions,
visualization types, and composition patterns in the works
of visualization community.
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