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Fig. 1: We present a quantitative, systematic study of the phenomenon of change blindness in immersive environments (leftmost
illustration). We analyze the effect of different parameters such as the type of manipulation, distance to the observer, complexity,
and location with respect to the field of view (top). We then explore the influence of our limited visual memory when many different
changes take place at the same time (bottom).

Abstract— Human performance is poor at detecting certain changes in a scene, a phenomenon known as change blindness. Although
the exact reasons of this effect are not yet completely understood, there is a consensus that it is due to our constrained attention and
memory capacity: We create our own mental, structured representation of what surrounds us, but such representation is limited and
imprecise. Previous efforts investigating this effect have focused on 2D images; however, there are significant differences regarding
attention and memory between 2D images and the viewing conditions of daily life. In this work, we present a systematic study of
change blindness using immersive 3D environments, which offer more natural viewing conditions closer to our daily visual experience.
We devise two experiments; first, we focus on analyzing how different change properties (namely type, distance, complexity, and
field of view) may affect change blindness. We then further explore its relation with the capacity of our visual working memory and
conduct a second experiment analyzing the influence of the number of changes. Besides gaining a deeper understanding of the
change blindness effect, our results may be leveraged in several VR applications such as redirected walking, games, or even studies
on saliency or attention prediction.

Index Terms—Virtual reality, change blindness, visual working memory, attention

1 INTRODUCTION

Change blindness is a psychological phenomenon that refers to the
human inability to detect changes to an object or scene, even when they
would appear to be obvious [16, 17, 25, 35, 36]. Although many factors
may come into play, such as age or attention [6, 38], a vast body of
literature from psychology and cognitive sciences attributes this effect
to limitations in our visual working memory [9, 45]; given our limited
brains’ capacity [5, 10, 31], significant amounts of visual information
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must be discarded after being processed1.
While this phenomenon has been known for decades, most of the

efforts to study it have been carried out from a qualitative perspec-
tive, and using 2D images. However, it has been shown that there are
significant differences between attention- and memory-related exper-
iments using 2D images and immersive 3D environments, since the
latter offer more natural viewing conditions, closer to daily visual expe-
rience [15, 22]. For instance, spatial learning in 3D leverages proprio-
ceptive and vestibular feedback, while whole-body motion plays a key
role in building relationships between objects and the observer [11, 22].
These two important aspects of visual perception are rarely present
when viewing 2D images.

In this work, we present a systematic study of the change blindness
effect, leveraging natural viewing conditions simulated with VR 3D en-
vironments. In particular, we have designed two different experiments:
in the first one, we explore the effect of the type of manipulation (i.e.,
adding, removing, relocating, or replacing elements), the distance to
the manipulation, the complexity of the manipulated element, and the
influence of the field of view (FoV). We have found that, despite the

1We refer the reader to the video “Whodunnit" for an illustrative example of
this effect (https://www.youtube.com/watch?v=ubNF9QNEQLA).
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changes being apparently overt, humans generally miss more than half
of the manipulations, even in the more conservative case when they
know in advance that there will be changes in the scene. Previous works
with 2D images suggest an observers’ accuracy to detect such changes
ranging from 73% to 92% [16, 17]. Ma et al. [25] reported that for up
to a 20% of the changes it took people more than 45 seconds to detect
them; working in VR, we found that participants could not find the
manipulation within 45 seconds in more than half of the cases. We also
found that manipulations on closer or complex elements are detected
more easily (as roughly suggested by previous work [46]), while, unlike
what has been proposed for 2D images [25], the type of the manip-
ulation did not have a significant effect on its detectability. We also
found that manipulations happening inside the users’ FoV were more
easily detected (despite masking them with a blinking paradigm) than
those happening outside such FoV. In any case, approximately 40%
of the manipulations in the observers’ FoV were not detected, which
represents a higher ratio of undetected changes than those reported by
previous work [17, 46].

In order to have control over the conditions tested, our main experi-
ment was designed with a single change happening in each trial. In a
second experiment, we analyze the influence of the number of manipu-
lations in the change blindness phenomenon. Our results suggest that
humans are able to correctly detect less than three manipulations, and
that their ability to detect four or more changes is limited regardless
of the amount of actual changes in the scene, i.e., even with a large
numbers of manipulations, humans are consistently not able to detect
more than four. Previous work with 2D content has shown that memory
performance decreases when four or more changes need to be remem-
bered [2, 14, 31]; our results seem to confirm this, even suggesting that
such limitation is slightly stronger in VR. Last, we found a significant
correlation between the participants’ ability to detect changes and the
time being immersed in a virtual scene, with higher detection ratios
with longer times. However, such ability is limited, with almost 40% of
the changes remaining undetected regardless of time for the time frame
we tested. This seems to agree with the hypothesis that, while more
time allows for more solid internal representations of the 3D scene,
memory remains a limiting factor.

A deeper understanding of the change blindness effect in 3D immer-
sive environments will help predict to what extent certain manipulations
will be visible by a human observer, or remain unnoticed. This in turn
may lead to improved users’ experiences in different VR applications,
including redirected walking [40, 41], cinematography [34], interior
design [1], saliency detection [7, 48], or gaze prediction [28].

2 RELATED WORK

Change blindness has interested many multidisciplinary researchers
for decades. Simons and Levin [35] analyzed many experiments and
reported how, while based on diverse methods, they produced strikingly
similar results: Most of the visual changes in a scene remained unde-
tected when viewing 2D images. Attwood et al. found later a similar
conclusion when viewing museum artifacts in the real world [3].

While many works agree that attention is required to be able to
perceive such changes [32, 36], it is generally agreed that change blind-
ness is related to our brains’ limited storage capacity, and to the very
little visual information that actually seems to be stored from one view
or instant to the next. Our visual working memory is used to hold
certain information for any posterior task [4], but its storage capac-
ity decreases significantly when more than four elements are to be
remembered [12, 24]. Indeed, there is a trade-off between the amount
of elements one is able to remember, and the fidelity of their stored rep-
resentation [2, 5, 31]. Some researchers have tried to devise models to
represent how this memory works, and how information is represented
in the brain (see the review by Brady and colleagues [9]), proposing
that item information is stored in a hierarchical fashion, based on their
context and interactions. Experiments by Hollingworth and Henderson
further explored the relation between visual memory for objects and
scene context [16–18]. From this body of existing literature, Ma et
al. [25] introduced a computational method to synthesized changes in
2D images with a certain degree of blindness.

Fig. 2: Overview of the scene used in our first experiment (see Sec-
tion 3.1), which depicts a living room interior provided with realistic
furniture. Participants were seated while doing the experiment, to avoid
translational movements, and were placed in the same virtual position
as where the panorama picture has been taken.

While there is a vast literature about change blindness, most of the
efforts to reach a better understanding of the phenomenon have been
done using traditional 2D images, with the few works using VR focus-
ing on particular applications. Steinicke et al. [39] investigated change
blindness in stereoscopic displays, showing similar trends as in monoc-
ular ones, and suggesting that VR systems could also leverage the effect.
However, their studies were limited to static images shown through an
HMD. Suma et al. [40] leveraged change blindness to manipulate a 3D
environment and thus redirect movement in VR scenarios [21, 33, 42],
avoiding potential visual-vestibular inconsistencies. Later, Lohse et
al. [23] evaluated using change blindness for haptic remapping in VR,
to allow using the same physical object to interact with multiple virtual
objects. Despite leading to some interaction errors, the manipulations
remained undetected for most of the participants.

Closer to our work, Vasser et al. [46] analyzed whether changes
in the background or foreground of virtual environments presented
different detectability, with results confirming the previously reported
bias favoring foreground objects [29, 44]. Despite the shared goal of
analyzing change blindness in VR, a single background/foreground
parameter is analyzed. In contrast, we conduct a systematic study on
a much wider set of parameters using realistic 3D environments, and
provide a through quantitative analysis of the results.

3 MAIN EXPERIMENT

In this first experiment, our goal is to perform a systematic analysis of
change blindness in immersive environments. Within this broad goal,
we first want to evaluate whether certain types of changes are more
prone to be detected than others; to this end, our stimuli feature four
types of changes, namely addition, removal, relocation and replacement
of an element (i.e., an object, or a set of them). Unlike in traditional
media, having immersive content enables making changes both inside
or outside the field of view of the observer, and we therefore also
analyze whether this has an effect on detectability. Finally, we look
into whether the distance to the manipulated element (note that content
is viewed stereoscopically) or the complexity of such element have an
influence on detectability.

3.1 Stimuli
Participants viewed a realistic, stereoscopic virtual scene created in
Unity2, depicting a living room with realistic furniture (see Figure 2).
Within such scene, and in each trial of the experiment, one element is
subject to manipulation. Inspired by previous work on change blindness
in traditional media (images) [25], we implement and analyze four
manipulation operators:

• Addition An element is inserted in an empty location of the scene
(without intersecting other elements).

2The scene for this experiment was Living Room Interior by Blue Dot Studios,
and can be found in the Unity Asset Store.



Fig. 3: We depict a sample manipulation for each of the main four types we have analyzed (see Section 3.1). (Top left) Sample addition: We add
a fourth basket lamp. (Top right) Sample removal: We remove one of the chairs (and adjust the position of the remaining two). (Bottom left)
Sample replacement: We swap a plant for a floor light. (Bottom right) Sample relocation: We move a chest to a different position. Note that
manipulations happen at different distances and affect objects with varied complexities.

Fig. 4: We depict two viewpoints of the scene we used in our main
experiment (Figure 2). For each of them, we outline in orange changes
in items of high complexity, while outline changes of lower complexity
in green.

• Removal An existing element is removed from the scene.
• Relocation An existing element is moved to a different, empty

location of the scene (without intersecting other elements), or two
existing elements exchange their positions.

• Replacement An existing element is replaced by a different el-
ement, in the same position (e.g., a floor lamp is replaced by a
plant).

For each type of manipulation operator, we implement seven differ-
ent fixed changes, for a total of 28 different possible manipulations (see
Figure 3 for an example of each type). The designed manipulations
cover a range of distances from the manipulation to the observer, and

degrees of complexity of the element. For each of these two factors, we
divide our stimuli into two groups: close and far for distance (setting the
threshold between both at 1 meter), and complex (i.e., high complexity)
and simple (i.e., low complexity) for complexity (by manual classifica-
tion, see Figure 4 for examples on this feature). In each manipulation,
the changed element has two different states, manipulated and original.
Every time the participants rotate their head and the element gets out
of their field of view (FoV), its state changes to its counterpart, in an
adaptation of the well-known flicker paradigm of traditional media
approaches [16, 17, 25] to our immersive 360◦ setup [46]. We denote
this as the outside FoV condition, in contrast to the inside FoV one
introduced in the next paragraph. Note that we are conservative, and
do not change the element’s state unless it has been within the central
60◦ of the participant’s horizontal FoV.

To act as a baseline for our results, and to analyze the difference
between detectability of changes occurring inside or outside the FoV,
we selected seven of the previous 28 manipulations and implemented
their inside FoV counterpart. In this version, whilst the changed ele-
ment is within the central 60◦ of the participant’s horizontal FoV, a
traditional flicker paradigm takes place: The environment turns to a
neutral gray for 250ms, during which the manipulation takes place,
and the scene then shows the manipulated state of the element; after
one second, the neutral gray environment is shown for 250ms again,
and the change is reversed, showing the original state of the element.
This is repeated whilst the element is within the central 60◦ of the
participant’s horizontal FoV. We select a flicker time of 250ms because
it is within the range of blink duration (usually ranging from 100 to
400 ms [8, 21, 30, 43], with a reported average duration of around 300
ms [13]).

3.2 Hardware
Our stimuli were presented on a Meta Quest 2 head-mounted display
(HMD) with a horizontal FoV of 104◦ and a vertical FoV of 98◦, a
resolution of 1832x1920 pixels per eye, and a frame rate of 90 fps.
Participants could select the position of the manipulation with a Meta
Quest 2 controller by pointing and pressing a trigger. The Meta Quest
2 are provided with inside-out tracking. The participants reported no
perceived errors in head or hand tracking. However, since the Meta
Quest 2 is a standalone HMD, we logged tracking data (i.e., head
position and orientation) and data about the pointed elements, and
checked after each experiment for potential data loss or errors.

3.3 Participants
Twenty-two participants (11 identified themselves as female, 11 iden-
tified themselves as male, and none of them identified as non-binary,



Fig. 5: We have analyzed the effect of different manipulation features (x axes) on the detection ratio (y axes). (a) Detection ratios for each of our
four outside FoV manipulation types, namely addition, removal, replacement, and relocation. Our statistical analyses do not yield any significant
difference between any types. (b) Effect of distance to manipulated element. Manipulations on closer items are more easily detected than on
further ones, in agreement with previous literature [46]. (c) Effect of the item complexity. Manipulations on more complex elements (i.e., objects
with more complex geometries) are more easily detected. Bars depict the standard error of the mean (SEM). The asterisk indicates significant
(α < 0.05) differences.

other, or preferred not to say; average age 27.18 years old, ST D = 8.53)
voluntarily took part in the study and provided written consent for par-
ticipation. They were naïve about the final purpose of the experiment,
and they all reported normal or corrected-to-normal vision. 81.80%
of them had already used an HMD before, although with different fre-
quencies (44.80% occasionally, 27.80% often, and 27.80% very often).
The experimental procedure was approved by our University Ethics
Committee.

3.4 Procedure

Participants sat on a rotating stool, to prevent translational movements
and keep all of them in the same position within the virtual environment.
The experiment routine was implemented in Unity.

We followed a within-subjects experimental design. Each participant
conducted a total of 35 trials, including the 28 outside-FoV manipula-
tions and the additional seven inside-FoV ones (see Section 3.1). The
order of trials was randomized between participants. In each trial, the
participant is asked to explore the scene and find the manipulated ele-
ment. Once found, they should point at it with the controller and press
the trigger to confirm the choice. Participants have 45 seconds to find
the manipulated element, otherwise the trial yields a timeout. This max-
imum duration was empirically set, in order to ensure that participants
had enough time to explore the whole scene at least twice [37], while
keeping the experiment length reasonable to avoid fatigue (i.e., below
30 minutes per participant). Regardless of whether the participant de-
tects the element or there is a timeout, they have to press the trigger
to begin the next trial; this allows participants to rest and reposition
themselves between trials if necessary.

The whole experiment (including previous and posterior question-
naires) took between 25 and 30 minutes to complete. Before the experi-
ment, users gave written consent for participation and filled a pseudo-
anonymous demographic questionnaire, and a pre-experiment sickness
questionnaire (SSQ) [19]. Then, the experimenter gave the instructions
for the experiment, and the participant was presented a simple tutorial
session, to familiarize themselves with the procedure. Once the partici-
pant completed the tutorial, the experiment would commence. After 18
trials, the participants had to take a short break (at least 10 seconds). At
the end of the experiment, after completing the 35 trials, the participant
completed another post-experiment sickness questionnaire and a short
debriefing. We refer the reader to the supplementary video for a short
overview of the experiment.

4 MAIN EXPERIMENT: RESULTS

We measure the detectability of a condition as the ratio between cor-
rectly detected and total number of manipulations in that condition,

and analyze this detectability for the four different types of manipula-
tions, and for the two levels of both distance and complexity factors, as
described in the previous section.

Collected data We collected data for a total of 770 trials. Within
the answered trials, there are correct answers (the participant correctly
identified the element that had changed), incorrect answers (the partici-
pant chose an element, but it was not the one that had changed), and
timeouts. For the analysis shown here, we leave the incorrect trials out
and focus only on the trials which were either responded correctly (we
are sure the participant identified the change), or timed out (we are sure
the participant did not see the change). The supplementary includes
the full data. We discard trials in which the participant provided a very
fast answer; specifically, we set a threshold τ for the total time that the
manipulated element or its counterpart were within the FoV (including
the time to select it). We select it based on the interquartile range, such
that τ = AV G - 1.1∗ IQR = 4.03s; this leads to the removal of 32 trials.

Analysis Since we are dealing with nonparametric, unbalanced
data and multiple factors, we apply the Aligned Rank Transform (ART)
for non-parametric factorial ANOVA [20, 47]. ART adds a preprocess-
ing step to the data prior to computing averaged ranks, after which
common ANOVA procedures can be used. We additionally conducted
post-hoc pairwise Bonferroni-corrected comparisons. We achieved a
statistical power of 0.9251 (α = 0.05, sample size = 21, and effect
size f = 0.25). Additional details on the post-hoc pairwise t-test can
be found in Table 1 to Table 4. We have additionally conducted mul-
tiple comparisons of means with a 95% family-wise confidence level
(Tukey HSD test). The yielded confidence intervals can be found in the
supplementary material.

4.1 Results
Our results show a detection ratio of 46.22% across all trials, indicating
that despite being specifically asked to look for manipulations for 45
seconds, more than half of the manipulations remained undetected. In
the case of the outside FoV condition, this detection ratio was 41.97%,
while it increased to 61.66% in the inside FoV condition. Results
reported hereafter are referred to the outside FoV condition, except
when specifically indicated otherwise.

For those detected, the average time to detect was td = 23.51s (STD
= 10.43s). We also compute the average time to detect the manipulation
after the object changed had been in their FoV, which is td,a = 18.46s
(STD = 11.21s). To assess both whether the participants actually spent
time with the manipulation inside their FoV, and whether they alternated
between both states of the manipulated object, we compute: (i) the
average aforementioned time, tin = 10.79s (STD = 7.83s); and (ii) the
average number of times the manipulation entered the participant’s FoV,



Fig. 6: Left: Scatter plot depicting the correlation between time to
detect td (x axis) and detection ratio (y axis). Note that the lower
the detection ratio, the longer it takes for participants to detect such
changes. Right: Detection ratio (y axis) for the inside FoV and outside
FoV conditions. Our results indicate that manipulations happening in
the field of view are more easily detected, which is consistent with
literature indicating that change blindness is inherently related with
working memory, and that detection ability degrades as more elements
are tried to be remembered. Bars depict the standard error of the mean
(SEM). The asterisk marks significant (α < 0.05) differences.

which is also the number of times the state of the object was changed,
nch = 5.12 (STD = 2.42). Both clearly indicate that the changes were
visible to the participants, yet remained undetected in a number of
cases.

We further looked into the relationship between the detection ratio,
and the time required to detect the change. To do this, we compute
the detection ratio per manipulation, and the corresponding average
td . The results show a strong negative correlation between both: r =
−0.9382, p < 0.0001 for Pearson’s correlation test (Spearman’s and
Kendall’s correlation tests also reflect this trend and can be found in
the supplementary); we additionally depict such correlation in Figure 6,
left.

Our pre- and post-experiment sickness questionnaires showed that
no participant experimented moderate or severe sickness symptoms;
we refer the reader to Section S.3 in the supplementary material for the
detailed results.

Effect of manipulation type, distance and complexity We an-
alyze the influence of the type of manipulation (addition, removal,
relocation or replacement), its distance to the user (close or far), and
the complexity of the element being manipulated (high or low) on the
detection ratio (see Figure 5). We found a significant effect of both
complexity (F = 5.174, p < 0.05) and distance (F = 4.664, p < 0.05)
on detection ratio. On the other hand, we found no significant effect of
the type of manipulation (F = 0.166, p > 0.05).

We have also analyzed first-order interactions: While the effect of
interactions between type and distance on detection ratio was not signif-
icant (F = 0.462, p > 0.05), interactions between type and complexity,
and distance and complexity were significant (F = 5.716, p < 0.01 and
F = 10.866, p < 0.001, respectively). While for the former there is no
clear pattern, possibly due to the multiple combinations and the partic-
ular nature of each manipulation, for the latter (distance*complexity)
we found that manipulations on simple items that happen far from the
participant have significantly lower detectability, as one could expect.

Additional details on the detection ratio of all the combinations of
such properties can be found in Table 5.

Effect of the field of view While our previous analyses have
focused on manipulations that happened outside the participants’ FoV
(outside FoV condition), we analyze here the differences between the
same manipulations taking place inside and outside the field of view.
To do this, and as explained in Section 3.1, in our experimental design
we additionally implemented an inside FoV counterpart for seven out of
the 28 manipulations. The following data thus stems from the analysis
of those fourteen manipulations, seven taking place inside the FoV and

Table 1: Results for the statistical analysis (Aligned Rank Transform
(ART) for non-parametric factorial ANOVA analysis (α = 0.05) as
proposed by Wobbrock et al. [47], see Section 4 in the main document)
on the effect of type of manipulation, distance to the manipulated object,
and complexity, from our first experiment.

F Pr (>F)
1 Type 0.16651 0.91892657
2 Distance 4.66489 0.03137207 *
3 Complexity 5.17436 0.02344709 *
4 Type:Distance 0.46214 0.70887683
5 Type:Complexity 5.71599 0.00077128 ***
6 Distance:Complexity 10.86615 0.00106569 **
7 Type:Distance:Complexity 12.13378 0.00054963 ***

Table 2: Results for the post-hoc comparisons (Detected ~̃ Type +
Distance). P-values are Bonferroni-corrected. (Type: AD: Addition,
RE: Removal, RL: Relocation, RP: Replacement. Distance: CL: Close,
FA: Far). Note that no interaction is significant (p > 0.05).

AD:CL AD:FA RP:CL RP:FA RE:CL RE:FA RL:CL
AD:FA 1.00 - - - - - -
RP:CL 1.00 1.00 - - - - -
RP:FA 1.00 1.00 1.00 - - - -
RE:CL 1.00 1.00 0.99 1.00 - - -
RE:FA 1.00 1.00 1.00 1.00 1.00 - -
RL:CL 1.00 1.00 0.10 0.23 1.00 0.14 -
RL:FA 1.00 1.00 1.00 1.00 1.00 1.00 0.13

Table 3: Results for the post-hoc comparisons (Detected ~̃ Type +
Complexity). P-values are Bonferroni-corrected. (Type: AD: Addition,
RE: Removal, RL: Relocation, RP: Replacement. Complexity: SI:
Simple (i.e., low complexity), CO: Complex (i.e., high complexity)).
Note that some pairs of interactions are significantly different (p <
0.05).

AD:CO AD:SI RP:CO RP:SI RE:CO RE:SI RL:CO
AD:SI 1.00 - - - - - -
RP:CO 1.00 1.00 - - - - -
RP:SI 0.54 0.09 0.62 - - - -

RE:CO 1.00 1.00 0.99 1.00 - - -
RE:SI 1.00 1.00 1.00 0.03 0.93 - -
RL:CO 1.00 0.51 1.00 1.00 1.00 0.28 -
RL:SI 1.00 1.00 1.00 0.01 0.28 1.00 0.10

Table 4: Results for the post-hoc comparisons (Detected ~̃ Distance
+ Complexity). P-values are Bonferroni-corrected. (Distance: CL:
Close, FA: Far. Complexity: SI: Simple (i.e., low complexity), CO:
Complex (i.e., high complexity)). Note that some pairs of interactions
are significantly different (p < 0.01).

CL:CO CL:SI FA:CO
CL:SI 4.4e-5 - -
FA:CO 1.00 1.3e-4 -
FA:SI 1.00 4.4e-5 1.00

seven outside it. Note that the trial order is fully randomized, counter-
balancing inside and outside FoV counterparts. Detection ratio for
manipulations in the inside FoV condition was 61.66%, significantly
higher than the 39.48% detection ratio in outside FoV condition (F =
13.73, p < 0.001). While there is a significant difference between
both conditions (Figure 6, right), there are significant variations in
detectability differences between conditions for different manipulations,
which would require further investigation.

4.2 Discussion
Our results suggest that the type of manipulation had no significant ef-
fect on the detection ratio, and actually show very similar ratios across
types, with only replacement ones being slightly higher (Figure 5). This



Table 5: Detection ratio for different combination of manipulation
properties. The first eight rows correspond to combining Complexity
and Type, while the last four rows correspond to combining Complexity
and Distance. Manipulations on complex elements or in elements that
are close are usually easier to be detected (see Figure 5). Besides,
some particular combinations yield manipulations that are harder to
be detected (e.g., changing one simple item to another is far easier to
detect than relocating a complex item). We mark significant differences
as follow: Each pair of properties marked with a blue shape is signif-
icantly different from its red counterpart (e.g., Simple + Removal is
significantly different from Simple + Replacement).

Manipulation
properties

Detection
ratio

◦ Simple + Replacement 67.85%
Complex + Relocation 60.00%
Complex + Removal 50.81%

Complex + Replacement 43.05%
Complex + Addition 42.66%

◦ Simple + Removal 31.42%
◦ Simple + Addition 31.38%
◦ Simple + Relocation 26.92%
× Complex + Far 52.89%
× Simple + Close 50.93%
× Complex + Close 48.82%
× Simple + Far 21.83%

is in contrast with some previous work in traditional media [25], where
the manipulation operator was considered to be relevant. Since they
employ a paradigm in traditional media (a flickering gray screen sepa-
rating the two states of the manipulated object) that is different from
our outside FoV condition (the change between states happens when the
object is outside the FoV), it may be that in their case, in the absence of
head movement and other portions of the scene being seen, the differ-
ences between relocation, replacement and addition/removal become
larger. Additionally, we should note that addition and removal share a
higher similarity between them than the rest (one is the counterpart of
the other), and so do their corresponding results.

We also observe that both distance and complexity do play a signif-
icant role in detectability. This is consistent with previous literature
suggesting that visual memory works in a contextual fashion [16],
and thus we store information about context and interactions between
scene and elements. In this line, previous work has also reported that
changes in the foreground are usually easier to detect than changes in
the background [46], which is consistent with our observations. While
the results we find in this regard can be explained and are consistent
with previous literature, the division in two complexity levels was done
manually and based on observation; a more in-depth study would thus
be required to draw strong conclusions in this regard.

When analyzing how those factors interact, we found that partici-
pants had better performance on manipulations of complex elements, in
most cases regardless of the type or distance. However, we found that
they performed better when detecting replacements of simpler elements.
While this needs further research, we hypothesize that it may be due to
the fact that, while replacing does not change the spatial representation
of our memory, simple elements are probably stored with much less
detail, therefore passing unnoticed when changed to other simple items.

We added manipulations inside the FoV for a subset of our trials,
to act as a baseline for comparison. As expected, they are more easily
detected than changes outside the FoV. This result can be explained
by the literature: A number of works have shown that human memory
degrades as more information has to be maintained [12]. Still, it is
worth noting that even in this inside FoV condition, almost 40% of the
manipulations remained undetected. This figure is still larger than those
found by previous works with 2D images in traditional media, which
report that observers missed from 8% to 27% of the manipulations [16,
17]. The more complex nature of our 360◦ environment could be an
explanation for this difference.

Fig. 7: Overview of the scene used in our validation experiment (see
Section 4.3), which depicts a living room interior provided with some
furniture. Participants saw three different variations of the scene, each
of them having five different manipulations, selected from three differ-
ent sets of manipulations (with different detection ratios, following our
main experiment’s results, see Table 5).

Table 6: Results from our validation experiment. We show the average
ratio of correctly detected changes, missed changes, and incorrect
responses, for each variation (see Section 4.3). Participants’ ability to
detect manipulations was higher for the variations with sets of higher
detection ratios (and thus they missed less changes). The ratio of
incorrect answers remained stable for the more complex variations,
while slightly decreased for the simplest one.

Scene var. Correct ratio Missed ratio Incorrect ratio
#1 - Complex 0.40 0.60 0.20
#2 - Medium 0.52 0.48 0.20
#3 - Simple 0.68 0.32 0.04

Since the experiment is performed with one scene, we consider
whether learning and habituation effects could enhance participants’
performance over time. While we found no significant effect of trial
order on detection ratio, we empirically observed a slow yet steady
increase in detection ratio, which stabilized at 50.57% after the first
fifteen trials, suggesting a slight tendency to improvement (average for
the first fifteen was 40.12%).

Finally, as explained in Section 4.1, we have conducted our analysis
with data from participants that either responded correctly or timed
out. We discard incorrect answers since within our paradigm, there is
no way of disambiguating whether an incorrect answer comes from
a random response (pure guess) or from mistaking the manipulated
element.

4.3 Validation
Our results suggest that certain interactions between manipulations and
properties of the manipulated element may ease or hinder the detection
of such manipulation. To validate those insights, we have devised a
small proof of concept experiment in a different scenario3, depicted
in Figure 7. For this experiment, we have designed three different
arrangements of the scene, to avoid habituation effects. In each of the
three scene variations, we have included five different manipulations.
For the first variation, we have included five manipulations pertaining
to the highest detection ratio yielded by our previous results (first
two rows of Table 5), with an average detection ratio of 66.28%; the
second variation contains manipulations from groups with intermediate
detection ratio, with an average detection ratio of 42.81%; while the
third variation includes manipulations from the lowest detection ratio
(i.e., those with detection under 40%, see Table 5), with an average
detection ratio of 31.02%.

This proof of concept experiment procedure is as follows: Each
participant is presented the three variations of the scene in a randomized

3The scene is based on Apartment Kit by Brick Project Studio, available in
the Unity Asset Store.



Fig. 8: (Left) Each row depicts an initial scene arrangement and the modified scene with the implemented changes following the flickering
paradigm (see Section 5). Some elements of the scene were randomly rearranged before each trial, so that every trial was different. (Right)
Participants select all the elements that they think that have changed with the controller. When pointing at an element, it gets outlined in yellow
(top), while selecting it with the trigger gets it outlined in green until the end of the trial (bottom).

order. For each of the three variations, they can explore the scene for
an unlimited amount of time, until they feel they already explored
everything they want. Then, they have to press the controller trigger,
a grey flicker is presented (following the traditional flicker paradigm),
and the changes are applied. After the flicker ends, the participants
have to indicate which elements have changed on the scene, by means
of pointing with the controller. Once they have marked all the desired
elements, they can move to the next scene variation.

Within this paradigm, we would expect that participants detect more
changes from the scene variation that uses manipulations from the
highest detection ratio set; while their ability to detect the changes
would decrease for the variations with manipulations from the lowest
detection ratio sets. We thus expect that scenes with a higher score
contain manipulations more easy to be detected.

We ran this validation test with five participants, all naïve to the final
goal of the experiment. Our results (see Table 6) indeed follow this
trend, showing how our insights seem to be also valid within a different
scene, while suggesting that a generalizable change blindness metric
could be achievable, provided a large enough dataset.

5 VISUAL WORKING MEMORY CAPACITY

A plethora of works suggest that change blindness is indeed a question
of memory (see Section 2), and our previous results (Section 4.2)
suggest similar insights. Previous literature has investigated how visual
stimuli is stored in our brain, and whether there is some limit in our
capacity. They have found that memory tends to degrade when the
amount of information to retain increases [12]. Some works suggest
that capacity varies substantially depending on the number of stimuli,
and ranges from two to four elements [2, 14]. Such limit would thus
unavoidably facilitate change blindness. Therefore, while the main
experiment (Section 3) is designed such that only one change takes
place in each trial to ensure control over the different factors, we have
devised an additional experiment to analyze whether the number of
changes is a relevant parameter and can affect the ability to detect
changes.

5.1 Experiment Details
Stimuli Participants viewed another realistic, stereoscopic virtual

living room, based on the Living Room Interior by Blue Dot Studios
(see Section 3.1). For this experiment, we arranged the furniture in the
room in such a way that the participant would be located in one side
of the room, close to the wall, and would have all the visual stimuli in
front of them (i.e., no elements would be behind them). Participants
sat on a rotating stool to prevent translational movements. During the
experiment, participants have some seconds to explore the room and

memorize it, and then some changes are applied (see Figure 5, left)
following the flickering paradigm (see Section 3.1). Participants have
to select all the elements where some change has been applied.

To avoid habituation effects, we rearrange some elements on the
scene before each trial, so that every arrangement of the scene is differ-
ent to the previous one. In this experiment, we implemented seventeen
different manipulations (see Figure 8 for some examples). Each of this
manipulations has a probability of occurring, and thus changes in each
trial are selected randomly. In our experiment, we set this probability
to 1/3, so that, on average, each trial would have between five and six
manipulations. These numbers have been suggested to be close to the
maximum capacity [2, 14]. We let the user visually explore the scene
for ten to twelve seconds (randomly selected each trial), to memorize
all the information they can.

Hardware We resorted to the same hardware setup as in the previ-
ous experiment (see Section 3.2).

Participants Thirteen participants (six identified themselves as
female, seven identified themselves as male, and none of them identified
as non-binary, other, or preferred not to say; average age 26.84 years
old, ST D= 6.26) voluntarily took part in the study and provided written
consent for participation. They were naïve to the final purpose of
the experiment, and they all reported normal or corrected-to-normal
vision. Twelve of them had already used an HMD before, although
with different frequencies (six occasionally, three often, and three very
often). All the experimental procedure was approved by our local ethics
committee (left anonymous for reviewing purposes).

Procedure Each participant completed twenty different trials. The
participant was given between approximately 20 seconds [16] to explore
the scene. After that, some spheres spawned to avoid participants
directly look at a potentially changing element (inspired by inattentional
blindness, see Section 2), followed by a grey flicker (as in the flicker
paradigm [16, 17]) that lasts for 200 ms., which again is in the range of
an average human blink duration. While the grey flicker was happening,
some of our seventeen implemented changes were randomly chosen.
Each manipulation had a probability of occurring of 1/3, and thus,
on average, each trial had approximately six effective changes. When
the flicker ended, the participant had to select all the elements that
had changed (i.e., all that they remembered that were different before
the flicker). To do so, they used the controller to point any items in
the room. When pointed, items got outlined in yellow (see Figure 8,
top right). Pressing the trigger selected the pointed item, which got
outlined in green (see Figure 8, bottom right). There was no time
limit for participants to select those elements. Once the participant
had selected all desired elements, they could confirm pressing the A/B



Fig. 9: Participants’ detection ratio w.r.t. trial order. Our results suggest
that participants are able to detect a larger number of changes over time,
probably due to habituation effects. However, such capacity increases
at a slow pace: In our experiment, participants were exposed to the
same scene for twenty trials (i.e., approx. twenty minutes), and yet
their detection ratio increased just up to 60%, suggesting that in several
cases, change blindness is unavoidable. Please refer to Section 5.2 for
further details.

button. Then, the trial was completed, and they could move on to the
next one by pressing the trigger button.

Additionally, we asked participants both before and after the experi-
ment to fill a sickness questionnaire, to measure whether any sickness
symptoms had arisen throughout the experiment. Additional informa-
tion on this can be found in the supplementary material.

5.2 Results and Discussion
Following the experimental procedure introduced in the previous sec-
tion, we obtain the results of twenty different trials per participant.
For each of those trials, we store the arrangement of the scene, the
applied manipulations, and the items that the participant selected as
manipulated. For a total of thirteen participants, we ended up with
260 different trials. On average, each trial had 6.33 manipulations on
the scene, ranging from 2 to 13 and following a normal distribution
(Shapiro-Wilk test, p− value < 0.001).

Our results show that, on average, participants selected 3.38 (ST D =
1.89) manipulations. Within those, only a 79.29% of the selected ones
were elements that had actually been manipulated, while the remain-
ing were elements in which no change had been applied (i.e., they
incorrectly selected them). Besides, 3.68 (ST D = 2.19) manipulations
remained unnoticed on average, representing 58.14% of the total aver-
age manipulations. An average capacity of detecting 2.65 changes is
indeed on par with the state of the art on visual working memory on
traditional media, which reports such capacity to be between two and
four elements [16]. Participants took on average 24.28 (ST D = 10.20)
seconds to select the manipulations.

We have analyzed whether the number of changes presented affected
participants’ ability to detect changes. However, when more changes
are conducted in a scene, the probability of participants randomly se-
lecting a correct change increase. To take into account such dependency,
we have resorted to Bayesian inference to compute the corrected proba-
bilities P(d|c) of participants detecting at least d = {1, ..,c} changes in
a scene where c ∈ [2,10] changes took place. Particularly, we compute:

P(d|c) = P(c|d) ·P(d)
P(c)

, d = {1, ..,c}, c ∈ [2,10], (1)

where P(c|d) represents the probability of a scene having c changes
given that the number of detected changes was at least d, P(d) is the
probability of detecting at least d changes in any scene, and P(c) is
the probability of the scene having c changes, as given by a normal
distribution (see previous subsection). Results of such computation can
be seen in Table 7.

We found that the probability of detecting at least one change rapidly
increased w.r.t. the number of changes in the scene, but the probability

Fig. 10: Probability of participants detecting at least four changes (d =
4) depending on the amount of changes on the scene c. We selected four
since previous literature suggests that having more than four changes
causes memory’s performance to drastically decrease [2, 14]. The
red line represents chance level (probability of 50%. Note how the
probability of detecting four changes remains below chance level even
when a significant amount of changes are present in the scene. We
refer the reader to Table 7 for additional details on different amount of
detected changes d.

of detecting more changes (i.e., d >= 2) increased in a much slower
fashion, reaching a point where even with large numbers of changes c
in a scene, the probability of detecting d >= 4 changes was close to
chance level (we specifically depict the case of d >= 4 in Figure 10
since previous literature [2, 14] suggests that having more than four
changes drastically affects memory’s performance, and refer the reader
to Table 7 for other values of d.) Besides, we found that the probability
of detecting all the changes in a scene was very small, and decreased
at such a rapid pace that when more than four changes were presented
in the scene, it is virtually impossible that observers are able to detect
them all.

We have also studied whether participants’ ability to detect changes
improves over time, caused by some habituation effect. We analyzed
detection ration w.r.t. to trial order, and found a positive correlation
(r = 0.82, p < 1e−6 for Pearson’s correlation) between both factors,
with participants detecting less than 40% of the changes in the first
trials, and up to around a 60% in the last ones (see Figure 9). We
also conducted a generalized linear mixed model (GLMM) to assess
such dependency, and found trial order to have a significant effect on
detection ratio (tStat = 5.82, p < 1e−7). Note that the ratio of missed
changes (i.e., changes that happened but participants did not select)
is complementary to the previous one (detected + missed = total).
As such, all statistical operations yield analogous results (i.e., same
Pearson’s coefficient and p-value but with a negative correlation, and
identical p-value and statistic for the GLMM).

6 CONCLUSION

In this work, we have performed a systematic, quantitative analysis
of the phenomenon of change blindness, varying parameters such as
type, distance, complexity, field of view, and number of manipulations.
Different from previous works, we have performed our experiments
using virtual reality environments, where the viewing conditions differ
significantly from 2D images shown on traditional displays.

Some of our results are in agreement with previously reported results
using 2D images; for instance, the limitations of our visual memory
seem to impose a threshold in the amount of changes we can detect.
Although performance increases as observers are exposed to the same
stimuli for longer periods of time (which we hypothesize is due to an
habituation effect that allows a more robust mental representation of
the scene) we found that this limit is rarely surpassed, and seems to
be independent of the viewing conditions and the amount of actual
changes performed in the scene. Other results differ from previous ex-
periments reported in the literature: for instance, we found that the type
of manipulation does not have a significant effect on its detectability,



Table 7: Probability of detecting at least d changes in a scene where
a total of c changes have been implemented, computed as stated in
Section 5.2. Boldface values are d = c (i.e., detecting all changes),
while underlined values are below chance level (50%). Note how
detecting a few changes gets easier when sufficient number of changes
are implemented in a scene, but detecting several changes (d >= 4)
gets hard regardless of the amount of changes in the scene c.

Det. ch.
d >=

Number of changes c in the scene
2 3 4 5 6 7 8 9 10

2 0.11 0.36 0.59 0.66 0.81 0.69 0.92 0.91 0.86
3 - <1e-4 0.34 0.41 0.57 0.65 0.62 0.73 0.64
4 - - 0.07 0.17 0.29 0.35 0.38 0.55 0.43
5 - - - 0.07 0.02 0.23 0.26 0.36 0.36
6 - - - - <1e-4 0.04 0.10 0.23 0.21
7 - - - - - <1e-4 0.05 0.05 <1e-4
8 - - - - - - 0.02 <1e-4 <1e-4
9 - - - - - - - <1e-4 <1e-4
10 - - - - - - - - <1e-4
c 0.11 <1e-4 0.06 0.07 <1e-4 <1e-4 0.02 <1e-4 <1e-4

whereas previous work on 2D images assumes such effect indeed exists.
In those works, changes are analyzed from an image editing perspective,
where the importance of the change depends on the absolute variation
between the original and the manipulated image, rather than on the
change itself [25]. In our 3D environments higher level factors such
as context, semantics, and similarity to real environments come into
play, while the participant can leverage other additional cues (such as
motion parallax or depth perception) not present in 2D images. As a
result, direct comparison between change blindness in 2D images and
3D environments is not trivial.

We believe that our work is a timely effort towards designing com-
pelling experiences in VR that can be leveraged in VR applications
such as redirected walking, games, or studies on saliency and gaze
prediction.

6.1 Limitations and future work
The exact mechanisms that trigger the change blindness effect are still
not completely understood; in that regard, there is still plenty of space
for exciting future work on the topic of change blindness. Studying
lower-level features such as color or contrast, or additional properties
such as semantics or context would help improve our knowledge of
this effect. Similarly, designing and evaluating a larger set of manipula-
tions would generate even more robust results, eventually leading to a
potential dataset useful for further studies.

All the experiments conducted throughout this work use indoor
scenes. While our results suggest that our insights are robust, outdoor
layouts may lead to different outcomes. Generally, such environments
are much larger than indoor scenes, and may contain less structure but
more elements. This would lead to a less precise visual working mem-
ory representation (as explained in Section 5), and thus detection and
memory performance would be likely to decrease. Further investigation
would be needed to understand the dependency of change blindness
with the type of environment.

Analyzing this effect when observers are under higher cognitive
loads (i.e., when performing a particular task) also remains to be ex-
plored. For instance, Suma et al. [40] found that manipulations of a 3D
scene were unnoticed for 76 out of 77 participants engaged in a walking
task, suggesting that such confounding factors play an important role.
In this regard, our results are conservative, since users were informed
that changes were going to happen; this facilitates generalization to
a larger scope of applications. Last, another interesting avenue of fu-
ture work is exploring the interactions with multimodal effects [27].
For instance, it is known that unexpected sounds may elicit temporary
blindness [26], but its potential relation with change blindness has not
been thoroughly explored.

Exploring potential applications of this phenomenon also merits
further research. Techniques like redirected walking could potentially
improve by eliciting a desired trajectory by manipulating some ele-
ments of a scene without the user noticing, similar to the work by Suma
et al. [40]. Indeed, exploring how much redirection can be applied

depending on the manipulation remains an open problem. Other appli-
cations like education or training could also benefit by adjusting the
cognitive load to a level that visual working memory is able to maintain.
Finally, scene design for narrative experiences or videogames could
also take into account this effect, helping prevent particular details from
being missed by the observer.
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