Loading web-font TeX/Main/Regular
Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis | IEEE Journals & Magazine | IEEE Xplore

Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis


Abstract:

We propose to use optimally ordered orthogonal neighbor-joining (O ^{3} NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional ...Show More

Abstract:

We propose to use optimally ordered orthogonal neighbor-joining (O ^{3} NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.
Published in: IEEE Transactions on Visualization and Computer Graphics ( Volume: 30, Issue: 8, August 2024)
Page(s): 5034 - 5046
Date of Publication: 09 June 2023

ISSN Information:

PubMed ID: 37294655

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.