
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

LinSets.zip: Compressing Linear Set Diagrams
Markus Wallinger, Alexander Dobler, and Martin Nöllenburg

Abstract—Linear diagrams are used to visualize set systems by depicting set memberships as horizontal line segments in a matrix,
where each set is represented as a row and each element as a column. Each such line segment of a set is shown in a contiguous
horizontal range of cells of the matrix indicating that the corresponding elements in the columns belong to the set. As each set
occupies its own row in the matrix, the total height of the resulting visualization is as large as the number of sets in the instance. Such a
linear diagram can be visually sparse and intersecting sets containing the same element might be represented by distant rows. To
alleviate such undesirable effects, we present LinSets.zip, a new approach that achieves a more space-efficient representation of linear
diagrams. First, we minimize the total number of gaps in the horizontal segments by reordering columns, a criterion that has been
shown to increase readability in linear diagrams. The main difference of LinSets.zip to linear diagrams is that multiple non-intersecting
sets can be positioned in the same row of the matrix. Furthermore, we present several different rendering variations for a matrix-based
representation that utilize the proposed row compression. We implemented the different steps of our approach in a visualization
pipeline using integer-linear programming, and suitable heuristics aiming at sufficiently fast computations in practice. We conducted
both a quantitative evaluation and a small-scale user experiment to compare the effects of compressing linear diagrams.

Index Terms—Set Visualization, Linear Diagrams, User Evaluation, Computational Experiment

F

1 INTRODUCTION

S ET systems occur naturally in various use-cases, such as
social networks, document analysis, biological data, or

more generally, whenever categorical data can be grouped.
The visualization of such set systems is crucial in under-
standing the relationship between elements and sets, sets
and sets, or attributes and sets. Linear diagrams are a set
visualization approach that has been recently proposed [1].
In such linear diagrams sets are depicted as one or more
line segments in a matrix. Each row represents a single
set and each column represents a single element. Each line
segment of a set is shown in a contiguous range of cells of
the matrix whenever the corresponding elements (columns)
belong to the set (row). The focus of linear diagrams is on
aggregating membership of individual elements as contigu-
ous segments, thus, focusing on overlapping sets similar to
Euler diagrams. However, it has been empirically shown in
user studies that linear diagrams significantly outperform
Euler diagrams on set-theoretic tasks [2], [3]. Reasons are
that Euler diagrams might not be well-matched or propor-
tional depending on the structure of the represented data
and therefore are harder to read or it is even impossible to
visualize all occurring relationships between sets [4].

One observation about linear diagrams is that they
liberally use vertical, and to a lesser degree, horizontal
space as each set occupies its own individual row in the
matrix. In the case of vertical space, set-to-set relationship
tasks become harder for sets that are positioned in rows
that are far apart. Similarly, as labels are usually positioned
above the diagram, element-to-set relationships become
harder with increasing distance between sets and element
labels. In case of horizontal space, sets containing only
a small number of elements consequently produce lots
of horizontal white space. Therefore, in cases where the

• All authors are with the Algorithms and Complexity Group, TU Wien, Vi-
enna, Austria. Email: {mwallinger, adobler, noellenburg}@ac.tuwien.ac.at

available screen size is restricted linear diagrams might be
a suboptimal choice as either the diagram must be scaled
down or the dataset can not be shown at the same time.

Our alternative approach LinSets.zip presents space-
efficient linear set diagrams while still preserving as many
design principles of linear diagrams; see Figure 1. As it is
considered best practice in linear diagrams, our approach
also optimizes the number of line segments necessary to
represent each set. These line segments resemble blocks
in our visualization due to the necessary label placement
inside these blocks. Hence, we only use the term blocks
throughout the paper even when specifically talking about
linear diagrams. In LinSets.zip vertical space is used more
efficiently by allowing multiple compatible sets (i.e., not
sharing any elements) to occupy the same row, using dif-
ferent colors to distinguish them. This works especially
well when a set system has many non-overlapping sets.
We formulate this problem as a graph coloring problem
that gives rise to multiple, more restrictive, formulations.
In the base variant the goal is to maximally reduce the
number of rows without violating the compatibility. Other
variations restrict the possibility of blocks of different sets
alternating or restrict the number of alternating sets to two.
All mentioned variations can also be bounded on the total
number of sets that can be placed in each row.

We present several visualization styles that utilize the
different variants while still being similar to linear diagrams.
We introduce the concept of block links, thin lines that con-
nect different blocks of the same set, which aid the viewer
in distinguishing between different sets in the same row.

As the underlying column ordering and graph coloring
problems are computationally hard, we implemented
LinSets.zip using both heuristics and exact algorithms
that yield optimal solutions. The source code of the
implementation is available on OSF.1 Based on this, we

1. https://osf.io/2zwec

ar
X

iv
:2

30
2.

08
40

1v
1

 [
cs

.G
R

]
 1

6
Fe

b
20

23

https://osf.io/2zwec/

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(a) Linear Diagram

(b) LinSets.zip with block links

(c) LinSets.zip with block links

Fig. 1. A linear diagram (a) of a project management dataset. While the linear diagram uses vertical space very liberally, both variants (b) and (c) of
the LinSet.zip approach present a more compact representation.

performed a quantitative analysis on runtime and quality
criteria to give an indication of what problem sizes can be
efficiently solved optimally and the trade-off of using fast
heuristics compared to optimal algorithms.

Furthermore, we also conducted a small-scale user study
to give indication if placing several sets in the same row
affects a user in performing typical set visualization tasks.
Here, we asked the participants to perform five standard
set- and element-based tasks [5] on static images generated
with four variants of our framework. We measured task
completion time and accuracy.

2 RELATED WORK

Set visualization is a subfield of information visualization
that has been extensively investigated. Often, set visual-
ization is integrated in visualization systems to provide a
supplementary view on the presented data. We focus mainly
on visualizations that consider only abstract set data, where
no additional attributes in the data are necessary.

Alsallakh et al. [5] published a state-of-the-art report
on set visualization in 2016. They provide an overview
of existing set visualization techniques and approaches
and classify them by visual representation, scalability,
and capacity of solving set-theoretic tasks according to a
taxonomy. The taxonomy itself gives an overview over
set-theoretic tasks that commonly arise in set visualization
systems. The tasks are classified in three categories: element-
based tasks are tasks concerned with relationships between
elements and sets; set-based tasks are tasks concerned with
relationships between two or more sets; attribute-based
tasks are concerned with the relationship between element
attributes and their appearance and distribution in sets.
Overall, they define a total of 26 tasks and six categories of
set visualizations. In the related work we will focus on the
three most relevant categories.

Generally, Euler and Venn type diagrams are the most
intuitive. In both variants sets are depicted as closed curves
where overlapping regions represent set intersections. In
Venn diagrams all possible intersections are shown, even
if they are empty. Euler diagrams show only non-empty
set intersections. For Euler and Venn diagrams automated
approaches with regular shapes (e.g. [6], [7]) as well as
irregular shapes (e.g. [8], [9], [10]) have been proposed.
Since well-formed Euler and Venn diagrams do not always
exist, the resulting visualization might not be well-matched,
i.e., non-existing intersections are shown or existing inter-
sections are shown twice. Due to this observation, Euler
diagrams hardly scale for datasets beyond 4–6 sets [5].

Matrix-based techniques are another class of techniques.
Here, sets and elements are depicted as rows and columns
of a matrix. Set membership of elements is indicated by
coloring or marking the respective cell with a glyph in the
matrix. Typically, approaches in this class are designed for
interactive analysis and exploration which requires inter-
activity, e.g. permuting rows or columns. Examples, such
as RainBio [11], or UpSet [12], are powerful and scalable
visual analytics systems that incorporate multiple views
on the data. However, due to their complexity they are
not necessarily intuitive. LinSets.zip is related to matrix-
based techniques as the underlying visual metaphor is
in its essence a matrix. Similarly, rows and columns can
be permuted, however, LinSets.zip focuses on minimizing
blocks by reordering columns to increase readability instead
of highlighting patterns in the data. Furthermore, multiple
rows of the matrix are compressed to show a more compact
representation. Also, similar to linear diagrams a block in
LinSets.zip represents an aggregation over multiple cells
in a row instead of explicitly indicating membership of
individual elements.

Aggregation-based technique, such as Radial Sets [13],
or MetroSets [14] handle increasing number of elements by
not explicitly showing individual elements belonging to sets
but rather aggregating multiple set elements into one visual
element to indicate membership frequency. Often, they are
combined with interactivity, as in UpSet [12], Dual Radial
Sets [15] or RainBio [11], to show details of specific sets or
elements on demand. The most relevant aggregation-based
technique concerning Linset.zip are linear diagrams [1]. The
underlying visual metaphor of linear diagrams is a matrix
where each set is represented as a horizontal line in its
respective row and each element as a column. Contrary
to matrix-based techniques, contiguous cells of the matrix
are represented by a single block to indicate all elements
in this range belong to the set. Several user studies have
been conducted [2], [16], [17] where it has been shown that
linear diagrams perform equally well or better than other
diagram types. Similarly, different design decisions and
their impact on readability and task performance have been
compared [1], [18]. Here, findings indicated that minimizing
the number of blocks (called line segments there) in the
linear diagram had the most effect on readability. It has
been shown that reordering columns to minimize blocks is
an NP-hard problem [19], [20] but heuristic [2], [16], [21]
and exact [20] algorithms to compute optimal solutions have
been proposed. Lastly, interactivity [22] in linear diagrams
has been investigated.

LinSets.zip builds on the main findings of linear dia-

WALLINGER et al.: LINSETS.ZIP: COMPRESSING LINEAR SET DIAGRAMS 3

grams. Columns are reordered to reduce blocks while the
visual encoding is kept similar to what has been experimen-
tally validated. However, space is better utilized as several
sets can be compressed into the same row. Additionally, Lin-
Sets.zip gives the option to show all set elements explicitly
which we think is a viable assumption for up to 50 elements.

Compressing multiple sets into a single row is not an
entirely novel concept in set visualization and has been
explored previously. The rainbow boxes system [23] allows
compressing variable height rows. Moreover, timelines or
Gantt charts generally allow compression; for example, as
in TimeSets [24]. In both examples the problem statement
is different to LinSets.zip and the proposed approaches only
consider greedy heuristics. We show that finding an optimal
solution is possible in reasonable time.

3 DESIGN DECISIONS

Degrees of freedom in the design of a linear diagram can
differentiate between two concerns. The first concern is
the layout of a linear diagram as it is determined by the
mapping of sets and elements to axes of a matrix and sub-
sequently the row and column order of said matrix. While
the mapping only affects the orientation of the diagram, the
order of rows and columns has more drastic implications.
The column order impacts the number of blocks necessary
to represent a set. For example, if elements a and c are in the
same set then the order (a, b, c) will require two blocks while
the order (a, c, b) only requires one. Moreover, the row order
determines the visual distance between sets. The second
concern is how the data is encoded as graphical features.
Here, thickness of blocks, color of blocks, label placement
for elements and sets, guide-lines to labels, and margins all
impact the appearance of the diagram.

From a theoretical perspective on set visualization, linear
diagrams scale well with an increasing number of sets as
all set-to-set relationships can be visualized. However, the
height of a linear diagram is proportional to the number
of sets in the set system as each row represents exactly
one set. We started our investigation based on this obser-
vation with the assumption in mind that vertical space is
limited. For example, static diagrams in print media, multi-
view visualization interfaces, or even interactive single-view
visualization interfaces all have constraints on what can be
shown or perceived at the same time.

Furthermore, tasks where blocks of different sets are
vertically distant should be intuitively harder to solve than
tasks where the blocks are vertically close. Even though
this could be tackled with integrating interactivity to allow
reordering of rows, this could over-complicate the interface
and is a non-viable solution for static visualizations.

From those observations our initial idea was to find
a more space-efficient representation of linear diagrams
while trying to improve or at least keep a similar level of
readability. Our approach computes a layout that reduces
the vertical space necessary to draw a linear diagram by
packing multiple compatible sets into the same row. First,
we state the three definitions of compatibility that result in
different visual encodings as seen in Figure 2. We say that
two sets A and B alternate if their blocks alternate under a

(a) Linear Diagram (b) Γ1

(c) Γ2 (d) Γ3

Fig. 2. Different visual encodings of LinSets.zip compared to linear
diagrams (a). Γ1 (c) allows non-intersecting sets in the same row. Γ2

(b) additionally requires that blocks do not alternate. Γ3 (d) allows for a
maximum of two sets to have alternating blocks.

given column order, i.e., a block of A is followed by a block
of B, which again is followed by a block of A (or vice versa).

Γ1 Two sets are compatible if they do not intersect.
Γ2 Two sets are compatible if they do not intersect and

their blocks do not alternate within a given column
order.

Γ3 Two sets are compatible if they do not intersect and
their blocks alternate only with each other within a
given column order.

Compatibility definition Γ1 is the minimum require-
ment, which in turn allows to maximally compress the linear
diagram. However, in this case we can only distinguish
between blocks of different sets in the same row by color.
This assumption is problematic as humans cannot reliably
distinguish between multiple colors and it is not inclusive
for people with color vision deficiencies.

To alleviate this problem we propose the refined com-
patibility definitions Γ2 and Γ3. Here, we further restrict
sets to be put in the same row, based on the occurrence
of alternating blocks. The reason here is that we can use
additional visual elements to indicate blocks belonging to
the same set and therefore redundantly encode blocks be-
longing to the same set. We call this concept block links,
which are essentially thin straight lines connecting all blocks
of a set as seen in Figure 2c. For Γ2 we can draw the block
links in the vertical center to indicate blocks belonging to
the same set as blocks of different sets never alternate. In
the case of Γ3 we can draw the block links at either the
top or bottom of the row and therefore we can only allow
blocks of two sets to alternate at the same time. Furthermore,
maximally compressing the rows can have the effect of
creating diagrams that are visually too dense. We propose
the option to limit the number of sets that can be placed in
the same row by a positive integer B.

While we have introduced the intention of compressing
several sets into the same row to create more compact
layouts, we have not talked much about what is considered
best-practice for linear diagrams and how this ties into our
approach. We looked at existing design principles of linear
diagrams which have been empirically evaluated. Three
design principles had statistically significant positive impact
on set-theoretic tasks [1].

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

• Design Principle 1: draw linear diagrams with a mini-
mal number of blocks.

• Design Principle 2: draw linear diagrams with guide-
lines at the beginning and end

• Design Principle 3: draw linear diagrams with thin
blocks.

The first design principle still applies to our approach.
Therefore, we try to minimize the number of blocks for all
sets by reordering the columns. In the case of Γ1 compress-
ing sets is independent of column order. For Γ2 and Γ3 this
is not the case as the column order is directly connected to
whether blocks alternate or not. Here, we propose to first
order the columns to minimize the number of blocks before
compressing the linear diagram as this should decrease
the visual complexity. The second design principle states
that using guide-lines, thin unobtrusive vertical lines, as a
visual aid to indicate the beginning and end of blocks. This
can be applied to our design as it does not interfere with
compression. Adhering to the third design principle is more
difficult, if not impossible. As our approach packs multiple
sets into the same row, it is impossible to place a single
set label at the beginning of each row. Therefore, we have to
place labels near one of the blocks of each set. Here, we think
that increasing the line height for representing blocks in
order to embed the labels within blocks helps in identifying
which label belongs to which set. Therefore, we cannot use
thin lines to represent sets.

After implementing a first prototype we conducted an
expert interview with a graphic designer. The designer pro-
vided valuable feedback and recommended to use margins
between blocks in the same row and between rows, adding
white background color to text labels to make them stand
out and to limit the color palette.

4 OVERVIEW OF THE LINSETS.ZIP APPROACH

In this section we give a high level overview of the Lin-
Sets.zip approach, which is modelled as a four-stage (I–IV)
pipeline depicted in Figure 3. We provide different modules
for each pipeline stage.

The input is an abstract set system modelled as a hyper-
graph H = (V,S). The vertex set V represents all elements
in the set system and S ⊆ 2V the sets themselves. A detailed
description of the algorithms and techniques used in stages
(I) and (II) can be found in Section 5.

Column Ordering (I). In the first stage we reorder
columns in LinSets.zip such that the total number of blocks
is minimized. This is equivalent with reordering columns
in linear diagrams and the same techniques can be applied.
Unfortunately, this problem is NP-hard but we can refor-
mulate the problem of finding an optimal column order as
a traveling salesperson problem. We provide modules that
solve this problem optimally using an efficient travelling
salesperson solver or use heuristics. The output of this stage
is an ordering πc of the columns.

Row Compression (II). Next, we are concerned with
minimizing the total height of the LinSets.zip diagram by
compressing multiple compatible sets into the same row. To
reiterate from Section 3, we present three definitions of set
compatibility that each have implications for the rendering
later. The first variant Γ1 can assign sets to the same row

if they do not pairwise intersect. This can be modelled as a
conflict graph where each vertex represents a set and edges
represent conflicts, namely intersections between sets. By
solving a graph coloring problem on the conflict graph a
mapping of sets to rows can be extracted as each color
represents a row in the matrix. In the second variant Γ2

we additionally restrict that blocks of sets in the same row
cannot alternate. Similarly, the third variant Γ3 restricts that
blocks of a maximum of two sets in a row can alternate at
the same time. Both variants add constraints to the coloring
problem. While Γ1 works independent of a given column
order, it is necessary to have a given column order for Γ2

and Γ3 as the definition of alternating is entirely dependent
on the order of columns.

Moreover, in some cases it might be beneficial to
restrict the maximum number of sets per row, e.g., to leave
space for labels or guarantee unique colors from a given
palette. This can be modelled as a bounded graph coloring
problem. Again, graph coloring problems are considered
NP-hard [25] but for both, unbounded and bounded
coloring problem, we provide modules that compute an
optimal solution with a minimal number of rows necessary
and a heuristic solution. The output of this stage is a
mapping of sets to rows.

Row Order and Color Assignment (III). After com-
puting a column order and row mapping we have to con-
sider two more aspects that impact the LinSets.zip diagram.
Firstly, the row order is not fixed. Potentially, we can ap-
ply the same procedure as for column ordering to reduce
vertical blocks — consecutive rows of a column that all
contain a block. However, compared to horizontal blocks
it is unclear what implications this additional step has on
readability. As row order has no impact on compression and
the instances in the user experiment were small, we opted
to use a random order.

Secondly, the assignment of colors is non-trivial as the to-
tal number of sets can exceed the number of colors available
in our palette. No unique color should be assigned to two
sets in the same row. Furthermore, the perceptual distance
between colors assigned to a row should be maximal. How-
ever, this problem is known as the maximum differential
coloring problem [26] and is known to be NP-hard. Runtime
experiments on a prototype showed, unlike (I) and (II), that
solving the problem optimally would bottleneck the overall
runtime of the pipeline. A heuristic solution did run faster
but did only marginally improve the result from a more
simplistic approach. Therefore, we implemented a circular
color assignment that assumes that the row order is fixed.
Both problems open interesting questions on their own,
however, due to space limitations we will not give a more
comprehensive description.

Rendering (IV). Finally, we need to render the output
by using the results computed in the previous stages (I-
III). In total, we provide four rendering styles that capture
linear diagrams and the three compatibility definitions of
LinSets.zip. All styles are built on the visual metaphor
of a matrix. Rows are used to represent (multiple) sets
and columns represent the individual elements. Blocks are
drawn as horizontal bars covering the respective set ele-
ments. The blocks are colored with one of the available
colors in the Tableau10 color palette. For all styles we place

WALLINGER et al.: LINSETS.ZIP: COMPRESSING LINEAR SET DIAGRAMS 5

(a) (I) (b) (II) (c) (III) (d) (IV)

Fig. 3. First, the LinSets.zip approach reorders elements (a) of the input before a compression variant is applied (b). Next, rows are reordered and
colors are assigned to sets (c). Finally, the diagram is rendered in the LinSets.zip style (d).

labels for elements or the intersection cardinality above the
matrix. Vertical guide-lines indicate the beginning and end
of intersections. For linear diagrams we place set labels to
the left of the matrix while for the LinSets.zip styles labels
are placed in the largest block of their respective sets. For Γ1

only the color is used to distinguish blocks of different sets
in the same row. For Γ2 block links are drawn in the center
from the first to the last block of a given column order, or,
at the top or bottom of blocks for Γ3 when blocks of two
sets are allowed to alternate. We use whitespace as margin
between blocks in the same row and between rows.

5 ALGORITHMS

In this section we go into detail about the different exact and
heuristic algorithms used in the modules for stage I-II of the
pipeline.

5.1 Column Ordering (Step I)
We minimize the number of drawn blocks by computing
a column ordering πc. This is done by formulating the
problem as a problem on binary matrices and using a known
travelling salesperson (TSP) formulation of this problem.
For the input hypergraph H we compute the binary matrix
A of size |S| × |V| such that Ai,j = 1 if vertex vj is in
the hyperedge Ej . We find a column ordering of A that
minimizes the number of so-called blocks of consecutive ones,
which are maximal consecutive entries of ones in a row of a
matrix. There is a one-to-one correspondence between these
blocks of ones and the blocks in the linear diagram. The cor-
responding minimization problem is known as Consecutive
Block Minimization and is NP-hard [27]. However, the prob-
lem can be formulated as a TSP problem [28]: First we add
an auxiliary column of ones to the matrix A. Then, we con-
struct from A a graph G such that vertices of G correspond
to columns of A. The distance Di,j between two vertices vi
and vj in G is the Hamming distance

∑
1≤k≤|S| |Ak,i − Ak,j |

between the corresponding columns ci and cj . The auxiliary
vertex v corresponding to the added column of ones serves
as start and end vertex of the tour, and from a minimum-
length tour in G we obtain a permutation of the columns of
A with the minimum number of blocks of consecutive ones
(blocks in the linear diagram), where the auxiliary column
is the last one in the permutation. By removing the auxiliary
column from this permutation, we obtain a permutation of
the original matrix, that serves as permutation of the set V .

Exact. To find a tour of minimal distance inG in the exact
pipeline we use the Concorde TSP solver2.

2. https://www.math.uwaterloo.ca/tsp/concorde.html

Heuristic. The heuristic version applies the simulated
annealing algorithm of NetworkX to find a short TSP tour,
starting with an approximation based on the Christofides
algorithm [29].

5.2 Compression (Step II)
Once we have an ordering πc of the columns (the vertices
V of H), we perform the actual compression of the linear
diagram. Our aim is to use as few rows as possible. For
now, let us assume that we do not want to connect blocks
of a set by block links. The main observation is that we
can place two sets S1, S2 ∈ S of H into the same row
if and only if S1 ∩ S2 = ∅. This is independent of the
column ordering πc. Hence, this can be modelled as a graph
coloring problem: Let G be a conflict graph with V (G) = S ,
E(G) = {{S1, S2} | S1, S2 ∈ S, S1 ∩ S2 6= ∅}, and C be a
set of colors. A valid coloring col : V (G) → C of G, that
is col(u) 6= col(v) for {u, v} ∈ E(G), immediately gives us
a compression of the linear diagram into |C| rows. Each
color c ∈ C corresponds to a row in the linear diagram,
and a set S ∈ S is in row c if col(S) = c. We also give the
option to bound the number of sets per row by a positive
integer B. This translates to finding a coloring col such that
for all c ∈ C , |col−1(c)| ≤ B. The problem of finding such a
coloring is know as Bounded Vertex Coloring (BVC) and has
been studied in the literature (refer to [30] for a survey).

For both the unbounded case and the bounded case we
apply a heuristic and an exact algorithm. Prior, we compute
a large clique K ⊆ V (G) using the NetworkX3 implementa-
tion of an approximation by Boppana and Halldórsson [31].
Every valid coloring has more colors than |K|, and we will
pre-specify a different color for each vertex v ∈ K . We now
present our algorithms for the two cases where the number
of sets per row is unbounded or bounded.

Unbounded coloring. The heuristic algorithm to obtain a
coloring with few colors is the NetworkX implementation of
the greedy DSATUR algorithm [32]: The vertices are colored
one by one in decreasing order of their saturation. The
saturation of a vertex v is the number of different colors the
neighbors of v are assigned to. Ties are broken by decreasing
degree. When a vertex is colored, it is assigned to the first
free color that none of its neighbors has.

Exact. For the exact unbounded coloring we use a stan-
dard ILP formulation of the coloring problem. Let C =
{c1, . . . , CU} be a set of colors, where U is the number of
colors required by the heuristic. The ILP has binary variables
xv,c for v ∈ V (G) and c ∈ C , and binary variables yc for
c ∈ C . Variables xv,c should be one if and only if vertex v

3. https://networkx.org/

https://www.math.uwaterloo.ca/tsp/concorde.html
https://networkx.org/

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

has color c, variables yc should be one if and only if at least
one vertex has color c. We obtain the following formulation.

minimize:
∑
c∈C

yc (1)

subject to:
∑
c∈C

xv,c = 1, v ∈ V (2)

xu,c + xv,c ≤ yc, {u, v} ∈ E(G), c ∈ C (3)
yci+1

≤ yci , i = 1 . . . U − 1 (4)
xv,cv = 1, v ∈ K (5)

The objective (1) minimizes the number of required colors.
(2) ensures that each vertex has exactly one color. (3)
ensures that two adjacent vertices have different colors,
while also forcing y-variables to take the correct value.
We assume that each vertex has at least one neighbor for
this constraint to work, otherwise we have to add further
constraints xv,c ≤ yc for each vertex v without neighbors
and each color c ∈ C . (4) reduces the search space. For each
v ∈ K , cv is a color in C such that cu 6= cv for two different
u, v ∈ K . With (5) we fix these colors for the clique K . It
follows that from the values xv,c in an optimal solution
of the ILP we obtain a bounded vertex coloring of G with
the minimum number of required colors, which gives an
assignment of sets to rows that minimizes the number of
rows. Namely, we color vertex v with color c if and only if
xv,c = 1, or, in other words, we put set v into row c.

Bounded coloring. For B = 2 we apply Edmonds Blos-
som Algorithm [33] for computing maximum matchings in
the complement graph Gc of G. The graph Gc consists of
the same vertices as G and {u, v} ∈ E(Gc) if and only
{u, v} 6∈ E(G). A matching M ⊆ E(Gc) of maximal size
immediately gives us a bounded vertex coloring in G with
the minimum number of colors. For each {x, y} ∈ M , we
color x and y with the same color. All other pairs of different
vertices have different colors. We obtain a coloring with
|V (G)|−|M | colors, which is the minimum possible. If there
was a coloring with less colors, then there would be a larger
matching in Gc. As the algorithm runs in polynomial time,
we do not need a heuristic for this case.

Let us consider the case B > 2. Our heuristic is a slightly
adapted version of the DSATUR vertex coloring heuristic
from before. When coloring a vertex v, we must ensure
that at most B vertices use a given color in addition to the
color being different from neighbors. The new saturation
of a vertex v is the number of distinct colors of the union
C1∪C2, where C1 are the colors of v’s neighbors and C2 are
the colors c ∈ C such that |col−1(c)| = B. Vertices are again
colored in decreasing order of their saturation. The new
augmented heuristic computes a bounded vertex coloring.

Exact. The exact algorithm is an adaptation of the ILP
above. Again, the computed clique K gives us a lower
bound on the required number of colors. Furthermore, the
new bound U on the required number of colors is computed
by the heuristic algorithm for bounded vertex coloring
explained before. The ILP consists of (1)–(5), and we use
the following constraint, which ensures that no more than
B vertices have the same color.∑

v∈V (G)

xv,c ≤ yc ·B, c ∈ C (6)

The optimal solution of the ILP is transformed into an
assignment of sets to rows in the same way as before.

Considering block links. To be able to visualize block
links in our two variants, we need to adapt the algorithms
for compression. Let us first specify at which column a block
link of a set starts and where it ends. A block link should
have to cover all blocks of a set. Hence, for set S ∈ S it
starts at sS = min{i | πc(i) ∈ S} and ends at eS = max{i |
πc(i) ∈ S}. For a set S ∈ S we define range(S) = [sS , eS]
as the active range of the block link of a set.

Heuristic and exact Γ2. Let us continue to adapt our
algorithms for compatibility Γ2. If for two sets S, S′ ∈ S
its block link ranges range(S) and range(S′) overlap, then
they cannot be placed in the same row. In fact, this is the
only requirement, and we can model this by adding further
edges to the conflict graph G defined above: For each pair of
different sets S, S′ ∈ S such that range(S) ∩ range(S′) 6= ∅
we add the edge {S, S′} to G if it does not already exist. The
algorithms are the same as described already, but instead
they work with the slightly adapted conflict graph G.

If at most two block links can be drawn at once in a
column of a row (model Γ3), then adapting our algorithms
is not as straight-forward: Instead of considering pairs of
sets, we have to consider triples of sets. Namely, let us call a
triple (S1, S2, S3) ∈ S3 of different sets a conflicting triple if
range(S1)∩ range(S2)∩ range(S3) 6= ∅, and let T be the set
of conflicting triples. We assume that a triple of conflicting
sets only appears once in the set T . We have to adapt our al-
gorithms for the ILP-models, and heuristics such that a con-
flicting triple is never assigned the same color (same row).

Heuristic Γ3. We extend the heuristic algorithms based
on the DSATUR greedy algorithm, by first redefining the
saturation of a vertex. The saturation of an uncolored vertex
v is the cardinality of the set Cv , that consists of the colors of
neighbors of v and the colors c such that there exists a triple
t ∈ T with v ∈ t and the other two vertices in t are colored
with color c. In the case of bounded vertex coloring, Cv

additionally contains the colors c with |col−1(c)| = B. The
vertices are colored in decreasing order of their saturation,
ties between sets S (the vertices of G) are broken by
decreasing values degreeG(S) + |{t ∈ T | S ∈ t}|. When a
vertex v is colored, it is assigned the first color c that is not
present in Cv .

Exact Γ3. For the ILP it would be easy to model the
constraints on triples. But we can reduce the number of
constraints by realizing that we can encapsulate constraints
imposed by multiple triples into a single constraint. For each
S ∈ S let TS = {S′ ∈ S | sS ∈ range(S′)}. If |TS | ≥ 3 we
add the following constraint to the ILP formulation, which
does not allow more than 2 sets in TS to be part of a color c:∑

S′∈TS

xS′,c ≤ 2, c ∈ C, S ∈ S (7)

This captures all conflicting triples, as every conflicting
triple is a subset of some TS . In this way we have at most |S|
constraints instead of |S|3. The sets TS can be computed by
iterating over the values sS and eS in increasing order and
TS 6= TS′ for S 6= S′. Each constraint imposed by the triples
T is modelled by at least one constraint of the form (7).

WALLINGER et al.: LINSETS.ZIP: COMPRESSING LINEAR SET DIAGRAMS 7

6 QUANTITATIVE EVALUATION

We conducted a computational experiment with real-world
data to be able to answer the following three questions in
this section.
A: What is the scalability with respect to runtime of our

exact algorithms?
B: How do our heuristic approaches compare to the exact

approaches with respect to the quality metrics number
of blocks (step I) and compression (step II)?

C: By how much can we compress linear diagrams for real-
world instances?

6.1 Experimental Setup

Computational environment. All experiments were
performed on a cluster of three nodes. Each node is
equipped with two AMD EPYC 7402, 2.80GHz 24-core
processors and 1 TB of RAM. All implementations were
done in Python 3.7. The ILP formulations given in
Section 5 were optimized using the Gurobi4 optimizer.
Multithreading was disabled, so the algorithms will
perform similarily on end-user hardware whose processors
have similar or higher processor frequency.

For each instance in our dataset we performed 12
experiments for combinations of our algorithmic pipeline.
We performed experiments for the heuristic-based and
exact pipelines. Each experiment consists of three steps, cor-
responding to steps in the pipeline: column ordering, com-
pression, and row ordering. The rendering step (IV) has no
influence on this experiment. In our evaluation we prioritise
the first two steps, as the row ordering algorithm is equiva-
lent to the column ordering algorithm, and column ordering
is evidently more important [1]. In a heuristic experiment
all of these steps are performed by the heuristic, hence,
the output of one step is the input for the next step. In an
exact experiment, all of these steps are performed by exact
algorithms, unless they run into the pre-specified timeout
of 300s—in that case the heuristic solution is used for the re-
maining pipeline steps. For the compression we consider six
options: First, we evaluate the three compatibilities Γ1, Γ2,
and Γ3 between sets. Second, we consider the unbounded
case (B = ∞), where any number of sets can be put into a
single row, and the bounded case (B = 3), where an upper
bound of three sets per row is specified. This results in
2 · 3 = 6 compression variants, and 12 combinations overall.

Instances. We performed all experiment on a set of real
world-instances taken from DBLP5. These instances corre-
spond to papers from the Graph Drawing conferences 1994–
2021, from the PacificVis conferences 2001–2022, and the
Symposium on Computational Geometry 1985–2022. Each
paper corresponds to a set and each author corresponds to
an element. We disregard papers, that do not have any over-
lapping author with another paper, as those do not influence
the combinatorial complexity of an instance. We generated
instances by taking all papers from one conference and from
year x to year y where first ≤ x ≤ y ≤ last, and y − x ≤ 10.
The values first and last are the first and last year of a
conference we are considering, e.g., 2001 and 2022 for the

4. https://www.gurobi.com/
5. https://dblp.org/

0 200 400 600

#unique elements

10−1

100

101

102

t o
rd

[s
]

Fig. 4. Time required for column ordering by number of unique elements
for the exact pipeline. The y-axis is scaled logarithmically.

PacificVis conference. Overall, we have 734 instances, with
up to 627 sets, and up to 877 elements.

Metrics. For question A, we record the runtime for each
step of the pipeline. Further, we record the number of blocks
resulting from the column order, and the compression ratio,
which is the ratio between the number of rows required by
the compressed linear diagram and the number of sets in
the instance.

6.2 Results

Let us now present the results of our experiments, answer-
ing each question A–C separately.

Scalability of exact algorithms (Question A). We start
by presenting the time required for the ordering of columns
by our TSP model in the exact pipeline, denoted by tord. We
present these values in Figure 4 by the number of unique
elements—elements that are non-equivalent with regard to
their set-membership, and which are directly proportional
to the size of the resulting TSP-instance. Each data point
represents one instance, taking the average of five execu-
tions of our algorithm. Even though the maximum number
of unique elements is 662 and the underlying computational
problem is NP-hard, only two instances exceeded the time
limit of 300s. From the figure it is not immediate that the
runtime increases exponentially. We suspect that in most
cases the generation of the distance matrix for the TSP-
solver dominates the actual time required by the solver.
The outliers are instances where the TSP solver actually
takes more time. Nonetheless, instances with less than 100
columns that are realistically suitable for a linear-diagram-
based set visualization, all require less than two seconds.

Figure 5 shows the runtime for the different compression
variants in the exact pipeline (tcomp) by the number of
sets, including a running mean. We can clearly see that Γ1

without bound takes the least time, while the asymptotic
growth of the running time follows a similar function for
all compression variants. The outliers of Γ3 without bound
result in the jagged running mean. Instances with less than
100 sets all require less then 5 seconds for compression.

Let us also briefly discuss the timeouts occurring during
compression, the full data can be found on OSF. There was
no timeout for Γ1 without bound. Overall, all timeouts ap-
peared in instances which contain over 200 sets. Each com-
pression variants had less than 50 timeouts out of the 734
instances, the only exception being Γ3 without bound with
70 timeouts. To summarize this evaluation, we conclude that

https://www.gurobi.com/
https://dblp.org/
https://osf.io/2zwec/?view_only=11c22b68f49a439eb3b68e372deac14f

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

0 200 400 600

#sets

10−2

10−1

100

101

102

t c
o

m
p

[s
]

Γ1, B =∞
Γ1, B = 3

Γ2, B =∞
Γ2, B = 3

Γ3, B =∞
Γ3, B = 3

Fig. 5. Time required for the compression by the number of sets in
the instance for the exact pipeline. The y-axis is scaled logarithmically.
The lines correspond to a running mean of 20 data points for the
corresponding compression.

1

2

E
H

-r
a

ti
o

Γ1, B =∞ Γ1, B = 3

1

2

E
H

-r
a

ti
o

Γ2, B =∞ Γ2, B = 3

0 200 400 600

#sets

1

2

E
H

-r
a

ti
o

Γ3, B =∞

0 200 400 600

#sets

Γ3, B = 3

Fig. 6. The EH-ratio of the compression ratio by the number of sets for
the different compression variants. The lines correspond to a running
mean of 20 data points.

the exact pipeline works quite fast for all instances whose
size is realistic for visualization in applications.

Detailed runtimes for the heuristics can be found on
OSF. Overall, the whole heuristic pipeline took at most 125
seconds for the largest instance. The heuristics are faster
than the exact algorithms, but most of the time the difference
is within one order of magnitude. Thus, the exact pipeline is
preferable unless dealing with hard instances that time out
during execution.

Performance of the heuristics (Question B). Next we
want to compare the heuristic pipeline to the exact pipeline
with regard to quality metrics. For this, we present for
our quality metrics blocks, and compression ratio, the exact
to heuristic ratio (EH-ratio). The EH-ratio is the value of a
quality metric achieved by the exact pipeline divided by the
quality metric of the heuristic pipeline on the same instance.

The EH-ratio for the number of blocks is between 1
and 1.15 for all instances but one. That means that the
heuristic algorithm is no more than 15% worse than the
exact algorithm with regard to the number of blocks in
all instances but one. A scatter plot of the EH-ratio for the
number of blocks can be found on OSF.

Figure 6 shows the EH-ratio for the compression faceted

Γ1, B
=∞

Γ2, B
=∞

Γ3, B
=∞

Γ1, B
= 3

Γ2, B
= 3

Γ3, B
= 3

0.0

0.2

0.4

0.6

co
m

p
re

ss
io

n
ra

ti
o

Fig. 7. Boxplot of the compression ratio achieved by the exact pipeline
with different compression variants.

by the different compression variants. Values below one
are possible now because models Γ2 and Γ3 depend on
the column order which is different for the heuristic and
exact pipelines. Note that even though our pipeline uses
exact modules, overall it does not necessarily compute linear
diagram with maximal compression for Γ2 and Γ3. The
heuristics perform almost the same as the exact algorithms
for Γ1 for both the bounded as unbounded case. The heuris-
tic for the unbounded case of Γ3 also performs quite well,
we suspect that this is because Γ3 is not as restricting as Γ2

and only packing a fixed amount of sets into a row makes
the problem “easier” in less restricted coloring variants. The
largest differences between heuristics and exact pipelines
are visible in the unbounded case for Γ2 and Γ3, which
could have two reasons: Either different column orders
have a large impact on the performance of a compression
algorithm in these configurations, or our heuristics for these
combinations have the potential to be further improved.
Still, the running mean line shows that in expectation the
heuristic and exact pipeline perform rather similar, with the
exact one being slightly better.

Achievable compression with LinSet.zip (Question C).
To conclude this evaluation, we present the compression
ratios that could be achieved by the exact pipeline for
the different compression variants. These are presented
as boxplots with outliers in Figure 7. We see that in the
bounded case the maximum achievable compression of
1/3 is achieved in almost all of the instances. In the un-
bounded case we observe the expected differences between
the different models resulting from the constraints on the
compression that these models impose. Namely, Γ1 allows
for the most compression, followed by Γ3 and Γ2. Overall,
LinSet.zip allows for significant compression in any variant
for a large set of real-world data.

7 USER EXPERIMENT

To better understand the impact of compressing linear
diagrams on diagram readability, we conducted a small-
scale user study on accuracy and task completion time over
multiple tasks on static images generated with four distinct
rendering styles. We compared linear diagrams (Γ0) to
three variants of LinSets.zip that represent the different set
compatibility definitions (Γ1, Γ2, and Γ3). Mainly, we were
interested if the higher information density of LinSets.zip
diagrams would lead to worse performance than linear di-
agrams. We carefully selected element-based and set-based
tasks that spanned the spectrum of typical set visualization
tasks. All datasets used were real-world instances. The raw

https://osf.io/2zwec/?view_only=11c22b68f49a439eb3b68e372deac14f
https://osf.io/2zwec/?view_only=11c22b68f49a439eb3b68e372deac14f

WALLINGER et al.: LINSETS.ZIP: COMPRESSING LINEAR SET DIAGRAMS 9

datasets, stimuli, screenshots of the study as well as the
evaluation code can be found on OSF.

7.1 Participants and Setting
Even though conditions in a lab setting can be better con-
trolled, we conducted the study in an online setting. We de-
signed the experiment as a within-group experiment where
every participant was shown all five tasks on the four differ-
ent styles. The target time for completion was set between
15-20 minutes. Participation required to be at least 18 years
of age, no known color vision deficiency and a sufficiently
large screen (at least 768px wide). In total, we were able
to gather 52 complete responses. 73% of the participants
identified as male, 25% of participants identified as female
and the rest did prefer not to answer. 76% of all participants
were between 18-34 years old with a trivial number of par-
ticipants in the remaining age brackets. Overall, the partici-
pants were well educated with all having a post-secondary
degree or higher. The average self-rating of knowledge on
the topic of set visualization was 2.73 out of 5 as most partic-
ipants reported to have at least some degree of knowledge.
We required participants to agree to not change the screen
size after a screening question, which asked if they could
distinguish between all visual elements and fully see the
diagram, and logged their screen width. All participants
fulfilled the requirement to have a large enough screen.

7.2 Datasets
We used the same approach as in Section 6 and extracted
co-authorship hypergraphs of single years of the Graph
Drawing conference. From all extracted datasets we picked
five that had between 36 and 56 elements and 16 to 19 sets.
Next, we replaced set labels with arbitrary labels ‘Project
1’ to ‘Project i’ and assigned random, gender-balanced,
names for element labels. This was necessary to ensure label
readability and minimize confounding factors of labeling
and familarity.

Each dataset was assigned to exactly one task to elimi-
nate confounding factors of using different datasets for each
style. To mitigate learning effects we randomly permuted
set and element labeling to have exactly one unique task-
dataset pair for each style.

7.3 Tasks
We selected several tasks the participants had to complete.
The selection was guided by the task taxonomy of Alsallakh
et al. [5]. Below are the tasks, how the questions were stated,
and the possible answers participants could give.
T1: Find sets containing a specific element: which projects

do “Alice” and “Bob” have in common? All projects
were given as possible answers.

T2: Find/Select elements that belong to a specific set:
check all people who are in “Project i”. Six people were
given as possible answers.

T3: Analyze and compare set cardinalities: how many
people does “Project i” have in total? Ten possible
values where given as possible answers

T4: Analyze intersection relations: which project(s) over-
lap with “Project i”? All other projects were given as
possible answers.

T5: Analyze and compare intersection cardinalities: with
which project(s) does “Project 1” have the most over-
laps in project members? All other projects were given
as possible answers.

T1 and T2 are element-based tasks while T3–T5 are set-
based tasks. All questions were modelled as multiple-choice
questions. Whenever we asked for projects in the task we
used the same order, from Project 1 – Project X, in the
answer as otherwise participants had to spend time locating
their respective answer. For T2 we ordered the names in the
answer as they appeared in the column order of the stimuli.

7.4 Stimuli

We generated static images, or stimuli, for all pairs of
datasets and styles. All images were generated with our
own implementation and used the same color palette, font
and font-size. We fixed the width of the generated images
to 1270px but scaled down to 70% of available screen size
if a participants screen size was less. The height was solely
set by the requirements of the style. To remove potential
confounding factors and floor effects we paid attention
to positioning visual elements representing sets at similar
locations in the images. For example, we did manually move
rows to be in the center instead of the bottom or top as this
would have a direct impact on the visual distance between
labels and the set asked in the task. Similarly, we used image
processing software to place easily identifiable dots over
labels in T1. The reason here is that otherwise variance in
time could be explained mostly by the time a participant
requires to find both elements. Adding such dots to other
tasks was not required as the variance of finding sets in
styles with different information density is exactly what
we wanted to capture in the experiment. In some cases for
Γ2 and Γ3 we had overlapping labels. We ensured that no
question was asked, where participants had to identify sets
with overlapping labels. Lastly, we mirrored the column
order for Γ2 and Γ3 to further mitigate potential learning
effects of participants when shown the same dataset.

7.5 Experimental Procedure

For each of the four conditions we asked the participants
to solve two element-based tasks and three set-based tasks.
In total we had 4 conditions × (2 + 3) tasks = 20 trials. The
experiment followed a five stage template of (1) consent and
screening, (2) demographic questions, (3) tutorial, (4) formal
study and (5) post-task questionnaire. In (1) participants
were given the general study information, requirements,
study procedure, data policy and consent form. After giving
consent and agreeing to meet the requirements we showed
the participants one image and asked if the image is cor-
rectly displayed on their system as well as if they are able to
identify all visual elements. Also, we required participants
to not change their screen size during the experiment. Af-
terwards in (2), we asked demographic information such as
age, gender, education and prior knowledge on set visual-
ization. Next, we showed the participants a tutorial (3) of all
5 tasks. As each task was paired with a different style the
participants were familiarized with all styles and tasks in the
study. We asked the participants to take their time and only

https://osf.io/2zwec/?view_only=11c22b68f49a439eb3b68e372deac14f

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

proceed when they understood the task and style. Further-
more, we only allowed participants to proceed if their se-
lected answers were correct. Next, the formal study (4) was
conducted. As this was timed, we reminded the participants
to answer questions correctly but as quickly as possible. The
participants were given the same task on all four styles and
for each participant we permuted the order of tasks and the
order of styles in a specific task to minimize the learning
effect. In order to reduce fatigue we showed participants
a break screen between task groups which paused the
timing until they proceeded. Finally, we collected qualitative
information (5) about how confident they were on a 5-point
Likert scale, how likely they would use the style again on
a 5-point Likert scale, and a free-form text field to leave
general thoughts on the study and layout styles.

7.6 Pilot

Before the actual experiment we invited several people to
take part in a pilot study and answer a questionnaire about
the study design afterwards. A total of five people with var-
ious levels of expertise in the design of user studies agreed
to participate. Overall, the pilot participants did not vocalize
major concerns about the general design. All participants
finished the study slightly above the predicted target time.
Therefore, we removed some qualitative questions at the
beginning and end of the study. One participant asked us to
clarify some details in the tutorial, which we implemented
for the final version. We specifically asked if the participants
could identify floor or ceiling effects, which all denied.
Also, we asked the participants if they were aware that
the underlying data and questions were the same for each
style. Two participants noticed but thought that this did not
help them answer the questions. Still, we adapted the final
version by mirroring the element order in two of the four
styles to mitigate this effect.

7.7 Hypotheses

Before conducting the user experiment we formulated sev-
eral alternative hypotheses. If we state that style A out-
performs style B on task accuracy, this means that style
A has a higher accuracy. Similarly, if we state that style A
outperforms style B on task completion time then style A
has a lower task completion time.
H1: Γ0 will outperform all other styles on accuracy and task

completion time for element-based tasks (T1, T2).
H2: Γ0 will perform worse than Γ2 and Γ3 on accuracy and

task completion time for set-based tasks (T3-T5).
H3: Γ1 will perform worse on accuracy and task completion

time than styles Γ2 and Γ3.
H4: Γ2 and Γ3 will perform similarly with no statistically

significant difference.
Hypothesis H1 was guided by the intuition that element-

based tasks are easier in linear diagrams as correctly iden-
tifying sets only requires scanning the vertical line below
an element and finding the labels of the respective sets at its
expected position. For the other styles a second visual search
for the project labels is necessary. Hypothesis H2 captures
the intuition that set-based tasks are easier in LinSets.zip.
Here we assumed that the more compact representation

Γ0 Γ1 Γ2 Γ3
0.0

0.5

1.0

m
ea

n

Task 1

Γ0 Γ1 Γ2 Γ3

Task 2

Γ0 Γ1 Γ2 Γ3

Task 3

Γ0 Γ1 Γ2 Γ3

Task 4

Γ0 Γ1 Γ2 Γ3

Task 5

Fig. 8. The participant’s mean accuracy on the individual tasks.

makes it easier to identify the involved sets. Hypothesis H3
captures the intuition that block links make it easier to iden-
tify which blocks belong to the same set instead of solely
relying on color. Lastly, the intuition in H4 is neither style
with block links has an inherent advantage over the other.

7.8 Results and Analysis

We describe the used statistical tests for task accuracy,
task completion time and qualitative feedback below.
Generally, we performed a post-hoc analysis if a statistical
significance (α = 0.05) was given. We evaluated each task
independently and the full tables containing the statistical
analysis can be found on OSF. Figure 8 shows the mean
task accuracy.

Task Accuracy. As participants’ answers are binary cor-
rect/incorrect dependent variables we used Cochran’s Q
test to determine if there are statistical significant differences
between the styles. If a significant difference was detected,
we created a pair-wise contingency table and performed an
asymptotic McNemar’s test.

For element-based tasks T1 and T2 and set-based task
T5 we could not find statistically significant differences
between any of the styles. For T3 there were statistically sig-
nificant differences (p = 0.02). However, the pair-wise com-
parison only showed that Γ0 (p = 0.03) and Γ2 (p = 0.03)
outperformed Γ1 while no significant difference was found
for all other pairs. In T4 (p = 0.03), Γ3 outperformed Γ0

(p = 0.01), Γ1 (p = 0.03) and Γ2 (p = 0.03).
In summary, there is only marginal support for H2 and

H3 and we have to reject hypotheses H1, H2 and H3 on
task accuracy. H4 is supported by our findings with the
exception of T4.

Task Completion Time. We first tested the task com-
pletion time for normal distribution. As this was not the
case we applied Friedman’s test for repeated measurements
with the F-Test method. Whenever we detected a statisti-
cally significant difference we performed a two-sided non-
parametric pair-wise test.

T1 showed a significant difference (p < 0.01) where
Γ0 is significantly outperformed by Γ1 (p = 0.04) and
Γ2 (p < 0.01). Γ2 outperforms Γ3 (p = 0.04). For T2
(p = 0.02) Γ3 outperformed Γ0 (p < 0.01), Γ1 (p = 0.01)
and Γ2 (p = 0.01). In the case of T3 the pair-wise tests
showed significant difference (p < 0.01) between all styles.
The ranking of performance was Γ0, Γ1, Γ2 and then Γ3.
Significance (p < 0.01) was also detected between the styles
in T4. The pair-wise test showed that the only significant
differences were between Γ0 outperforming Γ2 (p < 0.01)
and Γ1 outperforming Γ2 (p < 0.01). For task T5 we did
not detect any significant differences in completion time
between the different styles.

https://osf.io/2zwec/?view_only=11c22b68f49a439eb3b68e372deac14f

WALLINGER et al.: LINSETS.ZIP: COMPRESSING LINEAR SET DIAGRAMS 11

Γ0 Γ1 Γ2 Γ3
0

10

20

30
C

ou
nt

1 2 3 4 5

(a) Confidence
Γ0 Γ1 Γ2 Γ3

0

10

20

30

C
ou

nt

1 2 3 4 5

(b) Interest in using again.

Fig. 9. 5-point Likert scale (1 – worst, 5 – best) of qualitative answers.

Overall, H1 is partially supported in T1 but not in T2.
H2 is unsupported while there is some partial support for
H4 in T5. H3 is only partially supported in T2 and T3.

Qualitative Feedback. We used the Kruskal–Wallis test
to identify significant differences between styles on the
two qualitative answers. As both questions had significant
difference, we also performed a Mann-Whitney U test
with Bonferroni correction. We report the area under the
curve (AUC) to measure effect size. The AUC value can be
interpreted as the chance that one value is larger than the
other when randomly picking two samples. Finally, we
computed a Spearman correlation between performance
of participants and their qualitative answers. For this we
summed task accuracy and task completion time for each
participant. The distribution of participant’s answers can be
seen in Figure 9.

There were statistically significant (p < 0.01) differences
between the styles regarding how confident participants
were about giving a correct answer. Participants felt least
confident with Γ1 which can be attributed to high infor-
mation density and the fact that blocks of the same set
only indicate this via color. We could not find a signifi-
cant difference between Γ0 and Γ3. Participants felt most
confident with Γ2 compared against Γ0 (AUC = 0.67), Γ1

(AUC = 0.78) and Γ3 (AUC = 0.63). We could not find
statistically significant correlation between confidence and
task accuracy or task completion time.

Similarly, participant’s answers if they would use a
style again had significant (p < 0.01) differences. There
is no significance between Γ0 compared to Γ1 or Γ3.
Again, people felt less likely to use Γ1 compared to Γ2

(AUC = 0.77) and Γ3 (AUC = 0.68). Participants felt most
confident with Γ2 compared against Γ0 (AUC = 0.65)
and Γ3 (AUC = 0.62). Besides Γ1 (correlation = 0.30) on
completion time, we could not find significant correlation
to task accuracy or task completion time.

We read all answers in the free-form text question and
report on three general sentiments that recurred. The first
recurring sentiment is that people generally agreed that
Γ1 is confusing and stated that they had difficulties either
finding the correct project labels or figuring out which
blocks belonged to a project. The second recurring sentiment
was that participants see more benefits in linear diagrams
over LinSets.zip as the visual representation is clearer and
labels are always at an expected position. The third sen-
timent stands in contrast to the second. Here, participants
stated that they had problems tracing sets to labels in linear
diagrams and much more prefer the compact representation
of Γ2 and Γ3 of LinSets.zip.

Discussion. The user study we conducted to compare
different variants of LinSets.zip and linear diagrams has
shown that there are differences between the systems. How-
ever, we could not conclude that the more predictable and
clean style of linear diagrams outperformed LinSets.zip on
task accuracy and task completion time. Similarly, there
is also no indication that a more compact diagram has a
clear advantage over linear diagrams. On the other hand,
we can draw the conclusion that LinSets.zip does perform
equally well to linear diagrams and can therefore be a viable
alternative when vertical space is limited. This finding is
also supported by the qualitative feedback gathered in the
study. Participants felt a similar level of confidence with
linear diagrams and variant Γ2 of LinSets.zip.

Similarly, we could not find clear statistical differences
between Γ1, Γ2, and Γ3 of LinSets.zip. However, the
qualitative feedback showed that participants appreciated
the more intuitive block links instead of relying on color
alone. Furthermore, there is a possibility that participants
felt confident with Γ2 as no two sets are alternating in a
row, which leads to a less compact but therefore also less
information dense diagram. Even though we implemented
the possibility to restrict the maximum number of sets per
row we did not test this in the user study.

8 LIMITATIONS AND FUTURE WORK

The participants we recruited for the user study tend to be
well educated young men. Therefore, it is not clear how well
our results generalize. Also, our study was conducted as an
online experiment. It is not clear how attentive participants
were during the study. We also only asked a small number
of tasks from our participants. Overall, the user study gives
some indication but is not necessarily conclusive. Another
limitation is the placement of labels. Currently, we place la-
bels in the largest block. This is problematic when the largest
blocks of different sets are close which leads to overlapping
labels. Furthermore, we assume that labels are short. Long
labels have to be either truncated or shown on demand, as
otherwise they would cover blocks and decrease readability.
We also did not explore interactivity. In some cases interac-
tivity could resolve some of the limitations of LinSets.zip.

Future Work. We did not explore interactivity in this
work. For Γ1 it would be easy to interactively reorder
columns to keep a single set together, as this style is in-
dependent of the column order, it is non-trivial for Γ2 and
Γ3. For the latter two adaptions it would be necessary to
not invalidate block links. Furthermore, the user study in
this work only gives an indication and a broader study
would be needed to find a decisive conclusion. Lastly, a
rendering style on concentric circles could be implemented.
Most algorithms can easily adapt from a linear order to
a circular order and the resulting diagram could have a
predictable aspect ratio.

9 CONCLUSION

In this paper we have presented LinSets.zip, a compact
diagram to visualize set systems. As LinSets.zip is similar
to linear diagrams we adopt concepts that have been
evaluated in the context of linear diagrams. The design

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

space we have explored focuses on creating maximally
compact representations but we also present different
variants that use block links as visual aids to create
clearer and more readable visualizations. We show that
the presented variants can be modelled as known coloring
problems for which algorithms exist that work well in
practice. Furthermore, we have implemented all variants
and conducted computational experiments and a small-
scale user study. The computational experiments show
that striving for optimality is feasible in most cases and
that real-world data can be significantly compressed. The
findings of the user study indicate that the task accuracy
and task completion time is on par with linear diagrams.

ACKNOWLEDGMENTS

The authors would like to thank all of the participants
in our experiment, and especially the experts of our pilot
study. This work has been funded by the Vienna Science
and Technology Fund (WWTF) [10.47379/ICT19035].

REFERENCES

[1] P. J. Rodgers, G. Stapleton, and P. Chapman, “Visualizing
sets with linear diagrams,” ACM Trans. Comput. Hum. Interact.,
vol. 22, no. 6, pp. 27:1–27:39, 2015. [Online]. Available:
https://doi.org/10.1145/2810012

[2] P. Chapman, G. Stapleton, P. Rodgers, L. Micallef, and A. Blake,
“Visualizing sets: An empirical comparison of diagram types,” in
Diagrams 2014, ser. LNCS, vol. 8578. Springer, 2014, pp. 146–160.
[Online]. Available: https://doi.org/10.1007/978-3-662-44043-8
18

[3] B. Gottfried, “A comparative study of linear and region based
diagrams,” J. Spatial Inf. Sci., vol. 10, no. 1, pp. 3–20, 2015.
[Online]. Available: https://doi.org/10.5311/JOSIS.2015.10.187

[4] P. Rodgers, L. Zhang, and H. C. Purchase, “Wellformedness
properties in euler diagrams: Which should be used?” IEEE Trans.
Vis. Comput. Graph., vol. 18, no. 7, pp. 1089–1100, 2012. [Online].
Available: https://doi.org/10.1109/TVCG.2011.143

[5] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. J. Rodgers, “The state-of-the-art of set visualization,” Comput.
Graph. Forum, vol. 35, no. 1, pp. 234–260, 2016. [Online]. Available:
https://doi.org/10.1111/cgf.12722

[6] A. Baimagambetov, J. Howse, G. Stapleton, and A. J. Delaney,
“Generating effective euler diagrams,” in Diagrams 2018, ser.
LNCS, vol. 10871. Springer, 2018, pp. 39–54. [Online]. Available:
https://doi.org/10.1007/978-3-319-91376-6 8

[7] R. Kehlbeck, J. Görtler, Y. Wang, and O. Deussen, “SPEULER:
semantics-preserving euler diagrams,” IEEE Trans. Vis. Comput.
Graph., vol. 28, no. 1, pp. 433–442, 2022. [Online]. Available:
https://doi.org/10.1109/TVCG.2021.3114834

[8] N. H. Riche and T. Dwyer, “Untangling euler diagrams,” IEEE
Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 1090–1099, 2010.
[Online]. Available: https://doi.org/10.1109/TVCG.2010.210

[9] P. Simonetto, D. Auber, and D. Archambault, “Fully automatic
visualisation of overlapping sets,” Comput. Graph. Forum,
vol. 28, no. 3, pp. 967–974, 2009. [Online]. Available: https:
//doi.org/10.1111/j.1467-8659.2009.01452.x

[10] P. Rottmann, M. Wallinger, A. Bonerath, S. Gedicke,
M. Nöllenburg, and J. Haunert, “Mosaicsets: Embedding
set systems into grid graphs,” IEEE Trans. Vis. Comput.
Graph., vol. 29, no. 1, pp. 875–885, 2023. [Online]. Available:
https://doi.org/10.1109/TVCG.2022.3209485

[11] J. Lamy and R. Tsopra, “Rainbio: Proportional visualization
of large sets in biology,” IEEE Trans. Vis. Comput. Graph.,
vol. 26, no. 11, pp. 3285–3298, 2020. [Online]. Available:
https://doi.org/10.1109/TVCG.2019.2921544

[12] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister,
“Upset: Visualization of intersecting sets,” IEEE Trans. Vis.
Comput. Graph., vol. 20, no. 12, pp. 1983–1992, 2014. [Online].
Available: https://doi.org/10.1109/TVCG.2014.2346248

[13] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser, “Radial sets:
Interactive visual analysis of large overlapping sets,” IEEE Trans.
Vis. Comput. Graph., vol. 19, no. 12, pp. 2496–2505, 2013. [Online].
Available: https://doi.org/10.1109/TVCG.2013.184

[14] B. Jacobsen, M. Wallinger, S. G. Kobourov, and M. Nöllenburg,
“Metrosets: Visualizing sets as metro maps,” IEEE Trans. Vis.
Comput. Graph., vol. 27, no. 2, pp. 1257–1267, 2021. [Online].
Available: https://doi.org/10.1109/TVCG.2020.3030475

[15] K. Matkovic, D. Gracanin, M. Bardun, R. Splechtna, and
H. Hauser, “Dual radial set,” in EuroVA 2020. Eurographics
Association, 2020, pp. 13–17. [Online]. Available: https://doi.org/
10.2312/eurova.20201080

[16] S. Luz and M. Masoodian, “A comparison of linear and mosaic
diagrams for set visualization,” Inf. Vis., vol. 18, no. 3, 2019.
[Online]. Available: https://doi.org/10.1177/1473871618754343

[17] Y. Sato and K. Mineshima, “The efficacy of diagrams in syllogistic
reasoning: A case of linear diagrams,” in Diagrams 2012, ser.
LNCS, vol. 7352. Springer, 2012, pp. 352–355. [Online]. Available:
https://doi.org/10.1007/978-3-642-31223-6 49

[18] M. Alqadah, G. Stapleton, J. Howse, and P. Chapman, “The
perception of clutter in linear diagrams,” in Diagrams 2016, ser.
LNCS, vol. 9781. Springer, 2016, pp. 250–257. [Online]. Available:
https://doi.org/10.1007/978-3-319-42333-3 20

[19] P. Chapman, K. Sim, and H. H. Chen, “Minimising line segments
in linear diagrams is NP-hard,” J. Comput. Lang., vol. 71, p.
101136, 2022. [Online]. Available: https://doi.org/10.1016/j.cola.
2022.101136

[20] A. Dobler and M. Nöllenburg, “On computing optimal linear
diagrams,” in Diagrams 2022, ser. LNCS, vol. 13462. Springer,
2022, pp. 20–36. [Online]. Available: https://doi.org/10.1007/
978-3-031-15146-0 2

[21] P. Chapman, K. Sim, and H. Chen, “Drawing algorithms for linear
diagrams,” Talk Abstracts of Diagrams, pp. 1–3, 2021.

[22] P. Chapman, “Interactivity in linear diagrams,” in Diagrams 2021,
ser. LNCS, vol. 12909. Springer, 2021, pp. 449–465. [Online].
Available: https://doi.org/10.1007/978-3-030-86062-2 47

[23] J. Lamy, H. Berthelot, C. Capron, and M. Favre, “Rainbow
boxes: A new technique for overlapping set visualization
and two applications in the biomedical domain,” J. Vis.
Lang. Comput., vol. 43, pp. 71–82, 2017. [Online]. Available:
https://doi.org/10.1016/j.jvlc.2017.09.003

[24] P. H. Nguyen, K. Xu, R. Walker, and B. L. W. Wong,
“Timesets: Timeline visualization with set relations,” Inf.
Vis., vol. 15, no. 3, pp. 253–269, 2016. [Online]. Available:
https://doi.org/10.1177/1473871615605347

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[26] Y. Hu, S. G. Kobourov, and S. Veeramoni, “On maximum
differential graph coloring,” in GD 2010, ser. LNCS, vol.
6502. Springer, 2010, pp. 274–286. [Online]. Available: https:
//doi.org/10.1007/978-3-642-18469-7 25

[27] L. T. Kou, “Polynomial complete consecutive information retrieval
problems,” SIAM J. Comput., vol. 6, no. 1, pp. 67–75, 1977.
[Online]. Available: https://doi.org/10.1137/0206004

[28] S. Haddadi and Z. Layouni, “Consecutive block minimization is
1.5-approximable,” Inf. Process. Lett., vol. 108, no. 3, pp. 132–135,
2008. [Online]. Available: https://doi.org/10.1016/j.ipl.2008.04.
009

[29] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” Oper. Res. Forum, vol. 3, no. 1, 2022.
[Online]. Available: https://doi.org/10.1007/s43069-021-00101-z

[30] E. Malaguti and P. Toth, “A survey on vertex coloring problems,”
Int. Trans. Oper. Res., vol. 17, no. 1, pp. 1–34, 2010. [Online].
Available: https://doi.org/10.1111/j.1475-3995.2009.00696.x

[31] R. B. Boppana and M. M. Halldórsson, “Approximating
maximum independent sets by excluding subgraphs,” BIT,
vol. 32, no. 2, pp. 180–196, 1992. [Online]. Available: https:
//doi.org/10.1007/BF01994876

[32] D. Brélaz, “New methods to color the vertices of a graph,”
Commun. ACM, vol. 22, no. 4, pp. 251–256, 1979. [Online].
Available: https://doi.org/10.1145/359094.359101

[33] Z. Galil, “Efficient algorithms for finding maximum matching
in graphs,” ACM Comput. Surv., vol. 18, no. 1, pp. 23–38, 1986.
[Online]. Available: https://doi.org/10.1145/6462.6502

https://doi.org/10.1145/2810012
https://doi.org/10.1007/978-3-662-44043-8_18
https://doi.org/10.1007/978-3-662-44043-8_18
https://doi.org/10.5311/JOSIS.2015.10.187
https://doi.org/10.1109/TVCG.2011.143
https://doi.org/10.1111/cgf.12722
https://doi.org/10.1007/978-3-319-91376-6_8
https://doi.org/10.1109/TVCG.2021.3114834
https://doi.org/10.1109/TVCG.2010.210
https://doi.org/10.1111/j.1467-8659.2009.01452.x
https://doi.org/10.1111/j.1467-8659.2009.01452.x
https://doi.org/10.1109/TVCG.2022.3209485
https://doi.org/10.1109/TVCG.2019.2921544
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1109/TVCG.2013.184
https://doi.org/10.1109/TVCG.2020.3030475
https://doi.org/10.2312/eurova.20201080
https://doi.org/10.2312/eurova.20201080
https://doi.org/10.1177/1473871618754343
https://doi.org/10.1007/978-3-642-31223-6_49
https://doi.org/10.1007/978-3-319-42333-3_20
https://doi.org/10.1016/j.cola.2022.101136
https://doi.org/10.1016/j.cola.2022.101136
https://doi.org/10.1007/978-3-031-15146-0_2
https://doi.org/10.1007/978-3-031-15146-0_2
https://doi.org/10.1007/978-3-030-86062-2_47
https://doi.org/10.1016/j.jvlc.2017.09.003
https://doi.org/10.1177/1473871615605347
https://doi.org/10.1007/978-3-642-18469-7_25
https://doi.org/10.1007/978-3-642-18469-7_25
https://doi.org/10.1137/0206004
https://doi.org/10.1016/j.ipl.2008.04.009
https://doi.org/10.1016/j.ipl.2008.04.009
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1111/j.1475-3995.2009.00696.x
https://doi.org/10.1007/BF01994876
https://doi.org/10.1007/BF01994876
https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/6462.6502

	1 Introduction
	2 Related Work
	3 Design Decisions
	4 Overview of the LinSets.zip Approach
	5 Algorithms
	5.1 Column Ordering (Step I)
	5.2 Compression (Step II)

	6 Quantitative Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 User Experiment
	7.1 Participants and Setting
	7.2 Datasets
	7.3 Tasks
	7.4 Stimuli
	7.5 Experimental Procedure
	7.6 Pilot
	7.7 Hypotheses
	7.8 Results and Analysis

	8 Limitations and Future Work
	9 Conclusion
	References

